RTIS Iy,
i po@

& I ;
RN I M U

Faculty of Informatics
Masaryk University

. FA
@9&“ O(/z »
k%
A
“ANg o gors

Proceedings of the Third Learning Language in
Logic Workshop

by

Lubos Popelinsky
Miloslav Nepil

FI MU Report Series FIMU-RS-2001-08
Copyright (© 2001, FI MU September 2001

Lubos Popelinsky
Miloslav Nepil (Eds.)

Learning Language in Logic

Proceedings of the Third
Learning Language in Logic Workshop
Strasbourg, France, 8-9 September 2001

Preface

The 3rd Learning Language in Logic (LLL) workshop is the follow-up of the
previous LLL workshops held in 1999 in Bled, Slovenia, and in 2000 in Lis-
boa, Portugal. This year the LLL workshop takes place as a joint workshop of
ILP’2001 conference. We would like to thank program committee for their help
in reviewing submissions and to authors of all submitted papers for their work.
Thanks also to Nicolas Lachiche, the local chair of the ILP/LLL, for his assis-
tance, and Eva Z4&kov4 for her help with the preparation of this volume.

Lubog Popelinsky
Miloslav Nepil
Editors

Brno, August 2001

Program committee

Pieter Adriaans (Syllogic and University of Amsterdam, the Netherlands)
James Cussens (University of York, UK)

Martin Eineborg (University of Stockholm, Sweden)

Tomaz Erjavec (Institute Jozef Stefan, Slovenia)

Suresh Manandhar (University of York, UK)

Claire Nédellec (LRI, University of Paris-Sud, France)

Guenter Neumann (DFKI, Saarbriicken, Germany)

Lubos Popelinsky (Masaryk University in Brno, Czechia) (chair)

Stefan Wrobel (University of Magdeburg, Germany)

Organization

Nicolas Lachiche (LSTIT Strasbourg, France)

Invited Speaker
Dan Roth (University of Illinois, USA)

Support

LLL 2001 is financially supported by the Network of Excellence in Inductive
Logic Programming ILPnet2 funded under the European Union’s INCO pro-
gram.

Table of Contents

A Rule-Based Tagger Development Framework
Zoltin Alexin, Péter Leipold, Jdinos Csirik, Kdroly Bibok and Tibor
Gyimdcthy

Identification of reversible dependency tree languages...................
Jérome Besombes and Jean-Yves Marion

Learning Rigid Lamberk Grammars and Minimalist Grammars from Struc-
tured SENtENnCEsttt e
Roberto Bonato and Christian Retoré

From Logic to Grammars via Types
Daniela Dudau-Sofronie, Isabelle Tellier and Marc Tommasi

Interactive Background Knowledge Acquisition for Inducing Differences
among Documents
Chieko Nakabasami

Part-of-Speech Tagging by Means of Shallow Parsing, ILP and Active
Learningot
Miloslav Nepil, Lubo§ Popelinskj and Eva Zdckovd

A Rule-Based Tagger Development Framework

Zoltan Alexin!, Péter Leipold?,
Janos Csirik!, Karoly Bibok®, and Tibor Gyimé6thy?

! Department of Applied Informatics, University of Szeged,
Arpéd tér 2. POB 652, H-6701 Szeged,
alexin@inf.u-szeged.hu, csirik@inf.u-szeged.hu
*> Research Group on Artificial Tntelligence,
Hungarian Academy of Sciences,

Aradi vértanuk tere 1, H-6720 Szeged,
pleipold@freemail.hu, gyimothy@inf.u-szeged.hu
3 Slavic Institute, University of Szeged,

Egyetem utca 6, H-6720 Szeged,
kbibok@lit.u-szeged.hu

Abstract. POS (Part-of-speech) tagging is an important step in natural
language processing because identically written words may have different
meanings. Part-of-speech tagging is the procedure during which the cor-
rect morphological annotation (the correct tag) for an ambiguous word
is selected. Computer programs able to do the process automatically
are called POS taggers. In this paper the RTDF (a Rule-based Tagger
Development Framework) is presented that is capable identifying gen-
eral tagging rules using different machine learning tools given a suitably
large training data set. The framework can combine the learned tagging
rules, and evaluate the resulted taggers. The authors are participants of
a project for developing a medium sized learning corpus for Hungarian.
The corpus contains 1 million words and — among others — can serve as
a suitable medium on which the previously developed POS-taggers can
be tested. During the project the morphological analyzer for Hungarian
has been thoroughly investigated and the MSD encoding has been re-
fined. The development of the corpus is going on and will be completed
at the end of 2001. !

1 Introduction

Part-of-speech (POS) tagging is one of the first stages in natural language related
processing (e.g., parsing, information extraction). There are many ambiguous
words in each natural language.? During the morphological analysis the pos-

! This paper has been partially supported by the IKTA-027/2000 project of Hungarian
Ministry of Education.

% Like rule in English, which can be a verb or a noun, Aét in Hungarian can be a
numeral (seven) or a noun (week).

sible tags for a given word can be determined. POS tagging means syntactic
disambiguation of the text not regarding to semantics.?

There are many different approaches to the POS tagging (statistical, neural-
network, HMM, rule-based, etc.) [1, 2, 5]. Developing a POS tagger requires a
lot of human efforts. First, each learning tool needs a suitably large annotated
corpus, a training data set. Second, interfacing between the natural language
corpus and the learning tools: generating input data files in a specific format
then parsing the result files, finally extracting tagging rules from them. Third,
testing the working tagger, determining the possible causes of errors also need
lots of systematic human work.

In this paper a framework called (RTDF) is presented that can efficiently
support the development of taggers. Its main features are:

— supports manual tagging
(a user friendly environment has been implemented for manual annotations
of corpora; different morpho-syntactic coding schemes can be used)

— natural language independent representation of the annotated corpora
(a unified prolog based model for different natural languages)

— flexible morpho-syntactic encoding of words
(several coding schemes are allowed)

— a special learning model[6]
(the key element of this model is introducing ambiguity-classes; this model
have been successfully applied for different machine learning methods)

— make use of different learning algorithms
(the RTDF system is able to generate training data for different learning
tools like C 4.5[8] and Progol[7])

— generating taggers from the results of the learning methods
(the system can parse the result files, extract tagging rules, combine the rule
sets with each other, and produce a working tagger)

— an efficient user interface for the evaluation of taggers
(The system highlights the faulty tags by using test corpora)

— portable implementation

In [6], the authors presented several promising tagger construction methods.
For the time being, there was no suitably large annotated corpus for Hungarian.
In order to develop a medium sized natural language corpus the authors proposed
a 2 years long project formed of the Department of Informatics at the University
of Szeged? and the MorphoLogic Ltd.® in Budapest. The IKTA 27/2000 project
begun in the autumn of 2000, and the 1 million words long annotated corpus
is expected to be ready at the end of 2001. Although the corpus is designed for

3 POS tagging, for example, cannot distinguish between the two meanings of the bug
noun: an insect or a mistake in a computer program.

* former partner in "ILP2”

5 former industrial partner in *TLP2”

being a learning database it can be a source for many other computer linguistic
research.

The official morpho-syntactic encoding of the corpus is the Hungarian version
of MSD[4]. During the project the HuMor® (Hungarian Morphological parser)
was reevaluated. All possible annotations for each text word produced by HuMor
was manually checked against the academic dictionaries. Since many corrections
are made, at the end of the project a newer version of the Hungarian parser will
be produced.

The corpus is produced in XML and encoded by using the TEIXLITE? DTD
scheme. Texts were collected from five different areas of recent Hungarian writ-
ten language (fiction, newspapers, law texts, computer oriented texts, teenage
compositions). Most texts are from 1999. Each word in the corpus is tagged
by its morpho-syntanctic labels, then disambiguated. Annotations of ambiguous
words are augmented by manually determined reasons (sets of positive or nega-
tive literals, in fact clause bodies), that are valid in the disambiguation. Literals
are composed of certain predicates by that the ortograhpies, basewords or MSD
codes can be checked at some context position. The developient of the corpus
is done by linguists and has not been finished yet. The first (partial) results are
expected at the end of 2001. This paper presents a software framework that is
used in preparing the annotated corpus and generating POS-taggers.

In the Section 2 the logical structure of the tagging development framework
is presented. Section 3 deals with implementation issues and Section 4 is a sum-
mary.

2 Architecture of the RTDF System

The logical structure of the RTDF system is presented in Figure 1. The figure
shows the process of a tagger development. Ovals represent data files, while
rectangles are program modules.

The corpus stands in the focus of the RTDF system. Each word and punctu-
ation mark are labeled by one or more MSD codes. These codes represents the
meaning of that word, so an ambiguous word has more than one code. RTDF al-
lows modifying them, in those cases when the morphological analyzer (program)
result in incorrect number of codes or wrong codes.

The representation of the corpus allows storing the selected good tag for each
ambiguous word (the result of disambiguation) in the text. Therefore corpora
can be used as training or test databases.

In RTDF a new corpus can be created, existing corpora can be loaded, edited
and saved. With the editor module the corpus (the text and the tags) can be
modified. Manual annotations (choosing good tag) for words is also allowed.

5 product of the MorphoLogic Ltd. see http://wuw.morphologic.hu
7 http:/ /etext.lib.virginia.edu/tei /uvateil2.html

learned rules)« c45 <

progol c45
learning

progol < learning
@s tasks

tagger generator learning A A

progol c45
statistics >

learning task generator
A

tagging corpus

preprocessor cditor

Fig. 1. The structure chart of the Development System

2.1 The Learning model

The key to presented learning model is introduction of ambiguity classes. Two
words are in the same ambiguity class if and only if their morpho-syntactic labels
are the same, see [6]. After that separate learning tasks are generated for each
ambiguity class. This can be a solution when we have large number of training
examples let us say more hundred thousand.

In the MULTEXT-East project [4] the MSD (Morpho-Syntactic) encoding
system was extended to several east European languages, among others, to Hun-
garian. Since then MSD is widely accepted as a syntactic labeling system for
words in many European languages. A code string represents all syntactic at-
tributes of words like type, gender, number, case, definiteness, etc.

For example the Hungarian word asztalnok will get the Nc-sg——--—- code,
which means: noun, common, single, genitive. Those attributes that are not
present or not applicable are denoted by hyphens. The first position is reserved
for the main categories of words. The detailed description of the MSD encoding
can be found in [4]. The main categories of words can be seen in Figure 2. The
word ,,hideg”(cold) is tagged to Afp-sn-————-—- . (The trailing hyphens are cut
in practice to Afp-sn). This means that the word is an adjective having the
following attributes: qualificative, positive, singular, nominative.

| Category [Code| Category [Code]

adjective A | particle Q
conjunction| C | adverb R
determiner | D | adposition S
interjection| I | article T
numeral M | verb v
noun N | residual X
pronoun P | abbreviation| Y

Fig. 2. The main categories of words in MSD

In Hungarian the [Afc-sn, Nc-sn] is a frequent ambiguity class. For the
[Afc-sn, Nc-sn] class we learn a choose__Afc—sn_Nc—sn(—T,+L, +R) pred-
icate where L is the left context, R is the right context and T stands for the
good tag. There are no restrictions on number of elements in ambiguity classes.
Learning algorithms may determine several tagging rules for each ambiguity
class.

Separate learning tasks are created for each ambiguity class. Extracting the
learning examples for a specific ambiguity class from the training corpus is au-
tomated. RTDF is able to read in the result files and produce the sets of Prolog
rules equivalent to the learnt decision trees. Tagging rule-sets are obtained by
appending rules for each ambiguity class.

One can see a big circle in the Figure 1, which starts from the corpus, and
finishes there too. This represents the process of generating taggers. The learning
task generator module builds the input files for a rule-based learning tool, such as
C 4.5 or Progol. The learning module runs these tools and extracts the invented
rules from their output. The tagger generator module creates the taggers from the
learned rules. Finally the tagging module runs the newly invented tagging rules
on the corpus. The tagging module can evaluate different taggers by comparing
the output of the tagger and the stored good tag with one another.

2.2 Modules of RTDF

In the following, we present the main modules of the RTDF.

Preprocessor The task of this module is to create a corpus from simple text
files. The first step is to slice up the text into words and punctuation marks,
and determine sentence boundaries. The second step is to make a morphological
analyzis on each word, and label the words by their possible morpho-syntactic
tags. Since disambiguation is done in a later phase the corpus will contain an
empty tag in the place of the good tag.

Editor The editor allows the user modifying the possible tags and the good tag.
By means of this module the errors made in the morphological parsing phase

can be corrected. Next important function is the manual tagging. It is necessary
when making learning (training) database. The morphological corrections can
be saved for later use.

Statistics This module is a collection of procedures computing statistical data.
Statistics either can be displayed for the user or can be used in learning. Some
examples:

— Count words, sentences and ambiguity classes.

— Compute the number of occurrences of particular tags.

— Compute the number of occurrences of ambiguity classes.

— Compute distribution of good tags relative to an ambiguity class.

Learning task generator This module is a collection of submodules (drivers)
for each learning tool. Each driver can create learning tasks for one particular
learning tool. Input to this module is the corpus text, from which it builds the
necessary data files for the learning tool. Corpora can be used as training data
if only if they contain disambiguation information. For the time being there are
drivers for C 4.5[8] and Progol[7].

Learning This module is responsible for running the learning tool for the se-
lected learning tasks, and extracting the invented rules from the output files.
After extracting the invented rules from the output files rules are collected in a
rule database. Rulesets can be saved and loaded as necessary.

Tagger generator This module builds the taggers, that can be used to dis-
ambiguate corpora automatically. Rulesets are created from the learnt rules by
appending rules for each distinct ambiguity class. Each tagger contains the fol-
lowing parts:

— one or more rulesets
— a combination method

A ruleset is a set of the invented rules for several ambiguity classes. The
rules may not necessarily come from the same learning task, however for one
particular ambiguity class rules must be originated from the same learning task.
When the user creates a ruleset he or she may flag out rules related to some
ambiguity classes. Rulesets can be incomplete, i.e. may not contain rules for each
ambiguity class. Rulesets coming from different learning tasks can be combined
in a single tagger. Different combination methods are discussed in [3].
Combination methods implemented in RTDF are listed below:

— Sequencing. The rulesets are sorted. First disambiguate the whole corpus
with the first ruleset then the remaining ambiguities with the second ruleset,
then the third, etc.

Fig. 3. The Main Window of the RTDF System — a Screenshot

— Voting. Ask each ruleset, and choose the tag which was elected most times.

The learned rules computes the good tag depending on the left and right
contexts. Unfortunately, these rules may fail in those cases when there are am-
biguous words in the left or right contexts. There are several possibilities to solve
this problem.

On solution is that we will not compute the good tag, it will remain in an
undecided state. Later in a second phase it can be resolved. Other solution is
to enumerate all possible solutions for the labeling — together with the left and
right contexts — and (somehow) choose the most probable one. Current version
of RTDF implements the first solution.

Tagging This module can apply a tagger to the corpus. It can be used for
either disambiguate an (ambiguous) text, or to evaluate a tagger. The latter
case works if the user applies the tagger on an annotated corpus. The module
compares computed good tags and the stored ones with one another. The module
computes the accuracy of the tagger on the given test database.

3 Implementation

The RTDF system is implemented in SICStus prolog 3.8.1 and the graphical
user interface was written in Tcl/Tk 8.2. A screenshot can be seen in Figure 3.

Fig. 4. The Progol Learning Task Generator — a Screenshot

3.1 Corpus representation

For using in RTDF the XML corpora are converted to Prolog format. Each
sentence is represented by a s(+ID,+Words) fact, where ID is the unique
sentence identifier and Words denotes the list of words in the sentence. List
elements contain the words, and their basewords, MSD labels and manually
entered literals called tagging info.

In Figure 3 the main screen of the RTDF is shown. The largest part of the
screen is occupied by the corpus text. On the left side the natural language text
is displayed, while the morpho- syntactic labels are shown on the right side.
Each row contains one sentence. The corpus is colored. Blue colored words are
the ambiguous words, black ones are the normal unambiguous words. Red color
denotes unknown words, that have no morphological label.

3.2 Major Modules

Learning task generator

Progol A screenshot of the Progol learning task generator is shown in Figure 4.
User can select those ambiguity classes, for which he or she wants to create
a learning task. The framework helps to choose the needed ambiguity classes:

Fig. 5. After Tagging — a Screenshot

1. User can select/deselect those ambiguity classes, whose occurrence numbers
lies between two specified integers. 2. Select or deselect those classes, where the
most frequent good tag’s occurrence number lies between two specified numbers
in percent of all occurrences.

Tagging Tagging can be done simply by choosing a tagger. After disambiguat-
ing the test database RTDF calculates the following results: all tokens in the
test database, all ambiguities, remaining ambiguities, tags disambiguated, cor-
rectly tagged words, incorrectly tagged words, relative accuracy and per-word
accuracy. All accuracies based on the manually entered good tags stored in the
test database.

It is possible to mark those ambiguous words which were disambiguated
incorrectly. An example can be seen in Figure 5. Words with inverse colors are
those which were tagged incorrectly. If user moves the mouse over such a word,
the system displays the good tag.

Currently, RTDF is tested on a part of the TELRI corpus[3]. The results
obtained are the same as reported in [6]. When combining a Progol and a C 4.5
tagger the learned rule-sets reach the 93.5% per-word-accuracy and 88.8% rel-
ative accuracy (well resolved ambiguities relative to resolved ambiguities). We
hope that by applying the new 1 million words long training corpus and ex-
ploiting the added logical formuli, eventually by manually correcting the learned
rules this accuracy can be slightly increased, up to 95-96%.

4 Summary

A flexible, easy-of-use tagger development framework is shown. The framework
can be used to edit and correct corpus files, and run learning tools. For the
time being the C 4.5 and Progol are supported. RTDF can generate input files
for the learning tool, generate background batches, run background learning
batches, finally reading in the results and producing tagging rules. Tagging rules
can be combined by chaining rule-sets one after another. More sophisticated
combinations are under development.

The above mentioned environment is used in an ongoing project for the devel-
opment of a 1 million words long Hungarian natural language corpus. The corpus
has been designed especially for being a learning database for POS-taggers. Par-
allel to the development of the corpus, the Hungarian MSD encoding scheme
is inspected and minor corrections has been made. The Hungarian morpho-
logical analyzer software (HuMor) has also been validated. Human originated
background knowledge is included in the corpus especially for the goals of POS-

tagging.

References

[1] J. Cussens. Part-of-speech tagging using Progol. In N. Lavra¢ and S. Dzeroski,
editors, Proceedings of the Tth International Workshop on Inductive Logic Program-
ming, volume 1297 of LNAI pages 93-108. Springer, Sept. 17-20 1997.

[2] M. Eineborg and N. Lindberg. ILP in Part-of-speech Tagging — An Overview. In
Learning Language and Logic, volume 1925, pages 157-169, 2000.

[3] T. Erjavec, A. Lawson, and L. R. (eds.). East meets west: A compendium of multi-
lingual resources, 1998. CD-ROM, produced and distributed by TELRI Association
e.V., ISBN:3-922641-46-6.

[4] T. Erjavec and M. Monachini. Specifications and notation for lexicon encoding.
Technical report, Research Institute for Linguistics, Hungarian Academy of Sci-
ences, 1997. COPERNICUS Project 106 MULTEXT-East.

[6] H. v. Halteren, J. Zavrel, and W. Daelemans. Improving data driven wordclass
tagging by system combination. In Proc. of COLING-ACL 98, Montreal, Canada,
pages 491-497, 1998.

[6] T. Horvéth, Z. Alexin, T. Gyimdéthy, and S. Wrobel. Application of different learn-
ing methods to Hungarian part-of-speech tagging. In S. Dzeroski and P. Flach,
editors, Proceedings of the 9th International Workshop on Inductive Logic Program-
ming, volume 1634 of LNAI pages 128-139, Berlin, June 24-27 1999. Springer.

[7] S. Muggleton. Inverse entailment and Progol. New Generation Computing, Special
issue on Inductive Logic Programming, 13(3-4):245-286, 1995.

[8] J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81-106, 1986.
QUINLANSG.

10

Identification of reversible dependency tree
languages

Jérome Besombes and Jean-Yves Marion

Loria, B.P. 239, 54506 Vandceuvre-lés-Nancy Cedex, France.
{Jerome.Besombes, Jean-Yves.Marion}@loria.fr,
WWW home page: http://www.loria.fr/~{besombes,marionjy}

Abstract. We investigate learning dependency grammar from positive
data, in Gold’s identification in the limit model. Examples are depen-
dency trees. For this, we introduce reversible lexical dependency gram-
mars which generate a significant class of languages. We have demon-
strated that reversible dependency languages are learnable. We provide
a O(n®)-time, in the example size, algorithm.

1 An identification paradigm

From Tesniére [13] seminal study, and from ideas of Mel’¢uk [10] and Vergne [14],
we propose a two tier communication process between two speakers, see Figure 1.
Jean transmits a sentence to Marie. At the first stage, Jean generates a structural
sentence, like the following dependency tree

the ogre is hungry

Then, Jean transforms it into a linear phrase, the ogre is hungry, and send it
to Marie.

Now, Marie has to inverse the two tier process of Jean. For this, she has
(i) to recover the structural sentence from the linear sentence (p~1), (ii) to
build /update/improve her grammar in order to understand the message, and to
generate other messages (671).

In the setting of natural language learning, parsers perform the first task of
Marie. Roughly speaking, parsing corresponds to inverse 7, that is to compute
n~1. For example, the syntactic robust parser developed by Giguet and Vergne!
computes dependency trees from texts. It is worth noticing that robust parsing
is made by tagging and by chunking, without the help of a formal grammar.

Then, the results of those parsers are dependency trees. We are investigating
identification of dependency tree languages. The data available are positive ex-
amples of a language, that is a sequence of dependency trees. Our hypothesis is

! See http://users.info.unicaen.fr/~jvergne, see also Sleator and Temperley en-
glish parser [12].

11

that the computation of 8 is reversible, that is the inputs can always be deduced
from the outputs. So, identification corresponds to inverse 8. For this, we give a
sufficient condition of reversibility on the grammars (Go).

We show that the class of reversible dependency tree languages is efficiently
identifiable in Gold’s model [5]. That is, given a finite sequence of examples of
a reversible language, we determine a reversible grammar that generates it. We
refer to [7] for further explanations.

Our study leans on the work of Angluin [1] on learning languages produced by
deterministic and reversibles finite automaton. Further results are described in
Makinen survey [9]. It is also closely related to Sakakibara [11] work on reversible
context free grammars and to Kanazawa, [8] work on rigid categorial grammars.

Go Gl

0

671

Structural
sentence

Structural
sentence .
Linear

sentence

Fig.1. A two tier communication process

2 Lexical dependency grammar

Following Dikovsky and Modina [3], we present a class of projective dependency
grammars which was introduced by Hays [6] and Gaifman [4].

A lezical dependency grammar (LDG) I' is a quadruplet (¥, N, P, S}, where
37 is the set of terminal symbols, N is the set of non-terminal symbols, S € N
is the start symbol, and P is the set of productions. Each production is of the

! T)
form X Uy ... U, c‘z Vi ...V, where X € N, each U; and Vj arein JUN. The
terminal symbol a is called the head of the production. In other words, the head
is the root of the flat tree formed by the production right handside. Actually, if
we forget dependencies, we just deal with context free grammars.

Example 1. Two examples of LDG
1. The grammar I'y = ({a, b}, {S}, P, S) where P consists

B

S—aSb|ab

12

2. The grammar I'=({a,b,c},{S, X}, P, S) where P is

S—aSXb| e

X>aXb| d

Partial dependency trees are recursively defined as follows.

1. S is a partial dependency tree generated by I.

]

2. If...X ...b ... is a partial dependency tree generated by I', and if

A —
XU ...UpaVq ...V, is a production of I, then

1 1
LU UpaVi...Vy...b...

L

=

is a partial dependency tree generated by I

When it is convenient, we shall write o @ B for ay ...ap a B¢ ... 5,.

A dependency tree generated by a LDG I' is a partial dependency tree of
I' in which all nodes are terminal symbols. The language D(I") is the set of all
dependency trees generated by I'.

Ezxample 2. The language generated by Iy of Example 1 is

LT

D(Iy)={abaabbaaabbd,...}
LI

L

Without dependencies, we recognizes the context free language {a"b"/n > 0}.

3 Relations with categorial grammar and CFG

Following the example above, define £(I") as the set of words which are obtained
by removing the dependencies of trees in D(I"). We immediatly see that if I is
a LDG, then £(I) is a context free language. Consequently, langages recognized
by LDG and by context free grammar (CFG) are equivalent at the level of the
words. From a CFG, it is not possible to retrieve dependencies. That is why
LDG and CFG are said weakly equivalent.

13

Bar-Hillel et al. [2] established that categorial grammars (CG) are weakly
equivalent to CFG. So, CG are also weakly equivalent to LDG. However, CG
are strongly equivalent to LDG in the following sense. From a LDG, we can
construct a CG which respect dependencies and conversely. We won’t go further
on this subject, but we merely give an example.

Example 3. Consider the following parse tree of the phrase “The ogre is hungry”
in CG. We transform the parse tree into a dependecy tree by choosing the heads
as the functor nodes. These nodes are encircled.

. <D
/ \ ; N
| | | |
The ogre is hungry
We obtain the tree :

The ogre is hungry.

L

Notice that induced dependency tree doesn’t provide a natural analysis because
“the” is the head of “ogre”, unlike the LDG approach.

4 Reversible LDG

A LDG grammar I is reversible if the conditions R1, R2 and R3 of Figure 2
are satisfied. The class of reversible dependency tree languages is the class of
languages generated by reversible LDG.

5 The learning algorithm

The learning algorithm works as follows. The input is a finite set H of positive
examples which are dependency trees. Define TG(H) as the grammar constructed
from all productions outputed by TG(w, S), for each w € H. The function TG is
described in Figure 3.

Stage 0 Gy = TG(H).
Stage n+1 The grammar G, is defined by applying one of the rule of Fig-
ure 2.

The process terminates at some stage m because the number of grammar
productions decreases at each stage. So, put ¢(H) = G,.

3

T

R1IfX—-»>UaVandifY5Ua V,then X =Y.

coLT

R2IfXvsaYBavandif X>a ZB3a,

[L

thenY = Z, where Y, Z € N.

-

R3IfX—saaBYvyandif X—saapB Z~,

L1

=
:

thenY = Z, where Y, Z € N.

Fig. 2. Reversibility conditions and reduction rules.

Function TG(w, X)
Inputs : w is a dependency tree,
X is a non-terminal symbol.
fweX
then Output X — w

fw=wu1...upav...v

then Take new Uy, ...,U, and V1,...,V}

Output X - U; ...Upa V1 ...V,
for i =1 to p do TG{u,, U;)
for ¢ =1 to ¢q do TG(v;, V;)

Fig. 3. TG(w, X) recognizes exactly w, i.e. D(TG(w, X)) = {w}

15

Theorem 1. ¢ learns the class of reversible dependency tree languages.

In other words, suppose that £ is a reversible dependency tree language.
We claim that there is a finite set CS(L) such that for each finite set H, if
CS(L) C H C L, then the LDG ¢(H) generates exactly £, i.e. D(¢(H)) = L.
The learning algorithm is incremental and runs in quadratic time in the size
of the examples. Our algorithm is implementing as a Java prototype which is
accessible from http://www.loria.fr/ besombes. The full demonstration is
also available as a tachnical report, on the same web page.

Example 4.
1. We illustrate the learning algorithm above from the set of samples

T

I }
H={c,acdbacadbb}
L1

Fisrt, we compute Go = TG(H) whose productions are

TG(c,S)

TG(a ¢ d b,S)

S —a X Xo X;
Xi—e
Xo —>d
X3 b

S —a Xy X5 Xg
X4—)C

Xy 2> a X7 X3
Xe— b
X; > d
Xg—b

16

Second, we apply R1. So we identify S = X3 = X4, Xo = X7, and X3 =
X¢ = Xg. Then, we have

S—ec

S—)CISXng
Xy —d
Xg—)b

S—al X5 X3

X5—>aX2X3

Now, we apply R3 on S rules, by merging Xs = X5.

S—ec
XQ—)d
X34)b

S‘)G/SXQX:;

X2—>aX2X3

We see that the final grammar is LDG equivalent to Iy of Example 1.

2. H = { the ogre is very hungry, the ogre is hungry, the ogre is very very hungry},

[I I B L

The productions of Go = TG(H) are

17

TG(the ogre is very hungry,S)
L]

S - X1 8 X2
X1 — X3 ogre
Xy — X4 hungry

X3 — the
X4 — very

TG(the ogre is hungry, S)

L

S—)X5 is Xg

X5 = X7 ogre
X¢ — hungry
X7 — the

TG(the ogre is very very hungry},S)

.

S—)Xg is Xo

]

Xs — X0 ogre

]

X9 — Xq1 hungry
X0 — the

i

X11 — Very X12
X12 — very

18

Second, we apply R1 to identify Xy = X12, X3 = X7 = Xqo.

S%Xl iSXQ

X, — X3 ogre

Xy — Xy hungry

X3 — the
X4 — very

S—)X5 is Xg

X5 — X3 ogre
X6 — hungry

S — Xg 8 Xg
Xg — X3 ogre
X9 — Xq1 hungry

X1 — very X4

We apply R1 to identify X3 = Xg and X5 = Xj.

19

.

S—)Xl is X5

Xi — X3 ogre

|

Xy — Xy hungry
X3 — the
X4 — very

.

S — Xy is X
X¢ — hungry

.

S — X ’iSXg

]

Xy — Xq1 hungry

X1 — very X4

Now, we merge X, = X4 = Xy by aplying R3 on S rules.

Xy — X4 hungry

]

Xo — Xq1 hungry

20

Xo — hungry
X3 — the
X4 — very

X1 — very X4

Lastly, we apply R2 on X5 rules by merging X4 = X;;. We obtain the final
grammar:

S—)Xl is X

X1 — X3 ogre

Xy — X4 hungry
Xo — hungry
X3 — the

X4 — very

Xy — very Xy

6 Related works

— Sakakibara [11] gives a learning algorithm to infer reversible context free
languages from skelton parse trees. The definition of reversible grammar
is very similar to ours. However, we distinguish between both productions

X —=>YabZand X - Y ab Z, unlike [11] in which they are considered
identical.

— Kanazawa [8] studies inference of several classes of categorial grammars from
functor structures, based on counting the number of categories associated to
a terminal symbol. It is not difficult to faithfully translate rigid grammar in
reversible dependency grammars.

21

The defect of learning from structures is that examples usually depend on
the implicit grammar that we have to guess. It appears that it is not the case
in our approach beacause we deal with tree languages, and so is seemingly more
natural

7 Future works

The concept of reversibility, which takes its root in [1], has yet to be explored.
In passing, notice that there are universal reversible Turing machine? So, we see
that the “reversible computation hypothesis” does not decrease expresivity. In
particular, we are investing reversible categorial grammar, and reversible Lambek
calculus.

References

1. Dana Angluin. Inference of reversible languages. Journal of the ACM, 29:741-765,
1982.

2. Y. Bar-Hillel, C. Gaifman, and E. Shamir. On categorial and phrase structure
grammars. Bulletin of Research Council of Israel, F(9):1-16, 1960.

3. Alexander Dikovsky and Larissa Modina. Dependencies on the other side of the
curtain. Traitement automatique des langues, 41(1):67-96, 2000.

4. H. Gaifman. Dependency systems and phrase structure systems. Information and
Control, 8(3):304-337, 1965.

5. Gold. Language identification in the limit. Information and Control, 10:447-474,
1967.

6. D.G. Hays. Grouping and dependency theories. In National symp. on machine
translation, 1961.

7. J. Jain, D. Osherson, J. Royer, and A. Sharma. Systems that learn. MIT press,
1999.

8. Makoto Kanazawa. Learnable classes of categorial works. CSLI, 1998.

9. E. Mikinen. Inferring regular languages by merging nonterminals. Technical re-
port, University of Tampere, 1997.

10. Igor Mel’¢uk. Dependency Syntaz: Theory and Practice. The SUNY Press, 1988.

11. Y. Sakakibara. Efficient learning of context free grammars from positive structural
examples. Information and Computation, 97:23-60, 1992.

12. D. Sleator and D. Temperley. Parsing english with a link grammar. Technical
report, Carnegie Mellon University Computer Science, 1991.

13. Lucien Tesniere. Eléments de syntaze structurale. Klincksieck, 1959.

14. Jacques Vergne. Etude et modélisation de la syntaxe des langues a 'aide de
Pordinateur. Analyse syntaxique automatique non combinatoire, Sept 1999. Ha-
bilitation Thesis.

2 See http://www.ai.mit.edu/~cvieri/reversible.html

22

Learning Rigid Lambek Grammars
and Minimalist Grammars
from Structured Sentences*

Roberto Bonato! and Christian Retoré?2

L [RISA-INRIA, Campus Universitaire de Beaulieu, 35042 Rennes Cedex, France
rbonato@irisa. fr
2 [RIN, Université de Nantes, BP 92208, 44322 Nantes Cedex 03, France

retore@irisa.fr

Abstract. We present an extension of Buszkowski’s learning algorithm for cat-
egorial grammars to rigid Lambek grammars and then for minimalist categorial
grammars. The Kanazawa proof of the convergence in the Gold sense is sim-
plified and extended to these new algorithms. We thus show that this technique
based on principal type algorithm and type unification is quite general and applies
to learning issues for different type logical grammars, which are larger, linguisti-
cally more accurate and closer to semantics.

1 Presentation

Learning lexicalized grammar This papers deals with automated syntax learning, also
known as grammatical inference. The grammars we consider are lexicalized: their rules
are universal, do not depend on the language, hence a grammar is completely defined
by a map called the lexicon which associates to each word a finite set of objects, here
types, which define the word syntactic behavior. In such grammar formalisms, acquiring
a grammar consists in finding which types should be associated with a word in order that
the lexicon generates the examples (computational linguistics does not usually consider
counter examples). It should be observed that grammar formalisms that allow for a
learning algorithm are rare.

Gold model There are various models for grammatical inference. Here we follow the
model proposed by Gold [8]: identification in the limit from positive examples only.
According to this model, each time the learner meets a new example, she generalizes her
current grammar hypothesis to a grammar in the class which generates all the examples
met so far. The learning process is said to be convergentif, whenever the set of examples
is an enumeration of a language generated by a grammar in the class, the learner finds
the correct grammar after a finite number of examples.

* This work is part of the INRIA Action de Recherche Coopérative GRACQ, Categorial Gram-
mar Acquisition

23

Psycholinguistic aspects If one thinks, but this can be discussed, that a grammatical
learning algorithm should roughly follow what is known of human language acquisi-
tion, this model is rather accurate: indeed, as claimed by Gleitman, Lieberman or Pinker
in [7], it seems that only positive examples are used in the process of children’s first lan-
guage acquisition. Another fact that we do take into account is that learning proceed on
structures, and it is known that children use structures to learn (they are provided by
intonation, semantic contents etc.).

Nevertheless our kind of algorithm relying on generalization by unification departs
from the actual process of lcarning: children do not go through an increasing sequence
of languages till they reach the correct onc, they rather go through languages which
hardly interscct the language to be learnt.

Tools for automated grammar construction We are presently implementing such algo-
rithms, using Objective CaML with a Tcl/Tk interface, and proceeding with XML files
for representing structured data — directed acyclic graphs which embed all the various
structures we are using. The learning algorithms are not too difficult to implement, and
rather efficient.

A positive point is that we are able to learn classes of languages relevant for natural
language syntax, which as far as we know, have not yet been addressed with respect to
learning issues. The algorithms are quite fast. Nevertheless this is due to the fact that
we learn from structures, but from structures which are too rich to be available from
corpora, even tagged corpora. However it is necessary to learn from structures; when
learning from plain strings of words nothing would prevent the grammar learnt from
generating sentences like Adam ate an apple with the structure (Adam (ate an)) apple,
which is not what we are looking for.

Another positive point is that we deal with lexicalized grammar. The grammatical
words, which are the ones associated with the most sophisticated syntactic behavior are
in a finite, fixed number: pronouns, prepositions and such are not invented by speakers,
hence in a real application they should be already present in the lexicon, and the words
which remain to be learnt are always simple words like nouns, adjectives, verbs. This
advantage is minimized by the fact these grammars are not robust, and consequently
have a small empirical coverage.

Previous work This work mainly relies on the first learning algorithm for categorial
grammars of Buszkowski and Penn [4] which was shown to be convergent in the Gold
sense by Kanazawa [10] — we use the simplified version due to the first author [2].

In order to Icarn a class of Iexicalized grammars with a hope to be convergent, onc
has to bound the maximal number of types that the lexicon associates to a given word:
otherwise each time a new word is seen the algorithm could provide it with a new type
perfectly ad hoc for this particular sentence, and nothing would be learnt. The base case
obviously is when the lexicon maps each word to one type: such grammars are called
rigid grammars — and this limits their generative capacity.

The pioneering paper [4] provides an algorithm called RG for learning efficiently
rigid AB grammars from structures — where AB grammars is a class of categorial
grammars which only contains residuation rules. RG relies on a typing algorithm (an

24

easy adaptation of the principal type algorithm for simply typed A-calculus) and uni-
fication (with was shown to be a general tool for grammatical inference by Nicolas
[16]).

Kanazawa [10] proved the convergence of RG, and extended the result in two di-
rections that can be combined. One direction was to learn k-valued AB grammars by
testing all the possibilities of unifying a type with one of the k types, and the other was
to learn from strings by trying all possible parse structures on a given string. The con-
vergence of these compatible extensions was shown, but the complexity of the learning
algorithms becomes hardly tractable.

Aims of the paper Compared to Kanazawa, we extend the RG algorithm in an orthogo-
nal direction: we moved to Lambek categorial grammars which are obtained by adding
two rules to the two rules of AB grammars, and, in the same style we moved to the richer
deductive system and grammar defined with Lecomte [13] which enables a represen-
tation of Stabler’s minimalist grammars [18] a formalization of Chomsky’s minimalist
program [5]. In both cases we wish to learn more realistic classes of languages without
losing the efficiency of the original algorithm. Furthermore the methods of Kanazawa
for extending our results to k& valued grammars or for learning from strings probably
apply here as well.

Little is known regarding the class of rigid Lambek languages: all its languages are
context-free and some are not regular, but it does not include all regular languages —
learnable classes are always transversal to the Chomsky hierarchy [8]. We do think,
from the examples we tried, e.g. example 1 in the paper, that rigid Lambek grammars
are more expressive than rigid AB grammars — although when unrestricted both AB
grammars and Lambek grammars exactly describe context free languages. Regarding
minimalist grammars, we know that rigid minimalist grammars do contain non context
free languages like the language a™b™c™*d™e™ (Stabler, private communication). Fur-
thermore minimalist grammars take into account sophisticated syntactic constructions,
and enjoy polynomial parsing.

As it well-known, Icarning is a cornerstone in Chomskyan linguistics. Language
acquisition is viewed as parameter setting in the universal grammar — hence few ex-
amples are needed to acquire the syntax. These parameters, like feature strength, are
explicit in minimalist grammars, and this could yield a more efficient learning strategy.

Another motivation is semantics. If the lexicon includes simply-typed A-terms de-
picting word semantics, there is a straightforward mapping from syntactic analyses to
semantics [15]. As real learning makes use of some semantic information, the pos-
sibility to learn Lambek grammars should improve syntax learning from sentences
enriched with semantic information as suggested for instance in [19]. Although the
syntax/semantics interface is less simple for minimalist grammars [13], it is also com-
putable, and this interface could be exploited as well.

Regarding learning theory we think that the RG algorithm and the simple proof of
convergence of [10, 2] could lead to a general result on learnability which can be applied
to most type logical grammars.

25

2 Categorial grammars: BCG, LCG, MCG

In categorial grammars, the objects that the lexicon associates to words to rule their
syntactic behavior are types (also called categories or formulae):
Tp == Pr | Tp/Tp | Tp\Tp

The set Pr is the set of base categories which must contain a distinguished category s
(sentence) and usually contains categories np (noun phrase) and n (noun), and possibly
vp (verb phrase), pp (prepositional phrase). Stated informally, an expression e is of type
B/A (resp. A\ B) when it needs to be followed (resp. preceded) by an expression e’ of
type A to obtain an expression of type B.

Given g € X (the set of words) and A € T'p, we write G : a — A (G assigns A to
a), whenever A is one of the types associated to the word a. If for all a € X' GG assigns
at most one type to a, G is said to be rigid.

Given a grammar/lexicon G, a sequence' of words wy ... w, € LT is said to be
of type T' € Tp whenever there exists for every ¢ in [1,n] a type T; € T'p such that
Ty ---Ty, F T, where - is the following relation between finite sequences of types and

types:

Definition 1. The binary relation \- between T'pt and T'p is the smallest relation such
that, forall A,B € Tpandall I', A € Tp*:

[ID] AF A

[/E] if '+ Aand A+ A\B, then I, A & B (Forward application or modus ponens);
N\E] f '+ B/Aand A v A, then I, A & B (Backward application, modus ponens);
\] if A, & B then I' b A\B (\ hypothetical reasoning, introduction);

[/I] if I, A\ Bthen I' b B/A (/ hypothetical reasoning, introduction);

As the - symbol suggests it is a deduction relation which can be depicted by natural
deduction trees. 2

L]
A [ID] A/:B B B BiA M 1
[/E] \E]
- o5V S

Note: in [/T] and [\I] rules the cancelled or discharged hypothesis is always the right-
most and the leftmost uncanceled hypothesis, respectively, and there must remain at
least one other uncanceled hypothesis.

The grammars defined using this deductive system are Lambek grammars (LCG)
from [12] while the ones which only use [\ B] and [/ E] are called AB (Ajdukiewicz Bar-
Hillel) grammars or basic categorial grammars (BCG) from [1] (see [3] for a survey).
The learning algorithms defined so far [4, 10] only handles BCGs.

" As usual, given a set U, U™* stands for the finite sequences of elements in U and U™ for the
finite non empty sequences of elements in U

% The only difference with usual natural deduction is hat the order of premises matlers, and that
exactly one hypothesis is cancelled in an introduction rule. This can be observed from the fact
that, in the previous definition there are no rule if I, A, B, A+ C then I', B, A, A + C and
norule if IVA,B,A+ Cthen I’ A, B, A+ C.

26

Example 1.

If one consider the rigid grammar/lexicon besides, then the
sentences Guarda passare il treno ((s)he is looking the train
passing by) and Cosa guarda passare (What is (s)he looking guarda — S/np
passing by?) belong to the generated language of the LCG. |[Passare = vp/np

With BCG, only the first one is generated. il = np/n
trenow—n

cosa — S/(S/np)

The languages generated by AB categorial grammars exactly are the context-free
languages, and the languages generated by Lambek categorial grammars also are ex-
actly context-free languages. Nevertheless the LCG generate much richer structure lan-
guages than BCG, see below.

Minimalist categorial grammars (MCG) In [13] the minimalist grammars of [18]
have defined similarly, by using a lexicon which ranges over more sophisticated types.
There is no room to present there intuitively, but formally they can be defined a mere
variation of categorial grammars. The set of primitive categories is larger: it includes
primitive categories but also movement features, like case, wh etc. which can be strong
or weak® Types are extended with a commutative and associative product:
Tpm = Pr | Tpn/Tpm | Tpu\Tpm | TPm®Tpm

Instead of sequences of types, contexts are sets of types and the deductive system
is replaced with the following one, where every formula is labeled by a sequence of
words:*

if'Fy:B/Aand Abz: A then {IL A} Fyz : B
ifAry:A@BandI'{z: A,y : B} Ft(x,y): Cthen I A b t(z 1= uy,y :=
us) : C with, depending on A either uy = uz = woru; = (u) and us = u.

]
]
[JE] fT'tz:Aand Aty : A\B, then {I',A} - zy : B
]
]

The labels can be computed from the proof. The way to read them is a bit puzzling,
but agrees with the copy theory of minimalism. Every word sequence w has a phonolog-
ical part /w/ and a semantic part (w) and when they are superimposed, this is simply
denoted by w. The reason for this double sequence (semantic and syntactic) is to obtain
correct semantic representation in a parameterized view of language variation.

To read such a sentence, one should only keep the phonological part and forgetitems
which arc met scveral times, the repetition being traces: for instance Petrus Mariam
amat Mariam is phonologically read as /Petrus//Mariam//amat/ and semantically read
as (Petrus) (Mariam) (amat) while Peter (Mary) loves Mary is phonologically read as

3 For instance in VSO languages the accusative case provided by the verb is weak, while it
strong in SOV languages.

* In fact if one wants a real logical system, then it is more complex. It involves structured con-
texts with a commutative comma and a non commutative comma, and the possibility to replace
non commutative commas by commutative ones. However a large part of this formalism can
be handled by the little system we give here.

27

/Peter/ floves/ /Mary/ and semantically read as (Peter) (Mary) (loves). If we consider
the assignments Mary — d ® k and loves — K\wvp/d we obtain that (Mary) loves
Mary is a vp, but if case k was strong we would obtain that Mary loves Mary is a vp as
in SOV languages.

Floves: K\vp/d z:d-x:d
y:Kry: K z:dblovesz : k\vp

[/

\E]

y: Kz :dbFylovesx :vp

FMary:d®k y: K,z:dFylovesz:up

[®E]
F (Mary) loves Mary : vp

The grammaris said to generate a sentence wy . . . wy, whenever the lexicon contains
assignments w; — Ty such that Ty, ..., Ty = fwi/ ... Jwy/ : s. These grammars have
been shown to generate exactly the same languages as Multiple Context-Free grammars,
which go beyond context {ree grammars and even TAG languages. [9, 14].

2.1 Proofs as Parse Structures

As said above, parse structures are essential to a grammar system. As Tiede [20], we
define them as normal proof trees that are proof trees in which an introduction rule
yielding A\ B or B/A is never followed by an elimination rule whose argument is A.
Every proof tree can be normalized in linear time to a normal one, and there are finitely
many normal proof tree with the same hypotheses and conclusion.

Thus the structure underlying a sentence aq - - - a,, € X generated by a Lambek
grammar G is one of the finitely many normal prooftrees of the deduction 44, ..., A, +
s, with G : a; — A;. Figure 1 displays the proof tree of the sentence ‘he likes her’ in a
grammar G such that G : he — s/(np\s), him — (s/np)\s, likes = (np\s)/np.

likes

(npls)y/np [np] likes D]
e \F/ \/
s/(np\s) np\s he /E
\E/ \/
3 /E
n her ‘
s/np (s/nphs n her
\\l/ \/

Fig. 1. Proof tree for a sentence and the corresponding proof-tree structure.

Given a Lambek grammar G, a proof-tree structure over its alphabet X' is a unary-
binary branching tree whose leaf nodes are labeled by either [I.D] (“discharged” leaf
nodes) or symbols of X7 and whose internal nodes are labeled by either [\ E], [/ E], [\1].

28

or [/I]. Thus, a proof tree structure of a sentence is obtained from a proof tree by remov-
ing the types which label the nodes. We write XF for the structure language that is the
set of proof-tree structures over X, and PL(G) for the (proof-tree) structure language
of G that is the set of structures generated by G. In order to distinguish L(G), the lan-
guage of G, from PL(G), its structure language, the formeris called the string language
of G. The yield of a proof-tree structure 7" is the string of symbols ay, .. .,a, € T
labelling the undischarged leaf nodes of T', from left to right in this order. The yield of
T is denoted yield(T). Note that L(G) = {yield(T) | T € PL(G)}.

By taking a proof tree as the structure of a sentences generated by Lambek gram-
mars, Tiede in [20] proved some important results about their strong generative capac-
ity. Firstly, a proof in the Lambek calculus is really a tree — as opposed to a proof in
intuitionistic logic. Indeed, as he observed there is no need to specify which introduc-
tion rule [1/] or [\I] did cancel a leaf in the course of a derivation: this information can
be reconstructed {rom the leaves to the root, since it is always the left the leftmost or
right most uncanceled hypothesis. Secondly, as opposed to a previous notion of parse
structures for Lambek grammars [3], not every bracketing is produced by the finitely
many normal proof trees which parse a given sentence. Thirdly, even though Lambek
grammars and BCGs both exactly generate context-free languages, the former can gen-
erate proper context-free tree languages while the latter, as context free grammars only
gencrate regular tree languages.

Parse structures for minimalist categorial grammars [or the same reason we take
proof trees as parse structure for MCG. Observe that there as well subtrees correspond
to constituents.

3 Learning Framework: Gold’s Model from Structured Examples

This scctions recalls the basic formal notions of the learning model we use, Gold’s
model of learning [8], also called identification in the limit from positive data. We are
given a universe 7" (for us the set of parse structures) and a class (2 of finite descriptions
of subsets of T' (for us categorial grammars), with a naming function N which maps
each element of (2 to the subset of T that it generates. The learning question is given
a subset S of T' (positive examples), to find an element G € (2 such that N(G) = S.
The learning function we are looking for is a partial function ¢ from finite sequences
of elements in 7" (or in S, since it is a partial function) to 2 which converges in the
sense of Gold: whenever S = N(G) for some G € (2, then for any enumeration
(e;)ien of S, there exists an p € N such that Vn > p one has ¢(eq,...,e,) = G' and
N(G") = N(G).

Stated informally, we can think of a learning function as a formal model of the
cognitive process (successful or unsuccessful) by which a learner conjectures that a
given finite set of positive samples of a language are generated by a certain grammar.
The convergence simply means that after a finite number of examples, the hypothesis
made by the learner is a grammar equivalent to the correct one.

In Gold’s model, we will say that a class of grammars is learnable when for each
language generated by its grammars there exists a learning function which converges

29

Fig. 2. Typing rules

to one correct underlying grammar; it is called effectively learnable if that function is
computable.

4 An Algorithm for Learning Rigid Lambek Grammars

In the present section we describe an extension of Buszkowski’s RG algorithm [4] for
learning rigid BCGs from structured positive examples to rigid Lambek grammars, and
rigid minimalist grammars. We also sketch the first author’s convergence proof [2] in-
spired from [10].

4.1 Argument Nodes and Typing Algorithm

Our learning algorithm is based on a process of labeling for the nodes of a set of proof-
tree structures. We introduce here the notion of argument node for a normal form proof
tree. Sometimes we will use the same notation to indicate a node and its type label,
since the graphical representation of trees avoids any confusion.

Definition 2. Let T be a normal form proof-tree structure. Let’s define inductively the
set Arg(T) of argument nodes of T. There are four cases to consider:

— T is a single node, which is the only member of Arg(T);
- T =\E|(T1,Tz), then Arg(T) = {Root(T)} U Arg(T1) U Arg(T>) — Root(Tz);
- T =[/E|(T1,Tz). then Arg(T) = {Root(T)} U Arg(T1) U Arg(T3) — Root(Ty);
- T =N|(Th) or T = [/I|(T1), then Arg(T) = Arg(Ty).

Applying the principal type algorithm from A-calculus to Lambek proofs, as in [20,
2], one obtains the following result on argument nodes:

Proposition 1. Let T be a well formed normal form proof-tree structure. If each argu-
ment node is labeled, then any other node in T' can be labeled with one and only one

ype.
This proposition allow to define the notion of principal parse:

Definition 3. A principal parse of a proof-tree structure T is a partial parse tree T of
T, such that for any other partial parse tree T' of T, there exists a substitution o such
that, if a node of T is labeled by type A in T, it’s labeled by o(A) in T".

To compute in linear time the principal parse of any well-formed normal proof-tree
structure, provide argument nodes with distinct variables, and then apply the rules in
figure 2 (the /E and /I cases are symmetrical).

30

4.2 RLG (Rigid Lambek Grammar) Algorithm

— input: a finite set D of normal proof-trees (since all proof trees normalize)
— output: arigid Lambek grammar G such that D C PL(QG), if there is one.

a girl loves [1 \

s John

a him

wonately
/

Fig. 3. The set D of positive structured samples for RLG algorithm.

Step 1. Assign a type to each node of the structure in D as follows:

— Assign s to each root node;
— assign distinct variables to the argument nodes (see Fig. 4);
— compute types for the remaining nodes as after definition 3 (Fig. 5).

Step 2. Collect the types assigned to the leaf nodes into a grammar GF(D) called the
general form induced by D. One has GF(D) : ¢ — A if and only if the previous step
assigns A to a leaf node labeled by symbol ¢.

GF(D) : passionately — x1\s him — (z2/25)\21
av> x3/z4, 27/ 28 girl — 24,23
loves — (z3\z2) /5, (26\s)/z7 John — x4

oirl
a X,
4 loves [X5]
\r/
¥ [E girl
3 a XR
i \]/
X, loves X,

\E/ 5
X, passionately

Fig. 4. Set D after labeling argument nodes.

31

irl loves

a il
X/, X, (oo, [x] a girl
JE E x7/x-8 xX
% x;by, Toves &
\/ (xb \S)/x7 X;
X, \/
John N
s X X,\s
’1 him -
X/, (xX/x) ¥
E passionately
X, x, s

By
Fig. 5. Set D after computing the label for every node.

Step 3. Unify the types assigned to the same symbol. Let A = {{A | GF(D) : ¢ —
A} | ¢ € dom(GF (D))}, and compute the most general unifier o = mgu(A). There
are various well-known algorithms for unification (see [11] for a survey), so a most
general unifier of a finite set of types can be computed in linear time. The algorithm
fails if unification fails.

o={z7 > 23,28 > T4, T6 > T3,T2 > 5,T5 +> T3}
Step 4. Let RLG(D) = o[GF(D)].

RLG(D) : passionately — z;\s him — (s/z3)\z1
aw— x3/xy girl — 4
loves — (23\s)/z3 John — z3

Our algorithm is based on the principal parse algorithm described in the previous
section, which has been proved to be correct and terminate, and the unification algo-
rithm. The result is, intuitively, the most general rigid Lambek Grammar which can
generate all the proof tree structures appearing in the input sequence.

Theorem 1. Let prrq be the learning function for the grammar system
<G1‘i_qz'd; EP,PL) deﬁned by (pRLg(<T0, . ,Tn)) >~ RLG({T(), . ,Tn})
Then wrrg learns Grigiq from structures.

We have no room for the complete proof which can be found in [2], we only state
the key lemmas below. Given two non necessarily rigid LCGs, let us write G C G’
whenever there exists a substitution ¢ such that o(G) C G' — that is every type as-
signment of G is a type assignment of ¢(G). Given a finite set D of examples, let us call
GF (D) the non rigid grammar obtained by collecting all the principal types associated
to the words by the examples.

1. Given a grammar G are finitely many grammars H such that H C G.
2. If G C G’ then PL(G) C PL(G").
3. If D C PL(G) then GF(D) C G.

32

4. ¥GF(D) C G then D C PL(G).
5. If RLG(D) exists and RLG(D) C G then D C FL(RLG(D)).
6. If D C PL(G) then RLG(D) exists and RLG(D) C G.

Given these lemmas, it is not difficult to see that D C D’ C PL(G) entails that
RLG(D), RLG(D' exists and RLG(D) C RLG(D') C (. Because of the first item
a correct grammar is necessarily met in finitely many steps.

When RLG is applied successively to a sequence of increasing set of proof-tree
structures Dy C Dy C Dy C - -+, it is more efficient to make use of the previous value
RLG(D;_4) to compute the current value RLG(D;).

It is easy to see that @Ry can be implemented to run in linear time if positive
structured samples are in normal form. As said earlier both the principal type algorithm
for Lambek proof trees [20] and efficient unification algorithms [11] are linear.

Learning MCG Rigid minimalist grammars admit a similar algorithm RMG. Here are
the differences. To compute the principal type when an [®] rule is met, the subproof
sp with conclusion A ® B should be typed after the other subproof has been typed,
hence the value of A ® B is known for typing sp. Whenever a set of examples D is
included in PL(G) then there also cxists a substitution o such that o(GF(D)) C G.
The unification of the collected types is more difficult, because the connective ® is
associative and commutative, but it has been shown by Fages that unification modulo
associativity and commutativity is decidable, even in the presence of other connectives
[11]; the difference is that there does not exists a most general unifier, but a finite set of
minimal unifiers (0;);c1,p) and for at least one index ég € [1,p], 0 = T0oy,. We define
RMG(D) to be 0;, (GF(D)). Thus 7(RMG(D)) = 10, (GF (D)) = c(GF(D)) C
GF(D) and RMG(D) C G. Thus the argument for the convergence of RLG also
applies to RMG.

5 Conclusion

Meanwhile we implement some algorithms in the family we presented in Objective
CaML with input as DAGs in XML, and interface in Tcl/Tk, we would like to address
the following questions:

— What is a good notion of structure for learning syntax from structures, that is a
notion of structure which yields good grammars, but is rather computable from
corpora?

— How can one automatically obtain parse structure from more realistic examples that
can actually be produced by taggers and robust parsers?

— How can we take Montague like semantics into account, first for Lambek gram-
mars, and then for minimalist grammars?

— What are the language classes of rigid grammars?

— Can we used the fact that types for minimalist grammars are of a given shape to
avoid associative commutative unification and bound the complexity?

— Does there exists a general result stating that every type logical grammars enjoying
certain properties is learnable from structures?

33

References

18.
19.

20.

21.

. Y. Bar-Hillel. A quasi arithmetical notation for syntactic description. Language, 29:47-58,

1953.

Roberto Bonato. A study on learnability of rigid Lambek grammars. Tesi di Laurea
& Mémoire de D.E.A, Universita di Verona & Université Rennes 1, 2000. available at
http://www.irisa.fr/aida/aida-new/Fmembre_rbonato.html.

Wojciech Buszkowski. Mathematical linguistics and proof theory. In van Benthem and ter
Meulen [21], chapter 12, pages 683-736.

Wojciech Buszkowski and Gerald Penn. Categorial grammars determined from linguistic
data by unification. Studia Logica, 49:431-454, 1990.

Noam Chomsky. The minimalist program. MIT Press, Cambridge, MA, 1995.

Philippe de Groote, Glyn Morrill, and Christian Retoré, editors. Logical Aspects of Compu-
tational Linguistics, LACL 2001, volume 2014 of LNCS/LNAI. Springer-Verlag, 2001.

L.R. Gleitman and M. Liberman, editors. An invitation to cognitive sciences, Vol. 1: Lan-
guage. MIT Press, 1995.

E.M. Gold. Language identification in the limit. Information and control, 10:447-474, 1967.
Henk Harkema. A characterisation of minimalist languages. In de Groote et al. [6], pages
193-211.

Makoto Kanazawa. Learnable classes of categorial grammars. Studies in Logic, Language
and Information. FoLLLI & CSLI (distributed by Cambridge University Press), 1998. pub-
lished version of a 1994 Ph.D. thesis (Stanford).

. Claude Kirchner and Hélene Kirchner. Rewriting, Solving, Proving. LORIA, 2000. Book

draft available from http://www.loria.ft/"ckirchne.

Joachim Lambek. The mathematics of sentence structure. American mathematical monthly,
65:154-169, 1958.

Alain Lecomte and Christian Retoré. Extending Lambek grammars: a logical account of
minimalist grammars. In Proceedings of the 39th Annual Meeting of the Association for
Computational Linguistics, ACL 2001, pages 354-361, Toulouse, July 2001. ACL.

Jens Michaelis. Transforming linear context-free rewriting systems into minimalist gram-
mars. In de Groote et al. [6], pages 228-244.

Michael Moortgat. Categorial type logic. In van Benthem and ter Meulen [21], chapter 2,
pages 93-177.

Jacques Nicolas. Grammatical inference as unification. Rapport de Recherche RR-3632,
INRIA, 1999. http://www.inria.fr/RRRT/publications-eng.html.

Christian Retoré, editor. Logical Aspects of Computational Linguistics, LACL 96, volume
1328 of LNCS/L.NAI. Springer-Verlag, 1997.

Edward Stabler. Derivational minimalism. In Retoré [17], pages 68-95.

Isabelle Tellier. Meaning helps learning syntax. In Fourth International Colloguium on
Grammatical Inference, ICG*98, 1998.

Hans-Jorg Tiede. Lambek calculus proofs and tree automata. In Michael Moortgat, editor,
Logical Aspects of Computational Linguistics, LACL*9S, selected papers, volume 2014 of
LNCS/LNAL Springer-Verlag, 2001.

J. van Benthem and A. ter Meulen, editors. Handbook of Logic and Language. North-
Holland Elsevier, Amsterdam, 1997.

34

From Logic to Grammars via Types*

Daniela Dudau-Sofronie, Isabelle Tellier, Marc Tommasi

LIFL-Grappa Team and Université Charles de Gaulle-lille3
59 653 Villeneuve d’Ascq Cedex, FRANCE
dudau@lifl.fr, tellier,tommasi@univ-1ille3.fr
http://www.grappa.univ-1ille3.fr

Abstract. This paper investigates the inference of Categorial Gram-
mars from a new perspective. To learn such grammars, Kanazawa’s ap-
proach consists in providing, as input, information about the structure
of derivation trees in the target grammar. But this information is hardly
arguable as relevant data from a psycholinguistic point of view. We pro-
pose instead to provide information about the semantic type associated
with the words used. These types are considered as general semantic
knowledge and their availability is argued. A new learning algorithm
from types is given and discussed.

1 TIntroduction

Learning a foreign language from texts is like trying to decipher hieroglyphs
without the Rosetta stone: it is an unreachable challenge. Without the indica-
tions about their meaning found in the stone, hieroglyphs would probably still
remain mysterious. This paper can be interpreted as a tentative explanation of
how semantics can help syntax learning.

Categorial Grammars are well known for their formalized connection with
semantics ([Mon74], [DWP81]). They provide a good compromise between for-
malism and linguistic expressivity ((OBW88]). Previous works have studied the
learnability of such grammars ([Adr92], [Kan98], [MO98]) but neither of them
uses the syntax/semantics interface to help the syntactic learning process.

Links between Kanazawa’s learning strategy and semantic information have
been shown in [Tel99]. This first approach is still not satisfactory as it does not
avoid combinatorial explosion. This paper is a new way of considering learn-
ing Categorial Grammars from semantic knowledge. The original contribution
consists in the use of semantic types associated with words.

Types are very general information, allowing to distinguish facts from en-
tities and from properties satisfied by entities. Most knowledge representation
languages use this notion, and it ususally seems possible to deduce types from
lexical semantics. A new learning algorithm taking as input data both syntacti-
cally correct sentences and the corresponding sequences of types is explained.

Sections 2 and 3 are preliminaries introducing the class of Grammars we
want to learn and the nature of the information admitted as input to the learning

* this work was supported by the ARC INRIA project GRACQ

39

process. Section 4 exposes the heart of our proposition, illustrated with a detailed
example, and criticizes its limitations.

The conclusion argues about the cognitive plausibility of the data provided
to this algorithm, in comparision with the data usually used in other learning
algorithms. Perspective issues are also evoked.

2 Grammatical Inference

The Problem of Grammatical Inference from positive examples (or: from texts)
consists in the design of algorithms able to identify a formal grammar from a
sample of sentences it generates. This problem is a rough formal approximation
of how children manage to learn the grammar of their mother language ([WC80]).
From a theoretical point of view, identifying a formal grammar from texts is very
difficult since regular (and therefore context-free) grammars are not learnable
from texts in usual learning models ([Gol67,Val84]).

2.1 Categorial Grammars

In the following, we will use formal grammars belonging to the class of AB-
Categorial Grammars ([HGS60]). In this formalism, every member of the vo-
cabulary (every word) is associated with a finite set of categories, expressing its
combinatorial power. The set C’ of every possible category is built from a finite
set C of basic categories in the following way: C’ is the smallest set satisfying
C C C" and for every X € C' and Y € C' then (X/Y) € C' and (Y\X) € C'.
Syntactic rules are reduced to the following rewriting schemas (where “.”
denotes the concatenation operation): for every category X and Y in C”

— FA (Forward Application) : (X/Y).Y — X;
— BA (Backward Application) : Y.(Y\X) — X.

These schemas justify the fractional notations of the operators / and \. Cat-
egories of the form X/Y (resp. Y\X) can be considered as oriented functors
expecting an argument of category Y on their right (resp. on their left) and
providing a result of category X. Given a vocabulary X, a Categorial Grammar
G is defined by an axiomatic category S and an association between words in 5/
and categories in C”. The language recognized by G is the set of finite concate-
nations of elements of X for which there exists an assignment of categories that
can be rewritten with the schemas into S. The class of (string) languages that
are recognizable by Categorial Grammars is the class of context-free languages.

Ezxample 1 (A basic Categorial Grammar). Let us define a Categorial Gram-
mar for the analysis of a small subset of natural language whose vocabulary
is {a, man, woman, John, runs, walks, fast}. The set of basic categories is
C = {S,T,CN} where S is the axiomatic category of sentences, T' stands for

! For a sake of clarity, parentheses are omitted in non ambiguous expressions

36

term and CN means common noun. The assignment of categories to words is:
John: T man, woman: CN; runs, walks: (T'\\S);

a: ((S/(T\S))/ON); fast: ((I\S)\(Z\S)).

This grammar allows to recognize sentences like : “a man runs” and “John
runs fast” because:

a man runs (twice with the FA rule)
((S/(T\S))/CN) . CN . (T\S) = (S/(T\S)) - (T\S) = S
John runs fast (twice with the BA rule)

T (T\S).(T\S\(T\S)) —=>T.(T\S->S

2.2 Grammatical Inference of Categorial Grammars

Learning a Categorial Grammar consists in identifying the categories assigned to
each word of its vocabulary. The rewriting schemas are supposed to be known.

The formal learnability of Categorial Grammars has been studied in a variant
of the PAC model ([Adr92]) and in Gold’s model ([Kan96,Kan98]). The most
powerful result obtained uses the notion of Structural Example. A Structural
Example is derived from a syntactic analysis structure by deleting intermediate
categories while preserving the terminal symbols and the reduction schemas used.

Ezxample 2. The Structural Examples dervived from analyses of Example 1 are:

Nl
AT A

man rUNS fast

Kanazawa has proved that the class G, of Categorial Grammars assigning at
most k different categories with any given word is learnable in Gold’s model from
positive Structural Examples ([Kan96,Kan98]). Basically, the learning strategy,
extending an algorithm earlier proposed by [BP90], relies on the unification of
variable categories assigned to each nodes of the Structural Examples. When
k = 1, the grammars are called “rigid” and they can be efficiently learned.
When k > 1, the learnability is NP-hard ([F1000]).

The main problem in this approach is that Structural Examples are hardly
arguable as relevant data from a psycholinguistic point of view. The learnability
result from Structural Examples can be extended to a learnability result from
texts, but in this case the algorithm first needs to enumerate every possible tree
structure corresponding with every string of words provided as example, and
thus becomes exponential. Efficiency and cognitive plausibility don’t seem to go
together well.

Our purpose is also to learn Categorial Grammars, but from a new kind
of input data, more informative than texts and more relevant than Structural
Examples, i.e. sequences of types. Types will be associated with words and can
be interpreted as semantic information.

37

3 Semantic information

3.1 A typing system

A well known interest of Categorial Grammars is their connection with seman-
tics. This connection, first formalized by Montague ([Mon74,DWP81]) is inspired
by the Principle of Compositionality ([Jan97]). One of its consequences is a
strong correspondence between syntactic categories and semantic types. These
types are what we propose to use in the learning process.

We will not define here a full semantic language, as types can be associated
with very different kinds of semantic representation (the next subsection will
provide clues to extract types from a usual semantic language). For us, the only
semantic information needed will be a typing system making a basic distinc-
tion between entilies and facts and allowing to express the types of functors,
among which are the predicates. This typing system is a un-intensional version
of Montague’s intensional logic. The set @ of possible types is defined by:

— elementary types : e € O (type of entities) and ¢ € O (type of truth values)
are the elementary types of ©;

— O is the smallest set including every elementary type and satisfying : if u € ©
and v € O then {u,v) € © (the composed type (u,v) is the type of functors
taking an argument of type u and providing a result of type v).

These types combine following rewriting rules similar with the ones of 2.1.

— TF (Type Forward) : {u,v) . u — v;
— TB (Type Backward) : u . {u,v) — v.

Example 3. For the grammar of Example 1, the types of the words are:

John: e; man, woman, runs, walks: (e, t); a: {{e,t), {{e, t},)); fast: {{e, 1), (e, t}}.
These types express that “John” denotes an entity; “man”, “woman”, “runs”
and “walks” characterize one-place predicates and “fast” is a one-place predicate
modifier. The type of “a” comes from its semantic translation in Montague’s
system (see 3.2).

The main difference between categories in C' and types in © is that the direction
of a functor-argument application in categories is indicated by the operator used
(/ or \), whereas this direction is lost in types (as both are replaced by a “,”).
The functor-argument application of types is commutative, whereas it is not for
categories. Note that for a given type containing n elementary types, there are
271 possible ways to replace each of its n — 1 “)” by either / or \.

Another difference is that in our typing system, the set of elementary types
is reduced to {e,t}, whereas it just needs to be finite in Categorial Grammars.

3.2 From logic to types

Before entering the learning process, let us slightly deepen the links between
semantics and types. As a matter of fact it seems possible, under conditions, to

38

deduce the type corresponding with a word from its meaning representation in
a Montague-like system.

The typing system we use is perfectly well adapted to the language of first
order predicate logic extented with typed-lambda calculus (corresponding with
un-intensional Montague’s intensional logic).

Ezxample 4. The semantic translation of the words of our little grammar in this
logical language are the following:

John : John' (the prime symbol distinguishes logical constants from words)
— man : Az.manj (z); woman : Az.woman (z)

runs : Az.run(z); walks : Az.walk (z)

a: AP AQq.3z[Py(z) A Q1(2))

— fast : APy . Az. [Py (2)]

The types associated with these words are easily deductible from their logical
translation. An algorithm working in this case has been implemented.

Nevertheless, the reader should note that we need to impose some syntactic rules
(not restrictive in the language of the logic) in order to derive types from logical
formulas. For the language evoked, they include the following;:

— atomic symbols noted z, y, etc. and isolated logical constants are of type e;

— symbols denoting predicates or functions must be used in extension, i.e. dis-
playing their arity and all their arguments: for example, a two-place predicate
P will appear as Az\y.Pz(z)(y);

— formulas associated with words must be close, to avoid free variables

In fact, typed languages are usually defined with rules taking into account
conditions on types. Types are thus deductible from formulas of these languages
if the formulas themselves can be analyzed without ambiguity. The precise con-
ditions allowing type deduction in the general case are being explored.

4 A new learning algorithm from types

We adopt here a semantic-based theory of syntax learning, i.e. we consider that
the capacity of acquiring a grammar is conditioned by the ability to build a
representation of the situation described. In previous semantic-based methods of
learning ([HW75,And 77, Lan82,Hil83,Fel98]), word meanings are supposed to be
already known when the grammatical inference mechanism starts. We make here
the smoother hypothesis that the crucial information to be extracted from the
environment is the semantic type of words. Recognizing that a word represents
an entity or a property satisfied by a (or several) entity(ies) is the prerequisite
of our learning system. Section 3.2 suggests that types can be deduced from
semantic representations, and are thus less informative.

39

4.1 Layout of the algorithm

The input of our learning algorithm is a sample of couples composed of a syntac-
tically correct sentence and a corresponding sequence of types. The purpose is
to build a rigid Categorial Grammar able to generate this sample. The missing
information is the direction of the functor/argument applications, as each type
of the form (u,v) can combine with a type u placed either on its left (with a TB
rule), or on its right (with a TF rule). In the first case, the type (u,v) syntacti-
cally behaves like 4\v with the rule BA, in the second one like v/« with the rule
FA in the Categorial Grammar formalism. The identification of the operators /
and \ will be processed in two steps: a parsing step and a step to get categories
from types.

Parsing types We assume that every sentence given as input is syntactically
correct and thus that the associated sequence of types can be reduced using the
TB and TF rules to the type of truth values ¢. The first step of the algorithm
is to find such a reduction.

FErample 5.

a man runs
({e; 1), {{e, 1), 1)) (e, t) (e, t)
Only TF can apply as a first reduction and combines the first two types into
the type ({e,t),t). Again using TF, the final reduction leads to t. See Figure 1.

N
{{e,t),t) {e,t)
AN
{e,), {{e, t}, 1)) {e,t)

Fig. 1. A parse tree for types.

This reduction can be viewed as a parse in a context free grammar. In this
setting, TF : {(u,v).u — v and TB : u.{u,v) — v are interpreted as schemes of
rules where 4 and v are instantiated by types in the input sequence. As every
instantiated rule fitting one of these schemes is in Chomsky Normal Form, it is
possible to adapt a standard parsing algorithm to find the parse on types. In
this paper, we modify the Cocke-Younger-Kasami (CYK) algorithm.

The whole process is the search for replacing the “” in type expressions to
get categories. Possible values for “” are /, \ or “left unchanged” (a) is left
unchanged when the corresponding type is never in a functor place). To this aim,
we identify every “,” with a distinct variable. A reduction via TF or TB implies

some equalities between categories and subcategories that must be propagated.

40

For instance, when one applies a TF : (u,v).u — v rule on a man associated with
types ({e 21 t) x5 ((e x3 t) 24 t)) and (e x5 t), the constraint 1 = x5 arises.

Hence, type reductions translate into variable equalities and a given parse
leads to a system of equalities. We depict such equalities in Figure 2 by the
underlined variables.

t
N
(e z3 t) x4 t) (e zo t)
TN

(ezit)zz: {ezst) 2at)) (ezst)

Fig. 2. Parsing types and introducing variable equalities. We underline variables that
generate constraints to be fulfilled at each level of the parse tree.

Note that there could be more than one parse for a given input. The outcome
of the parser is thus a set of parses each of which being described by a set of
variable equalities. We will discuss complexity issues at the end of this section.

Getting categories Now given such contraints on types, we easily deduce
categories and hence a Categorial Grammar that accepts the sequence of words
as input. To this aim, we consider that TB and TF have BA and FA as a
counterpart in the categorial grammar formalism. The association between types
and categories is done in the following way:

— t is associated with S.

— any distinct type that never occurs at a functor place in the parse is associ-
ated with a new variable category.

If TF : {uw x; v).u — v and u (resp. v) is associated with the category A
(resp. B) then z; = / and {u x; v) is associated with the category B/A.

If TB : w.(u z; v) — v and u (resp. v) is associated with the category A
(resp. B) then z; =\ and (u z; v) is associated with the category A\B.

Thus, while getting categories, we add equality constraints of the form z; = /
or z; = \ for some i. The process is always guaranteed to give a set of categories
because of the properties of the sequences in input.

Learning process An on-line and incremental learning algorithm can be de-
signed using the strategy describe above. It consists in inferring equality con-
straints between variables and equality constraints fixing the value of variables
from each input couple (in the example below, both are inferred at the same
time). We also take into account that the target Categorial Grammar is rigid,
that is every word is associated with at most one category.

41

Example 6. A first input is provided ...

a man runs 71 i s
{{e,t), {{e, t), t}) {e,t) {e,t) | leads to the system 2 _ / .
{exi ty za {{exzt) x4 t)) e x5 t) (e 26 t) ii ; 3}76

At this point, the Categorial Grammar inferred consists in the associations:
a:(S/B)/A; man: A; runs: B.

Consider a second input. Since every word has at most one category we con-
sider the same variables in the type of words already encountered in a previous
sentence. The set of variable equalities is enriched.

Il =7 =T
a woman walks

To =
eth (eth) o) (et nol
(e 21 t) 3 ({e z3 t) x4 t)) (e x7 t) (€ x5 t) i =/
Thus, man and woman (resp. walks and runs) are of the same category.
Cousider a third input. One can find that the set of variable equalities becomes:

a woman walks fast
{{e, 1), ({e; 1), 1)) {e;t) (e,t) {{e,t}, (e, 1))

{exity za {{exz t) x4 t)) {e xr t) (e 23 t) ({e T) T10 (€ z11 1))

1 =7 =I5

.’1?2:/

T3 =Tg =Tg =T11 = g
.'1342/

r10 =\

Finally, if the last sentence is “John walks”, equality constraints propagate

xg = \ to several categories. | John walks Ty =27 =I5
€ <e> t) To = /
e {exst) T3 =Ty =T = T11 = Tg = \
4 = /
Z10 = \

To summerize, after renaming e in T and (e z, t) in CN, the Categorial
Grammar obtained consists in John: T'; man, woman: CN; runs, walks: T\S; a:
(S/(T\S))/CN; fast: (T\S)\(S\T"). So, with this sample, we exactly obtain the
grammar of Example 1. This grammar is able to recognize sentences like “John
runs fast”, not given as example. Some generalization has thus occurred.

In more complicated cases where more than one parse is possible on a given
input, the algorithm must maintain a set of sets of constraints representing a set
of candidate grammars.

Criticism A parse in a context free grammar in Chomsky Normal Form can
be computed in polynomial time in the size of the input. This complexity result
is stated for a given context free grammar. In our setting, we do not have a

42

context free grammar but a “set of possible ones” defined by schemes of rules.
This changes a lot the complexity issues as illustrated by the following example:

Ezample 7. Let us consider the following input:

aa... 0 b a...a
ee...ele,{ ., {e,t))e... ¢

with 7 letters a on both sides of a b. It can be proved that there are (27)
different Categorial Grammars recognizing this input. As a matter of fact, the
type associated with b expects 2n arguments among which n are on its left and
n are on its right. So, TF and TB must both be applied n times, no matter in
which order. Thus, a parser that builds every possible parse runs in exponential

time relatively to the total number of “” in the input sequence of types.

As an interpretation of this example, two interesting facts can be said. First, we
wanted to provide more information as input than simple sentences in order to
find linguistically relevant and computationally acceptable learning procedures.
The process of finding structural data from sole string input data being too
expensive we propose to add semantic information represented by types. It can be
observed that even with the richer data of types provided as input, the problem
is far from trivial in terms of time and space complexity.

Second, a naive approach consists in trying every possible assignment of a
value in {“\", "/"" ="} with every “” in the input sequence of types. For n “”
in this sequence, there are 3™ different assignments. The worst case complexity
of our approach is comparable with the complexity of this naive algorithm.

Nonetheless, the algorithm is not exponential in the number of words in
the sentence given as input. The problem arises from the intrinsic number of
possible solution grammars. But we are not interested in finding all acceptable
Categorial Grammars (w.r.t. the input): only one is enough. Since the parser
can work in polynomial time in the case where there is only one acceptable
Categorial Grammar, there is still some hope to find relevant adaptations of our
method. We will pursue these research directions in the near future.

4.2 Implementation details

We now describe a simplified scheme of our algorithm. The global structure is
similar to CYK. We also follow as much as possible the notations in [HU79].
The algorithm builds a table. Rows and columns range from 1 to the length of
the input. In the CYK algorithm, a cell (4, j) contains the non-terminals types
that the subsequence of length j starting at position i reduces to. Here we add
two modifications. First, there might be more than one parse. Therefore cells
in the table are indexed by the starting position in the sequence, the length of
the subsequence, the number of the parse. Second, we add some information in
cells in order to propagate the equality constraints over variables and the partial
parse of types called the partial structure (that is the parse of a subsequence of
types). Hence, cells in the analysis table contains a (non-terminal) type, equality
constraints over variables and a partial structure.

43

The input consists in sequences of words and types. Types are built with
variables in place of “,”.
The procedure apply-tf (table[i] [k] [p],table[i+k] [j-k][q],table[il[j])
tries to apply a TF rule to a subsequence starting at position 7 and of length
j. The first cell corresponds to the pth parse of the subsequence of length k
starting at position ¢ and the second cell corresponds to the gth parse of the
subsequence of length j — k starting at position ¢ + k. Basically, apply-tf checks
that table[i] [k] [p] . Typeis of the form (uy z; v), table[i+k] [j-k] [q] . Type
is of the form uy. Then, apply-tf searches for a substitution (a variable replace-
ment) o such that o(uy) = o(uz). I it is possible, apply-tf adds a new cell
table[1][j1[x] in the list table[i][j] in the following way:

— tablel[i][j1[x].Type is o(v);

— table[i] [j1[x].Var combines the substitution ¢ and the substitutions in
table[i+k] [j-k] [q].Var and in table[i] [k] [p].Var;

— table[i][j][x].Struis:
TF(table[i] [k] [p].Stru, table[i+k] [j-k] [q].Struw).

The procedure apply-tb is of course similar to apply-tf. The main algo-
rithm is given in algorithm 1.

5 Conclusion

Learning a Categorial Grammar means associating categories with words. Cat-
egories are built from basic categories and operators. Learning categories from
strings of words seems impossible in reasonable time. So, richer input data need
to be provided.

The approach developed so far by Buskowsky & Penn and Kanazawa con-
sisted in providing Structural Examples, i.e. giving the nature of the operators
/ and \ and letting the basic categories to be learnt. Qur approach is the exact
dual, as it consists in providing the nature of the basic categories (under the
form of types), but letting the operators to be learnt.

From a cognitive point of view, our choice seems more relevant, because the
data we provide can be interpreted as coming from semantic information. If we
admit the existence of a universal symbolic mental language ([Fod75]), types are
related with this language and are thus language-independent. On the contrary,
the operators used in categories are connected with the word order of a specific
natural language and this linguistic parameter is not arguably innate.

The ability to identify types, i.e. for example to distinguish an entity from a
predicate describing a property satisfied by entities can be compared with what
psychologists call categorization. This very general ability does not anticipate on
the way this semantic distinction will be grammaticallized in a particular nat-
ural language. For example, common nouns and intransitive verbs receive the

44

Algorithm 1 Parse algorithm

Input: (w1,71)...(wn, ™) the sequence of words with the corresponding associated
types built with variables z1,..., 2.
1: fori=1ton do

2: table[i][1][0] .Type= 7;; // the first partial type in cell ij

3: table[i] [11[0].Var= {); // the first set of equality constraints in cell 75
4: table[i] [1] [0] .Stru= w;; // the first partial structure in cell 45

5: table[il[1].size-cell=1; // the number of elements in the cell 45

6: end for

7: for j =2 ton do

8 fori=1lton—j+1do

9: table[i] [j].size-cell=0;

10: fork=1toj—1do

11: for p =1 to table[i] [k] .size-cell do

12: for g =1 to table[i+k] [j-k].size-cell do

13: apply-tf (table[i] [k] [p], tableli+k] [j-k] [q],tablel[i][j1)
14: apply-tb(table[i] [k] [p], tableli+k] [j-k] [q],tablel[i][j1)
15: end for

16: end for

17: end for

18: end for

19: end for

Output: The global derivation table calculated.

same semantic type corresponding with a one-place predicate. But, in English,
intransitive verbs can combine with individual terms (proper names) to provide a
sentence whereas common nouns never appear at a functor place. So, both kinds
of words are syntactically distinguished by their different combinatorial proper-
ties and the initially identical semantic types finally correspond with different
syntactic categories.

The algorithm we propose here is able to identify any rigid Categorial Gram-
mar. It still needs to be extended to k-valued Categorial Grammars. In fact, two
sources of polymorphism should be distinguished: the case where a word must
be associated with different semantic types (for example words like “and”), and
the case where a word must be associated with different syntactic categories
corresponding with the same semantic type (which must be the case for words
like “a”). The first case should be handled as a natural extension of our learning
strategy, where each semantically distinct instance of the word is treated as a
new word, but the second case should be harder to deal with. Another extension
to be explored is the case when only some of the types associated with words are
known (for example, those associated with lexical words), whereas some others
(those associated with grammatical words) remain unknown.

Finally, our implemantation still needs to be applied on real corpuses to
compare its performance with other implemented methods.

45

References

[Adr92] P. W. Adriaans. Language Learning from a Categorial Perspective. PhD
thesis, University of Amsterdam, Amsterdam, The Netherlands, 1992.

[And77] J. R. Anderson. Induction of augmented transition networks. Cognitive
Science, 1:125-157, 1977.

[BP90] W. Buszkowski and G. Penn. Categorial grammars determined from linguis-
tic data by unification. Studia Logica, 49:431-454, 1990.

[DWP81] D.R. Dowty, R. E. Wall, and S. Peters. Introduction to Montague Semantics.
Linguistics and Philosophy. Reidel, 1981.

[Felo8] J. A. Feldman. Real language learning. In ICGI’98, fth International Col-
loquivm in Grammatical Inference, pages 114-125, 1998.

[Flo00] Costa Florncio. On the complexity of consistent identification of some classes
of structure languages. In ICGI’2000, 5th International Colloguium on Gram-
matical Inference, volume 1891 of Lecture Notes in Artificial Intelligence,
pages 89-102. Springer Verlag, 2000.

[Fod75] J. Fodor. The Language of Thought. Harvester Press, 1975.

[Gol67] E.M. Gold. Language identification in the limit. Inform. Control, 10:447-474,
1967.

[HGS60] Y. Bar Hillel, C. Gaifman, and E. Shamir. On categorial and phrase structure
grammars. Bulletin of the Research Council of Israel, 9F, 1960.

[Hil83] J. C.Hill. A computational model of language acquisition in the two-year-old.
Cognition and Brain Theory, 3(6):287-317, 1983.

[HU79] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, 1979.

[HW75] H. Hamburger and K. Wexler. A mathematical theory of learning transfor-
mational grammar. Jowrnal of Mathematical Psychology, 12:137-177, 1975.

[Jan97] T. M. V. Janssen. Compositionality. In J. V. Benthem and A. ter Meulen,
editors, Handbook of Logic and Language, pages 417-473. MIT Press, 1997.

[Kan96] Makoto Kanazawa. Identification in the limit of categorial grammars. Journal
of Logic, Language, and Information, 5(2):115-155, 1996.

[Kan98] M. Kanazawa. Learnable Classes of Categorial Grammars. The European
Association for Logic, Language and Information. CLSI Publications, 1998.

[Lan82] P. Langley. Language acquisition through error discovery. Cognition and
Brain Theory, 5:211-255, 1982.

[MO98] T. Briscoe M. Osborne. Learning stochastic categorial grammars. In
CoNLLG7: Computational Natural Language Learning, pages 80-87, 1998.

[Mon74] R. Montague. Formal Philosophy; Selected papers of Richard Montague. Yale
University Press, 1974.

[OBWS88] Richard T. Oehrle, Emmon Bach, and Deirdre Wheeler, editors. Categorial
Grammars and Natural Language Structures. D. Reidel Publishing Company,
Dordrecht, 1988.

[Tel99] 1. Tellier. Towards a semantic-based theory of language learning. In 12th
Amsterdam Colloquium, pages 217-222, 1999.

[Val84] Leslie G. Valiant. A theory of the learnable. Communications of the ACM,
27(11):1134-1142, 1984.

[WC80] K. Wexler and P. Culicover. Formal Principles of Language Acquisition. MIT
Press, 1980.

46

Interactive Background Knowledge Acquisition
for Inducing Differences among Documents

Chieko Nakabasami

Toyo University, 1-1-1 Tzumino Itakura Oura Gunma 374-0193, Japan
chiekon@itakura.toyo.ac. jp

Abstract. This paper presents a case study in which an Inductive Logic
Programming (IT.P) technique is applied to natural language processing.
Aleph, an TP system, is used to induce differences among documents.
A Case-Based Reasoning (CBR) system is proposed for the purpose of
compiling the background knowledge inputted into Aleph. In the CBR
system, lexical and syntactic information concerning words in close prox-
imity to the target word(s) in training sentences is provided in order to
infer new cases effectively. The compiled background knowledge is used
to determine the semantic differences in documents that are written in
natural language. Tentative experiments with this technique have pro-
duced encouraging results.

1 TIntroduction

This paper describes a method to induce differences among natural language
documents using Aleph[18], a superseded version of Progol [15]. The background
knowledge inputted into Aleph is generated by means of Case-Based Reasoning
(CBR) with user interaction if necessary. Sophisticated background knowledge
should be provided to efficiently process natural language documents since they
are rich in representation. The goal of this study is to synthesize Inductive Logic
Programming (ILP) and Natural Language Processing (NLP). The acquisition of
background knowledge is one of the problems to be overcome. On the other hand,
the acquisition and compilation of background knowledge have been reported
to cause a bottleneck in knowledge engineering because they are very time-
consuming tasks. The automatic generation of background knowledge provides
a solution to the problem.

In this study, CBR is applied to obtain such knowledge. Though background
knowledge is constructed with a great deal of user interaction during the ini-
tial phase of CBR, the frequency of interaction decreases as the information is
processed by CBRR. The system processes a sentence in turn with human in-
teraction, and novel representations acquired are stored into cases so that they
may be applied to future processes. The acquisition technique locates words that
are in close proximity to target words, and it functions by matching syntactic
and lexical patterns. Users validate the selected cases by judging them correct
or incorrect. The CBR system enables users to add new appropriate cases and
delete inappropriate ones.

47

The knowledge obtained includes discriminating features that have been ex-
tracted from the target documents and incorporated into the system. The knowl-
edge that people want to acquire is not general knowledge concerning similar
documents; instead, it is specific and distinctive knowledge contained only in
the target document. In this paper, scientific manuscripts dealing with material
design serve as the domain. The focus is on material design because collabo-
rative engineering studies on the application of artificial intelligence have been
conducted by metallurgy experts[16], and plenty of on-line manuscripts in this
discipline are available.

A concise text-classification method is not required for the target domain,
but one that detects minor differences among documents should be explored.
Researchers in this field want to identify the differences in experimental pro-
cedures explained in the target paper and compare them to those in similar
papers because slight differences in experimental procedures affect the proper-
ties of materials. Relational representations are needed to find these differences
since the main issue is not to acquire the meaning of each word but the struc-
tures composed from words appearing in the documents. ILP is thought to be
a better method because it can construct a relationship among words in a doc-
ument. Aleph, which contains the assembled background knowledge, introduces
sophisticated differences as the manuscripts are compared. Aleph produces a
representative body of knowledge contained in the target manuscripts that is
missing in the other manuscripts.

The remainder of this paper is organized as follows. Section 2 defines knowl-
edge representation of the background knowledge. Section 3 explains the CBR
system for generating the background knowledge. Section 4 illustrates the mech-
anism by which Aleph induces the intended results. Section 5 shows the tentative
results produced by Aleph. Section 6 mentions related works for applying TT.P
to NL.P. Section 7 is the conclusion.

2 Forms of Background Knowledge

2.1 Predicate Definitions

The background knowledge applied to Aleph has the form of horn clauses. The
predicate names and their arguments are defined in advance so that Aleph may
efficiently construct understandable results. The predicates depend on the ex-
perimental papers on the subject of material design. They are as follows:

— result(Paper): The result of Paper

— has_focus(Paper, Focus): The Paper has the Focus.

— focus (Focus, Content): The content of the Focus is Content.

— action (Paper, Action, Target): The Paper describes the Action that is con-
ducted for the Target.

— change (Paper, Result, Target): The Paper describes the Result that is achieved
for the Target.

48

— purpose (Paper, Purpose, Targel): The Paper describes the Purpose of pro-
cessing the Targel.

— show (Paper, Resull, Targel): The Paper describes the Resull of processing
the Targel.

— detail (Paper, Detail, Target): The Paper describes the Detail of the Target.

— condition (Paper, Proposition, Target): The Paper describes under what con-
dition the Target is processed. The Proposition represents a proposition used
in the text.

2.2 Knowledge Representation of Sentences in Documents

The background knowledge for Aleph has been extracted from the sentences in
the target documents according to the predicate definitions presented in sec-
tion 2.1. This information is developed by using the CBIR process. For example,
the following representation (3) is constructed from sentence (1) via (2). The
words in the sentences are tagged with a part-of-speech[3] such as (2).

(1) Feedstock material is melted in a high vacuum chamber
by electron beam guns into water.

(2) [feedstock/nn,material/nn],is/vbz,melted/vbn,
in/in, [a/dt,high/jj,vacuum/nn,chamber/nn],
by/in, [electron/nn,beam/nn,guns/nns] ,
into/in, [water/nn].

(3) action([melt],[feedstock, materiall).
condition([in], [high,vacuum,chamber]).
condition([by], [electron,beam,guns]).
condition([into], [water]).

In (2), the determiners are removed, and "nn,” “vbz,” ?vbn,” 7dt,” 7jj,” ”in,”
and "nns” represent singular noun, singular present verb, past participle, deter-
miner, adjective, proposition, and plural noun, respectively. The representations
in (3) correspond to the predicates in section 2.1. The transformation presented
above is explained in detail in section 3.

3 CBR Process for Construction of Background
Knowledge

Case-Based Reasoning (CBR) is applied to obtain the background knowledge
concerning the contents of the documents. In the CBIR system, each case stored
is represented with a pred/$ predicate and composed of three arguments. These
three have a list form of the predicate introduced in section 2.1, which deals with
lexical and syntactic information. For instance, sentence (1) shown in section 2.2
is represented by a form such as (4), if it is stored as one of the training cases.

(4) pred([action, [melt], [feedstock,materiall],[], [is/vbz,melted/vbn]).

49

pred([condition, [in], [high,vacuum, chamber]], [in/in], [1).
pred([condition, [by], [electron,beam,guns]], [by/in], [1).
pred([condition, [into], [water]], [into/in], [1).

The first argument of pred/3 corresponds to one of the predicates introduced
in section 2.1. As a second argument of pred/3, the lexical and syntactic infor-
mation that appears in a previous position in a sentence is based on the third
element of the first argument of pred/3 (e.g., [feedstock, material]) and as the
third element in the postposition. Hereafter, the term used for the third element
of the first argument of pred/3 is “pivot words.” Empty lists are assigned when
there is not a pair of keywords.

The CBR system locates the words nearest the target by matching syntactic
and lexical patterns. The criterion for finding neighboring words is whether a
word (or phrase) in novel sentences includes the word(s) in the pivot words and
whether the part-of-speech of the word(s) in front of and behind the pivot words
matches the part-of-speech in the original cases. For example, sentence (5) is
translated into (7) because the word “material” in (5) is included among the
pivot words of the first pred/3 in (4). In addition to word matching and from
the fact that the part-of-speech of the words behind “material” matches those
of (1) (i.e., “vbz,” “vbn”), it can be assumed that one of the neighboring cases
of sentence (5) is (1). Then (7) is constructed from (5) via (6).

(6) The material is sampled for that experiment.

(6) [the/dt,material/nn],is/vbz,sampled/vbn,for/in,
[that/dt,experiment/nn] .

(7) action([sample], [materiall).

The CBR system enables users to add new appropriate cases and delete
inappropriate ones. The schema of the CBR system is sketched in Fig. 1.

raw data user
« about respond to
ask abou
art-of-speech add new results or
?agger P generated results delete some results
4 A 4 Background
;) store Knowledge
prolog lists CBR engine new resulte
document-dependent
pattern nearest knowledge
matching neignbors
predefined knowledge
cases : (predicate declaration)
pred([Pred,X,Y],AB). | MW Cases
- J - J

Fig. 1. Schema of the system

In the CBR system, about 120 cases are stored manually as initial cases.
These cases are randomly extracted from among 630 manuscripts on the sub-
ject of the material design of superalloys. The system processes a sentence as
humans interact, and the acquired novel representations are stored into cases
so that they may be applied to future processes. The lexical and syntactic in-
formation around the pivot words is assigned automatically when the new case
is stored. Though background knowledge is constructed with a great deal of
user interaction during the initial phase of CBR, the frequency of interaction
decreases as the information is processed by CBR.

4 Mechanism for Inducing Differences among Documents

The following data are prepared for Aleph:

— Positive example: A target paper (or papers) from which to extract infor-
mation;

— Negative example: Other papers that have some content in common and
some that differs from the target paper; and

— Background knowledge: Descriptions in terms of content for each example.

The three kinds of data are inputted into Aleph, and descriptions of the con-
tent of the target paper that is absent in the other related papers are developed.
At first, researchers pick up the paper that they want to process and also choose
other similar papers (e.g., the title words might include the same material name
or type of mechanical testing). Each paper is given a unique identification (ID).
Next, these papers are inputted into the CBR system one by one, and the sys-
tem outputs the background knowledge used in Aleph. After that process, Aleph
induces the description that differentiates the target papers from others. For ex-
ample, the following files are prepared for Aleph. These file stems are identified
as “alloy” because of the material design domain.

— alloy.f: Positive examples are written.
result (p01). result(p02).

— alloy.n: Negative examples are written.
result (p03).

— alloy.b: The knowledge representation of the papers in both positive and neg-
ative examples, which has been constructed by the CBR system, is written.

In the example above, Aleph attempts to induce the content present in paper
“p01” and “p02” but absent in paper “p03.” The body of result/1 is hypothesized
by means of the TP technique. The hypothesis represents the differences between
the positive and negative example papers.

5 Results

Tentative results are obtained using sample papers. Experts chose the papers
carefully to ensure that the experimental methodology was similar. Three sets,
each consisting of three papers, were chosen. The sections on the experimental
methods in three papers are selected as sample documents. These documents
are divided into positive and negative examples. T'wo documents are considered
positive and one negative. The positive and negative documents are as follows:

Positive

Experimental (paper id: pO1)

Five new alloy compositions were selected to analyze the potential
mechanical property improvements obtained when multiphase dispersions
of fine gamma, carbide, and oxide particles are combined in typical,
fully alloyed mnickel-based superalloy compositions.

Experimental alloys and procedures (paper id: p02)

Alloy compositions, listed in Table 1, were selected to investigate

a wide range of refractory alloying additions and to permit statistical
analysis of results.

Negative

Experimental methods (paper id: p03)

GTD-111 specimens were machined into cylindrical shapes
with four different diameters of 10, 15, 25, and 35 mm
and a length of 30 mm.

Using these samples, Aleph induced the following descriptions. The ”best
clause” outputted by Aleph is used as a result clause, and this clause is in turn
unified with facts in the background knowledge. As a result, facts that can be
unified are obtained and embedded into sentences that are understandable to
users. In the output parts, the result clauses are shown followed by the learning
time.

Output

result(A) :- has_focus(A,B),purpose(B,C,D). (0.08 seconds)
The difference compared to other papers:

paper p02 describes in terms of [experimental,alloy]

The purpose of the [experimental,alloy] is to [investigate]

the [refractory,alloying,addition]

The difference compared to other papers:

paper p02 describes in terms of [experimental,alloy]
The purpose of the [experimental,alloy] is to [permit]
the [statistical,analysis]

The difference compared to other papers:
paper pOl describes in terms of [experimental]

The purpose of the [experimental] is to [analyze]
the [potential,mechanical,property,improvement]

Positive

Experiment (paper id: p04)

The crystallographic mode of propagation indicates

enhanced cracking resistance of the grain boundaries.

While this mode of propagation was observed in all

specimens tested at 1400 F, the amount of crystallographic
cracking varied. This transgranular fracture mode

at 1400 F appears to be a characteristic of the hafnium effect.

Experimental procedures (paper id: p05)

With the addition of hafnium to D.S. MAR-M200

in 1969, transverse grain boundary strength and
ductility were significantly improved.

Work on single crystals was discontinued at this time
because they offered no significant improvements

in properties over D.S. and they were more expensive.

Negative

Experimental methods (paper id: p06)

SC blades were used to inhibit grain nucleation on mold walls.
No significant investment mold-superalloy reactions

were observed as a result of the higher superheats

required for SC castings.

Output

result(A) :- has_focus(A,B),show(B,C,D). (0.19 seconds)
The difference compared to other papers:

paper pO5 describes in terms of [single,crystal]

The observation of the [single,crystall] is to [improve]
the [mar,m200]

The difference compared to other papers:

paper pO5 describes in terms of [single,crystal]

The observation of the [single,crystal] is to [improve]
the [ductility]

The difference compared to other papers:

paper pO5 describes in terms of [single,crystal]

The observation of the [single,crystal] is to [offer]
the [no,significant,improvement]

The difference compared to other papers :

paper p04 describes in terms of [hafnium,addition]

The observation of the [hafnium,addition] is to [indicatel
the [enhanced,cracking,resistance]

The difference compared to other papers :

paper p04 describes in terms of [hafnium,addition]

The observation of the [hafnium,addition] is to [observel
the [propagation]

Positive

Fatigue at high Delta-K at 700 C (paper id: pO7)
Particles were observed on fracture surfaces and
there was evidence that intergranular crack growth
had involved fine-scale cavitation.

Striations with spacings close to the macroscopic
growth rate were present on transgranular areas.

Experimental procedure (paper id: p08)
Fatigue-crack-growth data were obtained by testing
compact-tension (CT) specimens cut from the forging
blanks such that specimens were equidistant from
the centre of the forging and the direction of
crack growth was radial.

Negative

Materials and experimental approach (paper id: p09)

The crack length was monitored during the precrack period
using the plastic replica technique. Several of the cracks
were naturally initiated at elevated temperature under the
actual strain controlled test conditions to better simulate
the actual crack growth process.

Output

result(A) :- has_focus(A,B),detail(B,C,D). (0.15 seconds)
The difference compared to other papers :

paper pO7 describes in terms of [fatiguel
The detail of the [fatigue] is [high,delta-k] of the [700,deg,c]

The difference compared to other papers :

paper pO7 describes in terms of [growth]
The detail of the [growth] is [striation] of the [spacing]

Through these experiments, 220 facts have been introduced by the system
and 86 facts by a user.

6 Related Work

There are some studies although the search was not exhaustive, apply Progol
to Natural Language Processing[5][6][10]. In these cited studies, Progol is used
to develop rules for making words less ambiguous by tagging them according
to the part of speech they represent. As in the other papers, this study uses
context information found in close proximity to the target word, which we call
“pivot words.” In addition, ILP methods are applied to NLP applications such as
conceptual clustering[11], transfer-rule learning[2], data mining[8][17], learning
morphology[9][13][12], and learning phonetic rules[1]. A note by [7] mentions the
European works on ILP. Tt has been proposed that TLP could be applied to se-
mantic parsing as well as to the analysis of the syntactic aspects of language[19].
In [19], syntactic and semantic parsers are learned so that a natural language
database query can be mapped directly into an executable Prolog query that will
answer the question. Promising advantages are being claimed from the synthesis
of TLP and NLP because of the knowledge that can be gained[14].

ot
ot

On the other hand, as for applying CBR method to acquire knowledge rep-
resentation, [4] proposes a system, which is used to extract structural knowledge
in terms of a specific domain. While the purpose of [4] is to assign a correct
conceptual role to each word by making it less syntactically and semantically
ambiguous, a goal of this study is to extract discriminating features from target
documents by acquiring background knowledge from them for an ILP system
such as Aleph.

7 Conclusions and Further Work

In this paper, a case study for inducing differences among natural language
documents was reported. Aleph was used to develop explanations for the seman-
tic differences that exist in a variety of documents. The background knowledge
for Aleph is constructed using the CBR system. In a CBR system, lexical and
syntactic information is examined to develop information that can help inter-
pret novel sentences. The experiments that make use of cumulative background
knowledge show promising results.

The number of interactions with users has not been mentioned at this point
in the system’s development because the system has only been evaluated with
a small number of sentences. The decreasing rate of user interactions should be
shown by graphs. In addition, some evaluation methods should be applied to the
system though justifications of whether the results are correct or not depend on
a subjective point of view from each domain expert.

In addition, how semantic representations are produced and the structure
of background knowledge are subjects for future research. A sound synthesis of
ILP and NLP should be carefully considered, and intelligent NLP applications
should be developed on the basis of such a synthesis.

References

1. Alexin, Z., Csirik, J., Jelasity, M., Té6th, L.: Learning Phonetic Rules in a Speech
Recognition System. Proc. of 7th International Conference on Inductive Logic Pro-
gramming (ILP’97). (1997) 37-44

2. Bostréom, H.: Induction of Recursive Transfer Rules. Proc. of Learning Language in
Logic (LLL) Workshop. (1999)

3. Brill, E.: A simple rule-based part of speech tagger. Proc. of the 3rd Conference on
Applied Natural Tanguage Processing (ACT/92). (1992)

4. Cardie, C.: A Case-Based Approarch to Knowledge Aquisition for Domain-Specific
Sentence Analysis. Proc. of the 11th National Conference on Artificial Intelligence.
(1993) 798-803

5. Cussens, J.: Part-of-Speech Tagging Using Progol. Proc. of 7th International Con-
ference on Inductive Logic Programming (ILP’97). (1997) 93-108

6. Cussens, J.: Using Inductive Logic Programming for Natural Language Processing.
Workshop Notes on Empirical Tearning of Natural Tanguage Tasks (ECMT.97).
(1997) 25-34

7. Cussens, J.: Notes on Inductive Logic Programming Methods in Natural Language
Processing (European Work). Manuscript. (1998).

8. Dehaspe, L., Raedt, L. D.: Mining Association Rules in Multiple Relations. Proc.
of 7th International Conference on Inductive Logic Programming (ILP’97). (1997)
125-132

9. Dzeroski, S., Erjavec, T.: ITnduction of Slovene Nominal Paradigms. Proc. of 7th
International Conference on Inductive Logic Programming (ILP’97). (1997) 141-
148

10. Eineborg, M., Lindberg, N.: Induction of Constraint Grammar-Rules Using Progol.
Proc. of 8th International Conference on Inductive Logic Programming (ILP’98).
(1998) 116-124

11. Faure, D., Nédellec, C.: Aquisition of Semantic Knowledge using Machine Learning
Methods: The System “ASTUM”. Technical Report TCS-TR-88-16, T.RI University.
(1998)

12. Kazakov, D., Manandhar, S.: A Hybrid Approarch to Word Segmentation. Proc.
of 8th International Coonference on Inductive Logic Programming (ILP’98). (1998)

13. Manandhar, S., Dzeroski, S., Erjavec, T.: Learning Multilingual Morphology with
CLOG. Proc. of 8th International Conference on Inductive Logic Programming
(ILP°98). (1998) 135-144

14. Mooney, R. J.: Inductive T.ogic Programming for Natural T.anguage Processing.
Proc. of 6th Tnternational Conference on Inductive Togic Programming (TT.P’96).
(1996) 3-22

15. Muggleton, S.: Inverse entailment and Progol. New Generation Computing Jour-
nal,13. (1992) 245-286

16. Nakabasami, C., Hoshimoto, K.: Extracting Knowledge from Technical Papers in
Metallurgy on the basis of a Generative Lexicon. Proc. of the Conference Pacific
Association for Computational Linguistics. (1999) 137-142

17. Raedt, T.. D.: A Togical Database Mining Query TLanguage. Proc. of 10th Tnterna-
tional Conference on Inductive Logic Programming (ILP2000). (2000) 78-92

18. Srinivasan, A. and Camacho, R.: The Aleph Manual. (1993)
http://www.comlab.ox.ac.uk /oucl/research/areas/machlearn/Aleph/

19. Zelle, J. M., Mooney, R. J.: Learning Semantic Grammars with Constructive In-
ductive Logic Programming. Proc. of the 11th National Conference on Artificial
Intelligence. (1993) 817-822.

Part-of-Speech Tagging by Means of Shallow
Parsing, ILP and Active Learning

Miloslav Nepil, Lubo$ Popelinsky and Eva Za¢kova,

Faculty of Informatics, Masaryk University
Botanickd 68a, CZ-60200 Brno, Czech Republic
Email: {nepil,popel,glum}@fi.muni.cz

Abstract. In this paper we describe a part-of-speech tagger for Czech
which exploits DIS shallow parser for Czech, manually-coded rules and
inductive logic programming. The active learning method used resulted
in the decrease in the number of training examples to label as well as in
a shorter learning time without the decrease in recall or accuracy. Com-
pared with the previous work [10], both recall and accuracy increased
and the number of training examples to label decreased. The method was
tested on ambiguities that are frequent in Czech. The accuracy reached
was higher than 96% with recall higher than 95%.

1 Introduction

Morphological tagging in inflectional languages like Czech is quite a difficult
problem that can be hardly solved without employing (semi-)automatic taggers.
Several morphological taggers have been developed or proposed for Czech, based

Fig. 1. Example of ambiguous words
(oni) <vlastni> auto. (They <own> a car.)
Znidili jejich <vlastni> auto. (They destroyed their <own> car.)

on either statistical methods [5,11] or machine learning techniques [12,13]. A
tagger that combines manualy coded rules with HMM tagger is described in [6].
Here we focus on part-of-speech (POS) tagging. In the two sentences in Fig. 1,
the word form own can be either an adjective or a verb. Our goal is to find the
correct POS for a given word form if we know the words in its context.

To build a tagger one usually needs a representative set of texts. The principal
difficulty for Czech lies in the fact that annotated corpora (i.e. unambiguously
tagged ones) are too small — compare 164 000 stems of Czech words that a
morphological analyser of Czech is able to recognize (each of them can have a
number of both prefixes and suffixes) with 132 000 different word forms in DE-
SAM corpus [11]. On the other hand, it is easy to collect unannotated data. E.g.
Czech National Corpus [2] contains over 140 million words. If we know how to
choose the most informative examples from these data sources, annotation cost
will be lower.

58

Active learning [3] is defined as any form of learning in which the learning pro-
gram has some control over the choice of examples on which it is trained. Its
usefulness has been already shown in many NLP tasks including text categori-
sation [8], information extraction [14], semantic parsing [14] and part-of-speech
tagging [4].

In the previous work [10], we have described POS tagger for Czech that com-
bined manually written rules with ILP and active learning. We showed that
this method surpassed passive learning in much shorter learning time, in smaller
number of training examples to label and in compactness of the resulting tagger
(smaller number of rules). This improvement was reached without any decrease
of recall or accuracy. However, the tagger was not usable for real-world tasks
because both recall and accuracy were not high enough.

Here we describe a new POS tagger that employs DIS shallow parser [16]. DIS
is able to, after finding a chunk (noun or verb phrase), partially disambiguate
words in the chunk. Even though the recall of DIS is quite low, its usage in
combination with ILP results in significant improvement of recall and accuracy.
We tested our tagger on two subtasks of POS tagging, substantive-adjective am-
biguity and pronoun-verb ambiguity.

The paper is organised as follows. In Section 2 we describe the method that is
used in the POS tagger. We briefly describe DIS shallow parser, the active learn-
ing method used and the structure of disambiguation rules. Section 4 displays
results reached with the tagger. We conclude with Section 6.

2 Description of the Method

Our method combines three different techniques: DIS shallow parser, manually-
crafted rules, and rules induced automatically by means of active learning with
ILP system Aleph. In operating mode, when tagging an unseen text, these three
components are applied in sequence to determine the right tag of each word.

2.1 DIS — Shallow Parser for Czech

The purpose of traditional syntactic parsers is to recover complete and exact
parses. Such parsers usually assume that the grammar is complete and the glob-
ally best parse can be found in the entire space of possible parses. As a result
they do not work well for noisy data. On the contrary, the purpose of shallow
parsers is only to recognize the nonrecursive kernels of essential phrases, so called
chunks.

The core of DIS, the shallow parser for Czech, consists of 131 DCG rules which
describe the most important chunks — noun, pronoun, prepositional and verb
phrases. We prefered high accuracy to recall. This means that only those rules
which displayed very high accuracy (preferably 100%) were incorporated into the
DIS grammar. While a good algorithmic description of noun, pronoun and prepo-
sitional groups can be found, finding description of (compound) verb groups is

59

much more difficult. Thus, we have used DESAM corpus [11] as the source of
learning data. The algorithm for learning verb rules [17, 18] takes, as its input,
annotated sentences from DESAM and works in three steps: finding verb chunks,
generalisation of them and verb rule synthesis. Partial analysis is controlled by
Prolog predicates which process the DCG rules. They also ensure correct anal-
ysis of discontinuous constituents of verb groups which is a significant problem
of parsing of free word order languages like Czech.

An input of DIS takes some text ambiguously tagged by ajka morphological
analyzer [15] and preprocessed by script which performs statical disambiguation
(elimination of very rare tags). According to the partial analysis, some tags of
words can be eliminated and thus we can obtain partially disambiguated output.

The precision of disambiguation carried out by DIS is quite high — about 99.6%.
It is influenced by the manner the grammar rules were selected — it was supposed
to be better not to recognize the group at all than to recognize it wrongly. On
the other hand, it implies a lower recall that ranges from 60% to 68% .

2.2 Manually-Crafted Rules

As some ambiguities, remaining after the application of DIS, are easy to remove,
we have written simple disambiguation rules for them. Only very precise rules
which displayed 100% accuracy on the learning data were accepted. This corre-
lates with our effort for achieving a high accuracy — it is better to leave some
ambiguities unresolved than to assign a wrong tag to some words. The rules are
designed to remove a certain tag, when the context of a given word satisfies a
set of conditions. The general structure of disambiguation rules is:

remove(Left, Word, Right, Tag) :- <set of conditions>

where the variable Word contains a word form to be disambiguated, together
with all its tags which remain possible, the variable Tag determines a corre-
sponding tag which should be removed, and the variables Left and Right rep-
resent ambiguously tagged left and right contexts, respectively. Thus, if the set
of conditions on the right hand side holds, the Tag will be removed from the
set of possible tags for the given Word. Usually, the conditions have the form
cn(Ctx,Scope,Cond) where Ctx represents a left or right context and Cond is a
first-order condition testing the context Ctx narrowed by the term Scope. For ex-
ample, the Cond can be a test concerning the presence of certain words, lemmata
and/or tags within the given narrowed context. A shorter form of conditions is
cn(Pos,Cond) where the variable Pos directly refers to the questioned position.
An example of a rule is shown in Fig. 2. In this example, tag k1 will be removed

Fig. 2. Example of a rule

remove(L,W,R,k1) :- cn(W, e(kl) & e(k2&g:G&n:N&c:C)),
cn(R, first(1), [e(k1&g:G&n:N&c:C)1).

from the set of possible tags for the word W, if W can be a substantive (k1), but

60

also an adjective (k2) with the same gender G, the number N and the case C as
the neighbouring substantive on the right.

2.3 Active Learning with Aleph

To lower both the learning time and the annotation cost (e.g. the number of
training examples to label), we employed active learning strategy. We used a
committee of relational learners and combined manually-crafted rules with those
induced automatically by the inductive logic programming (ILP) technique [9].
We investigated a variant of committee-based sampling [4]. An unlabelled exam-
ple was presented to C' > 2 classifiers, members of the committee. Each member
of the committee is represented by a set of those rules which remove the same
particular tag. E.g., when resolving noun/adjective k1/k2 ambiguity, we used a
committee of two members: the first member was a set of rules for removing tag
k1 and the second was a set of rules removing tag k2. When the members dis-
agreed in label prediction (both tags were to be removed, or none of them was),
the example was assumed to be informative and the actual label was requested
from the teacher.

The learning set was randomly split into IV samples of approximately the same
size. At each learning step, the rules learned from the previous sample were used
for disambiguation of the next block. In the case that an ambiguity remained, a
human was asked for a correct label.

These labelled cases were used for learning with the ILP system Aleph!. For each
kind of ambiguity, two sets of rules were learned by Aleph with default settings.
The rules induced by Aleph have the same form as the manually-crafted ones.
E.g., for k1/%2 ambiguity we first learn rules for removing k1 tag and then rules
for removing k2 tag. Positive examples for removing, e.g., the tag k1, were those
cases which had been labelled with a tag different from k1. On the contrary,
negative examples for removing the tag k1 were the cases which had been un-
ambiguously tagged as k1. Whereas the positive examples were generated only
from the ambiguities labelled by the human, the negative ones were generated
from the whole sample. The reason for generating so many negative examples
was that we prefered correctness to completeness which, in other words, means
precision to recall. Only DIS together with the manually-crafted rules were em-
ployed to label the first sample.

Some of the learned set of rules were overgeneral, i.e. some tags were incor-
rectly removed. To prevent this, we used a simple specialisation operator. The
rules that covered more than 5% negative examples on the next training block
(from all the examples covered by the rule) were removed. Then, the remaining
newly induced rules were added to the old ones and they together were used for
disambiguating the next sample.

! http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn /Aleph/aleph.html

61

3 Data Source

We used a randomly chosen subset of Prague Dependency Treebank (PDT)
corpus [5] that contained 41647 items (word positions) ambiguously annotated
with ajka morphological analyser [15]. This means that each word was labeled
with all possible tags for given word. We used a full tag set for Czech that
contains about 1600 different tags. Approximately 52% of words had more than
one tag, 14.9% of words contained at least two part-of-speech tags (different
word category). The data set was split into 5 samples of approximately equal
size. Four of them were used for learning, the fifth one for testing.

4 Results

We tested our method on two of the most frequent part-of-speech ambiguities in
Crech, substantive-adjective ambiguity (15.8% of all ambiguities) and pronoun-
verb ambiguities (8.2%). Results for these ambiguities are displayed in Table 1
and Table 2. The second, the third and the fourth columns contain a number of
ambiguities at the beginning, remaining after application of DIS, and remaining
after application of rules. Next two columns inform about the relative number
of cases for which just one of two tags was removed (RECALL) and about
ACCURACY, the relative number of correctly removed tags from all the tags
removed. The first line shows the values obtained by using the manually-coded
rules.

Table 1. Results for substantive-adjective ambiguity

H#ambiguities # newly learned Set of
Sample|before DIS rules RECALL #err. ACCURACY rules rules
0. 182 65 63| 65.4% 0 100.0% 6 pll
1. 216 63 17| 80.4% 2 99.0% 6 pl2
2. 257 92 47| 81.7% 1 99.5% 3 pl3
3. 174 40 4| 97.7% 1 99.4% 2 pl4d
4. 160 52 0| 100.0% 2 98.8% - -

Out of 182 ambiguous words 119 cases were correctly disambiguated and 63 am-
biguities remained (recall 54.9%). The remaining 63 cases were labeled and used
for learning two sets of rules with Aleph: one for removing tag k1 (substantive)
and one for removing the other tag k2 (adjective). New set of rules, named pll,
contained the set of 5 manually-coded rules plus 6 newly learned rules. This set
of rules was used for disambiguation of Sample 1. By the same process the set of
rules pl2 was obtained. These rules were then used for disambiguation of Sample
2. etc. In the end, set pl4 contained 22 rules: 5 of them written manually and 17

62

learned with Aleph.

For the pronoun-verb ambiguity, six disambiguation rules were written manu-
ally. These rules display an accuracy of 100% again. The results produced by
the tagger for this ambiguity are displayed in Table 2.

Table 2. Results for pronoun-verb ambiguity

H#ambiguities # newly learned Set of
Sample|before DIS rules RECALL #err. ACCURACY rules rules
0. 93 83 36| 61.3% 0 100.0% 8 pll
1. 102 86 20| 80.4% 1 98.8% 4 pl2
2. 91 74 8| 91.2% 0 100.0% 2 pl3
3. 83 64 7| 91.6% 3 96.1% 2 pl4
4. 91 76 2| 97.8% 3 96.6% - -

5 Discussion

A comparison of the results between active and passive learning is shown in
Tables 3 and 4. Passive learning was performed by the following way. First,
DIS followed by manually-crafted rules were used to remove ambiguities in all
samples 0,1,2,3,4. The remaining ambiguous words were labeled and all cases
from samples 0,1,2,3 were used for learning rules with Aleph. The rules learned
were tested on Sample 4. For the noun-adjective ambiguity, the active learning

Table 3. Substantive-adjective ambiguity: passive and active learning

H#examples #rules
to label learned RECALL ACCURACY

passive 250 21 95.0% 100.0%
active 131 17 100.0% 98.8%

method needed much less examples to label than passive learning — compare 131
to 258 examples. The number of induced rules was also smaller — 21 for passive
learning, 17 for the active one. The training time of passive learning was 1 h
17 min which is almost 6-times longer than that for active learning. Recall of
active learning is about 5% higher than that for passive learning, with very small
decrease in accuracy — from 100.0% to 98.8%. This small decrease of accuracy
may be explained by the fact that in passive learning Aleph knew all negative

63

examples from all samples. In active learning, negative examples were generated
only from one sample.

For the pronoun-verb ambiguity, the recall and accuracy were very high again.
The recall on the test sample reached 97.8% and it achieved the accuracy of

Table 4. Pronoun-verb ambiguity: passive and active learning

H#examples Frules
to label learned RECALL ACCURACY

passive 307 12 94.5% 97.7%
active 71 16 97.8% 96.6%

96.6%. A comparison of the results between active and passive learning is shown
in Table 4. The number of labelled examples in active learning was more than
4-times smaller than that in passive learning and the learning time was again
much smaller. The recall increased from 94.5 to 97.5% with a small decrease of
accuracy. This may be explained the same way as in the previous experiment.

Although we haven’t carried any detailed investigation concerning the linguisti-
cal plausibility of our automatically induced rules, we can say that some of them
really captured interesting laws. However, most of the learned rules were quite
overgeneral in the sense that it will not be difficult for a human to produce a
counterexample. In spite of this fact, the accuracy of these rules on real language
data was not so bad. Moreover, our language of disambiguation rules is fairly
comprehensible, therefore, many learned rules could be easy refined by a human
to improve their accuracy.

Another approach to iterative POS is described in [7]. A combination of both
methods could be promising.

6 Conclusion

The goal of this work was to test usability of active learning in POS tagging
in Czech. The reached results are promising. A number of examples to label is
much smaller than in the case of passive learning. The enormous decrease of
time is also important. When compared with the previous work [10], both recall
and accuracy increased and the number of labelled examples even decreased.

From the point of view of POS tagging, the results are pretty preliminary.
Namely, comparison with results reached with HMM taggers [6] should be per-
formed. However, the high values of recall and accuracy achieved by the dis-
cussed technique allow one to use this method for some subtasks of POS tagging
of Czech corpora.

64

Acknowledgement

We thank the referees for their comments and Sylvia Wong and Karel Pala for
their assistance. This work was partially supported by ILPnet2 project.

References

10.

11.

12.

13.

14.

15.

16.

Angluin D.: Queries and Concept Learning. Machine Learning 2, 4, April 1988,
319-342

. Cermék F.: Czech National Corpus: A Case in Many Contexts. Int. J. of Corpus

Linguistics, 2,2, 181-197, 1997.
Cohn D., Atlas L., Ladner R.: Improving Generalization with Active Learning.
Machine Learning, 15, 201-221, 1994.

. Dagan L., Engelson S.: Selective Sampling in Natural Language Learning. In IJCAL

95 Workshop On New Approaches to Learning for Natural Language Processing,
1995.

Haji¢ J., Hladkd B.: Tagging Inflective Languages: Prediction of Morphological
Categories for a Rich, Structured Tagset. In Proceedings of EACL 1998.

Haji¢ J., Krbec P., Kvétoii P., Oliva K., PetkeviZ V.: Serial Combination of Rules
and Statistics: A Case Study in Crzech Tagging. In Proceedings of ACL/EACL
2001, Toulouse, pages 260-267, 2001.

Jorge A., Lopes A.: Iterative Part-of-Spech Tagging. Cussens J., DZeroski S.:
Learning Language in Logic. LNCS 1925, pages 170-183. Springer, 2000.

Liere R., Tadepalli P.: Active Learning with Commitees for Text Categorization. In
Proceedings of the 14th National Conference on Artificial Intelligence, Providence,
pages 591-596, 1997.

Muggleton S., De Raedt L.: Inductive Logic Programming: Theory And Methods.
J. of Logic Programming 1994:19,20:629-679.

Nepil M., Popelinsky L.: Part-of-Speech Tagging by Means of ILP and Active
Learning. ECML’01 Workshop on Active Learning, Freiburg 2000.

Pala K., Rychly P., and Smrz P.: DESAM — Annotated Corpus for Czech. In Pl4sil
F., Jeffery K.G.(eds.): Proceedings of SOFSEM’97, Milovy, Czech Republic. LNCS
1338, pages 60—69. Springer, 1997.

Pavelek T., Popelinsky L.: Mining Lemma Disambiguation Rules from Czech Cor-
pora. In Principles of Knowledge Discovery in Databases: Proceedings of PKDD’99
Conference, LNAI 1704, pages 498-503. Springer, 1999.

Pavelek T., Popelinsky L., Pta¢nik T.: On Disambiguation in Czech Corpora.
FIMU-RS-2000-07, Faculty of Informatics MU Brno 2000.
http://www.fi.muni.cz/informatics/reports/rep2000/brief .html

Thompson C.A., Califf M.E., Mooney R.J.: Active Learning for Natural Language
Parsing and Information Extraction. In Proceedings of 16th International Confer-
ence on Machine Learning, Morgan Kaufmann, San Francisco, CA, pages 406—414,
1999.

Sedlagek R., Smrz P.: Automatic Processing of Czech Inflectional and Derivative
Morphology. In Proceedings of the Fourth International Conference TSD 2001,
LNAI 1902, Pilsen, Czech Republic, September 2001, Springer-Verlag.

Smr# P., Zagkova E.: New Tools for Disambiguation of Czech Texts. In Teat,
Speech and Dialogue: Proceedings of TSD’98 Workshop, pages 129-134. Masaryk
University, Brno 1998.

65

17.

18.

Z4¢kova E., Popelinsky L.: Automatic Tagging of Compound Verb Groups in Czech
Corpora. In Tezt, Speech and Dialogue: Proceedings of TSD’2000 Workshop, LNAL
Springer 2000.

Zatkova, E., Popelinsky L., Nepil M.: Recognition and tagging of compound verb
groups in Czech. In Proec. of the 2nd Workshop on Learning Language in Logic
LLL-2000, Lisbon, 2000.

66

Copyright (©) 2001, Faculty of Informatics, Masaryk University.
All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

Publications in the FI MU Report Series are in general accessible
via WWW and anonymous FTP:

http://www.fi.muni.cz/informatics/reports/
ftp ftp.fi.muni.cz (cd pub/reports)

Copies may be also obtained by contacting:

Faculty of Informatics
Masaryk University
Botanicka 68a

60200 Brno

Czech Republic

