
Integrating C++ with Other Languages
PV264 Advanced Programming in C++

Nikola Beneš Jan Mrázek Vladimír Štill

Faculty of Informatics, Masaryk University

Autumn 2020

PV264: Integrating C++ with Other Languages Autumn 2020 1 / 26

Scripting Support in Your Applications

you want to support plugins or user scripts:
e.g., scripts in a game engine for game logic,
macros for CAD software,
plugins for a chat client.

technically you could:
write the code in C++
compile them in shared library
load the library at runtime

simple for you, annoying for the user (recompilation & reloading)
make sense only when user code is in a hot path

better solution: embed a scripting engine in your application
Lua
JavaScript
Python
design custom language and write interpreter (usually a bad idea)
. . .

PV264: Integrating C++ with Other Languages Autumn 2020 2 / 26

Scripting Support in Your Applications

you want to support plugins or user scripts:
e.g., scripts in a game engine for game logic,
macros for CAD software,
plugins for a chat client.

technically you could:
write the code in C++
compile them in shared library
load the library at runtime

simple for you, annoying for the user (recompilation & reloading)
make sense only when user code is in a hot path

better solution: embed a scripting engine in your application
Lua
JavaScript
Python
design custom language and write interpreter (usually a bad idea)
. . .

PV264: Integrating C++ with Other Languages Autumn 2020 2 / 26

C++ Does Not Fit All Use Cases

C++ allows you to write high-performing code
handling GUI and IO can be tedious in C++1

write a library for the core functionality in C++
expose bindings for other languages

e.g., machine learning library (Tensor Flow: core in C++, Python
bindings for “basic users”),
write a micro service in C++, use Python’s Flask for handling the
HTTP server,
write business logic in C++, use C# for GUI,
write a kick-ass C++ library, use Python & Jupyter for demonstration
& benchmarking.

1The Discord Bot That Nearly Killed Me
PV264: Integrating C++ with Other Languages Autumn 2020 3 / 26

https://dev.to/timbeaudet/the-discord-bot-that-nearly-killed-me-created-in-c-gb5

C++ Does Not Fit All Use Cases

C++ allows you to write high-performing code
handling GUI and IO can be tedious in C++1

write a library for the core functionality in C++
expose bindings for other languages

e.g., machine learning library (Tensor Flow: core in C++, Python
bindings for “basic users”),
write a micro service in C++, use Python’s Flask for handling the
HTTP server,
write business logic in C++, use C# for GUI,
write a kick-ass C++ library, use Python & Jupyter for demonstration
& benchmarking.

1The Discord Bot That Nearly Killed Me
PV264: Integrating C++ with Other Languages Autumn 2020 3 / 26

https://dev.to/timbeaudet/the-discord-bot-that-nearly-killed-me-created-in-c-gb5

You Need a C Interface

you need to extend existing C software and you prefer to write C++
you write a kick-ass C++ library, but your potential users still write
plain C code
C interface is pretty simple to handle

most of existing languages provide a way to load C library and call
functions
your C++ → C interface → target language bindings

PV264: Integrating C++ with Other Languages Autumn 2020 4 / 26

This Lecture

an overview of the common pitfalls
calling your C++ code in C
binging C++ to Python via PyBind11 (in-depth + exercise)
scripting support in C++

Javascript
Lua (in-depth + exercise)

PV264: Integrating C++ with Other Languages Autumn 2020 5 / 26

Common Pitfalls

memory management
most modern languages use garbage collector
C++ does not (RAII)
you have to be careful about shared objects/memory
management

type conversion
built-in types might not match
conversion of user-defined types
potential bottle neck

language features (how to map them?)
C++ templates do not map to other languages
C++ does not support named arguments
exception handling
. . .

PV264: Integrating C++ with Other Languages Autumn 2020 6 / 26

Calling C++ in a C Code

C and C++ are more-less binary compatible.
you can call C++ functions in C

problem: name mangling
you can disable name mangling via extern "C"
e.g., extern "C" void foo(int arg)
cannot call template functions (you can wrap them inside an ordinary
function)

problem: shared header files
header files are processed by C compiler → no C++ constructions
allowed (e.g., only structs without member functions)
preprocessor work-around: #ifdef __cplusplus
workaround: pass opaque void * instead of objects to functions

uncaught exceptions in C code lead to undefined behavior unless C
code is compiled with -fexceptions

PV264: Integrating C++ with Other Languages Autumn 2020 7 / 26

Binding C++ to Python: ctypes and CFFI

There are multiple ways to create the bindings. The first option is:
ctypes or CFFI

at Python runtime load shared library, call C-functions
we do not recommended it

from ctypes import cdll, c_float
lib = cdll.LoadLibrary('./simple.so')
lib.square.argtypes = (c_float,)
lib.square.restype = c_float
lib.square(2.0)

PV264: Integrating C++ with Other Languages Autumn 2020 8 / 26

https://docs.python.org/3.7/library/ctypes.html
https://cffi.readthedocs.io/en/latest/overview.html

Binding C++ to Python: CPython

the way the Python interpreter is implemented
write C code, use #include <Python>
specify module and function by specially named symbols

static PyObject *method_foo(PyObject *self,
PyObject *args) {

//something
}
static PyMethodDef MymoduleMethods[] = {

{"foo", method_foor, METH_VARARGS, "docstring"},
{NULL, NULL, 0, NULL}};

static struct PyModuleDef mymodulemodule = {
PyModuleDef_HEAD_INIT, "foo", "docstring",
-1, MymoduleMethods};

Tedious to write; solution: use binding tools

PV264: Integrating C++ with Other Languages Autumn 2020 9 / 26

Binding C++ to Python: SWIG

“Simplified Wrapper and Interface Generator”
automatic, old and mature solution
supports multiple languages
put special comments into your headers to define modules
“all or nothing” – low control on what and how is exported
is/used to be de-facto standard

PV264: Integrating C++ with Other Languages Autumn 2020 10 / 26

Binding C++ to Python: CPPYY

very new project
based on Clang & LLVM
supports JIT

can support C++ templates (instantiate in runtime)
interesting project
we do not recommend it as universal solution, but might map to some
situations well

PV264: Integrating C++ with Other Languages Autumn 2020 11 / 26

Binding C++ to Python: PyBind11

Our recommended solution.
pure C++11 solution (no external tools required),
integrates well with CMake
fine-grained control over the exports

you have the ability to make the interface more “Pythonic”
seamless type cooperation between C++ and Python

specify type casting
predefined casts for standard library (containers, std::function,
std::string)

well designed Python objects management (behaves like smart
pointers)
can also embed Python interpreter inside your code:

Python can be used as scripting language
you can use Python libraries in C++ code

PV264: Integrating C++ with Other Languages Autumn 2020 12 / 26

PyBind11: First Steps

read documentation
install it
setup CMake project and specify your module, e.g.:
pybind11_add_module(example exampleSources.cpp)
Note: You have to invoke Python with env variable PYTHONPATH
pointing to the compiled module directory
e.g., PYTHONPATH=path_to_your_build_directory python

PV264: Integrating C++ with Other Languages Autumn 2020 13 / 26

https://pybind11.readthedocs.io/en/stable/advanced/pycpp/index.html

PyBind11: Hello Math!

#include <pybind11/pybind11.h>
namespace py = pybind11;

int add(int a, int b) { return a + b; }

PYBIND11_MODULE(example, m) {
m.def("add", &add, "Add two integers");
// Or you can use lambda
m.def("subtract", [](int a, int b){ return a - b },

"Subtract two integers");
}
Compile it and use it:
from example import add, subtract

print(add(41, 1))
print(subtract(43, 1))

PV264: Integrating C++ with Other Languages Autumn 2020 14 / 26

PyBind11: Argument Checking is For Free

>>> from example import add
>>> help(add)
add(arg0: int, arg1: int) -> int

Add two integers

>>> add('foo', 'bar')
TypeError: add(): Incompatible function arguments.
The following argument types are supported:

1. add(arg0: int, arg1: int) -> int

Invoked with: 'foo', 'bar'

PV264: Integrating C++ with Other Languages Autumn 2020 15 / 26

PyBind11: Structures & Classes

Consider a simple struct:
struct Cat {

std::string name;
int age;

Cat(std::string name, int age = -1):
name(std::move(name)), age(age) {}

bool hasKnownAge() const { return age >= 0; }
bool operator==(const Cat& o) { /* omitted */ }

};

PV264: Integrating C++ with Other Languages Autumn 2020 16 / 26

PyBind11: Structures & Classes

PYBIND11_MODULE(animals, m) {
py::class_<Cat>(m, "Cat")

// Constructors
.def(py::init<std::string, int>())
.def(py::init<std::string>())
// Attributes
.def_readonly("name", &Cat::name)
.def_readwrite("age", &Cat::age)
// Methods
.def("hasKnownAge", &Cat::hasKnownAge)
// Methods as properties
.def_property_readonly("hasKnownAgeProp",

&Cat::hasKnownAge),
// Equality operator
.def(py::self == py::self); // __eq__

};
PV264: Integrating C++ with Other Languages Autumn 2020 17 / 26

PyBind11: Function Overloads

std::string g(int) { return "int"; }
std::string g(float) { return "float"; }

PYBIND11_MODULE(example, m) {
m.def("f", [](int x){ return "int"; });
m.def("f", [](float x){ return "float"; });
// The C++ function must be unique
// To distinguish overloads, use py::overload_cast
m.def("g", py::overload_cast<int>(g));
m.def("g", py::overload_cast<float>(g));

};

PV264: Integrating C++ with Other Languages Autumn 2020 18 / 26

PyBind11: Named Arguments

m.def("greet", [](const std::string& name, int times){
for (int i = 0; i != times; i++)

py::print("Hello " + name + ".")
},
// Docstring
"Greet",
// Argument definition
py::arg("name"),
py::arg("times") = 1); // Note the default value

PV264: Integrating C++ with Other Languages Autumn 2020 19 / 26

PyBind11: args and kwargs

m.def("count_args", [](py::args a, py::kwargs kw) {
py::print(a.size(), "args, ", kw.size(), " kwargs");

});

PV264: Integrating C++ with Other Languages Autumn 2020 20 / 26

PyBind11: Type conversion

quite broad topic, see documentation
already prepared conversions for

scalars,
std::string, const char*,
tuples, pairs,
containers (std::vector, std::map, . . .),
std::function (accepts any Python function),
chrono,
std::optional

PV264: Integrating C++ with Other Languages Autumn 2020 21 / 26

https://pybind11.readthedocs.io/en/stable/advanced/cast/index.html

PyBind11: Python Native Types

py::object (internal refcounting, owning)
py::handle (no refcounting, non-owning)
py::module, py::function
py::int_, py::float_,
py::str,
py::list, py::dict, py::slice
. . .

PV264: Integrating C++ with Other Languages Autumn 2020 22 / 26

PyBind11: Return Value Policy

C++ uses different resource management compared to Python
when a C++ function invoked from Python returns non-trivial value:

should the Python side keep track of the value and free it, or
will the C++ side take care of it?

return value policy
take_ownership (Python handles lifetime)
copy (Python will make its own copy)
move (into Python’s ownership)
reference (an existing object)
automatic (default one, see documentation for details)
several others, rather specialized

PV264: Integrating C++ with Other Languages Autumn 2020 23 / 26

https://pybind11.readthedocs.io/en/stable/advanced/functions.html?highlight=return_value_policy#return-value-policies

PyBind11: Templates

Templated functions and classes cannot be bind to a Python name – only
to concrete instantiations.

template < typename T >
class MyContainer { /* omitted */ };

using MyIntContainer = MyContainer<int>;
using MyPyContainer = MyContainer<py::object>;

PYBIND11_MODULE(example, m) {
py::class_<MyContainer>(m, "Container"); // Invalid
py::class_<MyIntContainer>(m, "IntContainer"); // Valid
py::class_<MyPyContainer>(m, "Container"); // Valid,

// can keep any Python object
};

PV264: Integrating C++ with Other Languages Autumn 2020 24 / 26

PyBind11: Caveats

binary compatibility
Python binary interface is incompatible between minor versions (e.g,
3.6 vs. 3.7)
module compiled with, e.g., Python 3.6 cannot be loaded in 3.7
makes distribution of precompiled packages painful

can be little verbose when you need to export nearly all code
. . . but you can create nice Python interfaces!

PV264: Integrating C++ with Other Languages Autumn 2020 25 / 26

Javascript Interpreter in C++

nowadays, Google’s V8 Javascript Engine is the best solution:
highly optimized, JIT support
well maintained (part of Chromium core, powering Node.js)
you can attach debuggers into the engine and step the user scripts

usage of V8 is not covered by this lecture
good starting points:

Official embedding guide
ruby0x1/v8-tutorials (older, however nice collection of examples)

PV264: Integrating C++ with Other Languages Autumn 2020 26 / 26

https://v8.dev/
https://v8.dev/docs/embed
https://github.com/ruby0x1/v8-tutorials

