S O
»
© A
= =
=) =
A =
2 &
s, &
1Tag \ASD

Faculty of Informatics
Masaryk University

Automatic Processing of Czech Inflectional and
Derivative Morphology

by

Radek Sedlacek
Pavel Smrz

FIMU-RS-2001-03
June 2001

FI MU Report Series
Copyright (© 2001, FI MU

Automatic Processing of Czech Inflectional
and Derivative Morphology

Radek Sedlacek, Pavel Smrz

May 29, 2001

Abstract

This paper deals with the effective implementation of the new Czech
morphological analyser ajka which is based on the algorithmic descrip-
tion of the Czech formal morphology. First, we present two most important
word-forming processes in Czech — inflection and derivation. A brief de-
scription of the data structures used for storing morphological information
as well as a discussion of the efficient storage of lexical items (stem bases of
Czech words) is included too. Then, we describe the morphological anal-
ysis algorithm in details and finally, we bring some interesting features of
the designed and implemented system ajka together with current statistic
data.

1 Introduction

Typically, morphological analysis returns the base form (lemma) and associates
it with all the possible POS (part-of-speech) labels together with all grammat-
ical information for each known word form. In analytical languages a simple
approach can be taken: it is enough to list all word forms to catch the most
of morphological processes. In English, for example, a regular verb has usu-
ally only 4 distinct forms, and irregular ones have at most 8 forms. On the
other hand, the highly inflectional languages like Czech or Finnish present a
difficulty for such simple approaches as the expansion of the dictionary is at
least an order of magnitude greater' [4]. Specialised finite-state compilers have
been implemented [1], which allow the use of specific operations for combin-
ing base forms and affixes, and applying rules for morphophonological varia-
tions [3]. Descriptions of morphological analysers for other languages can be
found in [8, 11].

Basically, there are three major types of word-forming processes can be
distinguished — inflection, derivation, and compounding. Inflection refers

LAs our effective implementation of spell-checker for Czech based on finite state automata sug-
gests, it does not necessarily mean that no application can take advantage of a simple listing of
word forms in highly inflecting languages.

to the systematic modification of a stem by means of prefixes and suffixes.
Inflected forms express morphological distinctions like case or number, but
do not change meaning or POS. In contrast, the process of derivation usually
causes change in meaning and often change of POS. Compounding deals with
the process of merging several word bases to form a new word.

Czech belongs to the family of inflectional languages which are charac-
terised by the fact that one morpheme (typically an ending) carries the values
of several grammatical categories together (for example an ending of nouns
typically expresses a value of grammatical category of case, number and gen-
der). This feature requires a special treatment of Czech words in text process-
ing systems. To this end, we developed a universal morphological analyser
which performs the morphological analysis based on dividing all words in
Czech texts to their smallest relevant components that we call segments. The no-
tion of segment roughly corresponds to the linguistic concept morpheme, which
denotes the smallest meaningful unit of a language.

Presented morphological analyser consists of three major parts: a formal
description of morphological processes via morphological patterns, an assign-
ment of Czech stems to their relevant patterns and a morphological analysis
algorithm.

The description of Czech formal morphology is represented by a system of
inflectional patterns and sets of endings and it includes lists of segments and
their correct combinations. The assignment of Czech stems to their patterns
is contained in the Czech Machine Dictionary [10]. Finally, algorithm of mor-
phological analysis using this information splits each word into appropriate
segments.

The morphological analyser is being used for lemmatisation and morpho-
logical tagging of Czech texts in large corpora, as well as for generating correct
word forms, and also as a spelling checker. It can also be applied to other prob-
lems that arise in the area of processing Czech texts, e.g. creating stop lists for
building indexes used in information retrieval systems.

2 Czech Inflectional Morphology

The main part of the algorithmic description of formal morphology, as it was
suggested in [10], is a pattern definition. The basic notion is a morphological
paradigm — a set of all forms of inflectional word expressing a system of its
respective grammatical categories.

As stated in [5], the traditional grammar of Czech suggests much smaller
paradigm system than there is existing in reality. For this reason we decided to
build quite large set of paradigm patterns to cover all variations of Czech from
the scratch. Fortunately, we had not been limited by technical restrictions?
thus we could follow the straightforward approach to the linguistic adequacy
and robust solution.

2Haji¢ [5], e.g., indicates that his system is limited to 214 paradigm patterns.

The detailed description of all variations in Czech paradigms enables us
to define application dependent generalisations of the pattern system. For ex-
ample, if we do not need to take into consideration archaic word forms for a
specific application, the number of paradigm pattern (that reaches 1500 in its
fully expanded form) can be automatically reduced considerably.

Noun paradigms consist of word forms in particular cases of singular and
plural. Verbs have more paradigms — for present tense, for imperative forms,
etc.

For example, the nouns hora (mountain), slza (tear) and feka (river) display
the following forms in the paradigms:

Nom.Gen. Dat. Acu. Voc. Loc. Ins.
horahory ho fe horuhoroho Fe horou
hory hor horam hory hory horach horami

slza slzy slze slzuslzo slze slzou

slzy slz slzam slzy slzy slzach slzami

feka feky fece feku feko fece fekou
feky fek fekédm feky feky Fekach Fekami

As we can see, the corresponding word forms in the paradigms have the
same ending. That is why we can divide the given word form into two parts:
a stem and an ending. We then obtain the following segmentation:

hor-{a,y,u,0,0u} ho i-{e,e}
hor-{y,_,am,y,y,ach,ami}
slz-{a,y,e,u,0,e,ou}
slz-{y,_,am,y,y,ach,ami}
fek-{a,y,u,0,0u} fec-{e,e}
fek-{y,_,am,y,y,ach,ami}

In the paradigm for the word hora, there are two alternative stems (hor
and hor); in the paradigm for the word slza, there is only one stem slz; and
in the paradigm for the word feka, there are again two alternative stems rek
and fec. We can also identify four different ending sets S1={a,y,u,0,ou} ,
S2={e,e} ,S3={y, ,am,y,y,ach,ami} and S4={a,y,e,u,0,e,ou} , but
it is clear that S4=S1+S2.

This observation leads us to a system of ending sets. We make distinction
between two types of sets — basic and peripheral ending sets. The basic ones
contain endings that have no influence to the form of the stem, while endings
from the peripheral ending sets cause changes in the stem. In our case, sets S1
and S3 are basic and S2 is peripheral, because the ending e causes alternation
change of the last letter r to T in the stem hor and, similarly, k to ¢ in the stem
fek.

Moreover, we can put all the endings from set S1 and S3 into one (newly
created) set, say S5, because they are both basic and are common for stems hor,
slz and fek. Now we can shortly write previous paradigms in the following
way:

hor-S5 ho F-S2
slz-S5+S2
fek-S5 fec-S2

Every ending carries values of grammatical categories of the relevant word
form. For example, all endings in previously defined sets are characterised as
endings of nouns in feminine gender. Endings from sets S1 and S2 originate
from the singular paradigm, the others (from S3) express plural. Thus, the
set S5 now includes endings from both singular and plural paradigm and this
information must be preserved and stored in the system, so we decided to use
the following data structure for storing ending sets:

S5=[1FS.](a,1)(y,2)(u,4)(0,5)(ou,7)
[1FP.](y,1)(,2)(@m,3)(y,4)(y,5)
(ach,6)(ami,7)
S2=[1FS.](e,3)(e,6)

An ending set is denoted by its unique identifier (S5, S2) and consists of
collections of pairs (an ending, a value of the appropriate grammatical cate-
gory) in parenthesis. Each block of these pairs begins with a grammatical tag
in brackets. This tag encodes values of grammatical categories that are com-
mon to all endings in the block. We can see that S5 has two blocks — the first
one (for singular) begins with [LFS.] and contains five pairs, the second (for
plural) starts with [LIFP.] and has seven pairs. S2 includes only one block
of two pairs — the first pair determines an ending in dative and the second
specifies an ending for the locative of a noun. A more detailed description of
the structure of grammatical tags can be found in [13].

Since endings, grammatical tags and values of grammatical categories re-
peat in the definitions of sets, we store them in unique tables and use references
to these tables in the definitions of sets.

In the next step, we perform further segmentation of stems into a stem base
and an intersegment. The stem base is the part that is common to all word forms
in the paradigm (it doesn’t change) and the intersegment is a final group of the
stem which forms changes. We obtain the following segmentation of stems:

ho-{r, T}

slz-{ }
fe-{k,c}

Since stems hor and Fek can be followed by the endings from the set S5,
while stems hof and fec can be followed by endings from the set S2, and stem
slz accepts endings from both S5 and S2, we have to store the information
about the only possible combinations of stem bases, intersegments and end-
ings in our system in the form of a pattern definition. To this end, we use the
following data structure:

hora+<r>S5< >S2
slzat+<_>S5,S2
feka+<k>S5<c>S2

A pattern is denoted by its unique identifier (hora, slza, feka) and it consists
of blocks that are prefixed with an intersegment visually closed in <>. The spe-
cial character “_” stands for an empty intersegment. Each block then contains
a list of identifiers of sets. Identifiers of sets are visually separated by a comma
in lists. Again, since intersegments and lists of identifiers repeat in the defi-
nitions of patterns, we store them in unique tables and use references to these
tables in the definitions.

3 Derivative Processes

As have been shown in the previous paradigms, the morphological process of
inflection is captured by means of paradigms in our system. Compounding
does not play crucial role in Czech morphology if compared with other lan-
guages, e.g. German [7]. Therefore, the description of derivative processes
remains untouched so far. It will be discussed in this section.

The process of morphological derivation of new words, primarily with dis-
tinct POS categories, is considered as a higher degree of morphological pro-
cess, in the level above the inflection. Indeed, for example, a particular class of
deverbative adjectives can be derived from the derivation paradigm of transi-
tive verbs. A hierarchical system of morphological paradigms has been imple-
mented as a tool able to capture different levels of the Czech morphology.

Hierarchical patterns are constructed fully automatically from the binding
defined on the level of basic forms connecting always one lemma with another
one by a specified type of a link. If a process could be described as a n-ary
relation, it would be partitioned into n — 1 binary relations. This partitioning
is much more flexible and allows automatic generalisations of derivation re-
lations. To demonstrate the derivation binding on the level of lemmata, we
present the following example with participles:

pocitat--(DEVESUBST)--po Citani count--counting
pocitat--(DEVEADJPAS)--po Citany count--counted
pocitat--(DEVEADJPASSHORT)--po Citan count--is counted
pocitat--(DEVEADJACTIMPF)--po Citajici count--is counting

From the given example it follows that each link connects one base form
of a word with another one and names such relation. If the label of a base
form is unambiguous and therefore it can be used as an primary identifier it is
sufficient to specify only these labels in the binding process. If the label itself
can be ambiguous, the pairs of lemma and the relevant inflectional pattern are
connected. However, even this approach is not able to represent completely the
dependency of the relation on a particular sense of a word. For example, the
relation “possessive adjective” applies only for the reading of jefab denoting a
bird. This is the reason why we have implemented the system connecting pairs
of triplets of (sense-id, lemma, paradigm) by a named relation.

Indexing techniques and dictionary methods [6] used in our implementa-
tion allow an efficient retrieval of related lemmata. It is also possible quickly

return a chosen base form for a set of related words — the feature which is
highly favourable in several applications, e.g. in the area of information re-
trieval or indexing Internet documents.

The system of base form binding is not limited to the basic derivative pro-
cesses described above. The same principle e.g. depicts two types of relation
in the level under the basic derivation, namely original/adapted orthography
and inflectional/non-inflectional doublets in the case of loanwords. The for-
mer can be demonstrated by the example of a link between gymnasium and
gymnézium (in the actual version of our morphological analyser we use even
more elaborated assignment of these doublet types in the form of basic type of
relation and more specific subtype). A link between the word abbé assigned to
the paradigm abbé (non-inflectional) and Tony (inflectional) is the example of
inflectional/non-inflectional doublet. It is of course possible to model such re-
lations on the basic level of inflectional paradigms as a word-form homonymy.
However, it would lead to the mixture of unrelated forms and would compli-
cate special types of analyses, e.g. a style-checker analysis, that could be very
interesting.

There are other relations that connect lemmata above the level of basic
derivative processes. We take advantage of the standard process and are able
to uniformly describe such different relations as diminutives (and its degree):

vUuz--(DIMIN:1)--vozik
vUuz--(DIMIN:2)--vozi ctek,

aspectual relations of verbs:
fici--(ASPPAIR)-- fikat
iterative relations of verbs (together with “degrees™):

chodit--(ITER:1)--chodivat
chodit--(ITER:2)--chodivavat :

the relations between an animate noun and derived possessive adjective:
otec--(MASCPOSS)--otc® uv,

the process of creation feminine from masculine nouns:
soudce--(MASC2FEMI)--soudkyn e,

or synonyms and antonyms:

kosmonaut--(SYNO)--astronaut
mlady--(ANTO)--stary

The last class of links brings us directly to other relations that can be found
in semantic nets like Wordnet [9]. Typical relations of hyperonym/hyponym,
part/whole (meronyms) etc. are modelled on the higher level, the level based
on synonyms, to be able to link groups of synonyms (that are called synsets in
the context of Wordnet).

The possibility of building complex structures of links, e.g. relations of rela-
tions, is also employed in connecting roots of loanwords to their Czech equiv-
alents. Similarly to [12], we are therefore able to relate words derived from the
Greek root kard with the group of Czech words derived from the Czech root
srd, e.g. osrdeCnik, kardiostimulator, srdce, kardiologie.

In the first paragraph of this section we have been speaking about hierarchi-
cal morphological patterns. So far, however, we have presented only several
types of relations connecting particular words. It is justified by the fact that
the patterns are considered only as the linguistic interpretation of statistics ob-
tained from relational data. It is only the matter of the point of view where to
place a threshold on the frequency of concrete relation behind which we will
interpret data as an exception or peculiarity and which relation will form a
particular derivative pattern.

4 Morphological Analysis Algorithm

The basic principle of the algorithm for morphological analysis of Czech word
forms is based on the segmentation described in Section 2. The result is that
every Czech word form W can be divided into four segments — a prefix P,
a stem S, an intersegment I and an ending E. Thus, we obtain the following
equation W = P + S + I + E. The aim of the algorithm for morphological
analysis is to find such a segmentation, i.e. to identify these four segments in a
given word form. The separated ending then determines values of grammati-
cal categories.
The algorithm of the analysis consists of the following steps:

1. The input of the algorithm is a word form W = ajas . . . a,.

2. Try to separate prefix nej+ne , nej or ne from the beginning of the word
Wandobtain W, =S+1+FE =ajas...a,.

3. Try to identify stem base between all possible candidates S; = aqas . . . a;,
where 1l < i <n.

4. The word segmentation P + S + I + E and the values of grammatical
categories are the output.

The first step of the analysis is a prefix separation. The algorithm tries to
separate only the prefix nej+ne or the superlative prefix nej or the negative
prefix ne (in this order). After the prefix separation, the stem base S stands in
the front position of the word form W, = S+ 1 + E.

At this moment, the identification of the stem base S is being performed in
a character-by-character manner. Let us suppose that the word form 1] can
be written as a sequence of characters a,as . ..a,, Where n > 0. If W is a cor-
rect Czech word form and the prefix P was separated correctly, then the stem
base S is one of the strings S; = aias . .. a;, where i satisfies 0 < i < n. Because
of possible homonymy, it is necessary to prove all possible candidates S;.

The process of identifying the candidate S; as the right stem base of the
word form W3 consists of three steps:

e Look at the candidate S; in the dictionary of stem bases.

e Try to match the rest a; 14,2 . . . a, Of the word form W; with one of the
combinations I 4+ E allowed in the pattern definition.

e Check if the prefix P was separated correctly.

At first, the candidate S; is being looked up in the dictionary of stem bases.
If the candidate S; is found in the dictionary, the algorithm checks whether the
resta;;1a;y2 . ..a, Of the word form W is one of the correct combinations I+ F
that are included in the definition of some of the patterns that the stem base S
belongs to. With the ending E we obtain appropriate grammatical information
as well.

It is necessary to check all patterns and all possible combinations I + E in
their definitions, because we request all possible values of grammatical cate-
gories on the output. However it is clear that if the first character ¢;; does not
match with the first character of the intersegment [or with the ending E (when
the intersegment is empty), further comparisons of characters g, o, ..., a, are
useless and the algorithm does not need to perform a non-trivial number of
them. This is true especially in the case of unsuccessful match with the inter-
segment, because all comparisons of all endings in all ending sets can be then
missed. Finally, the algorithm checks whether the separation of the prefix P
was correct, which it means that the separation is consistent with the informa-
tion stored in the Czech Machine Dictionary.

If there is no collision in one of the three steps, the word form W is accepted
and correctly analysed. Furthermore, all grammatical information describing
this word form is available and can be sent to the output in the form of gram-
matical tags.

The effectiveness of the algorithm depends mainly on the speed of looking
up the candidates S; in the dictionary. There is a relation between the candi-
date S; and S;.; such that the candidate S; is a prefix of the candidate S; ;.
That is why we use a trie structure for storing stem bases of Czech word forms.
In this case, if the previous candidate S; was not found in the trie structure,
then trying to find the following candidate S;,; is useless, because it is sure
that it can not be there. If the candidate S; was found, then the search algo-
rithm can use this fact and can continue in finding the string a; 110,12 ...a,
from the place where it has stopped looking at the previous candidate. For
detailed information about searching in the trie structure, see [6].

Memory requirements are one of the main disadvantages of the trie struc-
ture. We tried to solve this problem by implementing the trie structure in the
form of the minimal finite state automaton. The incremental method of build-
ing such an automaton was presented in [2] and is fast enough for our pur-
pose. Moreover, the memory requirements for storing the minimal automaton
are significantly lower (see Table 1).

5 Czech Morphological Analyser ajka

The implementation of the presented analyser is based on the algorithm of
morphological analysis described in Section 4. Because we decided to use dic-
tionaries, the main part of morphological information is included in data files.

There are two binary files that are essential for the analyser. One of them
contains definitions of sets of endings and morphological patterns stored in
data structures described in Section 2. The source of this binary file is a text
file with definitions of ending sets and patterns. The second is a binary im-
age of the Czech Machine Dictionary and contains stem bases of Czech words
and auxiliary data structures. We developed a program abin that can read
both of these text files and efficiently store their content into appropriate data
structures in destination binary files.

The first action of the analyser is loading these binary files. These files are
not further processed, they are only loaded into memory. The main reason for
this solution is to allow as quick a start of the analyser as possible. The next
actions of the analyser are determined by steps of the morphological analysis
algorithm (see Section 4).

Features and behaviour of the analyser are more important information for
potential users. The analyser works in two modes. If the name of a text file for
analysis was written on the command line, then the analyser works in a batch
mode. The text file is supposed to contain text, one word per line. Otherwise,
if there is no name of the text file, the analyser works in an interactive mode.

To control the analyser in the interactive mode is very easy. User simply
inputs a word form to be analysed after the prompt “ajka> ”. The output
format is influenced by the working mode. User can choose a normal mode or
a brief mode or a mode that makes the analyser to generate all possible derived
word forms. User terminates the analyser by typing the special character “#”.

Another feature of the analyser is a possibility to select various forms of the
basic word form (lemma).

Finally, user can have more versions of binary files that contain morpholog-
ical information and stem bases and can specify which pair should be used by
the analyser. Users can take advantage of this feature to “switch on” analysis
of colloquial Czech, domain-specific texts etc.

The power of the analyser can be evaluated by two features. The most im-
portant thing is number of words that can be recognised by the analyser. This
number depends on the quality and richness of the dictionary. Our database
contains 223,600 stem bases and ajka is able to analyse (and, conversely, gen-
erate) 5,678,122 correct Czech word forms. The second feature is the speed
of analysis. In the brief mode, ajka can analyse more than 20,000 words per
second on Pentiumlll processor with the frequency of 800MHz. Some other
statistic data, such as number of segments and size of binary files, is shown in
the following Table 1.

Table 1: Statistic data

#intersegments 779

#endings 643

#sets of endings 2,806

#patterns 1,570

#stem bases 223,600
#generated word forms | 5,678,122
#generated tags 1,604

speed of the analysis 20,000 words/s
dictionary 1,930,529 Bytes
morph. information 147,675 Bytes

6 Applications

The main present application of the analyser is morphological tagging of Czech
corpus texts. The task of tagging is to assign relevant grammatical information
to every word form. This grammatical information is known after the analysis
and thus it can be sent to the output in the form of a grammatical tag.

Automatic synthesis is the reverse process of using the algorithmic descrip-
tion of Czech morphology. It is possible to generate a set of all possible word
forms and their grammatical categories simply by applying patterns as rules
determining the only correct endings of the word form.

Automatic morphological analysis and synthesis is a key process for lem-
matisation. Morphological synthesis allows us to generate all possible forms.
Amongst them, there is a special dedicated word form, lemma. A process of
lemmatisation is in such a case reduced into the problem of choosing the re-
quired word form. (for example a nominative of singular for nouns).

The analyser can be used as a spelling checker as well. If the word segmen-
tation mechanism is unable to split a given word into segments, usually it is a
construct containing a spelling mistake.

7 Conclusion

We have described two-phase ternary segmentation of Czech word forms for
the need of automated morphological analysis by a computer. We have briefly
explained the data structures representing Czech formal morphological pro-
cesses (a system of sets of endings, pattern definitions and hierarchical pat-
terns) as well as the data structures used for storing stem bases and informa-
tion from the Czech Machine Dictionary. Finally, we have shown the steps of
the morphological analysis algorithm in detail, mentioned some features of the
analyser ajka and given several examples of practical applications where it is
being used.

The morphological analyser ajka has been tested on large corpora con-
taining 100,000,000 positions. Based on the test results, the definitions of sets
of endings and patterns as well as the Czech Machine Dictionary are being
extended by some missing, mostly foreign-language stem bases and their ap-
propriate patterns and endings. In its current state, ajka can be used for mor-
phological analysis of any raw Czech texts.

The analyser ajka can readily be adapted to other inflectional languages
that have to deal with morphological analysis. In general, only the language-
specific parts of the system, i.e. definitions of sets of endings and the dictionary,
which are stored as text files, have to be replaced for this purpose.

References

[1] Kenneth R. Beesley and Lauri Karttunen. Finite-state non-concatenative
morphotactics. In Proceedings of the Fifth Workshop of the ACL Special Interest
Group in Computational Phonology, 2000.

[2] Jan Daciuk, Richard E. Watson, and Bruce W. Watson. Incremental
construction of acyclic finite-state automata and transducers. In Finite
State Methods in Natural Language Processing, Bilkent University, Ankara,
Turkey, June — July 1998.

[3] G. Grefenstette et al. Recognizing Lexical Patterns in Text. Kluwer Academic
Publishers, 1st edition, 2000.

[4] Jan Haji¢. Unification Morphology Grammar. Ph.D. Thesis, Faculty of Math-
ematics and Physics, Charles University, Prague, 1994.

[5] Jan Haji€. Disambiguation of Rich Inflection (Computational Morphology of
Czech). Charles University Press, 1st edition, 2000. In preparation.

[6] Donald E. Knuth. The Art of Computer Programming: Sorting and Searching,
volume 3. Addison Wesley, 2nd edition, 1973.

[7] Gabriele Kodydek. A word analysis system for German hyphenation, full
text search, and spell checking, with regard to the latest reform of Ger-
man orthography. In Proceedings of the Third Workshop on Text, Speech and
Dialogue — TSD 2000, 2000.

[8] Wolfgang Lezius, Reinhard Rapp, and Manfred Wettler. A freely available
morphological analyzer, disambiguator and context sensitive lemmatizer
for German. In Proceedings of the COLING-ACL, 1998.

[9] G. A. Miller. Five papers on Wordnet. Technical report, Princeton, 1993.

[10] Klara Osolsobé. Algorithmic Description of Czech Formal Morphology and
Czech Machine Dictionary. Ph.D. Thesis, Faculty of Arts, Masaryk Univer-
sity Brno, 1996. In Czech.

[11] S. Murat Oztaner. A word grammar of Turkish with morphophonemic
rules. Master’s thesis, Middle East Technical University.

[12] Emil PaleS. Sapfo — Paraphraser of Slovak. Veda, Bratislava, 1994.

[13] Radek Sedlacek. Morphological analyser of Czech. Master’s thesis, Fac-
ulty of Informatics, Masaryk University Brno, 1999. In Czech.

Copyright (© 2001, Faculty of Informatics, Masaryk University.
All rights reserved.

Reproduction of all or part of this work

Is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

Publications in the FI MU Report Series are in general accessible
via WWW and anonymous FTP:

http://www.fi.muni.cz/informatics/reports/
ftp ftp.fi.muni.cz (cd pub/reports)

Copies may be also obtained by contacting:

Faculty of Informatics
Masaryk University
Botanicka 68a

60200 Brno

Czech Republic

