
Threads and Asynchronous Programming; Boost ASIO
PV264 Advanced Programming in C++

Nikola Beneš Jan Mrázek Vladimír Štill

Faculty of Informatics, Masaryk University

Autumn 2020

PV264: Threads and Asynchronous Programming, Boost ASIO Autumn 2020 1 / 20

Parallel Programming

“Concurrent execution of instructions at the same time.”
shared memory

processes
threads

distributed memory

more difficult than sequential programming
deadlocks
data consistency
extremely hard to debug
awareness of the memory model required

since C++11 the memory model is defined by the standard:
http://en.cppreference.com/w/cpp/language/memory_model

PV264: Threads and Asynchronous Programming, Boost ASIO Autumn 2020 2 / 20

http://en.cppreference.com/w/cpp/language/memory_model

Parallel Programming

“Concurrent execution of instructions at the same time.”
shared memory

processes
threads

distributed memory

more difficult than sequential programming
deadlocks
data consistency
extremely hard to debug
awareness of the memory model required

since C++11 the memory model is defined by the standard:
http://en.cppreference.com/w/cpp/language/memory_model

PV264: Threads and Asynchronous Programming, Boost ASIO Autumn 2020 2 / 20

http://en.cppreference.com/w/cpp/language/memory_model

Threads

#include <thread>
lightweight synopsis:

struct thread {
thread(); // does nothing
template< typename F, typename... Args >
thread(F, Args &&...); // starts a new thread
void join(); // waits until it ends
...

};

arguments are copied
if references are needed, they need to be wrapped in
std::ref/std::cref

similar to std::bind

PV264: Threads and Asynchronous Programming, Boost ASIO Autumn 2020 3 / 20

Threads

the main thread has to wait for all created threads
. . . unless the thread is detached

threads cannot be copied
the ownership can be moved

not RAII-friendly class
join has to be called manually
std::terminate is called otherwise
explanation and discussion:
https://akrzemi1.wordpress.com/2012/11/14/
not-using-stdthread/
(thread is a low-level abstraction)
main point: write your own RAII wrappers

add flag -pthread to the compiler on POSIX systems

PV264: Threads and Asynchronous Programming, Boost ASIO Autumn 2020 4 / 20

https://akrzemi1.wordpress.com/2012/11/14/not-using-stdthread/
https://akrzemi1.wordpress.com/2012/11/14/not-using-stdthread/

Threads

int fibonacci(int n) {...}
void write(int n) {

std::cout << fibonacci(n) << std::endl;
}
int main() {

std::thread t1(write, 14);
std::thread t2(write, 40);
t1.join();
t2.join();

}

PV264: Threads and Asynchronous Programming, Boost ASIO Autumn 2020 5 / 20

Reminder – Nearly Nothing is Atomic

volatile int val;
void inc(int n) { for (int i = 0; i != n; i++) val++; }
void dec(int n) { for (int i = 0; i != n; i++) val--; }
int main() {

std::thread t1(inc, 1000000);
std::thread t2(dec, 1000000);
t1.join(); t2.join();
std::cout << "Value is " << val << "\n";

}

for i in `seq 4`; do ./nonatomic; done
produces something like:

Value is -43996
Value is 10625
Value is -177065
Value is 13246

PV264: Threads and Asynchronous Programming, Boost ASIO Autumn 2020 6 / 20

Working with Memory

access to memory needs to be guarded
mutual exclusion devices (#include <mutex>)

simple std::mutex
std::recursive_mutex
std::timed_mutex
std::shared_mutex (C++17)

RAII-style mechanisms
simple std::lock_guard
std::unique_lock

deadlock prevention
std::lock
std::scoped_lock (C++17)

atomic primitives (#include <atomic>)
advanced topic

thread synchronization
condition variables (#include <condition_variable>)

PV264: Threads and Asynchronous Programming, Boost ASIO Autumn 2020 7 / 20

Mutex Example

in most cases std::mutex should be manipulated using RAII helpers:
std::lock_guard – locked at construction, unlocked in destructor,
no other operations
std::unique_lock – also supports explicit unlocking, can be moved,
used with condition variables

std::mutex mutex;
std::vector< Item > work; size_t next = 0;
Item *getNextItem() {

std::lock_guard< std::mutex > lock(mutex);
return work.size() <= next ? nullptr : &work[next++];

}
void worker() {

while (Item *item = getNextItem())
item->doWork();

}

PV264: Threads and Asynchronous Programming, Boost ASIO Autumn 2020 8 / 20

Mutex Example

in most cases std::mutex should be manipulated using RAII helpers:
std::lock_guard – locked at construction, unlocked in destructor,
no other operations
std::unique_lock – also supports explicit unlocking, can be moved,
used with condition variables

std::mutex mutex;
std::vector< Item > work; size_t next = 0;
Item *getNextItem() {

std::lock_guard< std::mutex > lock(mutex);
return work.size() <= next ? nullptr : &work[next++];

}
void worker() {

while (Item *item = getNextItem())
item->doWork();

}

PV264: Threads and Asynchronous Programming, Boost ASIO Autumn 2020 8 / 20

Locking Multiple Mutexes – std::lock

bad idea (why?)
void worker() {

std::lock_guard lock1(some_mutex);
std::lock_guard lock2(other_mutex);

}

std::lock ensures mutexes are locked in some reasonable order such
that circular waiting is avoided

void transferMoney(Account &from, Account &to, int amount)
{

std::lock(from.mutex, to.mutex);
std::lock_guard< std::mutex >

lf(from.mutex, std::adopt_lock),
lt(to.mutex, std::adopt_lock);

from.withdraw(amount);
to.deposit(amount);

}

PV264: Threads and Asynchronous Programming, Boost ASIO Autumn 2020 9 / 20

Locking Multiple Mutexes – std::lock

bad idea (why?)
void worker() {

std::lock_guard lock1(some_mutex);
std::lock_guard lock2(other_mutex);

}

std::lock ensures mutexes are locked in some reasonable order such
that circular waiting is avoided

void transferMoney(Account &from, Account &to, int amount)
{

std::lock(from.mutex, to.mutex);
std::lock_guard< std::mutex >

lf(from.mutex, std::adopt_lock),
lt(to.mutex, std::adopt_lock);

from.withdraw(amount);
to.deposit(amount);

}
PV264: Threads and Asynchronous Programming, Boost ASIO Autumn 2020 9 / 20

Locking Multiple Mutexes – std::scoped_lock (C++17)

std::scoped_lock is variadic and can lock multiple mutexes in
reasonable order

void transferMoney(Account &from, Account &to, int amount)
{

std::scoped_lock guard(from.mutex, to.mutex);
from.withdraw(amount);
to.deposit(amount);

}

note: automatic class template deduction happens here

PV264: Threads and Asynchronous Programming, Boost ASIO Autumn 2020 10 / 20

Condition Variables

std::condition_variable
block a thread until a shared variable (condition) is modified

the condition variable is protected by a mutex
the thread that wants to modify the variable:

locks the mutex (e.g. using std::lock_guard)
modifies the variable
unlocks the mutex
executes notify_one or notify_all on the condition variable

the thread that wants to wait on the condition variable:
acquires a std::unique_lock on the mutex
executes wait, wait_for, or wait_until (this releases the mutex)
is then awakened by

notification of the condition variable
timeout (in the wait_for or wait_until case)
a spurious wakeup (need to check the condition!)

PV264: Threads and Asynchronous Programming, Boost ASIO Autumn 2020 11 / 20

Condition Variable Example – Barrier
struct Barrier {

Barrier(int w) : _workers(w), _arrived(0) {}
void wait() {

std::unique_lock< std::mutex > lk(_mtx);
if (++_arrived == _workers) {

lk.unlock();
_cv.notify_all();

} else {
_cv.wait(lk, [this]{ return _arrived == _workers; });

}
}

private:
const int _workers;
int _arrived;
std::condition_variable _cv;
std::mutex _mtx;

};
PV264: Threads and Asynchronous Programming, Boost ASIO Autumn 2020 12 / 20

Note on Concurrent Memory Access

concurrent access to the same memory location is undefined behaviour
unless any synchronization mechanism is used
for now, the only synchronization mechanism is mutex
using the volatile specifier is not enough

does not say anything about other memory locations

does not ensure order of writes visible to other threads is the same as
they were performed in

actual order can differ thanks to memory model
volatile just forbids compiler to optimize out loads and stores
from/to the variable
might be enough in special cases on microcontrollers:

e.g. the main routine waits for a value change from an interrupt
beware of bit-width and atomicity

PV264: Threads and Asynchronous Programming, Boost ASIO Autumn 2020 13 / 20

Note on Concurrent Memory Access

concurrent access to the same memory location is undefined behaviour
unless any synchronization mechanism is used
for now, the only synchronization mechanism is mutex
using the volatile specifier is not enough

does not say anything about other memory locations
does not ensure order of writes visible to other threads is the same as
they were performed in

actual order can differ thanks to memory model

volatile just forbids compiler to optimize out loads and stores
from/to the variable
might be enough in special cases on microcontrollers:

e.g. the main routine waits for a value change from an interrupt
beware of bit-width and atomicity

PV264: Threads and Asynchronous Programming, Boost ASIO Autumn 2020 13 / 20

Note on Concurrent Memory Access

concurrent access to the same memory location is undefined behaviour
unless any synchronization mechanism is used
for now, the only synchronization mechanism is mutex
using the volatile specifier is not enough

does not say anything about other memory locations
does not ensure order of writes visible to other threads is the same as
they were performed in

actual order can differ thanks to memory model
volatile just forbids compiler to optimize out loads and stores
from/to the variable
might be enough in special cases on microcontrollers:

e.g. the main routine waits for a value change from an interrupt
beware of bit-width and atomicity

PV264: Threads and Asynchronous Programming, Boost ASIO Autumn 2020 13 / 20

Atomic Operations, std::atomic

in some cases using mutexes gives too much performance penalty
atomic operations can be used for simple actions (exchange of values,
addition to integer. . .)

std::atomic can be used to represent an atomic value that supports
these operations

specialization for integers that provides atomic arithmetic operations
might not be actually atomic, on platforms that do not support it it
can use locks

std::atomic_flag – a very simple atomic boolean, can be only
cleared or set to true in which case it returns its previous value

useful for signalling from signal handlers
overall, atomics and lock-free programming go far beyond the scope
of this lecture

PV264: Threads and Asynchronous Programming, Boost ASIO Autumn 2020 14 / 20

Atomic Operations, std::atomic

in some cases using mutexes gives too much performance penalty
atomic operations can be used for simple actions (exchange of values,
addition to integer. . .)
std::atomic can be used to represent an atomic value that supports
these operations

specialization for integers that provides atomic arithmetic operations
might not be actually atomic, on platforms that do not support it it
can use locks

std::atomic_flag – a very simple atomic boolean, can be only
cleared or set to true in which case it returns its previous value

useful for signalling from signal handlers

overall, atomics and lock-free programming go far beyond the scope
of this lecture

PV264: Threads and Asynchronous Programming, Boost ASIO Autumn 2020 14 / 20

Atomic Operations, std::atomic

in some cases using mutexes gives too much performance penalty
atomic operations can be used for simple actions (exchange of values,
addition to integer. . .)
std::atomic can be used to represent an atomic value that supports
these operations

specialization for integers that provides atomic arithmetic operations
might not be actually atomic, on platforms that do not support it it
can use locks

std::atomic_flag – a very simple atomic boolean, can be only
cleared or set to true in which case it returns its previous value

useful for signalling from signal handlers
overall, atomics and lock-free programming go far beyond the scope
of this lecture

PV264: Threads and Asynchronous Programming, Boost ASIO Autumn 2020 14 / 20

Asynchronous Programming

modern approach, widely used e.g. in JavaScript
avoid using threads directly
increase system performance (mainly in systems with a lot of IO)

standard library implementation is (as of C++17) quite poor
allows only for async tasks, result has to be obtained synchronously
no composition of asynchronous tasks
standard implementation offers only heavy threads

other approaches
Folly (Facebook Open-Source Library)
boost::future
C++2z standard proposals

PV264: Threads and Asynchronous Programming, Boost ASIO Autumn 2020 15 / 20

Future in the Standard Library

#include <future>
mainly used to run a work in thread and obtain result later
std::promise< T >

for storing a result of asynchronous computation (value or exception)
get_future() – obtain a future through which the result can be
awaited and obtained

std::future< T >
get() – returns value or throws an exception (may block)
wait() – wait for fulfillment of the promise (may block)
wait_for() – wait for fulfillment or timeout (may block)

std::async(Function, Args...)
runs a function with given args asynchronously (in a thread)
returns a std::future with the result
the returned future’s destructor blocks!

PV264: Threads and Asynchronous Programming, Boost ASIO Autumn 2020 16 / 20

Future in the Standard Library

#include <future>
mainly used to run a work in thread and obtain result later
std::promise< T >

for storing a result of asynchronous computation (value or exception)
get_future() – obtain a future through which the result can be
awaited and obtained

std::future< T >
get() – returns value or throws an exception (may block)
wait() – wait for fulfillment of the promise (may block)
wait_for() – wait for fulfillment or timeout (may block)

std::async(Function, Args...)
runs a function with given args asynchronously (in a thread)
returns a std::future with the result
the returned future’s destructor blocks!

PV264: Threads and Asynchronous Programming, Boost ASIO Autumn 2020 16 / 20

Future in the Standard Library

#include <future>
mainly used to run a work in thread and obtain result later
std::promise< T >

for storing a result of asynchronous computation (value or exception)
get_future() – obtain a future through which the result can be
awaited and obtained

std::future< T >
get() – returns value or throws an exception (may block)
wait() – wait for fulfillment of the promise (may block)
wait_for() – wait for fulfillment or timeout (may block)

std::async(Function, Args...)
runs a function with given args asynchronously (in a thread)
returns a std::future with the result
the returned future’s destructor blocks!

PV264: Threads and Asynchronous Programming, Boost ASIO Autumn 2020 16 / 20

std::async Example

Config cfg;
// std::future<int>
auto handle = std::async(std::launch::async,

[&] { return cfg.load("app.conf"); });
doSomething();
try {

// wait until config is loaded
int result = handle.get();

} catch (std::exception &e) {
// if cfg.load throws
std::cerr << e.what() << std::endl;

}

PV264: Threads and Asynchronous Programming, Boost ASIO Autumn 2020 17 / 20

std::async Caveat

what is wrong here?
void f() { ... }
void g() { ... }

int main() {
std::async(std::launch::async, f);
std::async(std::launch::async, g);

}

the std::future returned by std::async gets immediately
destructed and blocks until the function returns

PV264: Threads and Asynchronous Programming, Boost ASIO Autumn 2020 18 / 20

std::async Caveat

what is wrong here?
void f() { ... }
void g() { ... }

int main() {
std::async(std::launch::async, f);
std::async(std::launch::async, g);

}

the std::future returned by std::async gets immediately
destructed and blocks until the function returns

PV264: Threads and Asynchronous Programming, Boost ASIO Autumn 2020 18 / 20

Boost ASIO

multi-platform asynchronous IO
network connection
serial line
file handles (only on Windows)

main principle
create boost::asio::io_service (io_context in newer versions)
assign work to service (e.g. reading from a socket)
once there is something to read, a callback is invoked
service can do its work in a separate thread or in the main loop of
a GUI program

advantages:
asynchronous IO can lead to performance gain
removes response sending and error handling hell
can be also used in synchronous manner (C++ wrapper for sockets)

disadvantage: quite complex

PV264: Threads and Asynchronous Programming, Boost ASIO Autumn 2020 19 / 20

Boost ASIO

multi-platform asynchronous IO
network connection
serial line
file handles (only on Windows)

main principle
create boost::asio::io_service (io_context in newer versions)
assign work to service (e.g. reading from a socket)
once there is something to read, a callback is invoked
service can do its work in a separate thread or in the main loop of
a GUI program

advantages:
asynchronous IO can lead to performance gain
removes response sending and error handling hell
can be also used in synchronous manner (C++ wrapper for sockets)

disadvantage: quite complex

PV264: Threads and Asynchronous Programming, Boost ASIO Autumn 2020 19 / 20

Boost ASIO

multi-platform asynchronous IO
network connection
serial line
file handles (only on Windows)

main principle
create boost::asio::io_service (io_context in newer versions)
assign work to service (e.g. reading from a socket)
once there is something to read, a callback is invoked
service can do its work in a separate thread or in the main loop of
a GUI program

advantages:
asynchronous IO can lead to performance gain
removes response sending and error handling hell
can be also used in synchronous manner (C++ wrapper for sockets)

disadvantage: quite complex

PV264: Threads and Asynchronous Programming, Boost ASIO Autumn 2020 19 / 20

Boost ASIO Example

see web_client.cpp

extremely simple web client
compile with -lboost_system -pthread
class WebClient
work tells the io_service it cannot stop (it still has work to do)
until the destructor of work is called
everything works asynchronously

get resolves the URL and calls resolve_handler
resolve_handler (re)opens the TCP socket and calls
connect_handler
connect_handler sends a request and calls read_handler
read_handler reads from the socket and calls itself

PV264: Threads and Asynchronous Programming, Boost ASIO Autumn 2020 20 / 20

