
Standard Library
PV264 Advanced Programming in C++

Nikola Beneš Jan Mrázek Vladimír Štill

Faculty of Informatics, Masaryk University

Autumn 2020

PV264: Standard Library Autumn 2020 1 / 35

Standard Library

What you have seen:
C library
algorithms, containers, iterators
I/O
some of the utilities
unique_ptr
optional, variant
thread support
string, string_view
. . .

What other things does the standard library offer?

PV264: Standard Library Autumn 2020 2 / 35

What are we going to see today?

user-defined literals
smart pointers
any
dealing with time (<chrono>)
(pseudo-)random numbers (<random>)
regular expressions (<regex>)
filesystem library (<filesystem>)

PV264: Standard Library Autumn 2020 3 / 35

User-Defined Literals

C++ literal suffixes
integer suffixes: u, l, ll, ul, ull
floating-point suffixes: f, l

Since C++11: User-defined literals
used by standard library
can be defined in user code (must start with _)

long double operator""_km(long double km) {
return km * 1000.0;

}
long double operator""_miles(long double miles) {

return miles * 1609.344;
}

PV264: Standard Library Autumn 2020 4 / 35

User-Defined Literals

1234_x calls first available of:
operator""_x(1234ull)
operator""_x("1234")
operator""_x<'1', '2', '3', '4'>()

similarly for floating-point literals (long double)
"abcd"_x calls operator""_x("abcd", std::size_t(4))
'w'_x calls operator""_x('w')

User-defined literals in standard library (C++14)
std::complex: i, if, il for pure imaginary numbers
std::chrono: s seconds, m minutes, . . .
std::string: "Hello"s
std::string_view: "Hello"sv

See http://en.cppreference.com/w/cpp/language/user_literal.

PV264: Standard Library Autumn 2020 5 / 35

http://en.cppreference.com/w/cpp/language/user_literal

Smart Pointers

std::unique_ptr

unique owner of memory
std::unique_ptr< T > owns one object
std::unique_ptr< T[] > owns an array of objects
non-copyable, movable
constructor does not allocate memory, it simply takes ownership of
the memory given by a pointer
std::make_unique< T >(ctor, params),
std::make_unique< T[] >(size) (C++14) allocate memory
(using new) + call the unique_ptr constructor
destructor calls delete (or delete[] for T[] version)

default behaviour
can be changed via second template parameter

PV264: Standard Library Autumn 2020 6 / 35

Smart Pointers — std::unique_ptr

Custom deleter
second template parameter — type of deleter
may be any callable object
example usage: wrapping C library functions that allocate memory
using malloc

std::unique_ptr< char, decltype(&std::free) >
ptr{ strdup("Hello"), &std::free };

// free is called at the end of ptr's lifetime

PV264: Standard Library Autumn 2020 7 / 35

Smart Pointers — std::unique_ptr

Custom deleter example — SDL2 library
namespace MySDL {
struct Deleter {

void operator()(SDL_Window *w) { SDL_DestroyWindow(w); }
void operator()(SDL_Surface *s) { SDL_FreeSurface(s); }
// ...

};

using Window = std::unique_ptr< SDL_Window, Deleter >;
using Surface = std::unique_ptr< SDL_Surface, Deleter >;
// ...
} // namespace MySDL

int main() {
// ...
MySDL::Window w{ SDL_CreateWindow(...) };

}
PV264: Standard Library Autumn 2020 8 / 35

Smart Pointers — std::unique_ptr

Custom deleter example — useful template trick
template< auto fn >
struct FnDeleter {

template< typename T >
void operator()(T* ptr) {

fn(ptr);
}

};

can be used as:
std::unique_ptr< char[], FnDeleter< std::free > >

ptr{ strdup("Hello") };

PV264: Standard Library Autumn 2020 9 / 35

Smart Pointers — Reference Counting

std::shared_ptr

shared ownership, counts references (shared_ptr instances pointing
to the memory)
note: reference counter has to be allocated on the heap too!
deallocates memory when the last shared_ptr instance is destroyed

data structures must not contain shared_ptr cycles
(use std::weak_ptr to break cycles)

copyable, copy increases reference count
std::make_shared< T >(ctor, params)

allocates memory only once (both for the T object and for the counter)
should almost always be taken by value
thread safe – reference count increments/decrements are atomic

PV264: Standard Library Autumn 2020 10 / 35

Smart Pointers — Reference Counting
std::weak_ptr

to be used with shared_ptr to break cycles
does not own the memory; can detect whether the memory is still valid

using the counter value
std::weak_ptr< A > wp;
{

std::shared_ptr< A > sp{ new A() };
wp = sp;

if (auto locked = wp.lock()) {
locked->foo();

}
}
if (wp.expired()) {

std::cout << "wp has expired\n";
}

PV264: Standard Library Autumn 2020 11 / 35

Smart Pointers — std::shared_ptr

Custom deleter
not part of the type, simply a second argument to the constructor
std::shared_ptr< A > sp{ new A(), MyOwnDeleter() };
why is this different from unique_ptr?

greater flexibility, more overhead

Polymorphic deletion
struct A { /* ... */ };
struct B : A { /* ... */ };

int main() {
std::shared_ptr< A > ptr{ new B() };

} // which destructor gets called here?

again, different from unique_ptr

PV264: Standard Library Autumn 2020 12 / 35

Smart Pointers — std::shared_ptr

Custom deleter
not part of the type, simply a second argument to the constructor
std::shared_ptr< A > sp{ new A(), MyOwnDeleter() };
why is this different from unique_ptr?

greater flexibility, more overhead

Polymorphic deletion
struct A { /* ... */ };
struct B : A { /* ... */ };

int main() {
std::shared_ptr< A > ptr{ new B() };

} // which destructor gets called here?

again, different from unique_ptr

PV264: Standard Library Autumn 2020 12 / 35

Smart Pointers — std::shared_ptr

What is wrong?
struct X {

std::shared_ptr< X > getPtr() {
return std::shared_ptr< X >(this);

}
};

can create shared pointers that do not share ownership
object gets possibly deallocated more than once

Solution: std::enable_shared_from_this (CRTP class)
struct X : std::enable_shared_from_this< X > {

std::shared_ptr< X > getPtr() {
return shared_from_this();

}
};

PV264: Standard Library Autumn 2020 13 / 35

Smart Pointers — std::shared_ptr

What is wrong?
struct X {

std::shared_ptr< X > getPtr() {
return std::shared_ptr< X >(this);

}
};

can create shared pointers that do not share ownership
object gets possibly deallocated more than once

Solution: std::enable_shared_from_this (CRTP class)
struct X : std::enable_shared_from_this< X > {

std::shared_ptr< X > getPtr() {
return shared_from_this();

}
};

PV264: Standard Library Autumn 2020 13 / 35

Smart Pointers — std::shared_ptr

What is wrong?
struct X {

std::shared_ptr< X > getPtr() {
return std::shared_ptr< X >(this);

}
};

can create shared pointers that do not share ownership
object gets possibly deallocated more than once

Solution: std::enable_shared_from_this (CRTP class)
struct X : std::enable_shared_from_this< X > {

std::shared_ptr< X > getPtr() {
return shared_from_this();

}
};

PV264: Standard Library Autumn 2020 13 / 35

Smart Pointers — Shared Ownership, Casting

std::static_pointer_cast, std::dynamic_pointer_cast, . . .
special functions to cast shared pointers
the result has a different type but shares ownership with the original

Shared Ownership
aliasing constructor: std::shared_ptr< X > q(r, p);
shares ownership information with r, but points to memory of p
will call deleter for the original pointer of r
calling get() will return p
programmer’s responsibility: ensure p is valid as long as r lives
example usage: p points to a member of the object of r

PV264: Standard Library Autumn 2020 14 / 35

Container for Any Type, std::any

std::variant can store a single value from a given list of types
without heap allocation

std::any can store a value of any type, but with larger overhead
uses run-time type support (RTTI) for this
allocates memory (at least for larger objects)

any can be empty (has_value())
the type can be queried (type())
std::make_any
std::any_cast for access
no visit (why?)

PV264: Standard Library Autumn 2020 15 / 35

Container for Any Type, std::any

std::variant can store a single value from a given list of types
without heap allocation

std::any can store a value of any type, but with larger overhead
uses run-time type support (RTTI) for this
allocates memory (at least for larger objects)

any can be empty (has_value())
the type can be queried (type())
std::make_any
std::any_cast for access
no visit (why?)

PV264: Standard Library Autumn 2020 15 / 35

Date and Time in the Standard Library

C-style date and time utilities <ctime>
since C++11: std::chrono library <chrono>
three main types:

clocks
durations
time points

proposed for C++2z:
calendar, time zones

PV264: Standard Library Autumn 2020 16 / 35

std::chrono::duration

A time interval in given units (number of ticks)
template< class Rep, class Period = std::ratio< 1 > >
class duration;

Rep - type for tick count (can be floating point)
Period - number of seconds per tick as std::ratio
stores the number of ticks

can be obtained through count()
durations can be added and subtracted

type of result is a common type of both operands
durations can be multiplied or divided by a number

Helper classes
from chrono::nanoseconds to chrono::hours
literals for these types (h, min, s, ms, us, ns) – C++14

defined in the namespace std::chrono_literals
conversion between durations: chrono::duration_cast

PV264: Standard Library Autumn 2020 17 / 35

std::chrono::time_point

Basically a duration linked to a given clock
template< class Clock,

class Duration = typename Clock::duration >
class time_point;

can be subtracted, resulting in duration of common type
a duration can be added or subtracted

PV264: Standard Library Autumn 2020 18 / 35

Clocks

3 predefined clocks in STL:
std::chrono::system_clock

wall-time clock
can be converted to C-style time (can be displayed as datetime)
may not be monotonic (time can decrease)

std::chrono::steady_clock
must be monotonic
may not be related to wall-clock time

std::chrono::high_resolution_clock
may not be monotonic
at least as precise as steady_clock

PV264: Standard Library Autumn 2020 19 / 35

Clock Interface

clocks are types, have no instances → static methods
each clock defines the following types:

rep – type for number of ticks
period – number of seconds per tick as std::ratio
duration – usually std::chrono::duration< rep, period >
time_point – usually std::chrono::time_point< clock >

is_steady – static member constant, true if clock monotonic
now() – static method, returns time_point with current time
system_clock also has following static methods for conversion:

std::time_t to_time_t(const time_point&)
time_point from_time_t(std::time_t)

PV264: Standard Library Autumn 2020 20 / 35

Random Numbers in the Standard Library

header <random>
directly in namespace std
two concepts:

UniformRandomBitGenerator
generate pseudo-random unsigned integers
uniform distribution
do not use directly – source of random bits

RandomNumberDistribution
take random bits as input
produce numbers of given type and distribution

PV264: Standard Library Autumn 2020 21 / 35

Random Number Engines

a source of random bits in form of unsigned integer
range between min() and max() (both methods)
operator() returns next random sequence of bits

usually a pseudo-random generator
seeded in constructor

a number of predefined engines:
minstd_rand
mt19937
ranlux48
. . .
default_random_engine – implementation defined, usually best
option

engine adaptors
can change characteristics of engines
discard_block_engine – discard some of the output
shuffle_order_engine – deliver output of engine in different order

PV264: Standard Library Autumn 2020 22 / 35

How To Seed Engines

seeding with timestamp is usually not a great idea
pseudo-random number generators are deterministic
part of the timestamp can be guessed → limited entropy

std::random_device
provides access to OS entropy source
may be a true random number generator
operator() – return random number
not intended for direct usage
usually quite slow
use only for seeding, not for random number generation

PV264: Standard Library Autumn 2020 23 / 35

Distributions

take a block of random bits and produce a number from a given
distribution
operator()(Engine)

return new random number
use only amortized constant number of Engine invocations

number of predefined distributions:
uniform_int_distribution, uniform_real_distribution
normal_distribution
student_t_distribution
bernoulli_distribution
binomial_distribution
. . .

PV264: Standard Library Autumn 2020 24 / 35

Regular Expressions in the Standard Library

header <regex>
directly in the std namespace
concept relying on:

a class for regular expression
iterators
algorithms

multiple syntax options for regexes
modified ECMAScript = JavaScript, this is the default
POSIX basic, POSIX extended, AWK, (e)grep

PV264: Standard Library Autumn 2020 25 / 35

std::basic_regex

class representing regular expression
std::basic_regex = string + matching rules (flags)
general template:

std::regex = std::basic_regex< char >
std::wregex = std::basic_regex< wchar_t >

2 parametric constructors – string + optional flags. String can be
std::string
C-style string
pointer + length
iterators

for available flags, see
http://en.cppreference.com/w/cpp/regex/basic_regex

PV264: Standard Library Autumn 2020 26 / 35

http://en.cppreference.com/w/cpp/regex/basic_regex

std::sub_match

basically a pair of iterators of input sequence
identifies a match
attribute matched of type bool
method str() for converting to string
std::match_results – a collection of std::sub_match

PV264: Standard Library Autumn 2020 27 / 35

std::regex_iterator

read-only ForwardIterator
operates on top of string iterators:

sregex_iterator =
regex_iterator< string::const_iterator >
wsregex_iterator =
regex_iterator< wstring::const_iterator >
cregex_iterator = regex_iterator< const char * >
wcregex_iterator = regex_iterator< const wchar_t * >

constructors:
input iterators + std::regex
non-parametric constructor – end iterator

each increment searches for next match
dereference is of type std::sub_match

PV264: Standard Library Autumn 2020 28 / 35

Regex Algorithms

For all possible prototypes, see CppReference
std::regex_match

returns true if the whole string matches regex
provides matched results as std::match_results

each bracket group of the regex as a single result
std::regex_search

similar to regex_match, does not have to match the whole string
matches depends on flags

std::regex_replace
replace regex matches with a format string

$& – whole match
$n – n-th bracket group
$$ – dollar literal

PV264: Standard Library Autumn 2020 29 / 35

Efficiency of std::regex

Note: current implementations of std::regex are unfortunately rather
slow (both at compile-time and at run-time).

There are attempts to do compile-time (and faster) regexes:
https://www.youtube.com/watch?v=QM3W36COnE4
(CppCon 2018: Hana Dusíková “Compile Time Regular Expressions”)

PV264: Standard Library Autumn 2020 30 / 35

https://www.youtube.com/watch?v=QM3W36COnE4

Filesystem In STL

since C++17, the filesystem library is a part of STL
header <filesystem>
namespace filesystem
originally boost::filesystem

not fully compatible with the C++17 version
covers most used functionality

is portable, but not all functions are supported on every filesystem
e.g. FAT misses hard- and sym-links

compile with:
-lstdc++fs when using libstdc++ (GNU)
-lc++fs when using libc++ (LLVM)

PV264: Standard Library Autumn 2020 31 / 35

std::filesystem::path

path representation
standard syntax:

root-name if FS has multiple roots (“C:”, “//servername”) – optional
root-directory mark – makes the path absolute (e.g. “/” in POSIX),
otherwise the path is relative – optional
zero or more of the following:

file name (including “.” and “..” to mark current and parent directory)
directory separator (default “/”); if the separator is repeated, is treated
as one

path also accepts the native syntax of the host OS
(e.g “\” on Windows)

PV264: Standard Library Autumn 2020 32 / 35

std::filesystem::path

many useful methods:
root_name
filename
stem (filename without extension)
extension
replace_extension
... see CppReference for full list

iterators for accessing elements (begin(), end()) – can be used with
range-based loop
beware of concatenation:

operator+ treats paths as strings (no separators included)
operator/ inserts separator between paths

PV264: Standard Library Autumn 2020 33 / 35

Filesystem Functions

number of functions, for full list see CppReference
useful functions:

current_path – working directory
exists – check if path corresponds to existing FS object
equivalent – check if two paths refer to the same FS object
copy – copy a file or a directory
remove, remove_all
temp_directory_path – returns directory suitable for temporary files
...

PV264: Standard Library Autumn 2020 34 / 35

Filesystem Iterators

to explore directory content, directory iterators can be used
two types:

directory_iterator – explore content
recursive_directory_iterator – recursively explore content

number of constructor options (follow/do not follow symlinks, etc.)
int main() {

namespace fs = std::filesystem;
fs::create_directories("example/a/b");
std::ofstream("example/f.txt");
for (const auto& p :

fs::recursive_directory_iterator("example")) {
std::cout << p << "\n";

}
fs::remove_all("example");

PV264: Standard Library Autumn 2020 35 / 35

