
Future of C++
PV264 Advanced Programming in C++

Nikola Beneš Jan Mrázek Vladimír Štill

Faculty of Informatics, Masaryk University

Spring 2019

PV264: Future of C++ Spring 2019 1 / 26

Outline

new stuff in C++17 that we haven’t seen yet
proposals for C++20

https://isocpp.org/std/status
https://en.wikipedia.org/wiki/C%2B%2B20

PV264: Future of C++ Spring 2019 2 / 26

https://isocpp.org/std/status
https://en.wikipedia.org/wiki/C%2B%2B20

C++ status in compilers/libraries

https://en.cppreference.com/w/cpp/compiler_support

clang
compiler status: https://clang.llvm.org/cxx_status.html
libc++ status: http://libcxx.llvm.org/ under Current status

gcc
compiler status:
https://gcc.gnu.org/projects/cxx-status.html
libstdc++ status:
https:
//gcc.gnu.org/onlinedocs/libstdc++/manual/status.html

library features depend on both the compiler and the library
implementation
clang uses libstdc++ by default on Linux, but can use libc++ instead

-stdlib=libc++
PV264: Future of C++ Spring 2019 3 / 26

https://en.cppreference.com/w/cpp/compiler_support
https://clang.llvm.org/cxx_status.html
http://libcxx.llvm.org/
https://gcc.gnu.org/projects/cxx-status.html
https://gcc.gnu.org/onlinedocs/libstdc++/manual/status.html
https://gcc.gnu.org/onlinedocs/libstdc++/manual/status.html

Already Seen New Features in C++17

Language
if constexpr
fold expressions
auto parameters in templates
class template argument deduction
structured bindings auto [a, b] = get_tuple();
lambdas can capture *this (copy of current object)
guaranteed cases of copy elision

Library
std::optional, std::variant, std::any
std::string_view
filesystem support
uninitialized memory helper functions
std::scoped_lock

PV264: Future of C++ Spring 2019 4 / 26

New Features in C++17

if/switch with initializer
allows to declare a variable and then evaluate an expression
if (auto x = get(); x.valid()) { ... }
the scope of x is the whole if ... else statement
in fact, both parts can be expressions and both parts can be
declarations

PV264: Future of C++ Spring 2019 5 / 26

New Features in C++17

Attributes
in the language since C++11
in C++14: [[noreturn]], [[deprecated]]

[[fallthrough]]

explicit annotation for fallthrough cases
better diagnostics (warnings) with -Wimplicit-fallthrough
(clang)

[[nodiscard]]

issue a compiler warning if a value is discarded
not yet used in the standard library, proposal for C++: std::async,
empty methods of containers, etc.

[[maybe_unused]]

suppress warnings on unused entitites (parameters, variables, . . .)

PV264: Future of C++ Spring 2019 6 / 26

New in C++17: More Guarantees About Evaluation Order

What is stored in s at the end of the following program?
std::string s = "but I have heard it works even if you "

"don't believe in it";
s.replace(0, 4, "")
.replace(s.find("even"), 4, "only")
.replace(s.find(" don’t"), 6, "");

it is not defined before C++17!

PV264: Future of C++ Spring 2019 7 / 26

New in C++17: More Guarantees About Evaluation Order

What is stored in s at the end of the following program?
std::string s = "but I have heard it works even if you "

"don't believe in it";
s.replace(0, 4, "")
.replace(s.find("even"), 4, "only")
.replace(s.find(" don’t"), 6, "");

it is not defined before C++17!

PV264: Future of C++ Spring 2019 7 / 26

New in C++17: More Guarantees About Evaluation Order

C++17 guarantees that a is evaluated before b in these cases:
a.b, a->b, a->*b
a(b1, b2, b3) (arguments can still be evaluated in arbitrary order)
b = a, b @=a (any compound assignment)
a[b]
a << b, a >> b
this evaluation order is preserved even for overloaded operators

e.g. stream operators

PV264: Future of C++ Spring 2019 8 / 26

New Features in C++17

Miscellaneous language features
fixed behaviour of auto x{ y }

now x and y have the same type; in C++14 x is initializer_list
nested namespace declaration namespace foo::bar { ... }
static_assert without message
inline variables

can be safely defined in header files
UTF-8 literals u8"something"
lambdas implicitly constexpr

range for generalisation: end and begin can have different types
__has_include preprocessor helper

PV264: Future of C++ Spring 2019 9 / 26

New Features in C++17: Library

std::invoke
allows uniform invocation of functions, function objects, function
pointers, members functions pointers, and member data pointers
for member pointers the first argument must be object on which the
member functions should be invoked
for member data pointers the only argument should be the instance
from which the data should be extracted
this is what happens inside std::function, std::bind,
std::thread constructor, now it is available in the library

std::apply
invokes given callable object with arguments from a tuple
essentially unwraps the tuple into std::invoke
works on anything that has std::get and std::tuple_size

std::make_from_tuple
like std::apply, but invokes a constructor

PV264: Future of C++ Spring 2019 10 / 26

New Features in C++17: Library

std::invoke
allows uniform invocation of functions, function objects, function
pointers, members functions pointers, and member data pointers
for member pointers the first argument must be object on which the
member functions should be invoked
for member data pointers the only argument should be the instance
from which the data should be extracted
this is what happens inside std::function, std::bind,
std::thread constructor, now it is available in the library

std::apply
invokes given callable object with arguments from a tuple
essentially unwraps the tuple into std::invoke
works on anything that has std::get and std::tuple_size

std::make_from_tuple
like std::apply, but invokes a constructor

PV264: Future of C++ Spring 2019 10 / 26

New Features in C++17: Library

std::invoke
allows uniform invocation of functions, function objects, function
pointers, members functions pointers, and member data pointers
for member pointers the first argument must be object on which the
member functions should be invoked
for member data pointers the only argument should be the instance
from which the data should be extracted
this is what happens inside std::function, std::bind,
std::thread constructor, now it is available in the library

std::apply
invokes given callable object with arguments from a tuple
essentially unwraps the tuple into std::invoke
works on anything that has std::get and std::tuple_size

std::make_from_tuple
like std::apply, but invokes a constructor

PV264: Future of C++ Spring 2019 10 / 26

New Features in C++17: Library

map and set extensions
support for moving nodes between instances of the container
(avoiding copy/move constructors of contained values)
merging of containers
map only: insert_or_assign, try_emplace (takes a key and
arguments to construct value from)

std::shared_mutex
reader-writer mutex
multiple readers can share the mutex

lock_shared method
better: use std::shared_lock

writer access is exclusive
lock method
std::unique_lock or std::lock_guard or std::scoped_lock

PV264: Future of C++ Spring 2019 11 / 26

New Features in C++17: Library

parallel algorithms
overloads of standard algorithms
first parameter: execution policy

std::execution::par – run in parallel
not yet supported by either clang or gcc
currently only supported by Intel C++

PV264: Future of C++ Spring 2019 12 / 26

Technical Specifications

large topics considered for standardisation are first processed in form of
technical specifications (TS)

they are refined, implemented in compiler/library as experimental
features

e.g. <experimental/*> headers for library extensions
later might be merged into a standard

some of the current TS are:
concepts – templates with requirements on the substituted arguments
ranges – concept-based range versions of STL iterators and algorithms
networking – small set of network-related libraries, ASIO inspired
modules – support for modules as an alternative to headers
coroutines – support for generators working similar to C# yield
concurrency – extended futures and promises, barriers, . . .
and more: http://en.cppreference.com/w/cpp/experimental

PV264: Future of C++ Spring 2019 13 / 26

http://en.cppreference.com/w/cpp/experimental

Technical Specifications

large topics considered for standardisation are first processed in form of
technical specifications (TS)

they are refined, implemented in compiler/library as experimental
features

e.g. <experimental/*> headers for library extensions
later might be merged into a standard

some of the current TS are:
concepts – templates with requirements on the substituted arguments
ranges – concept-based range versions of STL iterators and algorithms
networking – small set of network-related libraries, ASIO inspired
modules – support for modules as an alternative to headers
coroutines – support for generators working similar to C# yield
concurrency – extended futures and promises, barriers, . . .
and more: http://en.cppreference.com/w/cpp/experimental

PV264: Future of C++ Spring 2019 13 / 26

http://en.cppreference.com/w/cpp/experimental

C++20

Features currently voted into C++20
designated initializers
lambdas with templates
initialization in range-based for
comparison operator <=>
concepts
contracts
ranges
coroutines
modules
. . .

PV264: Future of C++ Spring 2019 14 / 26

Designated Initializers

already in C since C99
restricted (need to keep ordering, not for arrays)

struct A {
int x = 0;
int y = 0;
double z;

};

A a { .x = 5, .z = 3.14 };

PV264: Future of C++ Spring 2019 15 / 26

Lambdas with Templates

this is in fact templated:
[](auto x, auto y) { return x + y; }

C++20: allow for explicit template specification
[]<typename T>(T x, T y) { return x + y; }

[]<typename It>(It iter, typename It::difference_type diff) {
/* ... */

}

PV264: Future of C++ Spring 2019 16 / 26

Initialization in Range-Based for

allow initialization part before range
for (auto thing = get_thing();

const auto& item : thing.items()) {
// do something

}

for (const auto& item : get_thing().items()) might not be
well-defined, why?

what if get_thing returns a temporary object?

PV264: Future of C++ Spring 2019 17 / 26

Initialization in Range-Based for

allow initialization part before range
for (auto thing = get_thing();

const auto& item : thing.items()) {
// do something

}

for (const auto& item : get_thing().items()) might not be
well-defined, why?

what if get_thing returns a temporary object?

PV264: Future of C++ Spring 2019 17 / 26

Three-way Comparison Operator

operator <=> (aka spaceship)
implementing it automatically generates <, >, <=, >=, ==, !=
can be defaulted – compiler automatically implements it
different return type for different semantics:

strong_ordering
weak_ordering
partial_ordering
strong_equality
weak_equality

PV264: Future of C++ Spring 2019 18 / 26

Concepts

Motivation
struct A { /* ... */ };
std::map< A, std::string > map;
what happens if A does not define operator<?

a nasty type error somewhere deep inside std::map implementation

what if we could say that the key of std::map has to support operator<?
this is what concepts do
allows better error messages

the standard already mentions concepts, but as an abstract description of
requirements, not something checkable or usable by the compiler

e.g. ForwardIterator concept

PV264: Future of C++ Spring 2019 19 / 26

Concepts

Motivation
struct A { /* ... */ };
std::map< A, std::string > map;
what happens if A does not define operator<?

a nasty type error somewhere deep inside std::map implementation

what if we could say that the key of std::map has to support operator<?
this is what concepts do
allows better error messages

the standard already mentions concepts, but as an abstract description of
requirements, not something checkable or usable by the compiler

e.g. ForwardIterator concept

PV264: Future of C++ Spring 2019 19 / 26

Concepts

Motivation
struct A { /* ... */ };
std::map< A, std::string > map;
what happens if A does not define operator<?

a nasty type error somewhere deep inside std::map implementation

what if we could say that the key of std::map has to support operator<?
this is what concepts do
allows better error messages

the standard already mentions concepts, but as an abstract description of
requirements, not something checkable or usable by the compiler

e.g. ForwardIterator concept

PV264: Future of C++ Spring 2019 19 / 26

Concepts

Motivation
struct A { /* ... */ };
std::map< A, std::string > map;
what happens if A does not define operator<?

a nasty type error somewhere deep inside std::map implementation

what if we could say that the key of std::map has to support operator<?
this is what concepts do
allows better error messages

the standard already mentions concepts, but as an abstract description of
requirements, not something checkable or usable by the compiler

e.g. ForwardIterator concept

PV264: Future of C++ Spring 2019 19 / 26

Concepts

concept declaration
template <typename T>
concept bool LessComparable = requires(T a, T b) {

{ a < b } -> bool;
};

concept constraints
template <typename K, typename V>

requires LessComparable<K>
struct map { ... };

template <typename Container>
void sort(Container container)

requires LessComparable<typename Container::value_type>
{ ... }

currently supported by gcc -fconcepts
PV264: Future of C++ Spring 2019 20 / 26

Concepts

shortcuts
template <LessThanComparable K, typename V>
struct map { ... };

// this is a templated function!
void f(auto param) { ... };

// this is a templated function with a constraint
void sort(Sortable auto& container) { ... };

// can also be written as
void sort(Sortable& container) { ... };

PV264: Future of C++ Spring 2019 21 / 26

Contracts

allow to specify function pre- and post-conditions
int f(int i)

[[expects: i > 0]]
[[ensures x: x < 1]];

assert attribute
int f(int i) {

int x = i * i;
[[assert: x >= 0]];
...

}

code analysis tools / optimizers may use them
violation may be reported at run time

PV264: Future of C++ Spring 2019 22 / 26

Ranges

a complete rewrite of the algorithms part of the standard library
we have seen this earlier
implementation: https://github.com/CaseyCarter/cmcstl2

namespace view = std::experimental::ranges::view;

std::vector ints { 1, 2, 3, 4, 5 };
auto even = [](int i) { return i % 2 == 0; };
auto square = [](int i) { return i * i; };
for (int i : ints | view::filter(even)

| view::transform(square)) {
std::cout << i << ' ';

}

PV264: Future of C++ Spring 2019 23 / 26

https://github.com/CaseyCarter/cmcstl2

Coroutines

functions that can suspend their execution and be resumed later
coroutines in Python: yield

co_await
suspend execution until a promise is fulfilled

co_yield
suspend execution and return a value to caller

co_return
finish execution and return a value to caller

PV264: Future of C++ Spring 2019 24 / 26

Modules

includes are not a good way to declare functions from libraries
they are just textual substitution
risk of macro collisions
processed every time they are used, slow compilation

there is need for something better, modules
better isolated, faster
should allow gradual and backward-compatible move to modules
but there will be no standardised format of compiled modules

modules represented in a compiler-specific way
in a way more advanced precompiled headers

PV264: Future of C++ Spring 2019 25 / 26

Modules

includes are not a good way to declare functions from libraries
they are just textual substitution
risk of macro collisions
processed every time they are used, slow compilation

there is need for something better, modules
better isolated, faster
should allow gradual and backward-compatible move to modules
but there will be no standardised format of compiled modules

modules represented in a compiler-specific way
in a way more advanced precompiled headers

PV264: Future of C++ Spring 2019 25 / 26

Modules

import std.io; // make names from std.io available
export module M; // declare module M
export import std.random; // import and export names from

// std.random
export struct Point { // define and export Point

int x;
int y;

};

export template< typename T >
T foo(const T &x) { return x; }

#define MACROS_ARE_NOT_EXPORTED "Yay!"

initial implementation in Visual Studio and clang (-fmodules-ts)

PV264: Future of C++ Spring 2019 26 / 26

