Hardware-aware Performance Engineering

Jifi Filipovic

fall 2019

Ji#i Filipovi¢ Hardware-aware Performance Engineering

Introduction
€000

Focus of the Lecture

We will learn how to optimize C/C++ code to get more
performance from contemporary processors

@ maximizing benefit from cache architecture
@ writing code taking advantage of compiler auto-vectorization
@ using multiple cores efficiently
We will not cover all interesting topics...
@ only basic optimizations from each category

@ no language-specific optimizations (inlining, proper usage of
virtual functions etc.)

@ no hardcore, assembly-level optimizations

Ji#i Filipovi¢ Hardware-aware Performance Engineering

Introduction

[e] le]e]

Focus of the Lecture

All optimization techniques will be demonstrated on two examples

@ so we will see how to change simple code in multiple steps,
getting more and more speedup

Timing presented in this lecture will be obtained by using Intel
CH++
@ it has more advanced loop optimization (mainly
autovectorization) comparing to competitors
@ described optimization methods are of course usable also with
different compilers, but it may need some compiler tweaking
or writing more complex code

@ students can get free license from Intel, anybody from
academia can access license via METACentrum

Ji#i Filipovi¢ Hardware-aware Performance Engineering

Introduction
[eYe] Yo

Motivation

Optimizations will target HW properties, which may change.
However, in world of x86 processors:

@ caches appear in 80486 (1989), even 80386 had optional
off-chip cache

@ vector instructions appear in Pentium MMX (1996)

e multiple cores appear in Pentium D (2005), multi-socket
configurations much earlier

So, knowledge gathered from this lecture should has sufficiently
long lifetime :-).

Ji#i Filipovi¢ Hardware-aware Performance Engineering

Introduction
ocooe

Motivation

What if we ignore HW properties and just write good algorithms?

@ suppose we have Core i7-5960X processor: 8 cores, Skylake
architecture (AVX2 4+ FMA3 instructions)

@ L1 cache latency: 4 cycles, L2: 12 cycles, L3: 42 cycles, RAM
about 200 cycles

@ vectorized code finishes up to 32 single-precision operations
per cycle

e parallelized code take advantage of 8 (or 16 virtual) cores

You can get a lot of speedup by hardware-aware programming.

Ji#i Filipovi¢ Hardware-aware Performance Engineering

Examples
.

Demonstration Examples

We will demonstrate optimization methods using two examples

@ | have tried to find as simple as possible computational
problems, which still expose a lot of opportunity for various
optimization techniques

The code is not very abstract or generic

@ in productivity-optimized programming, we want to hide how
are algorithms performed, how are data stored etc.

@ however, when optimizing code, we have to focus on
implementation details, thus, code looks more "old school”

@ in practice, usually very small fraction of source code is
performance-critical, so different programming style for
optimized code is not a problem

Ji#i Filipovi¢ Hardware-aware Performance Engineering

Examples
000

Electrostatic Potential Map

Important problem from computational chemistry

@ we have a molecule defined by position and charges of its
atoms

@ the goal is to compute charges at a 3D spatial grid around the
molecule

In a given point of the grid, we have

Where w; is charge of the j-th atom, r;; is Euclidean distance
between atom j and the grid point i and ¢ is vacuum permittivity.

Ji#i Filipovi¢ Hardware-aware Performance Engineering

Examples
o 1o}

Electrostatic Potential Map

Initial implementation
@ suppose we know nothing about HW, just know C+-+

@ algorithm needs to process 3D grid such that it sums potential
of all atoms for each grid point

@ we will iterate over atoms in outer loop, as it allows to
precompute positions of grid points and minimizes number of
accesses into input/output array

Ji#i Filipovi¢ Hardware-aware Performance Engineering

Examples
ooe

Electrostatic Potential Map

void coulomb(const sAtom*x atoms, const int nAtoms,
const float gs, comnst int gSize, float *grid) {
for (int a = 0; a < nAtoms; a++) {
sAtom myAtom = atoms[a];
for (int x = 0; x < gSize; x++) {
float dx2 = powf ((float)x * gs — myAtom.x, 2.0f);
for (int y = 0; y < gSize; y++) {
float dy2 = powf ((float)y * gs — myAtom.y);
for (int z = 0; z < gSize; z++4) {
float dz = (float)z * gs — myAtom.z;
float e = myAtom.w / sqrtf(dx2 + dy2 + dzxdz);
grid[zxgSize*gSize + y*gSize + x| += e;

ilipovi& Hardware-aware Performance Engineering

Examples
[1]

Histogram

Used in many scientific applications

@ computes a frequency of input values occurrence in defined
intervals

@ in our example, we will compute histogram of population age
in uniformly-sized intervals

@ input is vector of ages (floating point) and interval size,
output is histogram

Hardware-aware Performance Engineering

Examples
oce

Histogram

void hist(const float* age, intx const hist, const int n,
const float group_width, const int m) {
for (int i = 0; i < n; i++4) {
const int j = (int) (age[i] / group_width);
hist [j]4++;

ifi Filipovi¢ Hardware-aware Performance Engineering

Examples
°

Benchmarking

We will benchmark codes on pretty average desktop system
@ 4 cores
e AVX2 (256-bit vectors), no FMA

Guess speedup of original codes :-).

Ji#i Filipovi¢ Hardware-aware Performance Engineering

Cache
©00000000000

Cache Memories

Why we have cache memories in modern processors?
@ main memory is too slow (both latency and bandwidth)

comparing to compute cores
@ we can build much faster, but also more expensive memory

@ cache is fast memory, which temporary keeps parts of larger

and slower memories

Hardware-aware Performance Engineering

Cache
0®0000000000

Cache Implementation

How it is working?
e multiple levels (usually L1 and L2 private for core, L3 shared)
@ accessed by cache lines (64 bytes on Intel architectures)

@ when data are accessed, they are stored in cache and kept
until cache line is needed for another data

e limited associativity (each cache line may cache only defined
parts of main memory)

@ parallel access into memory — cache lines must be somehow
synchronized (broadcast, invalidation)

Ji#i Filipovi¢ Hardware-aware Performance Engineering

Cache
00®000000000

Optimization for Cache

Optimization for spatial locality

@ access consequent elements

@ align data to a multiple of cache line size

@ otherwise only part of transfered data is used
Optimization for temporal locality

@ when data element needs to be accessed multiple times,
perform accesses in a short time

@ otherwise it may be removed from cache due to its limited
capacity or associativity

Omit inefficient usage
@ conflict misses

o false sharing

Ji#i Filipovi¢ Hardware-aware Performance Engineering

Cache
000®00000000

Electrostatic Potential Map

void coulomb(const sAtom*x atoms, const int nAtoms,
const float gs, comnst int gSize, float *grid) {
for (int a = 0; a < nAtoms; a++) {
sAtom myAtom = atoms[a];
for (int x = 0; x < gSize; x++) {
float dx2 = powf ((float)x * gs — myAtom.x, 2.0f);
for (int y = 0; y < gSize; y++) {
float dy2 = powf((float)y * gs — myAtom.y, 2.0f);
for (int z = 0; z < gSize; z++4) {
float dz = (float)z * gs — myAtom.z;
float e = myAtom.w / sqrtf(dx2 + dy2 + dzxdz);
grid[zxgSize*gSize + y*gSize + x| += e;

ilipovi& Hardware-aware Performance Engineering

Cache
0000@0000000

Evaluation

We have compiled the code above with vectorization switched off
(as we are interested in effects of memory access only)

@ 31.6 millions of atoms evaluated per second (MEvals/s) using
256 x 256 x 256 grid and 4096 atoms

@ by changing grid size to 257 x 257 x 257, performance
changes to 164.7 Mevals/s

Interpretation
@ strong dependence on input size indicates problems with
cache associativity

@ even 164.7 Mevals/s is not very good result, considering 8
floating point operations are performed in innermost loop

Ji#i Filipovi¢ Hardware-aware Performance Engineering

Cache
000008000000

Spatial Locality

We are interested in the innermost loop
@ it defines memory access pattern (i.e. which elements are
accessed consequently)
@ the innermost loop runs over z, which creates large memory
strides in accessing grid
@ when grid size is power of two, columns hits the same
associativity region
Optimization
@ we need to rearrange loops: the innermost loop should iterate
through x

Hardware-aware Performance Engineering

Cache
000000800000

Spatial Locality

void coulomb(const sAtom*x atoms, const int nAtoms,
const float gs, comnst int gSize, float *grid) {
for (int a = 0; a < nAtoms; a++) {
sAtom myAtom = atoms[a];
for (int z = 0; z < gSize; z++) {
float dz2 = powf ((float)z * gs — myAtom.z, 2.0f);
for (int y = 0; y < gSize; y++) {
float dy2 = powf((float)y * gs — myAtom.y, 2.0f);
for (int x = 0; x < gSize; x++) {
float dx = (float)x * gs — myAtom.x;
float e = myAtom.w / sqrtf(dx*xdx 4+ dy2 + dz2);
grid[zxgSize*gSize + y*gSize + x| += e;

ilipovi& Hardware-aware Performance Engineering

Cache
000000080000

Evaluation

Performance measurement
@ 371.8 Mevals/s using 256 x 256 x 256 grid and 4096 atoms

@ no sensitivity to changing grid size (no cache associativity
problem)

@ much better spatial locality
Analysis of cache pattern
@ each atom is applied to the whole grid

@ poor temporal locality (grid is too large structure)

Ji#i Filipovi¢ Hardware-aware Performance Engineering

Cache
000000008000

Temporal Locality

Atoms array is much smaller than grid
@ we can rearrange loops to iterate over atoms in the innermost
loop: z-y-x-a
@ alternatively, we may apply atom forces per rows of a grid,
creating iteration order z-y-a-x
@ or tiling may be used
Memory tiling
@ we break some loop into nested loops, such that outer loop

iterates with step s > 1 and those steps are performed in
some inner loop

@ multiple loops may be tiled

@ in our example, we will tile loop running over atoms

Ji#i Filipovi¢ Hardware-aware Performance Engineering

Cache
000000000800

Tiled Algorithm

const int TILE = 16;
sAtom myAtom[TILE]; float dy2[TILE], dz2[TILE];
for (int a = 0; a < nAtoms; at=TILE) {
myAtom [0: TILE] = atoms[a:a+TILE];
for (int z = 0; z < gSize; z++4) {
for (int aa = 0; aa < TILE; aa++)
dz2[aa] = powf((float)z * gs — myAtom[aa].z, 2.0f);
for (int y = 0; y < gSize; y++) {
for (int aa = 0; aa < TILE; aa+t+)
dy2[aa] = powf ((float)y * gs — myAtom[aa].y, 2.0f);
for (int x = 0; x < gSize; x++) {
float e = 0.0f;
for (int aa = 0; aa < TILE; aat++) {
float dx = (float)x * gs — myAtom[aa].x;
e += myAtom[aa].w / sqrtf(dx*dx + dy2[aa] + dz2[aa]);

grid[zxgSize*gSize 4 yxgSize + x| 4= e;

}

ilipovi& Hardware-aware Performance Engineering

Cache
000000000080

Evaluation

Note that autovectorization is switched off for all implementations.

’ Implementation ‘ Performance ‘ speedup ‘

Naive (grid 257) 164.7 n/a
Spatial loc. 371.8 2.26 %
ZYXA 359.7 2.18x
ZYAX 382.2 2.32x
Tiled 476.9 2.9x

Temporal locality brings only minor improvement, but it may
change when instructions are optimized/code is parallelized.

Ji#i Filipovi¢ Hardware-aware Performance Engineering

Cache
000000000000

Histogram

void hist(const float* age, intx const hist, const int n,
const float group_width, const int m) {
for (int i = 0; i < n; i++4) {
const int j = (int) (age[i] / group_width);
hist[§]++;

}

Memory access is already consequent in age. The random access
into hist cannot be omitted. So, nothing to optimize so far...

Hardware-aware Performance Engineering

Vectorization
©0000000000000000000

Vector Instructions

Modern processors have complex logic preparing instructions
@ arithmetical units are relatively cheep

@ when instruction is to be executed, it may process multiple
data elements in parallel

Data-parallel programming

@ the same instruction is applied onto multiple data (SIMD
model)

@ explicit usage: we need to generate vector instructions

Ji#i Filipovi¢ Hardware-aware Performance Engineering

Vectorization
0@000000000000000000

Vector Instructions

Vector instructions
@ the same operation is applied to a short vector

@ mainly arithmetic operations, may be masked, may contain
support for reduction, binning etc.

@ vector length depends on data type and instruction set, e.g.
AV X2 works with vector of size 256 bytes, so 8 32-bit
numbers or 4 64-bit numbers are processed in parallel

Vectorization in C/C++
@ explicit: inline assembly or intrinsics

@ implicit: compiler generates vector instructions automatically

Ji#i Filipovi¢ Hardware-aware Performance Engineering

Vectorization
00®00000000000000000

Automatic Vectorization

Better portability
@ the code can be compiled for any vector instruction set
Supported in modern compilers

@ however, it is difficult task, so allowing compiler to vectorize
code needs programmer assist

Ji#i Filipovi¢ Hardware-aware Performance Engineering

Vectorization
000@0000000000000000

Automatic Vectorization

Current limitations
@ only innermost for loops are vectorized

@ number of iterations must be known when loop is entered, or
(preferably) at compilation time

@ memory access must be regular, ideally with unit stride (i.e.
consequent elements are accessed in vector instructions)

@ vector dependence usually disallows vectorization

Hardware-aware Performance Engineering

Vectorization
0000@000000000000000

Vector Dependence

Vector dependence

@ the for loop cannot be vectorized, if there is flow dependence
between iterations

@ however, compiler may wrongly assume vector dependence (it
must by conservative to generate correct code)

e #pragma ivdep (Intel) or #pragma GCC ivdep (gcc)
instruct compiler to ignore assumed vector dependences (true
dependence still disallows vectorization)

Ji#i Filipovi¢ Hardware-aware Performance Engineering

Vectorization
00000@00000000000000

Vector Dependence

float a[n], b[n];
for (int i = 0; i < n; i4++4)
a[i] = b[i]x2.0f;

No vector dependence, the code is vectorized.

void foo(float* a, const floatx b, int n) {
for (int i = 0; i < n; i++)
af[i] = b[i]*2.0%;

The compiler must generate correct code also for pointer aliasing
(i.e. when a and b overlaps): it generates vectorized and
non-vectorized code with runtime check, or not vectorize at all.
We may help the compiler using restrict quantifier with a and b,
or use ivdep pragma.

povit Hardware-aware Performance Engineering

Vectorization
000000@0000000000000

Contiguous Memory Access

struct vec{
float x,y;

I

vec v[n];

for (int i = 0; i < n; i++4)
v[i].x = 2.0f;

The loop is vectorized, however, access into v is strided. Typical
optimization is transferring array of structures (AoS) to structure
of arrays (SoA).

struct vec{
float =*x;
float =x*y,

i

vec v;

// allocation

for (int i = 0; i < n; i4++4)
v.x[i] %= 2.0f;

ilipovi& Hardware-aware Performance Engineering

Vectorization
00000008000000000000

Loop Strip-mining

If part of the code within a loop cannot be vectorized
@ we split loop into two nested loops (similarly to tiling)

@ we divide the inner loop according to vectorization possibility
into vectorizable loop(s) and non-vectorizable loop(s)

Ji#i Filipovi¢ Hardware-aware Performance Engineering

Vectorization
00000000e00000000000

Electrostatic Potential Map

Naive implementation has assumed dependence, which needs to be
manually fixed.

for (int a = 0; a < nAtoms; a++) {

sAtom myAtom = atoms[a];
for (int x = 0; x < gSize; x++) {
powf ((float)x % gs — myAtom.x, 2.0f);

float dx2 =
for (int y = 0; y < gSize; y++) {
float dy2 = powf ((float)y * gs — myAtom.y);
for (int z = 0; z < gSize; z++) {
float dz = (float)z * gs — myAtom.z;
float e = myAtom.w / sqrtf(dx2 + dy2 + dzxdz);

#pragma ivdep
grid[zxgSizexgSize 4 yxgSize + x] 4=

}

€

}
}
}

Hardware-aware Performance Engineering

Vectorization
000000000e0000000000

Electrostatic Potential Map

AZYX and ZYAX Innermost Loop

for (int x = 0; x < gSize; x++) {
float dx = (float)x * gs — myAtom.x;
float e = myAtom.w / sqrtf(dx*xdx + dy2 + dz2);
grid[zxgSizexgSize 4 yxgSize + x| 4= e;

The loop is automatically vectorized without problems.

Hardware-aware Performance Engineering

Vectorization
0000000000e000000000

Electrostatic Potential Map

ZYXA implementation

for (int z = 0; z < gSize; z++) {
for (int y = 0; y < gSize; y++) {
for (int x = 0; x < gSize; x++) {

float e = 0.0f;

for (int a = 0; a < nAtoms; a++) {
sAtom myAtom = atoms[a];
float dx = (float)x * gs — myAtom.x;
float dy = (float)y * gs — myAtom.y;
float dz = (float)z * gs — myAtom.z;
e += myAtom.w / sqrtf(dx*dx + dyxdy + dzxdz);

}

grid[z*gSizexgSize + yxgSize + x] += e;

ilipovi& Hardware-aware Performance Engineering

Vectorization
00000000000e00000000

ZYXA and Tiled

The innermost loop is difficult to vectorize
@ strided memory access into atoms elements
@ reduction

Two possible solutions
@ AoS to SoA optimization

@ vectorization of outer loop running over x

Hardware-aware Performance Engineering

Vectorization
000000000000e0000000

for (int z = 0; z < gSize; z++) {
for (int y = 0; y < gSize; y++) {
for (int x = 0; x < gSize; x++4) {
float e = 0.0f;
for (int a = 0; a < nAtoms; a++) {

float dx = (float)x * gs — atoms.x[a];
float dy = (float)y * gs — atoms.y[a];
float dz = (float)z * gs — atoms.z[a];

e += atoms.w[a] / sqrtf(dx*dx + dyxdy + dz*dz);

}

grid[zxgSize*xgSize + y*gSize + x| += e;

ilipovi& Hardware-aware Performance Engineering

Vectorization
0000000000000e000000

Outer-loop Vectorization

for (int z = 0; z < gSize; z++) {
for (int y = 0; y < gSize; y++) {
#pragma simd
for (int x = 0; x < gSize; x++) {
float e = 0.0f;
for (int a = 0; a < nAtoms; a++) {
sAtom myAtom = atoms[a];
float dx = (float)x * gs — myAtom.x;
float dy = (float)y * gs — myAtom.y;
float dz = (float)z * gs — myAtom.z;
e += myAtom.w / sqrtf(dx*dx + dyxdy + dzxdz);
}

grid[z*gSizexgSize + yxgSize + x] += e;

Ji#i Filipovi¢ Hardware-aware Performance Engineering

Vectorization
00000000000000e00000

All implementations

We will use restrict quantifier

@ otherwise, compiler may expect aliasing even between atoms
and grid and give up vectorization

Hardware-aware Performance Engineering

Vectorization
000000000000000e0000

Evaluation

] Implementation \ Performance \ speedup \ (vect. speedup) ‘
Naive (grid 257) 164.7 n/a n/a
Naive vec. (grid 257) 330.6 | 2.01x 2.01x
Spatial loc. 1838 11.2x 4.94x
ZYXA outer 2189 13.3x% 6.09x
ZYXA SoA 2203 13.4x 6.12x
ZYAX 2197 13.3x% 5.75x%
Tiled outer 2577 15.6x 5.4%
Tiled SoA 2547 15.5% 5.34x

Ji#i Filipovi¢ Hardware-aware Performance Engineering

Vectorization
0000000000000000e000

Histogram

void hist(const float* age, intx const hist, const int n,
const float group_width, const int m) {
for (int i = 0; i < n; i++4) {
const int j = (int) (age[i] / group_width);
hist[§]++;

}

The loop cannot be vectorized due to dependency in hist. We will
use strip-mining.

ilipovi& Hardware-aware Performance Engineering

Vectorization
00000000000000000e00

Histogram

void hist(const float* restrict age, int* const restrict hist,
const int n, const float group_width, const int m) {
const int vecLen = 16;
//XXX: this algorithm assumes n%vecLen =— 0.
for (int ii = 0; ii < n; ii 4= veclLen) {
int histIdx[vecLen];
for (int i = ii; i < ii + veclen; i++)
histIdx[i—ii] = (int) (age[i] / group_width);
for (int ¢ = 0; ¢ < veclen; c++)
hist [histIdx[c]]++;
}
}

Division is heavy-weight operation, we will remove it.

ifi Filipovi¢ Hardware-aware Performance Engineering

Vectorization
000000000000000000e0

Histogram

void hist(const float* restrict age, int* const restrict hist,
const int n, const float group_width, const int m) {

const int vecLen = 16;
const float invGroupWidth = 1.0f/group_width;
//XXX: this algorithm assumes n%vecLen =— 0.

for (int ii = 0; ii < n; ii 4= veclen) {
int histIdx[vecLen];
for (int i = ii; i < ii + veclen; i++)
histIdx[i—ii] = (int) (age[i] * invGroupWidth);
for (int ¢ = 0; ¢ < veclen; c++)
hist [histIdx[c]]++;

ifi Filipovi¢ Hardware-aware Performance Engineering

Vectorization
0000000000000000000e

Evaluation

Implementation \ Performance \ speedup ‘

Naive 1020 MB/s n/a
Vectorized 2455 MB/s | 2.41x
Removed div. 4524 MB/s | 4.44x

Ji#i Filipovi¢ Hardware-aware Performance Engineering

Parallelization
©00000000000000

Parallelization

Why we have multicore processors?

@ processors frequency is no longer substantially improved due
to energy requirements

@ however, with new manufacturing processes, it is possible to
build smaller cores, thus, multiple cores can be integrated into
a die
Programming multiple cores
@ coarse-grained parallelism (compared to vectorization)

@ threads are asynchronous by default (MIMD model),
synchronization is explicit and relatively expensive

Hardware-aware Performance Engineering

Parallelization
0®0000000000000

Parallelization in C/C++

Thread-level parallelism in C/C++

@ many possible ways to parallelize a code: pthreads, Boost
threads, TBB etc.

@ we will use OpenMP in our examples, as it broadly-supported
standard and it requires only small changes in our code

@ however, optimization principles are general and can be used
with any parallelization interface

Ji#i Filipovi¢ Hardware-aware Performance Engineering

Parallelization
00®000000000000

OpenMP standard
@ for shared-memory parallelism

@ uses pragmas to declare, which parts of the code runs in
parallel

@ very easy to use, but writing efficient code may be challenging
(much like in other interfaces)

@ implements fork-join model

e standard, implemented in all major C/C++ compilers

Ji#i Filipovi¢ Hardware-aware Performance Engineering

Parallelization
000®00000000000

The parallel region of the code is declared by #pragma omp
parallel

//serial code
const int n = 100;
#pragma omp parallel

//parallel code
printf (" Hello from thread %d\n", omp_get_thread_num());
//parallel loop, iterations order is undefined
#pragma omp for
for (int i = 0; i < n; i++) {
//iteration space is distributed across all threads
printf ("%d ", i);

//serial code

ilipovi& Hardware-aware Performance Engineering

Parallelization
0000®0000000000

We can define private and shared variables
o #pragma omp parallel for private(a) shared(b)
@ variables declared before parallel block are shared by default
@ private statement creates private copy for each thread
Thread synchronization
@ we can define critical section by #pragma omp critical

@ or use lightweight atomic operations, which are restricted to
simple scalar operations, such as + - * /

Ji#i Filipovi¢ Hardware-aware Performance Engineering

Parallelization
00000®000000000

Electrostatic Potential Map

Which loop can be parallelized?

o AZYX: loop running over atoms would need synchronization,
so we prefer to parallelize loop running over Z, Y or X

o ZYXA: we can parallelize up to three outermost loops

@ ZYAX: we can parallelize up to two outermost loops

o tiled: we can parallelize loop running over Z, Y and X
Which loop to parallelize?

@ enter and exit of the loop is synchronized

@ we want to minimize number of synchronizations, so we will
parallelize loops performing more work

@ to scale better, we may collapse n perfectly-nested loops using
#pragma omp for collapse(n)

Ji#i Filipovi¢ Hardware-aware Performance Engineering

Parallelization
000000@00000000

ZYXA Example

#pragma omp parallel for
for (int z = 0; z < gSize; z++4) {
for (int y = 0; y < gSize; y++) {
#pragma simd
for (int x = 0; x < gSize; x++) {
float e = 0.0f;
for (int a = 0; a < nAtoms; a++) {
sAtom myAtom = atoms[a];
float dx = (float)x * gs — myAtom.x;
float dy = (float)y * gs — myAtom.y;
float dz = (float)z * gs — myAtom.z;
e += myAtom.w / sqrtf(dxxdx + dy*dy + dzxdz);

}

grid[zxgSize*xgSize + y*gSize + x| += e;

Ji#i Filipovi¢ Hardware-aware Performance Engineering

Parallelization
0000000e0000000

ZYXA Example

#pragma omp parallel for collapse(2)
for (int z = 0; z < gSize; z++4) {
for (int y = 0; y < gSize; y++) {
#pragma simd
for (int x = 0; x < gSize; x++) {
float e = 0.0f;
for (int a = 0; a < nAtoms; a++) {
sAtom myAtom = atoms[a];
float dx = (float)x * gs — myAtom.x;
float dy = (float)y * gs — myAtom.y;
float dz = (float)z * gs — myAtom.z;
e += myAtom.w / sqrtf(dxxdx + dy*dy + dzxdz);

}

grid[zxgSize*xgSize + y*gSize + x| += e;

Ji#i Filipovi¢ Hardware-aware Performance Engineering

Parallelization
00000000e000000

Evaluation

’ Implementation ‘ Performance ‘ speedup \ (par. speedup) ‘

Naive (grid 257) 164.7 n/a n/a
Spatial loc. 2272 13.8x 1.24x
ZYXA outer 7984 48.5% 3.62x
ZYAX 8092 49.1x 3.68x
Tiled SoA 9914 60.2 % 3.92x

Ji#i Filipovi¢ Hardware-aware Performance Engineering

Parallelization
000000000e00000

Histogram

void hist(const float* restrict age, int* const restrict hist,
const int n, const float group_width, const int m) {
const int vecLen = 16;
const float invGroupWidth = 1.0f/group_width;
for (int ii = 0; ii < n; ii 4= veclLen) {
int histIdx[vecLen];
for (int i = ii; i < ii + veclen; i++)
histIdx[i—ii] = (int) (age[i] #* invGroupWidth);
for (int ¢ = 0; ¢ < veclen; c++)
hist [histIdx[c]]++;
}

}

We can parallelize the outer loop and atomically update hist.

Ji#i Filipovi¢ Hardware-aware Performance Engineering

Parallelization
0000000000e0000

Histogram

void hist(const float* restrict age, int* const restrict hist,
const int n, const float group_width, const int m) {
const int veclLen = 16;
const float invGroupWidth = 1.0f/group_width;
#pragma omp parallel for
for (int ii = 0; ii < n; ii 4= veclen) {
int histIdx[vecLen];
for (int i = ii; i < ii 4 veclen; i++4)
histIdx[i—ii] = (int) (age[i] * invGroupWidth);
for (int ¢ = 0; ¢ < veclen; c++4)
#pragma omp atomic
hist [histIdx[c]]++;

ifi Filipovi¢ Hardware-aware Performance Engineering

Evaluation

Parallelization
00000000000e000

Implementation \ Performance \ speedup ‘
Naive 1020 MB/s n/a
Vectorized 2455MB/s | 2.41x
Removed div. 4524 MB/s | 4.44x
Parallel 290.2MB/s 0.28x

So, overhead of atomic operations is too high...

Ji¥i Filipovit

Hardware-aware Performance Engineering

Parallelization
000000000000e00

Histogram

void hist(const float* restrict age, int* const restrict hist,
const int n, const float group_width, const int m) {
const int vecLen = 16;
const float invGroupWidth = 1.0f/group_width;
#pragma omp parallel
{
int histPriv[m];
histPriv[:] = 0;
int histIdx[vecLen];
#pragma omp for
for (int ii = 0; ii < n; ii 4= veclen) {
for (int i = ii; i < ii 4 vecLen; i++)
histIdx[i—ii] = (int) (age[i] * invGroupWidth);
for (int ¢ = 0; ¢ < vecLen; c++)
histPriv[histIdx[c]]4++;
}
for (int ¢ = 0; ¢ < m; c++)
#pragma omp atomic
hist[c] 4= histPriv[c];

ifi Filipovi¢ Hardware-aware Performance Engineering

Parallelization
0000000000000 e0

Evaluation

Implementation | Performance ‘ speedup ‘

Naive 1020 MB/s n/a
Vectorized 2455MB/s | 2.41x
Removed div. 4524 MB/s | 4.44x
Parallel 290.2MB/s | 0.28x
Parallel opt. 20086 MB/s 19.7x

Ji#i Filipovi¢ Hardware-aware Performance Engineering

Parallelization
00000000000000e

Histogram

This implementation is OK on our system

@ however, combination of small m (wide groups, for which the
histogram is computed) and highly-parallel system decreases
performance significantly

o false sharing issue!
False sharing
@ array histPriv is created by all threads
@ if the array is small, multiple arrays may share the same cache
line
@ so write access to the independent array causes frequent
synchronization of the cache

@ very simple optimization: padding histPriv array

Ji#i Filipovi¢ Hardware-aware Performance Engineering

Conclusion
.

Conclusion

We have demonstrated basic hardware-aware optimization methods

@ there is still a lot of uncovered topics

@ however, knowledge of basic optimization methods can still
make a big difference in performance

We have demonstrated optimization on two examples
@ electrostatic potential map: up to 60x speedup
@ histogram: up to 20x speedup

@ this is much more, than people usually expect...
More info

@ Intel/AMD optimization manuals

o Colfax Research courses

Ji¥i Filipovit

Hardware-aware Performance Engineering

	Introduction
	Introduction

	Examples
	Introduction
	Electrostatic Potential Map
	Histogram
	Histogram

	Cache
	Cache

	Vectorization
	Vectorization

	Parallelization
	Parallelization

	Conclusion
	Conclusion

