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Motivation

C++ seems like magic sometimes

in fact it is just large
C++17 standard is roughly 1600 pages (C++20 ~1850 pages)
clang is roughly 600 k lines of C++ code and that is just the frontend
(it uses LLVM, 800 k lines of code, for optimisation and code
generation)
another 10 k of standard library and 8 k of runtime library (in case of
libc++/libc++abi from LLVM)

and designed for performance
one of main principles is that language features should have little to no
performance cost until they are used
this guides design of features such as virtual functions, multiple
inheritance, exceptions

let us now look into some details of the language
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Function names in C++
C++ functions can be overloaded, but in the assembly function names
have to be unique

names are mangled, mangled names are unique
mangling not defined by standard, depends on compiler/platform
(gcc/clang/icc use Intel style mangling)
mangled names contain fully qualified name, argument types

_ZN3foo3barEv = foo::bar()
_ZN3foo3barEi = foo::bar(int)

theoretically, mangled names can be called directly from C
mangling can be prohibited by using extern "C":
namespace foo {

extern "C" void bar( int ) { /* ... */ }
}

bar will be callable directly from C, namespace is ignored
not recommended to put extern "C" functions in namespace

names can be demangled using c++filt (on Linux)
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Standard Layout Classes

“simple” classes that have precisely defined layout
can be written to a file and read by a program in another programming
language
have compatible C counterparts
members appear in the class in order of appearance in definition, but
there can be padding to ensure alignment requirements of some types

on x86_64, primitive types are usually aligned so that their address is
a multiple of their size

generalisation of C++98 Plain Old Data (POD, ∼ C-style structs)
no virtual functions, virtual base classes, only standard layout data, no
mixed access control, . . .
can have (standard layout) base classes

non-static data only in one class
more precisely on cpp reference
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In-Memory Layout of Standard Layout Classes

struct A {
int a1;
int a2;

};

struct B {
A a;
int b;

};

struct C : A {
int c;

};

struct A
a1 a2

struct B
struct A
a.a1 a.a2 b

struct C
struct A
a1 a2 c

C is not standard layout
B and C can have the same in-memory layout (gcc, clang)
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Empty Base Class Optimisation

struct E { };

struct A {
E e;
int a;

};

struct B : E {
int b;

};

E

A
E

(pad) a

B
b

an empty class has size 1
however, inheriting from an empty class does not increase size
note: B is standard layout
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Weird Behaviour of Zero-Sized Arrays

C allows zero-sized arrays, C++ does not, but GCC & clang support it
they are used at the end of variably-sized structures, mainly in POSIX

struct A { };
struct B {

int arr[0];
};

static_assert( sizeof( A ) == 1 );
static_assert( sizeof( B ) == 0 );

zero-sized array has size 0
putting zero-sized array in an otherwise empty struct results in
struct of size 0
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Class Member Functions
in the compiled code, a member function is roughly1 equivalent to a
function that takes an additional first parameter – pointer to this
struct X {

int x;
int foo( int y ) { return x + y; }

};
// code generated by foo is similar to code generated by:
int X_foo( X *this_, int y ) { return this_->x + y; }

defines function _ZN1X3fooEi in assembly, it demangles to
X::foo(int)

mangled the same as foo( int ) in namespace X

calling is more complex for virtual member functions
but a member function pointer is not the same as a function
pointer

member function pointer must be able to call a virtual function

1They can have different calling conventions, but not on x86_64
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Virtual Member Functions

In object oriented programming it is often necessary to be able to call
a function of a derived class through a pointer (or reference) with the type
of the base class.
struct Base {

virtual void foo() { std::cout << "Base" << std::endl; }
virtual ~Base() { }

};
struct Derived : Base {

void foo() override {
std::cout << "Derived" << std::endl;

}
};
int main() {

std::unique_ptr< Base > b( new Derived() );
b->foo(); // calls Derived::foo();

}
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Virtual Functions Implementation

It is not possible to detect at compilation time which version of the virtual
function should be called.

has to be decided at runtime instead
(single) dynamic dispatch

each class that has any virtual functions contains a virtual function
table (vtable) pointer

an additional (usually first) member of the class
points to an array of function pointers
this array contains pointers to the actual implementations of virtual
functions to be used

see info vtbl OBJECT in GDB
vtable pointer is set in the constructor
when a member function is called the compiler inserts code that

1 loads the vtable
2 finds the appropriate function pointer
3 calls this function
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Virtual Table

struct Foo { virtual ~Foo() {}; virtual void f(); int x; };
struct Bar : Foo { void f(); virtual void g(); int y; };

struct Bar
struct Foo
vptr
for Foo

x y
vtable for Bar
type info for Bar

Bar::~Bar()

Bar::~Bar()

Foo::f()

Bar::g()

vtable for Foo
type info for Foo

Foo::~Foo()

Foo::~Foo()

Foo::f()

static memory (allocated at program load)

virtual tables are shared by all instances of a given class
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Virtual Functions Example
struct Base {

virtual int foo() = 0;
virtual int bar() = 0;

};
struct Derived : Base {

int foo() override { return 1; }
int bar() override { return 2; }

};
void f( Base &x ) { cout << x.bar(); }

// f's implementation is roughly equivalent to (in clang):
void f_lowlevel( Base &x ) {

using BarPtr = int (*)( Base * );
BarPtr *vptr = *reinterpret_cast< BarPtr ** >( &x );
BarPtr barptr = vptr[ BAR_OFFSET ]; // 1 for bar
cout << barptr( &x ); // 0 for foo

}
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Multiple Inheritance I

class can have multiple base classes, all of them can define members
base classes are usually at the beginning of the object, one after
another

struct A { long a; virtual void f(); virtual ~A() {} };
struct B { long b; virtual void g(); virtual ~B() {} };
struct C : A, B { long c; void f() override; };
struct D : B, A { long d; void f() override; };

C

c
A
vptr for A a

B
vptr for B b

D

d
B
vptr for B b

A
vptr for A a
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Multiple Inheritance II – Casts

struct A { long a; virtual void f(); virtual ~A() {} };
struct B { long b; virtual void g(); virtual ~B() {} };
struct C : A, B { long c; void f() override; };
struct D : B, A { long d; void f() override; };

C c; D d;
A &ac = c; A &ad = d; // (1)
C &cac = dynamic_cast< C & >( ac ); // (2)
D &dad = dynamic_cast< D & >( ad );

cast to base class (1) might require adjusting pointer by offset (in
case of ad)
cast to derived class should be performed by dynamic_cast

checks that the object is really a part of the object of target type
performs pointer adjustment
returns nullptr (for pointers) or throws std::bad_cast (for
references) in case of type failure
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Multiple Inheritance III – Dynamic Dispatch

struct A { long a; virtual void f(); virtual ~A() {} };
struct B { long b; virtual void g(); virtual ~B() {} };
struct D : B, A { long d; void f() override; };
D d; d.f(); // (1)
A &ad = d; ad.f(); // (2)
(1) is a normal dynamic dispatch, but (2) is more complicated:

ad points to the A-part of D
but D::f expects this to point to D

cannot be called directly
offset could be stored in vtable, but it would need to be checked for any
virtual call → slows code even if it does not use multiple inheritance!
vtable in A-part of D contains pointers to wrapper functions that:

1 adjusts the pointer by constant offset
2 performs non-virtual call to the actual implementation

B-part vtable of D contains member function pointers directly as it is
aligned with D
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Virtual Inheritance I

ios_base basic_ios (A)

basic_istream (B)

basic_ostream (C)

basic_iostream (D)

virtual

virtual

if two base classes (B, C) of class D share common base class (A),
then A is duplicated in D
duplication can be avoided by making B and C inherit from A virtually
the object hierarchy of such a shape needs to be carefully designed
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Virtual Inheritance II

struct A { long a; virtual void f(); virtual ~A() {} };
struct B : virtual A { long b; void f() override; };
struct C : virtual A { long c; virtual void g(); };
struct D : B, C { long d; void g() override; };

D

d
B chunk
vptr
for B

b
C chunk
vptr
for C

c
A
vptr
for A

a

this is how clang does it, it can differ
apart from virtual functions, virtual table contains offsets of parts of
the struct

and again, some virtual functions might be called through wrappers
but some wrappers might use dynamic offset
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Construction and Destruction Order

Construction order of class with virtual functions
1 construction starts from the base class(es)

in order of their appearance, if there are multiple
as if the constructor function first called constructors of base classes

2 virtual table pointer(s) are set to point to virtual table(s) of the
currently constructed object

3 initializer sections are run
4 constructor body is run

in case of virtual inheritance, there are also special temporary vtables
that are set in base classes while they are being constructed
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Construction and Destruction Order

Destruction order of class with virtual functions
1 virtual table pointer(s) are set to point to virtual table(s) of the

currently destructed object
2 destructor body is run
3 member data destructors are run
4 base destructors are run (in reverse order of appearance)

each of them will reset the appropriate vtable pointers to its vtable
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A Note on Destructor Count

how many destructors does a class have?

3
1 deleting object destructor – called by delete foo expression (D0)
2 complete object destructor – deletes all data members and all base

classes (including virtual) (D1)
3 base object destructor – deletes all data members and all non-virtual

base classes (D2)
destructors D2 and D1 are the same if there are no virtual base classes
destructor D0 first destroys the object (using D1) then calls
operator delete to free the memory

operator delete can be overloaded in a class, so this ensures the
right one is called
(operator new can also be overloaded in a class)

note: not C++ standard, this is Intel ABI (clang on Linux, gcc)
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What About Constructors?

similarly, class has a complete object constructor (C1), a base object
constructor (C2) that is called from the descendant’s constructor, and
an allocating object constructor (C3)

again C1 and C2 are the same unless virtual inheritance takes place
allocating constructor/destructor might be missing
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Member Function/Data Pointers

normal data and function pointers are essentially the same thing –
address of memory where data or code is stored
(on modern architectures)
but it can be useful to have “pointers” into a class, or to a function of
a class – how?

int Foo::*a – a pointer to data member of type int that belongs to
class Foo and is called a
void (Foo::*f)( int ) – a pointer to member function of Foo that
returns void and gets int; the pointer is called f

may not really be an address – implementation can differ
for non-virtual functions usually contains address directly
for pointer to virtual member function it is necessary to do vtable
lookup by function index
in case of multiple inheritance, offset to the right vtable is also needed
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Member Function/Data Pointers – example

struct Foo { int bar(); int baz() const; };
int main() {

int (Foo::*pa)() = &Foo::bar; // & is necessary
// pointer to const member function
int (Foo::*pb)() const = &Foo::baz;

Foo f;
Foo *fptr = &f;

int x = (f.*pb)(); // using member function pointer
int y = (fptr->*pa)(); // the same on pointer

}
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Exceptions

exceptions are important for handling errors (such as resource
allocation failures) in a clean way

repeated manual error checking can be avoided
normal control-flow of functions is not cluttered

but they also come at cost
to readability – error handling code can be far from error producing
code
to speed – they are slower if an error occurs

still, code with exceptions used for rare errors will be probably better
readable
there are many possibilities to implement exceptions

checkpointing – CPU registers are saved before a function that can
throw is executed, restored if exception is raised (old)
“zero-cost exceptions” – should have no performance overhead
compared to code without error checking

PV264: Inheritance, OOP, RTTI, Exceptions Autumn 2020 24 / 35



Exceptions

exceptions are important for handling errors (such as resource
allocation failures) in a clean way

repeated manual error checking can be avoided
normal control-flow of functions is not cluttered

but they also come at cost
to readability – error handling code can be far from error producing
code
to speed – they are slower if an error occurs

still, code with exceptions used for rare errors will be probably better
readable

there are many possibilities to implement exceptions
checkpointing – CPU registers are saved before a function that can
throw is executed, restored if exception is raised (old)
“zero-cost exceptions” – should have no performance overhead
compared to code without error checking

PV264: Inheritance, OOP, RTTI, Exceptions Autumn 2020 24 / 35



Exceptions

exceptions are important for handling errors (such as resource
allocation failures) in a clean way

repeated manual error checking can be avoided
normal control-flow of functions is not cluttered

but they also come at cost
to readability – error handling code can be far from error producing
code
to speed – they are slower if an error occurs

still, code with exceptions used for rare errors will be probably better
readable
there are many possibilities to implement exceptions

checkpointing – CPU registers are saved before a function that can
throw is executed, restored if exception is raised (old)
“zero-cost exceptions” – should have no performance overhead
compared to code without error checking

PV264: Inheritance, OOP, RTTI, Exceptions Autumn 2020 24 / 35



Zero-Cost Exceptions

under normal circumstances no exception-related code is executed
handled by C++ runtime library

implementation can differ, clang/libc++abi implementation for
x86_64 Linux is described here
libsupc++ from GCC works similarly

when throw is executed:
1 an exception object is allocated (on heap, or in emergency storage =

global variable)
2 the unwinder library is invoked to handle stack search and actual

transfer of control (unwinding)
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Unwinding Basics I

unwinder is provided by the platform, it is not C++ specific
extensively uses metadata tables generated by the compiler to find

boundaries of stack frames
which function corresponds to which stack frame
how to search for handlers in given function and frame

cooperates with language’s runtime library to find handler
language defines personality routine that is called by the unwinder to
find handlers
personality uses metadata tables for given function (found by unwinder)
to find the right handler
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Unwinding Basics II

two kinds of exception handlers
catch handlers – end exception propagation, resolve exception

catch
exception specification

cleanup handlers – perform cleanup, exception propagation continues
afterwards

call destructors
triggered only if a catch handler is found2

which catch handler is appropriate is detected from run-time type
information (RTTI) that encodes the inheritance hierarchy
cost comes from

cost of actual unwinding and related metadata search and decoding
cost of inspecting the type hierarchy of the exception

2not specified by standard but common on Linux/Unix
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Exception Specification (throw(...), noexcept)

int foo() throw ( std::bad_alloc );
int bar() noexcept;

throw(), throw(exception types, ...)
specifies that function is allowed to throw only specified types
throwing any other type results in termination of program
deprecated in C++11
second version removed in C++17, first made equivalent to noexcept
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Exception Specification (throw(...), noexcept)

int bar() noexcept;
template< typename T > int baz() noexcept(

std::is_nothrow_constructible< T >::value );

noexcept
specifies the function is not allowed to throw
not checked by the compiler, but throwing from noexcept function will
terminate the program (using std::terminate)
compiler-generated default constructors, move and copy constructors
are noexcept by default

unless appropriate base class or member constructors are not
destructors are noexcept unless explicitly marked otherwise

noexcept( EXPR )
specifies function is not allowed to throw if EXPR evaluates to true
noexcept is equivalent to noexcept(true)
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Implications of noexcept

certain operations can be safely performed only if a function is
noexcept

vector can use move construction when growing only if move
constructor is noexcept

exception in move constructor would leave vector in inconsistent state
the presence of noexcept can impact performance

move constructors should be noexcept if possible
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Uncaught Exception Handler

if an exception is not caught std::terminate is called
std::terminate defaults to killing the program, but can be
customised

std::set_terminate
useful for logging exceptions
should not try to restore execution (catch is for that)
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Run-Time Type Information I

underlying mechanism for the implementation of dynamic_cast and
exception matching in catch clauses

#include <typeinfo> // necessary for use of typeid
...
auto &tint = typeid( int ); // (1)
auto &texpr = typeid( 1 + 1 ); // (2)
Foo x; // Foo has virtual functions
auto &tfoo = typeid( x ); // (3)

typeid(arg) returns constant reference to std::type_info object
representing type of its argument

if arg is a type, returned type_info describes this type (1)
if arg is an expression of apolymorphic type, type_info of runtime
type of this exception is returned (3)

polymorphic type = has virtual method(s)
otherwise type_info for static type of the expression is returned (2)
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Run-Time Type Information II

std::type_info
defines the name method that is used to get the (implementation
defined) name of the type

on Linux a part of the mangled name
operators ==, != for checking if the corresponding types are equal
not constructible, copyable
stored in static memory (generated by compiler)
pointer to type_info is present in virtual function table of
polymorphic objects

std::type_index
hashable and comparable wrapper around type_info that can be used
as a key for associative maps (std::map, std::unordered_map)
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Multiple Dispatch (Multimethods)

virtual functions provide single dispatch
the function to be called depends on the dynamic type of one
parameter (the current object, *this)

multiple dispatch: the function depends on the dynamic type of
multiple parameters; why is it useful?

interaction between various kinds of objects
(imagine a computer game with weapons and monsters or a vector
graphics library that computes intersection of shapes)

some languages support multiple dispatch natively
Common Lisp, Perl 6, C# 4.0, . . .

other languages have library support for multiple dispatch
C, C++, Java, Perl, Python, . . .

how to emulate multiple dispatch in C++?
dynamic_cast
multidimensional “virtual tables”
for double dispatch: visitor pattern
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Visitor Pattern

base element class Element
one purely virtual method accept(Visitor&)

base visitor class Visitor
a virtual method visit(ConcreteElement&) for each concrete child
of Element

children of Element override accept as follows:
struct Dragon : Element {

void accept(Visitor& v) override { v.visit(*this); }
};

children of Visitor may override its virtual methods
struct Axe : Visitor {

void visit(Dragon&) override { /* ... */ }
void visit(Troll&) override { /* ... */ }
// ...

};
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