
} w��������
��
������������� !"#$%&'()+,-./012345<yA| FI MU
Faculty of Informatics

Masaryk University

Data Structures for Spatial Data Mining

by

Petr Kuba

FI MU Report Series FIMU-RS-2001-05

Copyright c© 2001, FI MU September 2001



Data structures for spatial data mining

Petr Kuba
Department of Computer Science, Faculty of Informatics

Masaryk University Brno, Czech Republic
xkuba@fi.muni.cz

September 4, 2001

Abstract

This report deals with spatial data structures for indexing and
with their usability for knowledge discovery in spatial data. Huge
amount of data processed in spatial data mining (or in data min-
ing generally) requires using some indexing structures to speed up
the mining process. Typical data types and operations used in geo-
graphic information systems are described in this paper. Then basic
spatial data mining tasks and some spatial data mining systems are
introduced. Finally, indexing spatial structures for both vector and
metric spaces are described and structures used in some spatial data
mining systems are presented.

1 Spatial data types in GIS

A geographic information system [43] is a special kind of information sys-
tem, which allows manipulate, analyse, summarize, query, edit and visu-
alize geographically related data. Geographically related data are com-
posed of:

• spatial attributes, e. g. coordinates, geometry

• non-spatial attributes, e. g. name of town, number of inhabitants
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2 SPATIAL DATA MINING 2

Spatial data in GIS may be represented in raster or vector model. Raster
model divides space into a regular grid of cells, usually called pixels. Each
cell contains a single value and its position is defined by its indices in the
grid. The resolution of the raster depends on its pixel size. The smaller the
pixel size, the higher the resolution, but also the larger the data size.

Vector model represents spatial objects with data structures, whose basic
primitive is a point. This allows precise representation of coordinates and
it’s useful for analysis. Data structures used to store spatial objects in the
vector model are:

• point – defined by its coordinates

• chain – sequence of points connected with lines

• polygon – sequence of connected chains (the last point of one chain is
the first point of the other chain), it is enclosed and the chains must
not intersect

Fundamental operations used to manipulate vector data are:

• determining the distance of two objects

• determining the area of the object (if it is a polygon)

• determining the length of the object (if it is a chain or polygon)

• determining an intersection or union of the objects

• determining a mutual position of two objects (they can intersect,
overlap, touch, one can contain the other, . . . )

2 Spatial data mining

Analysis is an important part of GIS which allows spatial operations with
data (e. g. network analysis or filtering of raster data), measuring func-
tions (e.g. distance, direction between objects), statistic analyses or terrain
model analysis (e. g. visibility analysis).

Spatial data mining [11, 24] is a special kind of data mining [12]. The
main difference between data mining and spatial data mining is that in
spatial data mining tasks we use not only non-spatial attributes (as it is
usual in datamining in non-spatial data), but also spatial attributes.



2 SPATIAL DATA MINING 3

2.1 Spatial data mining tasks

Basic tasks of spatial data mining are:

• classification – finds a set of rules which determine the class of the
classified object according to its attributes e. g. ”IF population of city
= high AND economic power of city = high THEN unemployment of
city = low” or classification of a pixel into one of classes, e. g. water,
field, forest.

• association rules – find (spatially related) rules from the database. As-
sociation rules describe patterns, which are often in the database.
The association rule has the following form: A → B(s%, c%), where
s is the support of the rule (the probability, that A and B hold to-
gether in all the possible cases) and c is the confidence (the condi-
tional probability that B is true under the condition of A e. g. ”if
the city is large, it is near the river (with probability 80%)” or ”if the
neighboring pixels are classified as water, then central pixel is water
(probability 80%).”

• characteristic rules – describe some part of database e. g. ”bridge is an
object in the place where a road crosses a river.”

• discriminant rules – describe differences between two parts of
database e. g. find differences between cities with high and low
unemployment rate.

• clustering – groups the object from database into clusters in such a
way that object in one cluster are similar and objects from different
clusters are dissimilar e. g. we can find clusters of cities with similar
level of unemployment or we can cluster pixels into similarity classes
based on spectral characteristics.

• trend detection – finds trends in database. A trend is a temporal pat-
tern in some time series data. A spatial trend is defined as a pattern
of change of a non-spatial attribute in the neighborhood of a spatial
object e. g. ”when moving away from Brno, the unemployment rate
increases” or we can find changes of pixel classification of a given
area in the last five years.
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In the rest of this section, we will describe several existing systems which
can be used for spatial data mining and information sources concerning
spatial data mining.

2.2 Spatial data mining systems

GeoMiner

The GeoMiner [17, 21] is a system for knowledge discovery in large spatial
databases. It was developed at Simon Fraser University in Canada. The
GeoMiner is an extension of and developed from DBMiner [9, 20]. The
DBMiner is a relational data mining system, which uses Microsoft SQL
Server 7.0 to store data. It contains the five following data mining mod-
ules: Association, Classification, Clustering, 3D Cube Explorer (displays data
cube in a 3D view) and OLAP Browser (generalizes data in a spreadsheet
or graphical form).

The Geominer is composed of the following modules: Geo–
characterizer, Geo–associator, Geo–cluster analyzer, Geo–classifier (their func-
tion is similar to the previous definition) and Geo–comparator (its function
corresponds to the discriminant rules in the previous definition).

The system contains its own language for knowledge discovery in spa-
tial data and it uses graphical interface to communicate with the user and
display results in the form of graphs, charts, maps, etc.

Descartes

System Descartes [8] supports the visual analysis of spatially referenced
data. It uses two basic tools: automatic visualization (presentation of the
data on the map) and interactive manipulation with maps. The system
uses the following methods to visualize information: area coloration, charts
and combination of both of them.

The area coloration represents a numeric attribute as color: the greater
the value, the darker the color of the region. Descartes offers various types
of charts (bar, pie, etc.). The combination of both the methods allows to
visualize one attribute with area coloration and another attribute (or at-
tributes) with charts.

In [1] the integration of Descartes with Kepler is used to classify spatial
related data. Kepler [44] is a knowledge discovery system with a plug–
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Figure 1: Fuzzy values for numerical attribute

in architecture. The classification system C4.5 [38] is one of the pluggins.
In this integrated system, Kepler is used to classify data and Descartes is
used to visualize and analyse source data and results of the classification
on the map.

Fuzzy Spatial OQL for Fuzzy KDD

In [4], a fuzzy spatial object query language and fuzzy decision tree [30]
are introduced. This language is designed to select, process and mine data
from Spatial Object–Oriented Databases and it is based on a fuzzy set the-
ory. In the classical theory, given a set S and an element e, we can decide
whether this element belongs or does not belong to S. In the fuzzy set
theory, the probability that e belongs to S can vary from 0 to 1. In figure
1, a numerical attribute value can have the fuzzy values of Low, Medium
and High.

In the fuzzy spatial OQL, fuzzy values are used in the where clause of
a fuzzy query and the answer is a fuzzy set of elements defined by these
fuzzy values. In the fuzzy decision tree, each node is associated with a test
on the values of some attribute. All the edges of the node are labeled by
fuzzy values. This enhances the comprehensibility of the decision tree.

GWiM

In [35], the use of Inductive Logic Programing for knowledge discovery
in spatial data is discussed and an inductive query language is proposed.
Then, a description of mining system GWiM is given.

GWiM is a system for knowledge discovery in spatial data. It is built
upon the WiM system. WiM [14] uses inductive logic programming to
synthesize closed Horn clauses.
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Query language of GWiM contains three types of queries. Two of them,
characteristic and discriminant rules, are adaptation of query language
of DBMiner [9]. The dependency rules describe a dependency between
different classes.

extract <KindOfRule> rule
for <NameOfTarget>
[from <ListOfClasses>] [<Constraints>]
[from point of view <ExplicitDomainKnowledge>];

The clause <KindOfRule> determines which rule we want to mine.
The Following clauses <NameOfTarget> , <ListOfClasses> and
<Constraints> specify the data which should be used for mining. The
clause <ExplicitDomainKnowledge> is a list of predicates or hierarchy
of predicates. The answer to these queries is a formula of first–order logic
which characterizes the subset of the database specified by the rule.

GeoKD

In [26, 27], a language for knowledge discovery in spatial data is proposed.
Interpreter of this language is called GeoKD. This language contains three
kinds of rules (classification, characteristic and discrimination rules) and
it uses neighborhood graphs to represent spatial data. Syntax of the lan-
guage is very similar to GWiM and GeoMiner:

extract <KindOfRule> rule
for <NameOfTarget>
from <ListOfClasses>
where <condition>
from point of view <DomainKnowledge>;

The clause <KindOfRule> determines which rule we want to mine (clas-
sification, characteristic or discrimination). Clause <NameOfTarget>
determines the object we want to discover the knowledge about.
<ListOfClasses> contains a list of tables where data for mining
are stored. Data from these tables are selected according to the con-
dition <condition> , which is similar to the language SQL. Clause
<DomainKnowledge> contains some other information necessary for
knowledge discovery. For example, it contains information where spatial
data for this query are stored.
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Source data for interpreter of this language are stored in the database Post-
greSQL [36]. Interpreter uses the three programs for data mining: C4.5
[38], Rt4.0 [39] and Progol [37]. C4.5 and Rt4.0 are used to find classifi-
cation rules and Progol is used to find characteristic and discrimination
rules. Interpreter unifies access to these systems and allows to use them
for spatial datamining.

2.3 Information sources

Papers from the area of knowledge discovery in spatial data can be found
in conference proceedings and journals that focus on GIS or knowledge
discovery in databases. Here are some basic of them: European Conference
on Principles of Data Mining and Knowledge Discovery (PKDD) [33], ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
ACM International Workshop on Advances in Geographic Information Systems
[25], International Conference on Geographic Information Science (GIScience)
[18] and journals Data Mining and Knowledge Discovery [7] and GeoInfor-
matica [16].

Local conferences in the Czech republic are GIS... Ostrava, Dobývánı́
znalostı́ z databázı́ or Znalosti.

Another useful information source is the project Spin! [41] where new
Spatial Data Mining system is being developed, or The National Center for
Geographic Information and Analysis (NCGIA) [31].

The rest of the report is organized as follows. In section 3 basic spatial
data structures used in GIS are presented. In section 4, spatial structures
designed primarily for metric spaces are described. And finally, structures
used in some spatial data mining systems are presented in section 5.

3 Spatial data structures in GIS

3.1 Quad tree

The quad tree [13, 34] is used to index 2D space. Each internal node of
the tree splits the space into four disjunct subspaces (called NW, NE, SW,
SE) according to the axes. Each of these subspaces is split recursively until
there is at most one object inside each of them (see Figure 2).
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Figure 3: k–d–tree

The quad tree is not balanced and its balance depends on the data distri-
bution and the order of inserting the points.

3.2 k–d–tree

This method uses a binary tree to split k–dimensional space [3, 15, 34]. This
tree splits the space into two subspaces according to one of the coordinates
of the splitting point (see Figure 3).

Let level(nod) be the length of the path from the root to the node
nod and suppose the axes are numbered from 0 to k − 1. At the level
level(nod) in every node the space is split according to the coordinate num-
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Figure 4: R–tree

ber (level(nod)mod k).
Inserting and searching are similar to the binary trees. We only have

to compare nodes according to the coordinate number (level(nod)mod k).
This structure has one disadvantage: it is sensitive to the order in which
the objects are inserted.

3.3 R–tree

The R–tree [19, 34] is the modification of B-tree for spatial data. This tree is
balanced and splits the space into the rectangles which can overlap. Each
node except root contains from m to M children, where 2 ≤ m ≤ M/2.
The root contains at least 2 children unless it is a leaf. Figure 4 shows an
example of r-tree of the order 3.

The node is represented by the minimum bounding rectangle contain-
ing all the objects of its subtree. Each of children of the node is split recur-
sively. Pointers to the data objects are stored in the leafs.

Because of the overlapping of bounding rectangles it could be neces-
sary to search more than one branch of the tree. Therefore, it is impor-
tant to separate the rectangles as much as possible. This problem must
be solved by the operation INSERT which uses some kind of heuristic.
It finds such a leaf that inserting a new object into it will cause as small
changes in the tree as possible.

The splitting operation is also important. We want to decrease the
probability that we will have to search both new nodes. Testing all the pos-
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sibilities has exponential complexity, so the algorithms for approximate
solution are used.

The R-tree is one of the most cited spatial data structures and it is very
often used for comparison with new structures.

3.4 R*–tree

R*-tree [2, 34] is a modification of R–tree which uses different heuristic for
operation INSERT. R–tree tries to minimize the area of all nodes of the tree.
R*–tree combines more criteria: the area covered by a bounding rectangle,
the margin of a rectangle and the overlap between rectangles.

The goal of decreasing the area covered by a bounding rectangle is to
decrease the dead space, it means the space covered by the bounding rect-
angle but not by the enclosed rectangles. This decreases the number of
branches that are searched uselessly. Minimization of the margin (the sum
of the lengths of the edges) of a bounding rectangle prefers the squares.
Minimization of the overlap between rectangles decreases the number of
paths that must be searched.

The implementation of this method is harder, but R*–trees are more
effective than R-trees.

3.5 R+–tree

R+–tree [40] is an extension of the R–tree. In contrast to R–tree bounding
rectangles of the nodes at one level don’t overlap in this structure. This
feature decreases the number of searched branches of the tree and reduces
the time consumption.

In the R+–tree it is allowed to split data objects so that different parts of
one object can be stored in more nodes of one tree level (see figure 5). If a
rectangle overlaps another one, we decompose it into a group of nonover-
laping rectangles which cover the same data objects. This increases a space
consumption but allows zero overlap of the nodes and therefore reduces
the time consumption.

In this section we have discussed data structures that are used to parti-
tion vector spaces. In the following section we describe structures that are
primarily used to partition metric spaces.
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4 Data structures for metric spaces

4.1 Vp–tree

The vp–tree (or vantage point tree) [5] partitions the data space around
selected points and forms a hierarchical tree structure (see Figure 6). These
selected points are called vantage points.

Each internal node of the tree is of the form (PV ,M,R, L) where:

• PV is the vantage point

• M is the median distance among the distances of all the points (be-
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Figure 7: M–way vp–tree

longing to the subtree of the node) from PV

• R, L are the pointers to the sons of the node. Left (right) son contains
the points whose distances from PV are less than or equal (greater
than or equal) to M .

The leafs contain pointers to the data points.
The vp-tree is used to find the objects whose distance from Q is less

than or equal to r:

1. If d(Q,PV ) ≤ r, then PV is in the answer set.

2. If d(Q,PV ) + r ≥M , then recursively search the right subtree.

3. If d(Q,PV )− r ≤M , then recursively search the left subtree.

4.2 M–way vp–tree

M–way vp–tree (or multi–way vp–tree) [5] is one of the modifications of
the vp-tree which decreases the height of the tree. The structure of m–way
vp-tree of order m is very similar to the vp-tree. The main difference is
that it splits objects into m groups according to their distances from the
vantage point. The splitting values, called cutoff values, are stored in a
node. Figure 7 shows an example of m-way vp-tree of order 3.

The construction of the tree requiresO(nlogmn) distance computations.
That is log2m times better than binary vp-trees.
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M–way vp–tree has one disadvantage if it partitions high–dimensional
spaces. In this case, spherical cuts of one node are very thin and search
operation will have to search more than one branch very often.

4.3 Multi-vantage-point tree

Another modification of the vp-tree, mvp-tree (or multi–vantage–point
tree) [5], uses two vantage points (PV 1 and PV 2) to partition data in one
node. Each internal node of the tree can be seen as two levels of vp-tree
(see Figure 8). At the first level it partitions data according to PV 1 and at
the second level it partitions all the children of PV 1 according to PV 2. Us-
ing the same vantage point for all the children saves the space. All the
splitting values for both levels are stored in the node. If the vp-tree in the
node is of order m, the node splits the space into m2 partitions.

In a leaf node, data points and their distances from both vantage points
are stored. Moreover, leaf nodes contain extra information about their dis-
tance from the vantage points of the first p nodes in the path from the root
to the leaf node. This information is used to reduce the number of distance
computations during the search operation.

The construction of the tree requiresO(nlogmn) distance computations.
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4.4 M–tree

The M–tree [6] is designed to partition a metric space with a distance func-
tion d (but it works for vector spaces, too). This function has the following
properties:

1. symmetry: d(x, y) = d(y, x)

2. non negativity: d(x, y) > 0 if x 6= y; d(x, x) = 0

3. triangle inequality: d(x, y) ≤ d(x, z) + d(z, y)

The M–tree partitions objects according to their relative distance. The dis-
tance function d depends on the concrete application.

The goal of M–tree is to reduce not only the number of accessed nodes
during the search, but also the number of distance computations, because
this operation can be very expensive.

Nodes of the tree have a fixed size. Indexed objects (or pointers to
them) are stored in the leafs. For each entry of the leaf the distance to the
parent is also stored. Each entry of the internal node has the following
structure:

• routing object Or

• pointer to the subtree ptr

• covering radius r

• distance of Or from its parent

Routing objects are used to partition the space: all the objects in the sub-
tree of Or (referenced by ptr) are within the distance r (r > 0) from Or.
Distance of Or from its parent is the distance from the object which refer-
ences the node where theOr is stored. This information is used to decrease
the number of distance computations during the SEARCH operation.

Figure 9 shows an example of m-tree of order 3.
The structure is primarily designed for similarity search in metric

spaces. So it could be used for similarity search or nearest neighbor search
in spatial data mining too. This structure could be useful e. g. for efficient
clusterization in spatial data mining.
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5 Data structures in spatial data mining

5.1 Neighborhood graphs

Neighborhood graphs and neighborhood paths

Definition: Neighborhood graph G [11, 28] for spatial relation neighbor/2 is
a graph G(U,H) where U is a set of nodes and H is a set of edges. Each
node represents an object and two nodes N1, N2 are connected by edge iff
the objects corresponding to N1 and N2 are in the relation neighbor.

The relation neighbor can be:

• topological relation, e. g. two objects touch, cover, are equal, contain

• metric relation, e. g. distance of the objects is less than d

• direction relation, e.g. north, south, east, west

• any conjunction or disjunction of previous relations

Neighborhood graph is oriented. Thus it can happen that object A is a
neighbor of the object B but object B is not a neighbor of the object A.

Definition: Neighborhood path for the neighborhood graph G is an ordered
list of nodes from G where every two following nodes from the path are
connected by some edge from G, i. e. for the path [n0, n1, . . ., nk−1] there
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must be edges (ni, ni+1) for every 0 ≤ i < k − 1. Length of the path is a sum
of edges in the path.

Elementary operations on the neighborhood graphs

Elementary operations on the neighborhood graphs are:

get Graph(data, neighbor) – returns the neighborhood graph G repre-
senting the relation neighbor on the objects from the table data. The
relation neighbor can be one of the spatial relations listed in the defi-
nition of the neighborhood graph.

get Neighborhood(G, o, pred) – returns the set of the objects connected
to the object o by some of the edges from the graph G. The predicate
pred must hold for these objects. This condition is used if we want to
get only some specific neighbors of the object o. The predicate pred
may not necessarily be spatial.

create Path(G, pred, i) – returns the set of all paths which consist of the
nodes and edges from the graph G, their length is less than or equal
to i and the predicate pred holds for them. Moreover these paths
must not contain any cycles, i. e. every node from G can appear at
most once in each path.

Neighborhood graphs in spatial data mining

In [11] neighborhood graphs are used to represent topology of data objects
and their neighborhood. Four spatial data mining tasks that use neigh-
borhood graphs are described: spatial association rules, spatial clustering,
spatial trend detection and spatial classification.

In GeoKD system (see section 2.2) spatial data are stored in structures
described in section 1 – points, chains and polygons. Program uses oper-
ation get Graph from previous definition (implemented in PostgreSQL
[36]) to create neighborhood graph from these data. The graph is stored in
database and is used to find neighbors of an object during the knowledge
discovery process.
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5.2 Amalgamation

In [45] two polygon amalgamation algorithms are described. Operation of
polygon amalgamation can be used in spatial data mining where spatial
objects (represented by polygons) need to be amalgamated when the user
wants to aggregate them. Both these algorithms identify boundary rect-
angles which are important for the resulting boundary. The first of these
algorithms, adjacency method, uses information about objects adjacency
to identify boundary rectangles. The adjacency of two objects can be pre-
sented with the neighborhood graph. The second algorithm, occupancy
method, uses z–ordering to partition the space. Z–ordering can be seen as
a quad tree with paths described with numbers: The space is divided re-
cursively into four quadrants. Each of these quadrants is identified by a
number from 1 to 4. Numbering these quadrants recursively, as they are
divided, we get the so called z–value which can be maintained by the one–
dimensional access method B+–tree. The z–ordering method is modified
and each quadrant contains information about its occupancy by amalga-
mated polygons. Bordering quadrants are not totally occupied.

5.3 Data structures in GWiM

System GWiM was described in section 2.2. It uses prolog facts to store
learning data. For example prolog fact for object city with attributes name
Brno, population 384 369, unemployment 7% can be:

city("Brno", 384369, 7).

Main disadvantage of this system is a problem with processing large
amount of data. It doesn’t use any index method to access data. In [35]
partial solution of this problem was proposed, but it wasn’t implemented.

5.4 Mining in raster data – satellite images interpretation

The raster image interpretation is an important method of GIS analysis.
Given a multispectral satellite image, the goal is to classify all pixels ac-
cording to their land cover types (e. g. water, field, forest).

In [10] the algorithm C4.5 [38], which generates decision trees, is used
for image interpretation. This algorithm allows to classify images not only
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according to values of the channels of multispectral image, but we can also
use some other information such as terrain model or altitude [23].

The classification of pixel (i. e. land cover type of pixel) depends not
only on its own characteristics, but also on the characteristics of neighbor-
ing pixels. For example, if the classification of the pixel is uncertain, we
can check the classification of its neighboring pixels and if e. g. 5 of 8
neighbors are classified as ”water”, the pixel will be classified as ”water”,
too.

In [26] neighborhood graph is used to interpret topology of objects in
the raster image. In this neighborhood graph each pixel is connected to its
four neighbors (north, south, west and east) by edge. This graph is stored
in database and is used to create neighborhood paths of different lengths.
Objects in these paths are used for classification of central pixel (first pixel
in the path).

5.5 Other methods

In [32] the application of classification and trend detection in satellite
raster images is described. The result of this application is an identification
of the trends in the land use changes in the dynamic urban area of Brno
city. The source images were preprocessed and then unsupervised classifi-
cation (based on pixels clusterization) was applied to them. The results of
the classification were used to find differences in the land use between im-
ages. The methods for finding differences are: subtracting digital values
of corresponding pixels, dividing values or comparing the classifications
of the pixels.

Another application of the raster images classification is described in
[42], where treetops are detected in an airborne image of a forest. The
first step of image processing is smoothing out with different filters (both
linear and nonlinear). In the next step, treetops are detected. This step
is based on the information that treetops have a greater reflectance than
their neighborhood. In the final steps, duplicate identifications of tops are
filtered.

In [22] the analysis of traffic accessibility with respect to public trans-
port accessibility is described. This analysis requires the information
about road infrastructure and time schedules of public transport.

In [29] the distance analysis, network analysis and location–allocation
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analysis are used in the analysis of Automatic Teller Machines (ATMs)
distribution in Bratislava city. Goal of this application is the information
about efficiency of ATMs positions. In this paper the road infrastructure of
the city and chosen demographic characteristics are used for the analysis.
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of Conf. GIS... Ostrava 2000.

[29] Kusendová D., Štepitová D.: Použitie nástrojov GIS v obchodno-
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