
} w��������
��������������� !"#$%&'()+,-./012345<yA| FI MU
Faculty of Informatics

Masaryk University

Dialogue Interfaces for Library Systems

by

Pavel Cenek

FI MU Report Series FIMU-RS-2001-04

Copyright c© 2001, FI MU June 2001



Dialogue Interfaces for Library Systems

Pavel Cenek

Department of Information Technology, Faculty of Informatics
Masaryk University Brno, Czech Republic

xcenek@fi.muni.cz

Abstract. Basic principles and structure of a dialogue interface are in-
troduced in the paper. Then features specific for library systems are de-
scribed. Next part deals with the question how to use these features for
the design of a dialogue interface for library systems. Finally some specific
library systems are introduced and possibilities how to design a dialogue
interface for them is discussed.

1 Introduction

Natural language processing, speech synthesis and speech recog-
nition are nowadays in the centre of attention of many researchers
and software companies. It is easy to understand – using speech
is very natural for people and hence these technologies can bring
computers closer to people. These technologies can be used for
instance for creating so-called dialogue interfaces.

2 Dialogue Interface

2.1 Principles

To understand our approach to dialogue interfaces we need to
mention the Pawlak’s definition of the information system ([5]).
According to Pawlak an information system consists of objects.
These objects are described by means of attributes. A value can be
specified for each attribute.

Task of the dialogue interface is to determine an object on the
grounds of knowledge of values of some attributes specified by
the user. There are many strategies how and in which order to ask
the user for the values (see e.g. [2], [3], [4], [7]).



2

2.2 VoiceXML

We need a general purpose tool for flexible design of the dia-
logue interfaces. In this area there exists a standardised language
for describing the dialogues needed for the dialogue interfaces –
VoiceXML (see[6]). This markup language ensures platform in-
dependence and flexibility of design of dialogues. In VoiceXML,
forms play the key role. Forms consist of fields and description
how to fill in the fields. It is obvious that this concept is useful for
our purposes.

2.3 Structure1

Structure of an information system with the dialogue interface is
shown in Figure 1.

Fig. 1. Structure of an information system with the dialogue interface

User can use speech, keyboard or telephone keyboard for the
communication with the system. System usually uses synthesised
speech for its answers, sometimes it can use text output or a pre-
recorded sound. Dialogue system can contact the information sys-
tem to get information about objects which satisfy user’s demands.
On the grounds of these results dialogue system decides next step.

1 based on the work described in [1]



3

Fig. 2. Structure of the dialogue system

Dialogue System (see Figure 2) The dialogue manager generates
VoiceXML documents which are interpreted by the VoiceXML in-
terpreter and the filled form is returned back to the dialogue man-
ager. Texts from the filled fields are sent to the natural language
analysis module. Important information about demanded objects
is extracted there. Then the dialogue manager contacts the infor-
mation system and obtains information about objects which sat-
isfy conditions demanded by the user. On the grounds of these
results and selected dialogue strategy the dialogue manager gen-
erates next VoiceXML document, which should refine user’s de-
mands.

Natural Language Analysis Module (see Figure 3) Text of a field
of the VoiceXML document is used as input to the NLP controller
which is the heart of this module. In addition to the text, also in-
formation about slots which should be filled is supplied for this
module. Roughly said slots are attributes of some objects from
the information system. They are called slots because some val-
ues of the attributes should be inserted (filled) into them. To fill
them, NLP controller collaborates with the slot manager which
knows some information about the slot (e.g. possible values, etc.).
If the values cannot be extracted, the text is passed to the error
handling module. This module tries to correct mistakes caused by
misspelling or incorrect syntax and tries to use thesaurus to re-
place some words by other words with the equivalent meaning,



4

Fig. 3. Structure of the natural language analysis module

which the NLP controller understands. In this way corrected sen-
tence is returned back to the NLP controller which tries to fill in
the slots once more. If the slots are not filled correctly, an error is
returned to the dialogue manager. The dialogue manager should
generate another VoiceXML document, which should eliminate
errors by restricting user’s freedom of input.

3 Library Systems

Library systems are used for a complete management of a library.
They are able to store and maintain book-funds, journals, arti-
cles, multimedia titles, etc. There are many library systems in the
world. Although they are implemented in various ways, almost
all follow the same system architecture.



5

3.1 Modules

Library systems are typically modular applications with a wide
scale of modules. Not all of them have to be used in each system or
some of them can be joined together. The most common modules
are listed here:

OPAC OPAC means Online Public Access Catalogue. This mod-
ule serves for search in the bibliographic data.

Cataloguing This module is intended for creating bibliographic
records. A bibliographic record specifies a particular title but not
a specific copy of this title.

Items Items (i.e.concrete copies of a title) are maintained here. In-
formation like identification of collection, which determines store,
signature of the item, which determines placement in the store or
information who and for how long is allowed to lend this item,
are stored here.

Borrowing and Reader Tally Personal data about readers and
their borrowing are maintained by this module.

Series It is important to process some special information about
series, such as time period between two issues, etc. This module
is intended for this purpose.

Interlibrary Borrowing Service It is possible to borrow an item
from another library. The data about this borrowing need a special
treatment. Entry about such an item is not piece of the internal
system, but the borrowing should be seen in other parts of the
internal system. This feature is provided by this module.

Other Modules There can be other modules, which are not im-
portant for us. Into this group we can put modules for printing,
system administration, support for tally of orders of new items,
tally of invoices, etc.



6

4 Dialogue Interfaces for Library Systems

Now we will discuss the main features of the design of a dialogue
interface for the library systems. Although the design is depen-
dent on a specific library system we can find many common ele-
ments.

4.1 Access to the Data

A generally valid fact is that we need a good access to the data of
the information system to create a dialogue interface. This aspect
plays a key role for the successful design of the interface. In many
systems we can easily access the database of the information sys-
tem. The situation in the field of library systems is complicated by
the fact, that bibliographic data are not suitable for storing in rela-
tional databases for their very variable length. In spite of this fact
they are usually stored in a relational database. They are stored in
a binary array with an internal structure which is unfortunately
invisible from the point of view of the database system. There-
fore it is not possible to use SQL for obtaining the structured data.
Some systems use its own database engine, which offers some ex-
tensions suitable for maintaining bibliographic records. Usually
there is no standard or even no documented language for query-
ing the database. In both cases there is usually no easy way to
obtain structured data from the library system.

Designers of the library systems were awake to this situation
and hence the Z39.50 protocol was designed.

Z39.50 The Z39.50 protocol is a standard which provides a sys-
tem independent interface for searching, sorting, gathering infor-
mation about items in library systems and more. Implementation
of this protocol in a dialogue interface could be very valuable, be-
cause the interface would be usable for all library systems which
support this protocol. Unfortunately not all library systems sup-
port it.

WWW Other way how to obtain structured data from a library
system is to use it’s web-based interface. Today almost all library



7

systems dispose of this type of user interface. It is possible to send
queries in URL (if the get-method for submitting form is used) and
then parse returned html document to extract results of the query.

4.2 OPAC

As mentioned above OPAC serves for search in bibliographic data.
There are usually three modes of the search.

– Search with unambiguous result – This mode applies to search
by ISBN, ISSN, bar code, etc.

– List search – In this mode you need bibliographic records sorted
by an item. Then you are entering some characters and a cursor
is set to the first item which begins with the entered characters.

– Words – In this mode full-text search is performed on selected
items. There can be specified other parameters to set more re-
strictive or attenuated requirements, e.g. wildcards.

4.3 UNIMARC

UNIMARC is a cataloguing standard which is used for catalogu-
ing of titles in the Czech Republic. It consists of fields which de-
scribe the title. Besides for a laical user usual fields like name, au-
thor, etc. there are some fields which can be very useful for creat-
ing an intelligent dialogue interface. All these fields apply to char-
acterising titles by means of some specific words or sorting them
into categories.

– First of them is the field called subject headwords. This field
is an analogy of the paper subject catalogue. These headwords
should be organised in a hierarchic structure. This structure
can be useful for search for similar titles.

– Second field are keywords. Creation of the keywords is more
or less dependent on the consideration of the person who per-
forms cataloguing. The keywords can be used for the definition
of the problem scope.

– Third field is the information in UDC. UDC (universal decimal
classification) is a formal language which defines some cate-
gories and rules for their concatenating. A description in the



8

natural language exists to each headword and it is possible to
find an UDC expression to collocations created in the natural
language.

– Last field is thesaurus. It is a lexicon ordered by branches with
defined structure (e.g. supertype — subtype, related words,
etc.).

Unfortunately the quality of these fields is individual for each
library. There are even no standardised dictionaries of keywords,
headwords and categories (except of UDC). Libraries define their
own standards in the better case, they use no standards at all or
completely ignore these fields in the worse case. Therefore using
these fields is the question of the design of the dialogue interface
for a particular library.

5 Aleph 500

Aleph 500 is a library system developed by the Israeli company
ExLibris. It is one of the most widespread library systems in the
world. It’s popularity arises from its powerful functions and reg-
ular updates.

5.1 System Architecture (see Figure 4)

Queries of the modules are formulated in an universal language
and then, after processing, translated to an SQL query. Obtained
results are processed and returned to the caller.

5.2 Access to the Data

Modules provide a configurable user interface, but the API for
them is not public and hence it is impossible to develop own in-
terface and communicate through the modules. Other possibilities
are described here.

Communication with the Database Engine All data are physi-
cally stored in a database. ExLibris chose the database engine from
Oracle. Data are not encrypted and hence it is possible to main-
tain data directly by means of SQL. Each bibliographic record is



9

Fig. 4. Aleph 500 architecture

stored in a binary array and therefore it is not structured. So it
is necessary to write some routines which will restore the struc-
ture. The processing layer in Aleph 500 serves for the same task.
In the database, indexes are created to the binary records, so that
it is possible to search for data efficiently, the problem is just the
decoding of the structure.

Other problem could be that the structure of the tables is not
documented.

Using Z39.50 Aleph 500 supports the Z39.50 protocol. This way of
communication seems to be the best one. But the implementation
of this protocol is not easy.

Communication via the Web Interface This way of communica-
tion is also possible. The communication goes through the mod-
ules of Aleph 500. This way has also its disadvantages. Input of the
queries and parsing of the results is a little bit lumpish and more-



10

over we do not have the possibility to use all features of Aleph
500, if they are not accessible through the web interface.

6 Tinlib

Tinlib is a product of the American company Electronic Online
Systems International (EOSi). Its development is stopped today
and its successor T Series is developed. Nevertheless Tinlib is en-
gaged in libraries in many countries. Popularity of this system
arose from its implementation for many platforms (especially UNIX
and MS-DOS) and relatively low price.

6.1 System Architecture (see Figure 5)

Fig. 5. Tinlib architecture

Queries of the modules are processed by the interpreter, which
is responsible for fetching data from own non-standard database,
its processing and returning back to the caller.



11

6.2 Access to the Data

Access to the data is a little bit problematic in this system. This sys-
tem was designed for interactive work and provides no functions
for non-interactive querying. Communication with the system is
provided by means of a text based client.

Communication with the Database Engine All data are physi-
cally stored in a database, which is non-standard. It is not possible
to use SQL. The database consists of many files. Each file contains
records about one entity (e.g. all books of one author) and links to
other files with relevant records. Thus each bibliographic record
is stored in many files, on the other hand the system is hyper-text
with many navigation possibilities.

For this approach it is necessary to write some routines which
will be able to traverse through the records and collect all needed
information.

Using Z39.50 Unfortunately Tinlib does not support the Z39.50
protocol.

Communication via the Web Interface This way of communica-
tion is also possible thanks to people from the Palacký University
in Olomouc. They implemented a web-based interface for Tinlib
called TinWeb. This interface manipulates directly with the files
and records stored in them. It uses the get-method for submit-
ting form, so it is possible to formulate the query in URL. This
interface supports a mode in which the results are presented in a
very simple form suitable for an additional processing. This way
is probably easier and better than a direct manipulation with the
records.

7 Designing of the Dialogue Interface for the
Library System of the Masaryk University

The library System of the Masaryk University consists of indepen-
dent libraries created and maintained individually by each faculty.



12

All the libraries use TinLib, therefore it was possible to create an
universal web-based interface using TinWeb. This interface offers
an access to the library catalogues of all faculties. Unfortunately,
since the catalogues are created completely independently, they
do not share dictionaries of keywords, subject headwords, etc. or
some of them even do not support them.

7.1 System Design

TinWeb will be used for communication with the library system.
All queries will be sent via http protocol and the resultant html
pages will be processed, all relevant information extracted and the
structure of the bibliographic records restored. After finishing this
operation, results of the query will be represented as a list of the
bibliographic records.

Dialogues of the dialogue interface will be written in VoiceXML
and interpreted by a VoiceXML interpreter. The whole dialogue
with the user will be computer driven in the first phase of devel-
opment. So the dialogue will start with a welcome message and
first question, which will be pre-created. Other subdialogues will
be created dynamically according to the current answer of the user
and according to the results of the prior user’s requirements. Di-
alogue templates will be used for the dynamic creation of the di-
alogues. It means subdialogues for various specific situations will
be created, but the dialogues will not be complete. They will con-
tain some empty places (often called slots) into which some infor-
mation specific for the current dialogue will be inserted.

7.2 Dialogue Structure (see Figure 6)

In every state a grammar is active, which determines what can be
said by the user. The user input is processed by means of the gram-
mar, a query created, sent to the library system and the answer
processed as described above. Then the dialogue system changes
its state according to the arrows.

As said above the dialogue will start with a welcome message.
Then the user will select a library in which he or she wants to
search. In next step the dialogue can split. If the user knows just



13

Fig. 6. Dialogue structure

a topic a book should be about, system chooses a dialogue which
asks for some keywords, subject headwords or other words de-
termining the book. Of course, this will be possible just in the li-
braries which support it. If the user has an exact book in mind the
other branch will be entered. Here subdialogues for determining
the author’s name and title of the book will be used. These sub-
dialogues should also detect incomplete names when the user is
not certain or does not know the name exactly. When the infor-
mation is not sufficient system should try to ask the user for other
information such as producer, publication date, etc. When all al-
ternatives are exhausted or the set of results is reasonably small,
the system switches to the browse mode.

In this mode all results are presented as a list. There can be too
many items to read them linearly. So user should have a possibility
to sort, filter and summarise the results.



14

In every state, besides the grammar defining user’s allowed
utterances, there are other grammars active. These other gram-
mars serve for the catch of special phrases which can cause the
transition to another state. These transitions are not shown in the
Figure 6. The special phrases include:

– Help – provides a help what to do in the current situation. The
system tells the user what he or she is allowed or expected to
say. Then the dialogue continues as before the help invocation.

– Change – calls a subdialogue which enables to change the value
of an attribute. This serves for correction of potential mistakes.
Such as correction can cause a big change of results. We need
to deal with the problem (see [2]).

– New search – the dialogue will be restarted.
– Exit – the systems terminates the communication.
– Summarise – forces the system to switch to the browse mode.

It can be useful at the moment when user does not know more
information about the book and wants to browse through the
results.

7.3 ”Intelligence” of the System

The system should offer a better navigation in the library cata-
logues then today’s web-based interface. Even if the web-based in-
terface is often too complicated and confusing and it can be prob-
lem to formulate our requirements, it is not an easy objective to
reach. There will be many obstacles. Language restriction will be
one of them. It is necessary to allow the user to say as many vari-
ants as possible. Even if the allowed user’s utterances are defined
by a grammar, user must have enough freedom of phrasing.

To create a smart dialogue system it is important to be able to
derive a logical coherence among the single bibliographic records
in the result set. E.g. if the headwords are available, the system
should try to detect to which discipline the books in the result set
belong to and take note of it in the next part of the dialogue.

8 Conclusion

Design of the dialogue interfaces for information systems is a com-
plex task. It requires usage of many technics from the field of the



15

natural language processing. The design itself is very dependent
on the information system. Creating a dialogue interface for a li-
brary system is even more complicated, because the data structure
and its cohesion is complicated. Aspects of the design were out-
lined in this work. Looking for other common features and princi-
ples of the dialogue interfaces, implementation of the interface for
the library system of the Masaryk University and study of result-
ing dialogues of such systems is the plan for the future work.

9 Acknowledgements

I would like to thank Martin Vojnar from the State Research Li-
brary in Olomouc and Miroslav Bartošek from the Institute of Com-
puter Science, Masaryk University for providing the information
about library systems.

References

1. Bártek, L.: Library dialogue information system. Proposal of the Design of a Dialogue
Interface for Library Systems.

2. Cenek, P.: Design of Formal Dialogue Systems (in Czech). Master’s thesis, Faculty of
Informatics, Masaryk University Brno, Czech Republic, April 2000.

3. Constantinides, P., Hansma, S., Tchou, C. and Rudnicky, A: A schema-based ap-
proach to dialog control. Proceedings of ICSLP. 1998, Paper 637.

4. Heeman, P., Johnston, M., Denney, J., Kaiser, E.: Beyond Structured Dialogues: Fac-
toring Out Grounding. In Proceedings of the International Conference on Spoken
Language Processing (ICSLP-98) Sydney, Australia, December 1998, pp. 863-866.

5. Pawlak, Z.: Information Systems, ICS PAS Reports, 338, Warszawa 1978.
6. VoiceXML Forum: VoiceXML. March 2000, Version 1.00.
7. Walker, M., Fromer, J., Narayanan, S.: Learning optimal dialogue strategies: a case

study of a spoken dialogue agent for email. In Proceedings of ACL/COLING 98,
1998.



Copyright c© 2001, Faculty of Informatics, Masaryk University.
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

Publications in the FI MU Report Series are in general accessible
via WWW and anonymous FTP:

http://www.fi.muni.cz/informatics/reports/
ftp ftp.fi.muni.cz (cd pub/reports)

Copies may be also obtained by contacting:

Faculty of Informatics
Masaryk University
Botanická 68a
602 00 Brno
Czech Republic


