
Integrating C/C++ with Lua
PV264 Advanced Programming in C++

Nikola Beneš Jan Koniarik

Faculty of Informatics, Masaryk University

Autumn 2020

PV264: Integrating C/C++ with Lua Autumn 2020 1 / 27

Lua

easily embeddable into C++ applications
can be used to extend your app with plugins or an as interface to your
code
originally designed to work with C

we will mention some caveats of C++ usage
function fact(n)

if i == 0 then
return 0

end
return n * fact(n - 1)

end

print(fact(42))

PV264: Integrating C/C++ with Lua Autumn 2020 2 / 27

History

started at TeCGraf (university group)
TeCGraf was asked to solve the problem of providing data for
simulations for PETROBRAS

they created DEL, language for the description of datasets with ability
to check properties of data (x > z and so on)

around the same time, PETROBRAS wanted configurable report
generator of another application

TeCGraf created another language: SOL
both languages were not the main language of the app, rather some
form of extension
they realized that these could be merged, which is preferable for
longterm usage: Lua is born

key design thought: main users are not programmers, just engineers
https://www.lua.org/history.html

PV264: Integrating C/C++ with Lua Autumn 2020 3 / 27

https://www.lua.org/history.html

International exposure

1996 - TecGraf published a paper about Lua:
Lua in Software: Practice & Experience

after that, strong traction in the game industry as a scripting system
nowadays, this includes Lucasarts, BioWare, Blizzard. . .

more on: https://en.wikipedia.org/wiki/Category:
Lua-scripted_video_games

PV264: Integrating C/C++ with Lua Autumn 2020 4 / 27

https://en.wikipedia.org/wiki/Category:Lua-scripted_video_games
https://en.wikipedia.org/wiki/Category:Lua-scripted_video_games

Lua language

official manual at https://www.lua.org/manual/5.4
dynamic scripting language, implemented as library executing the code

native ability to bind C functions to Lua code
language has only a few types:

numbers (float/double), strings, nil, boolean
associative tables
userdata
function (both Lua and C)
thread

supports anonymous functions, closures, coroutines and more
indexing from 1

PV264: Integrating C/C++ with Lua Autumn 2020 5 / 27

https://www.lua.org/manual/5.4

Lua library

the ability to create Lua context, in which we execute Lua code
the context is a “box”
we can have multiple separate Lua apps executed at once

the library allows to:
load Lua code and execute it
bind C functions to the context, so they can be used in Lua code
call functions defined in loaded files from the C code

the standard interpret of Lua is just an example usage of the library

PV264: Integrating C/C++ with Lua Autumn 2020 6 / 27

Example of loading code

#include <lua.hpp>
#include <string>

std::string code = "print(\"test\")";

int main(int argc, char* argv[]) {
// Create new Lua context
lua_State* L = luaL_newstate();
// Load standard Lua libraries into the context
luaL_openlibs(L);
// Load Lua code ("vm" is just debugging mark)
luaL_loadbuffer(L, code.c_str(), code.size(), "vm");
// Execute the code
lua_call(L, 0, 0);

}

PV264: Integrating C/C++ with Lua Autumn 2020 7 / 27

Basics

lua_State is a structure holding Lua context
all functions from Lua library are prefixed with lua_
all functions from the auxiliary library are prefixed with luaL_

this library is used to simplify usage of the standard API
libraries loaded by luaL_openlibs are standard libraries such as
math or string
lua_call(L, nargs, nreturns) executes the loaded code1

1we will explain nargs and nreturns later
PV264: Integrating C/C++ with Lua Autumn 2020 8 / 27

Compilation

there is no magic for compilation of the example code
Lua is a C library, present in most package managers
as an alternative, you can use CMake to download its source and
compile it

you can find such a cmake in this week’s exercise

PV264: Integrating C/C++ with Lua Autumn 2020 9 / 27

Interaction between Lua and C

how to exchange data between the Lua code and C code?
Lua is dynamic, C is not

PV264: Integrating C/C++ with Lua Autumn 2020 10 / 27

Stack

the key exchange mechanism used by the Lua is a stack
the stack contains any of the data with types that Lua can work with
Lua provides data to the C side pushed to the stack, alongside with
API to work with the stack itself
C side of the code works the same way, any data that should be
passed to Lua side is put on the stack.
lua_call(L, nargs, nreturns)

lua_State* L represents the stack
nargs represents the number of arguments
nreturns represents the number of return values

when lua_call(L, nargs, nreturns) is executed
pops nargs values from the stack which are used as arguments
pops function from the stack
pushes back nreturns return values from a function call
(filled with nil in case there is not enough of them)

PV264: Integrating C/C++ with Lua Autumn 2020 11 / 27

Stack – example

luaL_newstate creates new Lua state and luaL_openlibs loads
standard Lua libraries

these do not affect the stack
luaL_loadbuffer(L, code.c_str(), code.size(), "vm")
loads the code, and pushes it as an executable function to the stack
lua_call(L, 0, 0)

pops 0 arguments from the stack,
pops the code loaded in the previous step,
executes the code, and
pushes 0 return values to the stack;
in other words, it just executes the loaded code

PV264: Integrating C/C++ with Lua Autumn 2020 12 / 27

Stack – return value

Lua code
function foo()

return 42
end

C code
// Pushes function 'foo' to the stack from global space
lua_getglobal(L, "foo");
// Pops function from the stack and executes it
lua_call(L, 0, 1);
// Checks whenever the last item on the stack is number
// and returns it
double i = luaL_checknumber(L, -1);

PV264: Integrating C/C++ with Lua Autumn 2020 13 / 27

Stack – arguments

// The function is pushed first on the stack
lua_getglobal(L, "pow");
// First argument
lua_pushnumber(L, 2);
// Second argument
lua_pushnumber(L, 10);
// Execute the function
lua_call(L, 2, 1);
// Get the return value
int res = luaL_checkinteger(L, -1);

PV264: Integrating C/C++ with Lua Autumn 2020 14 / 27

Stack – table

the stack can contain any of the basic Lua types, in case of the table,
it also provides the ability to access the fields of the table
let’s look at the table more closely, it shows how Lua relies on the
stack

PV264: Integrating C/C++ with Lua Autumn 2020 15 / 27

Stack – table

Lua code
a = {}
a["x"] = 10
a["y"] = 20

C code
lua_getglobal(L, "a");
// Push the key of the field we want to the stack
lua_pushstring(L, "x");
//`lua_gettable` pops item from the top of the stack and
// uses it as key for the table on position -2
//
// Value of assigned to that key is then pushed to the stack
lua_gettable(L, -2);
// `x` is now 10
int x = luaL_checkinteger(L, -1);

PV264: Integrating C/C++ with Lua Autumn 2020 16 / 27

Stack – table

Lua code
a = {}
a["x"] = 10
a["y"] = 20

C code
lua_getglobal(L, "a");
// We can also try to access keys that are not present
// in the table
lua_pushstring(L, "z");
lua_gettable(L, -2);
// This results in nil value
bool is_nil = lua_isnil(L, -1);

PV264: Integrating C/C++ with Lua Autumn 2020 17 / 27

Bind C function

we know how to call Lua function and pass/receive data.
let’s do the opposite – let Lua call C function.
each C function that is bound has same type:
int foo(lua_State *)
when foo is called from Lua, the following happens:

Lua pushes all Lua arguments to a new stack
C function is called with that stack
it is expected that you put the result on the stack and return the
number of returned values
the rest of the stack is garbage collected later

PV264: Integrating C/C++ with Lua Autumn 2020 18 / 27

Bind example

int l_foo(lua_State*) {
std::cout << "wololo" << std::endl;
return 0;

}

// Pushes function pointer to the stack
lua_pushcfunction(L, l_foo);
// Assigns the pointer to global variable
lua_setglobal(L, "foo");

// Alternativelly:
// lua_register(L, "foo", l_foo);

PV264: Integrating C/C++ with Lua Autumn 2020 19 / 27

Complex bind example

// usage in Lua:
// quot, rem = divmod(25, 4)
int l_divmod(lua_State* L) {

if (lua_gettop(L) != 2) {
return luaL_error(L, "2 arguments expected");

}
int arg1 = luaL_checkinteger(L, 1);
int arg2 = luaL_checkinteger(L, 2);

div_t res = div(arg1, arg2);

lua_pushinteger(L, res.quot);
lua_pushinteger(L, res.rem);
return 2;

}

PV264: Integrating C/C++ with Lua Autumn 2020 20 / 27

Error handling

what happens in case of an error?
what happens if luaL_checkint(L, 1) finds that the item on the
stack is not a number?

that results in luaL_error(L, msg) call
Lua uses two C functions to handle errors:

setjmp(env) – stores actual environment of execution into variable
env
longjmp(env) – stops execution and restores previously-stored
environment of execution

this makes it possible to stop execution at one point and jump to the
previous state

PV264: Integrating C/C++ with Lua Autumn 2020 21 / 27

lua_call vs lua_pcall

lua_pcall is a modification that takes care of ‘catching’ Lua errors
if you call lua_pcall(L, nargs, nreturns, errfunc) in C code:

the function on top of the stack is executed in the same way as
lua_call(L, nargs, nreturns)
when an error happens, it is caught and an error message is put on the
stack
errfunc is the index of the function on the stack that serves as an
error handler

you should have lua_pcall as the top call on the call tree, otherwise,
the app just crashes

if you satisfy that, the error from any lua_call is simply caught at
nearest lua_pcall

PV264: Integrating C/C++ with Lua Autumn 2020 22 / 27

C++ implications

what does this mean for C++?
imagine your function with C++ code is called from Lua and error
happens in luaL_checkint(L, 1) call
what can cause problems in C++ ?

PV264: Integrating C/C++ with Lua Autumn 2020 23 / 27

C++ implications

problem is the execution of longjmp, which makes the code continue
execution at the place of nearest lua_pcall
this mechanism does not call destructors – potential leaks
in case of the following code, the destructor of unique_ptr may not
be called

int l_foo(lua_State * L){
auto my_obj_ptr = std::make_unique< MyObject >();
int i = luaL_checkinteger(L);

my_obj_ptr->process(i);

return 0;
}

PV264: Integrating C/C++ with Lua Autumn 2020 24 / 27

longjmp/setjmp solution

the solution to the problem is pretty simple – do not use Lua library
compiled as C code
Lua now supports compilation of the library as C++ code

in this case, the library uses throw/catch to handle the errors instead
of setjmp/longjmp
given that, destructors will work just fine

warning: this problem may be relevant also with other C libraries!

PV264: Integrating C/C++ with Lua Autumn 2020 25 / 27

Summary

what you should take from this lecture:
general idea of how Lua C API works (stack)
how to bind C/C++ functions
key C++ related problem

PV264: Integrating C/C++ with Lua Autumn 2020 26 / 27

Much more

there is more that you can do
bind objects that behave like objects (userdata)

https://www.lua.org/pil/28.html

global registry of data accessible by each function
https://www.lua.org/pil/27.3.1.html

closure for each C function bind
https://www.lua.org/pil/27.3.3.html

various C++ libraries that simplifies work with the Lua
https://github.com/ThePhD/sol2

PV264: Integrating C/C++ with Lua Autumn 2020 27 / 27

https://www.lua.org/pil/28.html
https://www.lua.org/pil/27.3.1.html
https://www.lua.org/pil/27.3.3.html
https://github.com/ThePhD/sol2

