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Why is Simulation Harder Than

Bisimulation?∗

Antonı́n Kučera† Richard Mayr‡

Abstract

Why is deciding simulation preorder (and simulation equivalence)

computationally harder than deciding bisimulation equivalence on al-

most all known classes of processes? We try to answer this question

by describing two general methods that can be used to construct di-

rect one-to-one polynomial-time reductions from bisimulation equiv-

alence to simulation preorder (and simulation equivalence). These

methods can be applied to many classes of finitely generated transi-

tion systems, provided that they satisfy certain abstractly formulated

conditions. Roughly speaking, our first method works for all classes

of systems that can test for ‘non-enabledness’ of actions, while our

second method works for all classes of systems that are closed under

synchronization.

1 Introduction

In the last decade, a lot of research effort has been devoted to the study

of decidability/complexity issues for checking various semantic equiva-
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lences between certain (classes of) processes. Formally, a process is (associ-

ated with) a state in a transition system.

Definition 1.1. A transition system is a triple T = (T,Act,→) where T is a set

of states, Act is a finite set of actions, and → ⊆ T × Act × T is a transition

relation.

We write t a→ t̄ instead of (t, a, t̄) ∈ → and we extend this notation to

elements of Act∗ in the natural way. A state t̄ is reachable from a state t,

written t →∗ t̄, if t w→ t̄ for some w ∈ Act∗. A state t̄ is an a-successor of

a state t if t a→ t̄. The set of all a-successors of t is denoted by succ(t, a).

Assuming some implicit linear ordering on succ(t, a), we denote by t(a, j)

the jth a-successor of t for each 1 ≤ j ≤ |succ(t, a)|. The branching degree of

T , denoted d(T ), is the least number n such that n ≥ |
⋃
a∈Act succ(t, a)| for

every t ∈ T . If there is no such n then d(T ) =∞.

The notion of ‘behavioral sameness’ of two processes can be formally

captured in many different ways (see, e.g., [vG99] for an overview). Among

those behavioral equivalences, simulation and bisimulation equivalence en-

joy special attention.

Definition 1.2. Let S = (S,Act,→) and T = (T,Act,→) be transition systems.

A relation R ⊆ S× T is a simulation iff whenever (s, t) ∈ R, then

• for each s a→ s̄ there is some t a→ t̄ such that (s̄, t̄) ∈ R.

A process s is simulated by t, written s v t, iff there is a simulation R such that

(s, t) ∈ R. Processes s, t are simulation equivalent, written s ' t, iff they can

simulate each other.

A bisimulation is a simulation whose inverse is also a simulation; a

more explicit definition follows.

Definition 1.3. Let S = (S,Act,→) and T = (T,Act,→) be transition systems.

A relation R ⊆ S× T is a bisimulation iff whenever (s, t) ∈ R, then
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• for each s a→ s̄ there is some t a→ t̄ such that (s̄, t̄) ∈ R;

• for each t a→ t̄ there is some s a→ s̄ such that (s̄, t̄) ∈ R.

Processes s and t are bisimulation equivalent (bisimilar), written s ∼ t, iff they

are related by some bisimulation.

Simulations (and bisimulations) can also be viewed as games [Sti98,

Tho93] between two players, the attacker and the defender. In a simulation

game the attacker wants to show that s 6v t, while the defender attempts

to frustrate this. Imagine that there are two tokens put on states s and t.

Now the two players, attacker and defender, start to play a simulation game

which consists of a (possibly infinite) number of rounds where each round

is performed as follows: The attacker takes the token which was put on s

originally and moves it along a transition labeled by (some) a; the task of

the defender is to move the other token along a transition with the same

label. If one player cannot move then the other player wins. The defender

wins every infinite game. It can be easily shown that s v t iff the defender

has a winning strategy. The only difference between a simulation game and

a bisimulation game is that the attacker can choose his token at the beginning

of every round (the defender has to respond by moving the other token).

Again we get that s ∼ t iff the defender has a winning strategy.

Let A, B be classes of processes. The problem whether a given process s

of A is simulated by a given process t of B is denoted by A v B. Similarly,

the problem if s and t are simulation equivalent (or bisimilar) is denoted

by A ' B, (or A ∼ B, respectively).

One reason why simulation preorder/equivalence and bisimilarity

found their way to many practical applications is their special computa-

tional tractability—both equivalences are decidable in polynomial time for

finite-state processes (in fact, they are P-complete [BGS92, SJ01]) and re-

main decidable even for certain classes of infinite-state processes [Mol96].

By contrast, all trace-based equivalences are PSPACE-complete for finite-
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state systems and become undecidable for infinite-state systems. Further

evidence is provided by recent results on equivalence-checking between

infinite and finite-state systems—see [KM02b] for an overview. Although

the formal definitions of simulation and bisimulation are quite similar, one

cannot immediately transfer techniques and algorithms developed for one

of the two equivalences to the other one. Nevertheless, there is some kind

of connection between them—for example, in [KM02b] it has been shown

that simulation equivalence can be ‘reduced’ to bisimulation equivalence in

the following sense: given a transition system T , one can define a transition

system T ′with the same set of states as T such that for all states s, twe have

that s, t are simulation equivalent in T iff s, t are bisimilar in T ′. Although

this ‘reduction’ works for arbitrary finitely-branching transition systems, it

is not effective in general (the only known class of infinite-state processes

where the method is effective is the class of one-counter nets [JKM00]; for

finite-state processes, the method is even efficient, i.e., polynomial-time).

Actually, our present knowledge indicates that there cannot be any general

efficient reduction from simulation equivalence to bisimilarity, because all

of the existing results confirm a general rule saying that

“simulation is computationally harder than bisimilarity.”

Indeed, bisimilarity tends to be ‘more decidable’ and ‘more tractable’ than

simulation; to the best of our knowledge, there is (so far) no counterexam-

ple violating this ‘rule of thumb’ (maybe except for some artificial construc-

tions). But why is that? One possible answer is that bisimilarity is so much

finer than simulation equivalence that it has ‘more structure’ and becomes

easier to decide. However, this is a rather vague statement. In this pa-

per we try to provide a more convincing explanation/justification for the

aforementioned rule. We show that there are possibilities how to ‘transfer’

winning strategies for both players from a bisimulation game to a simula-

tion game. More precisely, given two states s and t in transition systems S

and T , we show how to construct states s′ and t ′ in transition systems S ′
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and T ′ in such a way that s ∼ t iff s′ v t ′ (or s ′ ' t ′). We propose two

methods how to achieve that. The point is that both methods are applica-

ble to certain (quite large) classes of models of concurrent systems where

they result in effective and polynomial-time reductions. In fact, we formulate

abstract conditions on process classes A and B under which the problem

A ∼ B is polynomially reducible to the problem A v B (or A ' B). Roughly

speaking, the first method (introduced in Section 2) applies to models with

a finite branching degree where one can in some sense identify what ac-

tions are not enabled. Examples include (subclasses of) pushdown systems,

queue systems, etc. The second method (Section 3) is applicable to models

closed under (synchronized) parallel composition. Examples are, e.g., Petri

nets with various extensions/restrictions. The applicability and limitations

of each method are discussed in greater detail in the respective sections.

Although the two methods do not cover all of the existing models of

concurrent processes (see Section 5), they reveal a kind of general rela-

tionship between winning strategies in bisimulation and simulation games.

Moreover, it is now clear that simulation is harder than bisimulation not by

coincidence but due to some fundamental reason—one can polynomially

reduce bisimilarity to simulation preorder/equivalence by general reduc-

tions whose underlying principle is independent of concrete process mod-

els. Hence, the paper presents a new piece of generic knowledge rather

than a collection of technical results.

2 Reducing Bisimilarity to Simulation – Method 1

For the rest of this section, we fix a finite set of actions Act = {a1, . . . , ak}

and two transition systems S = (S,Act,→), T = (T,Act,→) with a finite

branching degree. Moreover, we put d = max{d(S), d(T )}. Our aim is

to define two other transition systems S ′ and T ′ which extend the sys-

tems S and T by some new states and transitions in such a way that for all
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s ∈ S, t ∈ T we have that s ∼ t iff s′ v t ′, where s′ and t ′ are the ‘twins’

of s and t in S ′ and T ′, respectively. Since, in the considered simulation

game, the attacker plays within S ′ and the defender plays within T ′, we

call S ′ an A-extension of S, and T ′ a D-extension of T . The idea behind

the construction of S ′ and T ′ can be intuitively described as follows: one

round of a bisimulation game between s and t is emulated by at most two

rounds of a simulation game between s′ and t ′. The rules of the bisimu-

lation game allow the attacker to make his move either from s or from t

. If he chooses s and plays s ai→ s(ai, j), we can easily emulate his attack

by s ′ ai→ s(ai, j)
′ (remember that s(ai, j) is the jth ai-successor of s). The

defender’s response t ai→ t(ai, `) is emulated by t′ ai→ t(ai, `)
′ (t ′ has the

‘same’ ai-successors as t). If the attacker chooses t and plays t ai→ t(ai, j),

the emulation is more complicated and takes two rounds. First, to each

successor t(ai, j) of t we associate a unique action λji. Now, we add to s ′ a

family of transitions s ′
λ
j

i→ s ′ for all 1 ≤ i ≤ k and 1 ≤ j ≤ d. To emulate

the move t ai→ t(ai, j) in our simulation game, the attacker performs the

λ
j
i-loop on s ′. In our bisimulation game, the attack t ai→ t(ai, j) would be

matched by (some) move s ai→ s(ai, `). First, we name the successors of s

by a family of δji actions. Now, the response s ai→ s(ai, `) is emulated by

t ′
λ
j

i→ r[ai, j, `], where r[ai, j, `] is a newly added state. It finishes the first

round, i.e., the first emulation phase. In the second round, t′ is in a way

forced to go to t(ai, j) ′ and the only response available to r[ai, j, `] is to enter

s(ai, `)
′, which finishes the emulation. The mentioned ‘forcing’ is achieved

by allowing r[ai, j, `] to go to a ‘universal’ state (i.e., to a state which can

simulate everything) under all but one action δ`i. It means that if any other

action (different from δ`i) is used by t′ in the second round, the attacker

loses the simulation game. Hence, his only chance is to play a δ`i-transition;

our construction ensures that the only such transition is t′
δ`
i→ t(ai, `)

′. Our

construction also guarantees that any ‘bad’ move of one of the two play-
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ers in the simulation game (which is not consistent with the above given

scenario) is immediately ‘punished’ by allowing the other player to win.

Formal definitions and proofs follow.

Let Λ = {λji | 1 ≤ i ≤ k, 1 ≤ j ≤ d} and ∆ = {δji | 1 ≤ i ≤ k, 1 ≤ j ≤ d} be

finite sets of actions such thatΛ, ∆, and Act are pairwise disjoint. We define

Act ′ = Act ∪Λ ∪ ∆ ∪ {γ}where γ is a fresh action.

s t
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a1a1
a1

ak
ak

ak
ak

s(a1, 1) s(a1, n1) s(ak, 1) s(ak, nk) t(a1, 1) t(a1,m1) t(ak, 1) t(ak,mk)

succ(s, a1) succ(s, ak) succ(t, a1) succ(t, ak)

s ′ t ′

a1
a1 akak

s(a1, 1)
′
s(a1, n1)

′ s(ak, 1)
′
s(ak, nk)

′

succ(s, a1) succ(s, ak)

δ1
1 δ

n1
1

δ1
k

δ
nk
k

Λ

γ

Θ

Act ′Act ′

Act ′

Act ′ − {δ1
i
} Act ′ − {δd

i
}

r[ai, j, 1] r[ai, j, d]

λ
j

i
λ
j

i
ai

δ1
i

δd
i

∆

t(ai, j)
′

Figure 1: States s of S and t of T , and the corresponding states s′ of S ′ and

t ′ of T ′ (some of the out-going transitions of t′ are omitted).

Definition 2.1. An A-extension of S (see Fig.1) is a transition system S′ =

(S ′,Act ′,→) together with an injective mapping f : S→ S′ satisfying the follow-

ing conditions (where f(s) is abbreviated to s′):

• If s a→ s̄ is a transition of S, then s′ a→ s̄ ′ is a transition of S ′.
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• s ′
λ→ s ′ is a transition of S ′ for every s ∈ S and λ ∈ Λ.

• For all s ∈ S, 1 ≤ i ≤ k, and 1 ≤ j ≤ d we have the following:

– if j ≤ |succ(s, ai)| then s ′
δ
j
i→ s(ai, j)

′ is a transition of S ′ (remember

that s(ai, j) is the jth ai-successor of s in S);

– if j > |succ(s, ai)| then there is a transition s′
δ
j

i→ qj to some state

qj ∈ S
′ which can perform the action γ. This family of δji-transitions

is indicated by a Θ-labeled arrow in Fig. 1. Also observe that we do not

impose any additional restrictions on qj (i.e., qj can also emit other

actions).

• For each s ∈ S the state s′ has only the transitions admitted above.

A simple observation about A-extensions is

Lemma 2.2. If S is deterministic, then S has a deterministic A-extension.

A state u is universal if u a→ u for every a ∈ Act ′ (u can also have

other out-going transitions). Observe that a universal state can simulate

any process which emits actions of Act′. In the next definition, we write

t
a→ U to indicate that t a→ u for some universal state u.

Definition 2.3. A D-extension of T (see Fig. 1) is a transition system T ′ =

(T ′,Act ′,→) together with an injective mapping g : T → T ′ satisfying the follow-

ing conditions (where g(t) is abbreviated to t′):

• If t a→ t̄ is a transition of T , then t′ a→ t̄ ′ is a transition of T ′.

• t ′
δ→ U for every t ∈ T and δ ∈ ∆.

• For all t ∈ T , 1 ≤ i ≤ k, and 1 ≤ j ≤ d we have the following:

– If j ≤ |succ(t, ai)| then t ′
λ
j

i→ r[ai, j, `] is a transition of S ′ for each

1 ≤ ` ≤ d. Here r[ai, j, `] is a state of T ′ which has
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∗ exactly one δ`i-transition r[ai, j, `]
δ`
i→ t(ai, j)

′ (remember that

t(ai, j) is the jth ai-successor of t in T );

∗ a transition r[ai, j, `]
a→ U for each a ∈ Act′ − {δ`i}.

– If j > |succ(t, ai)| then there is a transition t′
λ
j

i→ U.

• For each t ∈ T the state t′ has only the transitions admitted above.

Theorem 2.4. Let s ∈ S and t ∈ T . Let S ′ be an A-extension of S and T ′ a

D-extension of T . We have that s ∼ t iff s′ v t ′.

Proof. We start with the ‘=⇒’ direction. Let us suppose that s ∼ t. We show

that the defender has a winning strategy in a simulation game initiated

in (s ′, t ′). Let R = {(s ′, t ′) | s ∈ S, t ∈ T, s ∼ t}. We prove that R can

be extended to a simulation relation (which means that indeed s′ v t ′).

Let (s ′, t ′) ∈ R. We show that the defender can play in such a way that

after at most two rounds he achieves either a configuration from R, or a

configuration where he ‘obviously’ wins. So, let s′ a→ p be an attacker’s

move. We consider three possibilities:

• If a ∈ Act, then p = s̄′ for some s̄ ∈ S. Since s ∼ t, there is t a→ t̄ such

that s̄ ∼ t̄. Hence, the defender can respond by t′ a→ t̄ ′ and thus enter

a configuration fromR.

• If a ∈ ∆, then there is a transition t′ a→ U (cf. Definition 2.3). Hence,

the defender can use this transition and from that point on he can

simulate ‘everything’.

• If a = λji, then p = s ′ and there are two possibilities:

– The state t has fewer than j ai-successors. Then there is a transi-

tion t ′
λ
j
i→ U and the defender wins.

– Otherwise, let us consider the attack t ai→ t(ai, j) in the bisim-

ulation game between s and t. Since s ∼ t, there is a move
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s
ai→ s(ai, `) such that s(ai, `) ∼ t(ai, j). In our simulation game,

the defender uses the t′
λ
j

i→ r[ai, j, `] transition as a response. The

current game situation (after playing one round) is (s′, r[ai, j, `]).

Now, if the attacker plays s ′
δ`
i→ s(ai, `)

′, the defender can re-

spond by r[ai, j, `]
δ`
i→ t(ai, j)

′ and enter a configuration from R.

If the attacker uses any other attack, the defender can go to a

universal state and thus he wins.

Now we show the ‘⇐=’ direction, i.e., we assume s′ v t ′ and prove

s ∼ t. To do that, we demonstrate that R = {(s, t) | s ∈ S, t ∈ T, s′ v t ′}

is a bisimulation. So, let (s, t) ∈ R. An attack which comes from the first

component is easy to handle—if s a→ s̄, then also s′ a→ s̄ ′ and since s′ v t ′,

there is t′ a→ t̄ ′ such that s̄ ′ v t̄ ′. Hence, t a→ t̄ where (s̄, t̄) ∈ R. Now

let us consider an attack t ai→ t(ai, j). To find an appropriate response for

the defender, let us examine the simulation game between s′ and t ′. Here,

the attacker can play s ′
λ
j

i→ s ′. The defender must respond by some t′
λ
j

i→
r[ai, j, `] (there is surely no transition t′

λ
j

i→ U). If the ` was greater than the

number of ai-successors of s, the defender’s response would be definitely

wrong because then the attacker could win in two rounds by performing

the transitions s ′
δ`
i→ q`

γ→ q. So, we see that the `must be less than or equal

to the number of ai-successors of s. The attacker can further play s′
δ`
i→

s(ai, `)
′, and the defender can respond only by r[ai, j, `]

δ`
i→ t(ai, j)

′. Thus,

we obtain that s(ai, `) ′ v t(ai, j) ′. It means that, in our bisimulation game,

the defender can use the transition s ai→ s(ai, `) and enter a configuration

from R.

2.1 Applications

Theorem 2.4 allows to construct direct one-to-one polynomial-time reduc-

tions from the problem A ∼ B to the problem A v B (and A ' B) for
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many process classes A and B. All we need to show is that the syntax of A

and B admits an efficient construction of A- and D-extensions, respectively.

It can be done, e.g., for (various subclasses of) pushdown automata, BPA

systems, one-counter automata, queue automata (where the queue can be

tested for emptiness), channel systems, 1-safe Petri nets, and others (the

list is surely not exhaustive; interested reader can probably add some of

his own favorite models). To illustrate this, we discuss the model of push-

down automata in greater detail. The limitations of our first method are

mentioned at the end of this section.

A pushdown automaton (PDA) is a tuple M = (Q, Γ,Act, η) where Q is

a finite set of control states, Γ is a finite stack alphabet, Act is a finite input

alphabet, and η : (Q × Γ) → P(Act × (Q × Γ∗)) is a transition function with

finite image (here P(M) denotes the powerset of M). In the rest of this

paper we adopt a more intuitive notation, writing pA a→ qβ ∈ η instead

of (a, (q,β)) ∈ η(p,A). ToMwe associate the transition system TM where

Q × Γ∗ is the set of states (we write pα instead of (p,α)), Act is the set of

actions, and the transition relation is defined by pAα a→ qβα iff pA a→ qβ ∈

η. The set of all states of TM is also denoted by States(TM).

A PDAM = (Q, Γ,Act, η) is

• deterministic if for all p ∈ Q, A ∈ Γ , and a ∈ Act there is at most one

qβ ∈ Q× Γ∗ such that pA a→ qβ;

• normed if for every pα ∈ Q× Γ∗ there is q ∈ Q such that pα→∗ qε;
• stateless if |Q| = 1;

• one-counter automaton if Γ = {I, Z} and each element of η is either of

the form pZ
a→ qIjZ where j ∈ IN0 (such transitions are called zero-

transitions), or of the form pI
a→ qIj where j ∈ IN0 (these transitions

are non-zero-transitions). Hence, the Z can be viewed as a bottom

marker (which cannot be removed), and the number of pushed I’s

represents the counter value.
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The classes of all pushdown processes, stateless pushdown processes, one-

counter processes, and finite-state processes are denoted by PDA, BPA,

OC, and FS, respectively. The normed subclasses of PDA and BPA are de-

noted by nPDA and nBPA (one could also consider normed OC processes,

but these are not so important). If A is any of the so-far defined classes, then

det-A denotes the subclass of all deterministic processes of A. For example,

det-nBPA is the class of all deterministic normed BPA processes. Let

• D = {PDA,BPA,OC,nPDA,nBPA,FS},

• A = D ∪ {det-A | A ∈ D}.

Lemma 2.5. Let A ∈ A and letM∈ A be an automaton of A. Then there isM′ ∈

A and a mapping f : States(TM)→ States(TM ′) constructible in polynomial time

(in the size ofM) such that TM ′ together with f is an A-extension ofM.

Proof. We construct M′ by extendingM. First, ifM is not a one-counter

automaton, it can possibly empty its stack and therefore we add a new

‘bottom’ symbol Z to the stack alphabet. The mapping f then maps ev-

ery configuration pα to pαZ (in the case of one-counter automata, f is just

identity). The λji-loops are added by extending the transition function with

all rules of the form pX
λ
j

i→ pX. Since the outgoing transitions of a given

state pXα are completely determined by p and X, we can also easily add

the δji-transitions; the family of Θ-transitions (see Fig. 1) is implemented

by changing the top stack symbol to a fresh symbol Y, without changing

the control state (this works both for PDA and BPA; in the case of one-

counter automata we instead change the control to a newly-added control

state without modifying the stack). Then, the action γ is emitted and Y is

removed from the stack. Note that this construction preserves normedness

and determinism. Obviously, the reduction works in polynomial time (and

even in logarithmic space).
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The next lemma can be proved in a similar way. Note that the construction

does not preserve determinism (see Fig. 1).

Lemma 2.6. Let D ∈ D and let M ∈ D be an automaton of D. Then there is

M ′ ∈ D and a mapping f : States(TM) → States(TM ′) constructible in polyno-

mial time (in the size of M) such that TM ′ together with f is an D-extension of

M.

Now, we can formulate two interesting corollaries of Theorem 2.4.

Corollary 2.7. Let A ∈ A and D ∈ D. The problem A ∼ D is polynomially

reducible to the problem A v D.

Corollary 2.8. Let A,B ∈ D such that B ⊆ A. Then the problem A ∼ B is

polynomially reducible to the problem A ' B.

Proof. There is a general one-to-one reduction from the problem A v B

to the problem A ' B, which is applicable also in our case—given two

processes s and t, we construct other processes s′ and t ′ with transitions

s ′
a→ s, s ′ a→ t, and t ′ a→ t. We see that s v t iff s′ ' t ′.

Our first method is applicable to a wide variety of models, but it has its lim-

itations. For example, in the case of A-extensions there can be difficulties

with the family of Θ-transitions. In order to implement them, the model

must be able to (somehow) ‘detect’ the missing transitions. It is not al-

ways possible; for example, general Petri nets cannot test a place for empti-

ness and hence the Θ-transitions cannot be implemented. Nevertheless,

the method is applicable to some subclasses/extensions of Petri nets. For

example, 1-safe Petri nets can in a way test their places for emptiness—to

construct an A-extension of a given 1-safe net N , we just equip each place

pwith its ‘twin’ p̄ and restructure the transitions so that they have the same

effect on the ‘old’ places and preserve the following invariant: p̄ is marked

iff p is unmarked. It is quite easy; then, we can easily implement the family
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of Θ-transitions (by testing appropriate ‘twins’ for being marked). Another

example are Petri nets with inhibitor arcs, where our first method applies

without any problems.

Hence, we can extended the A and D classes by many other models

and the obtained corollaries are still valid. In this way one can ‘generate’

a long list of results, of which some were already known while others are

new. Some of these results are ‘exotic’ (for example, det-nPDA ∼ 1-PN

is polynomially reducible (and hence not harder than) det-nPDA v 1-PN

where 1-PN is the class of 1-safe Petri nets; both problems are decidable

but their complexity has not yet been analyzed in detail). However, some

of the obtained consequences actually improve our knowledge about previ-

ously studied problems. For example, PDA ∼ FS is known to be PSPACE-

hard [May00] while the best known lower bound for PDA v FS was coNP

[KM02b]. Our method allows to improve this lower bound to PSPACE1.

3 Reducing Bisimilarity to Simulation – Method 2

As in the previous section, we first fix a finite set of actions Act =

{a1, . . . , ak} and two transition systems S = (S,Act,→), T = (T,Act,→)
with a finite branching degree. We also define d = max{d(S), d(T )}.

Definition 3.1. By a parallel composition of transition systems T1 =

(T1,Act,→) and T2 = (T2,Act,→) we mean a transition system T1‖T2 =

(T1 × T2,Act,→) where (t1, t2)
a→ (t̄1, t̄2) iff either t1

a→ t̄1 and t̄2 = t2, or

t2
a→ t̄2 and t̄1 = t1.

Intuitively, our second method works for all classes of systems that

are closed under parallel composition and synchronization (see Defini-

tion 3.6). The idea is as follows: For S and T one constructs new systems

1Very recently [KM02a], the authors proved that PDA v FS is actually EXPTIME-

complete and PDA ∼ FS is PSPACE-complete.
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A-comp(S,T ) and D-comp(S,T ) by composing (and synchronizing) S and

T . Hence, the sets of states of A-comp(S,T ) and D-comp(S,T ) subsume

S × T (to prevent confusion, states of A-comp(S,T ) are marked by a hor-

izontal bar; hence, (s, t) is a state of A-comp(S,T ) while (s, t) is a state of

D-comp(S,T )). The goal is to obtain the property that, for all s ∈ S, t ∈ T

we have that s ∼ t iff (s, t) v (s, t). Note that each player has his own copy

of S and T .

The simulation game proceeds as follows: The attacker (playing in

A-comp(S,T )) chooses either S or T and makes a move there. Let us as-

sume that the attacker chooses S (the other case is symmetric). Then the

defender (playing in D-comp(S,T )) must make exactly the same move in

his copy of S as the attacker, but also some move in his copy of T . The

defender can choose which move in T he makes, provided it has the same

action as the attacker’s move. Furthermore, the defender ‘threatens’ to go

to a universal state (that can simulate everything) unless the attacker does a

specific action in the next round. In the next round the attacker must make

exactly the same move in his (the attacker’s) copy of T as the defender

did in his (the defender’s) copy of T in the previous round. The defender

responds to this by ending his threat to become universal. Otherwise the

defender can make his side universal and wins the simulation game.

This construction ensures that the two copies of S and T on both

sides are kept consistent. One round of the bisimulation game between

S and T is thus emulated by two rounds of the simulation game between

A-comp(S,T ) and D-comp(S,T ).

Of course, it is possible that for a given state s there are several different

outgoing arcs labeled with the same action ai. However, we need to con-

struct new systems where outgoing transitions are labeled uniquely. Our

notation is similar to the one used in the previous section: LetΛ = {λji | 1 ≤

i ≤ k, 1 ≤ j ≤ d} and ∆ = {δji | 1 ≤ i ≤ k, 1 ≤ j ≤ d} be finite sets of actions

such that Λ, ∆, and Act are pairwise disjoint. We define Act′ = Λ ∪ ∆.
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For any state s in S, the action δj
i

is used to label the j-th outgoing arc

that was previously labeled by action ai. Note that the action δji can occur

many times in the transition system. It is only unique among the labels of

the outgoing arcs of any single state. Similarly, the actions λji are used to

label the outgoing arcs of states t in T .

Fig. 2 illustrates the construction. The first row shows parts of the orig-

inal systems S and T . The second row shows A-comp(S,T ). The labels of

the transitions have been changed as described above, and the modified

systems have been put in parallel without any synchronization. The last

row shows (a fragment of) D-comp(S,T ). Here the systems S and T have

been composed and synchronized in such a way as to ensure the properties

of the simulation game as described above.

Definition 3.2. We define transition systems S ′ = (S,Act ′,→) and T ′ =

(T,Act ′,→) where

• for every transition s ai→ s(ai, j) in S there is a transition s
δ
j

i→ s(ai, j) in

S ′;

• for every transition t
ai→ t(ai, `) in T there is a transition t

λ`
i→ t(ai, `) in

T ′;

• there are no other transitions in S′ and T ′.

TheA-composition A-comp(S,T ) of S and T (see Fig.2) is the parallel composi-

tion S ′‖T ′. Configurations in A-comp(S,T ) are denoted by (s, t).

Remark 3.3. Observe that A-comp(S,T ) is always deterministic, even if S and

T are nondeterministic.

A state u is universal if u a→ u for every a ∈ Act ′ (u can also have other

outgoing transitions). Observe that a universal state can simulate any pro-

cess which emits actions of Act′. In the next definition, we write t a→ U to

indicate that t a→ u for some universal state u.
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Figure 2: States s and t of S and T , then theA-composition of S and T , and

finally the D-composition of S and T .17



Definition 3.4. TheD-composition D-comp(S,T ) of S and T (see Fig. 2) is the

transition system D = (D,Act′,→), where D is the set

{(s, t) | s ∈ S, t ∈ T } ∪ {(s, t) ′ | s ∈ S, t ∈ T } ∪ {(s, t) ′′ | s ∈ S, t ∈ T }

and the transition relation of D is defined as follows. Let 1 ≤ i ≤ k, 1 ≤ j ≤ ni
and 1 ≤ ` ≤mi.

• If there are transitions s
ai→ s(ai, j) in S and t

ai→ t(ai, `) in T then there are

transitions (s, t)
δ
j

i→ (s(ai, j), t(ai, `)) ′ and (s, t)
λ`
i→ (s(ai, j), t(ai, `)) ′′ in

D.

• (s(ai, j), t(ai, `)) ′
λ`
i→ (s(ai, j), t(ai, `))

• (s(ai, j), t(ai, `)) ′
b→ U, for each b ∈ Act′ − {λ`i}.

• (s(ai, j), t(ai, `)) ′′
δ
j
i→ (s(ai, j), t(ai, `))

• (s(ai, j), t(ai, `)) ′′
c→ U, for each c ∈ Act′ − {δji}.

Theorem 3.5. Let s ∈ S, t ∈ T , and let (s, t) and (s, t) be the corresponding

states in A-comp(S,T ) and D-comp(S,T ), respectively. We have that s ∼ t iff

(s, t) v (s, t).

Proof. We start with the ‘=⇒’ direction. Let us suppose that s ∼ t. We show

that the defender has a winning strategy in a simulation game initiated

in ((s, t), (s, t)). Let R = {((s, t), (s, t)) | s ∈ S, t ∈ T, s ∼ t}. We prove

that R can be extended to a simulation relation (which means that indeed

(s, t) v (s, t)). To do that, we show that the defender can play in such a

way that after at most two rounds he achieves either a configuration from

R, or a configuration where he ‘obviously’ wins.

Let us assume that the attacker makes a move (s, t)
δ
j
i→ (s(ai, j), t). (The

other case where the attacker makes a move (s, t)
λ`
i→ (s, t(ai, `)) is sym-

metric.) Then the defender responds by a move (s, t)
δ
j
i→ (s(ai, j), t(ai, `)) ′
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such that s(ai, j) ∼ t(ai, `). Such a move must exist by the definition of

D-comp(S,T ) and the fact that s ∼ t. Then there are two cases:

• If the attacker makes the move (s(ai, j), t)
λ`
i→

(s(ai, j), t(ai, `)) then the defender responds by the move

(s(ai, j), t(ai, `))
′ λ`

i→ (s(ai, j), t(ai, `)). The resulting pair

((s(ai, j), t(ai, `)), (s(ai, j), t(ai, `))) is in R, because s(ai, j) ∼ t(ai, `).

• If the attacker makes any other move then the defender can go to a

universal state where he can simulate everything.

Now we show the ‘⇐=’ direction, i.e., we assume (s, t) v (s, t) and

prove s ∼ t. To do that, we demonstrate that R = {(s, t) | s ∈ S, t ∈

T, (s, t) v (s, t)} is a bisimulation. So, let (s, t) ∈ R. Assume that the

attacker makes a move s ai→ s(ai, j). (The other case where the attacker

makes a move t ai→ t(ai, `) is symmetric.) Thus, there is an attacker’s

move (s, t)
δ
j

i→ (s(ai, j), t). Since (s, t) v (s, t) there must be a defender

move (s, t)
δ
j

i→ (s(ai, j), t(ai, `)) ′ such that (s(ai, j), t) v (s(ai, j), t(ai, `)) ′.

Also there must be a move t ai→ t(ai, `) in T . Furthermore, against the

attacker move (s(ai, j), t)
λ`
i→ (s(ai, j), t(ai, `) there is just one defender

move (s(ai, j), t(ai, `)) ′
λ`
i→ (s(ai, j), t(ai, `)) such that (s(ai, j), t(ai, `) v

(s(ai, j), t(ai, `)). Thus, we obtain (s(ai, j), t(ai, `)) ∈ R.

3.1 Applications

The range of applicability of Theorem 3.5 is incomparable with the one of

Theorem 2.4.

Definition 3.6. Let us denote by C the class of all models C to which our second

method applies. The following conditions are sufficient for membership of C.

1. For anyM ∈ C, the transition system TM determined byM satisfies the

following condition: the out-going transitions of a given state in TM are
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determined by a finite number of labeled ‘transition rules’ which are a part

of M. The transition rules must be injective in the sense that each rule

generates at most one out-going transition in every state of TM. The label of

this outgoing transition is the same as the label of the associated transition

rule.

2. C is efficiently closed under parallel composition (i.e., for all M1,M2 ∈

C there is M3 ∈ C computable in polynomial time such that TM3
=

TM1
‖TM2

).

3. C is efficiently closed under synchronization in the following sense: for any

two given transition rules it is possible to (efficiently) define a new transition

rule that has the effect of both.

4. C subsumes the class of finite automata.

For example, the above conditions are satisfied by 1-safe Petri nets, general

Petri nets, reset Petri nets, transfer Petri nets [Pet81], VASS (vector addition

systems with states) [BM99], FIFO-channel systems [AJ93], etc. However,

there are also some classes that not in C. For example, Basic Parallel Pro-

cesses [Chr93] are not in C, because they are not closed under synchroniza-

tion (condition 3). Pushdown automata are not in C, because they are not

closed under parallel composition (condition 2). PA-processes [BK85] are

not in C, because they are not closed under synchronization and because

their transition rules are not injective (they do not satisfy conditions 1 and

3).

Lemma 3.7. Let C be a process model satisfying the above conditions and let

M1,M2 ∈ C. Then there is M′ ∈ C constructible in polynomial time such

that TM ′ is (isomorphic to) A-comp(TM1
,TM2

).

Proof. Follows immediately from condition 1 (which enables efficient re-

naming of actions) and condition 2 (efficient parallel composition).
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Lemma 3.8. Let C be a process model satisfying the above conditions and let

M1,M2 ∈ C. Then there is M′ ∈ C constructible in polynomial time such

that TM ′ is (isomorphic to) D-comp(TM1
,TM2

).

Proof. M′ is obtained by constructing the synchronization ofM1 andM2

according to Definition 3.4 (this is possible by conditions 1 and 3). It is

also necessary to include the states of the form (s, t)′ and (s, t) ′′ into the

new system. This is possible because C subsumes the class of finite au-

tomata (condition 4) and is thus also closed under synchronization with

them (condition 3).

Corollary 3.9. Let C be a process model satisfying the above conditions, and let

det-C be the subclass of all M ∈ C which generate a deterministic transition

system. Then the problem C ∼ C is polynomially reducible to det-C v C (and also

to C ' C).

Proof. Immediately from Theorem 3.5, Remark 3.3, Lemma 3.7, and

Lemma 3.8. The reduction to C ' C is achieved in the same way as in

Corollary 2.8.

4 Finer vs. Coarser Behavioral Equivalences

It is a general trend that finer behavioral semantic equivalences have a

lower computational complexity than coarser ones. On most classes of sys-

tems, deciding language equivalence is computationally harder than decid-

ing simulation equivalence and deciding simulation equivalence is compu-

tationally harder than deciding bisimulation equivalence [KM02b].

Simulation equivalence is indeed computationally harder than bisim-

ulation equivalence for most classes of systems, as shown in the previous

sections. One might be also tempted to conclude that the complexity of

all ‘resonably-defined’ equivalences between simulation equivalence and
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bisimilarity is somewhere in between the complexity of these two equiva-

lences. A short note presented in this section provides an evidence that this

is incorrect, at least on condition that the below defined ‘=X’ equivalence is

also declared as ‘reasonable’.

Definition 4.1. Let S be a labeled transition system with set of actions Act and s a

state in S. We define the language of s by L(s) := {w ∈ Act∗ |∃s ′. s w→ s ′∧ s ′ 6→}.
Let X ⊆ Act∗ be a given language. We define the behavioral semantic equiva-

lence =X on the states of S as follows:

• If s ∼ t then s =X t.

• If s 6' t then s 6=X t.

• If s ' t and s 6∼ t, then s =X t ⇐⇒ (L(s) = L(t) ⊆ X)

Lemma 4.2. For any language X the relation =X is an equivalence and ∼ ⊆

=X ⊆ '.

We now show that the membership problem for a given language X can

be reduced in polynomial time to checking =X on finite automata.

Lemma 4.3. Let Act with |Act| ≥ 2 be a finite set of actions and X ⊆ Act∗.

For any word w ∈ Act∗ one can construct in polynomial time two finite labeled

transition systems S and T with initial states s and t s.t. w ∈ X ⇔ s =X t.

Proof. Let a ∈ Act be some action. We define S with the following transi-

tions

s
Act→ s1 s1

Act→ s1 s1
a→ s ′1 s ′1

a→ s1 s
w→ s2

The last transition is an abbreviation for a chain of transitions of length

|w|. We define T with the following transitions: t Act→ t1 t1
Act→ t1 t

w→
t2. Again the last transition is an abbreviation for a chain of transitions of

length |w|.
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It is trivial that s ' t, because both can simulate everything. However,

s 6∼ t, because no state in T is bisimilar to s′1, since |Act| ≥ 2. Furthermore,

L(s) = L(t) = {w}. Thus, by definition of =X we get s =X t ⇔ w ∈ X.

It is well known that deciding ∼ and ' on finite labeled transition sys-

tems is possible in polynomial time [BGS92]. However, it follows from

Lemma 4.3 that deciding =X on finite transition systems is at least as hard

as the membership problem for X. So, if X is some EXPTIME-complete

language or even some undecidable language then =X is definitely compu-

tationally harder than both ∼ and ', although ∼ ⊆ =X ⊆ '. Thus, =X can

be strictly computationally harder than ', although it is finer.

Remark 4.4. The hardness of the relation =X does not have to depend on the

hardness of X. By a slight modification of the construction in Lemma 4.3, it is

possible to reduce (in polynomial time) the problem of language equivalence of two

finite automata (which is PSPACE-complete) to the problem of checking =Act∗ .

Thus, =X is computationally harder than ' and ∼, even if X = Act∗.

5 Conclusion

We have described two general methods to construct direct one-to-one re-

ductions from bisimulation equivalence to simulation preorder (or sim-

ulation equivalence) on labeled transition systems. On many classes of

finitely generated transition systems these reductions are even effectively

computable in polynomial time. Generally speaking, the first method is

effective for all classes of systems that can test for non-enabledness of ac-

tions, like finite-state systems, pushdown automata, context-free processes

(BPA), one-counter machines, FIFO-channel systems with explicit test for

queue-emptiness, 1-safe Petri nets, Petri nets with inhibitor arcs, and var-

ious subclasses of all these. The second method is effective for all classes

of systems that are closed under parallel composition and synchronization
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like 1-safe Petri nets, general Petri nets, reset Petri nets, transfer Petri nets,

VASS (vector addition systems with states) [BM99] and FIFO-channel sys-

tems [AJ93].

Thus, for all these classes of systems, deciding simulation pre-

order/equivalence must be computationally at least as hard as deciding

bisimulation equivalence. This provides a formal justification of the gen-

eral rules of thumb mentioned in Section 1. It is interesting to compare

these results to the results in [KM02b], where an abstract, (but not gener-

ally effective) one-to-one reduction from simulation equivalence to bisim-

ulation equivalence on general labeled transition systems was presented

(i.e., a reduction in the other direction). Therefore, these results further

clarify the relationship between simulation equivalence and bisimulation

equivalence.

For some classes of systems both methods are effective, e.g., for finite-

state systems, FIFO-channel systems with explicit test for emptiness, or for

1-safe Petri nets. However, for general Petri nets only the second method

works (the first one fails since Petri nets cannot test for non-enabledness of

actions). For pushdown automata it is vice-versa. They can test for non-

enabledness of actions, but are not closed under parallel composition.

Finally, there remain a few classes of systems for which none of our

methods is effective, like Basic Parallel Processes (BPP) and PA-processes.

Also for these classes, simulation preorder/equivalence is computationally

harder than bisimulation equivalence [KM02b], but no effective direct re-

duction from bisimulation equivalence to simulation preorder is known for

them yet (although effective indirect reductions exist).
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