
Lambda Functions, Ranges, Algorithm and Functional
Library

PV264 Advanced Programming in C++

Nikola Beneš Jan Mrázek Vladimír Štill

Faculty of Informatics, Masaryk University

Autumn 2020

PV264: Lambdas, Ranges, Algorithm Autumn 2020 1 / 41

Function as a Parameter

int foo(int a, int b) {
return a * 3 + b;

}
How to create a pointer to a function?

int main() {
auto f = foo;
std::cout << f(3, 8) << '\n';

}
What is the type of f?

int(*)(int, int)

PV264: Lambdas, Ranges, Algorithm Autumn 2020 2 / 41

Function as a Parameter

int foo(int a, int b) {
return a * 3 + b;

}
How to create a pointer to a function?
int main() {

auto f = foo;
std::cout << f(3, 8) << '\n';

}
What is the type of f?

int(*)(int, int)

PV264: Lambdas, Ranges, Algorithm Autumn 2020 2 / 41

Function as a Parameter

int foo(int a, int b) {
return a * 3 + b;

}
How to create a pointer to a function?
int main() {

auto f = foo;
std::cout << f(3, 8) << '\n';

}
What is the type of f?

int(*)(int, int)

PV264: Lambdas, Ranges, Algorithm Autumn 2020 2 / 41

Function Type

int foo(int a, int b) {
return a * 3 + b;

}
The type of the foo function is int(int, int)
using FooType = int(int, int);
FooType *ptrToFoo = foo;
using FooPtrType = int (*)(int, int);
FooPtrType ptrToFoo2 = foo;

The older way: typedef int (*FooPtrT)(int, int);
What is int (*getFun(char op))(int, int);?

Note: Functions get automatically cast to function pointers and vice versa.
Thus foo, &foo, and *foo behave the same if foo is a function.

PV264: Lambdas, Ranges, Algorithm Autumn 2020 3 / 41

Function Type

int foo(int a, int b) {
return a * 3 + b;

}
The type of the foo function is int(int, int)
using FooType = int(int, int);
FooType *ptrToFoo = foo;
using FooPtrType = int (*)(int, int);
FooPtrType ptrToFoo2 = foo;

The older way: typedef int (*FooPtrT)(int, int);

What is int (*getFun(char op))(int, int);?

Note: Functions get automatically cast to function pointers and vice versa.
Thus foo, &foo, and *foo behave the same if foo is a function.

PV264: Lambdas, Ranges, Algorithm Autumn 2020 3 / 41

Function Type

int foo(int a, int b) {
return a * 3 + b;

}
The type of the foo function is int(int, int)
using FooType = int(int, int);
FooType *ptrToFoo = foo;
using FooPtrType = int (*)(int, int);
FooPtrType ptrToFoo2 = foo;

The older way: typedef int (*FooPtrT)(int, int);
What is int (*getFun(char op))(int, int);?

Note: Functions get automatically cast to function pointers and vice versa.
Thus foo, &foo, and *foo behave the same if foo is a function.

PV264: Lambdas, Ranges, Algorithm Autumn 2020 3 / 41

Function Type

int foo(int a, int b) {
return a * 3 + b;

}
The type of the foo function is int(int, int)
using FooType = int(int, int);
FooType *ptrToFoo = foo;
using FooPtrType = int (*)(int, int);
FooPtrType ptrToFoo2 = foo;

The older way: typedef int (*FooPtrT)(int, int);
What is int (*getFun(char op))(int, int);?

Note: Functions get automatically cast to function pointers and vice versa.
Thus foo, &foo, and *foo behave the same if foo is a function.

PV264: Lambdas, Ranges, Algorithm Autumn 2020 3 / 41

Member Functions as a Parameters

struct X {
int foo(int a, int b) { return a * 3 + b; }

};
How to create a pointer to a member function?

int main() {
X x;
auto f = &X::foo;

}
What is the type of f?

int (X::*)(int, int)
How can we call f?

(x.*f)(3, 8)
(ptrToX->*f)(3, 8)

Is the ampersand necessary?
Yes. Rules for taking the address of a member function are different
from the old C rules for plain functions.

PV264: Lambdas, Ranges, Algorithm Autumn 2020 4 / 41

Member Functions as a Parameters

struct X {
int foo(int a, int b) { return a * 3 + b; }

};
How to create a pointer to a member function?
int main() {

X x;
auto f = &X::foo;

}
What is the type of f?

int (X::*)(int, int)
How can we call f?

(x.*f)(3, 8)
(ptrToX->*f)(3, 8)

Is the ampersand necessary?
Yes. Rules for taking the address of a member function are different
from the old C rules for plain functions.

PV264: Lambdas, Ranges, Algorithm Autumn 2020 4 / 41

Member Functions as a Parameters

struct X {
int foo(int a, int b) { return a * 3 + b; }

};
How to create a pointer to a member function?
int main() {

X x;
auto f = &X::foo;

}
What is the type of f?

int (X::*)(int, int)
How can we call f?

(x.*f)(3, 8)
(ptrToX->*f)(3, 8)

Is the ampersand necessary?
Yes. Rules for taking the address of a member function are different
from the old C rules for plain functions.

PV264: Lambdas, Ranges, Algorithm Autumn 2020 4 / 41

Member Functions as a Parameters

struct X {
int foo(int a, int b) { return a * 3 + b; }

};
How to create a pointer to a member function?
int main() {

X x;
auto f = &X::foo;

}
What is the type of f?

int (X::*)(int, int)
How can we call f?

(x.*f)(3, 8)
(ptrToX->*f)(3, 8)

Is the ampersand necessary?

Yes. Rules for taking the address of a member function are different
from the old C rules for plain functions.

PV264: Lambdas, Ranges, Algorithm Autumn 2020 4 / 41

Member Functions as a Parameters

struct X {
int foo(int a, int b) { return a * 3 + b; }

};
How to create a pointer to a member function?
int main() {

X x;
auto f = &X::foo;

}
What is the type of f?

int (X::*)(int, int)
How can we call f?

(x.*f)(3, 8)
(ptrToX->*f)(3, 8)

Is the ampersand necessary?
Yes. Rules for taking the address of a member function are different
from the old C rules for plain functions.

PV264: Lambdas, Ranges, Algorithm Autumn 2020 4 / 41

Lambda Functions

It is often useful to be able to create a function just for one use –
an anonymous function.
int large = std::count_if(v.begin(), v.end(),

[](int x) { return x > 42; });

a lambda function that takes int and returns bool

[](int x) { return x > 42; }

PV264: Lambdas, Ranges, Algorithm Autumn 2020 5 / 41

Lambda Functions

It is often useful to be able to create a function just for one use –
an anonymous function.
int large = std::count_if(v.begin(), v.end(),

[](int x) { return x > 42; });

a lambda function that takes int and returns bool

[](int x) { return x > 42; }
empty capture list
does not have access to any local variables in its scope

PV264: Lambdas, Ranges, Algorithm Autumn 2020 5 / 41

Lambda Functions

It is often useful to be able to create a function just for one use –
an anonymous function.
int large = std::count_if(v.begin(), v.end(),

[](int x) { return x > 42; });

a lambda function that takes int and returns bool

[](int x) { return x > 42; }
argument list as for normal function

including auto 14
useful if the type cannot be known beforehand
o r to simplify

including concepts 20
can be variadic

PV264: Lambdas, Ranges, Algorithm Autumn 2020 5 / 41

Lambda Functions

It is often useful to be able to create a function just for one use –
an anonymous function.
int large = std::count_if(v.begin(), v.end(),

[](int x) { return x > 42; });

a lambda function that takes int and returns bool

[](auto x) { return x > 42; }
argument list as for normal function
including auto 14

useful if the type cannot be known beforehand
o r to simplify

including concepts 20
can be variadic

PV264: Lambdas, Ranges, Algorithm Autumn 2020 5 / 41

Lambda Functions

It is often useful to be able to create a function just for one use –
an anonymous function.
int large = std::count_if(v.begin(), v.end(),

[](int x) { return x > 42; });

a lambda function that takes int and returns bool

[](std::integral auto x) { return x > 42; }
argument list as for normal function
including auto 14

useful if the type cannot be known beforehand
o r to simplify

including concepts 20
can be variadic

PV264: Lambdas, Ranges, Algorithm Autumn 2020 5 / 41

Lambda Functions

It is often useful to be able to create a function just for one use –
an anonymous function.
int large = std::count_if(v.begin(), v.end(),

[](int x) { return x > 42; });

a lambda function that takes int and returns bool

[](int x) { return x > 42; }
normal function body
return type deduced

single-expression lambdas 11
all lambdas (all returns of the same type) 14

PV264: Lambdas, Ranges, Algorithm Autumn 2020 5 / 41

Lambda Functions

It is often useful to be able to create a function just for one use –
an anonymous function.
int large = std::count_if(v.begin(), v.end(),

[](int x) { return x > 42; });

a lambda function that takes int and returns bool

[](int x) -> bool { return x > 42; }
return type can be explicit

PV264: Lambdas, Ranges, Algorithm Autumn 2020 5 / 41

Lambdas With Capture

The power of lambda functions is in captures.
struct Bar {

void foo(const std::vector<int> &vec, int p) {
int cnt = std::count_if(vec.begin(), vec.end(),

[this, p](int x) { good(x); });
}
bool good(int);

};

the lambda can call member functions of Bar because it captures
this and p (by value)

PV264: Lambdas, Ranges, Algorithm Autumn 2020 6 / 41

Lambdas With Capture

The power of lambda functions is in captures.
struct Bar {

void foo(const std::vector<int> &vec, int p) {
int cnt = std::count_if(vec.begin(), vec.end(),

[this, p](int x) { good(x); });
}
bool good(int);

};

[this, p](int x) { good(x + p); }
value capture: values copied to lambda

mutable can be used to allow modification of the copies

PV264: Lambdas, Ranges, Algorithm Autumn 2020 6 / 41

Lambdas With Capture

The power of lambda functions is in captures.
struct Bar {

void foo(const std::vector<int> &vec, int p) {
int cnt = std::count_if(vec.begin(), vec.end(),

[this, p](int x) { good(x); });
}
bool good(int);

};

[this, p](int x) mutable { good(x + p++); }
value capture: values copied to lambda
mutable can be used to allow modification of the copies

PV264: Lambdas, Ranges, Algorithm Autumn 2020 6 / 41

Lambdas With Capture

The power of lambda functions is in captures.
struct Bar {

void foo(const std::vector<int> &vec, int p) {
int cnt = std::count_if(vec.begin(), vec.end(),

[this, p](int x) { good(x); });
}
bool good(int);

};

[this, &p](int x) { good(x + p); }
reference capture: p captured by reference, original can be modified
this cannot be be caught by reference

PV264: Lambdas, Ranges, Algorithm Autumn 2020 6 / 41

Lambdas With Capture

The power of lambda functions is in captures.
struct Bar {

void foo(const std::vector<int> &vec, int p) {
int cnt = std::count_if(vec.begin(), vec.end(),

[this, p](int x) { good(x); });
}
bool good(int);

};

[=, this](int x) { good(x + p); }
wildcard capture: all by value
can be combined: [=, &x, &y]
only used variables stored

PV264: Lambdas, Ranges, Algorithm Autumn 2020 6 / 41

Lambdas With Capture

The power of lambda functions is in captures.
struct Bar {

void foo(const std::vector<int> &vec, int p) {
int cnt = std::count_if(vec.begin(), vec.end(),

[this, p](int x) { good(x); });
}
bool good(int);

};

[&](int x) { good(x + p); }
wildcard capture: all by reference

PV264: Lambdas, Ranges, Algorithm Autumn 2020 6 / 41

How Does Lambda Capture Work?
The compiler creates a closure object:
std::count_if(vec.begin(), vec.end(),

[this](int x) { good(x); });

translates to something like
struct Lambda {

Lambda(Bar *that) : that(that) { }
bool operator()(int x) const {

return that->good(x);
}
Bar *that;

};
std::count_if(vec.begin(), vec.end(), Lambda(this));

each lambda gets a unique type
cannot be written by the programmer
is compiler specific

PV264: Lambdas, Ranges, Algorithm Autumn 2020 7 / 41

How Does Lambda Capture Work?
The compiler creates a closure object:
std::count_if(vec.begin(), vec.end(),

[this](int x) { good(x); });

translates to something like
struct Lambda {

Lambda(Bar *that) : that(that) { }
bool operator()(int x) const {

return that->good(x);
}
Bar *that;

};
std::count_if(vec.begin(), vec.end(), Lambda(this));

each lambda gets a unique type
cannot be written by the programmer
is compiler specific

PV264: Lambdas, Ranges, Algorithm Autumn 2020 7 / 41

More On Capture

the capture can also create values: 14
[i = 0](int x) mutable { return x + i++; }

a lambda with an additional variable i (of deduced type int) stored in
the lambda object
type cannot be written explicitly (deduced as in auto i = 0)
useful for move-only objects [ptr = std::move(ptr)]
also by reference: [&x = y]

the current object can be captured by value: 17
[*this]() { return foo(); }
creates a copy of the object pointed to by this in the lambda
this inside lambda body points to the copy

this should be captured explicitly when by-value capture used:
[=, this] or [=, *this] 20

PV264: Lambdas, Ranges, Algorithm Autumn 2020 8 / 41

More On Capture

the capture can also create values: 14
[i = 0](int x) mutable { return x + i++; }

a lambda with an additional variable i (of deduced type int) stored in
the lambda object
type cannot be written explicitly (deduced as in auto i = 0)
useful for move-only objects [ptr = std::move(ptr)]
also by reference: [&x = y]

the current object can be captured by value: 17
[*this]() { return foo(); }
creates a copy of the object pointed to by this in the lambda
this inside lambda body points to the copy

this should be captured explicitly when by-value capture used:
[=, this] or [=, *this] 20

PV264: Lambdas, Ranges, Algorithm Autumn 2020 8 / 41

More On Capture

the capture can also create values: 14
[i = 0](int x) mutable { return x + i++; }

a lambda with an additional variable i (of deduced type int) stored in
the lambda object
type cannot be written explicitly (deduced as in auto i = 0)
useful for move-only objects [ptr = std::move(ptr)]
also by reference: [&x = y]

the current object can be captured by value: 17
[*this]() { return foo(); }
creates a copy of the object pointed to by this in the lambda
this inside lambda body points to the copy

this should be captured explicitly when by-value capture used:
[=, this] or [=, *this] 20

PV264: Lambdas, Ranges, Algorithm Autumn 2020 8 / 41

Templated Lambdas (auto Lambdas) 14

Lambda arguments can be templates:
std::count_if(v.begin(), v.end(),

[=](const auto &x) { return good(x); });

creates the following templated operator in the lambda object
template <typename Arg1T>
bool operator()(const Arg1T& x) const {

return that->good(x);
}

in gcc’s support library there is bug which causes the demangler in
gdb to fail when it encounters a name of an auto lambda

demangler error can be ignored and debugging resumed

PV264: Lambdas, Ranges, Algorithm Autumn 2020 9 / 41

Templated Lambdas 20

Templates can be also explicitly named, possibly with requires

[]<std::input_iterator It, std::sentinel_for<It> End>
(It from, End to) { ... }

[]<typename It, typename End>
requires std::input_iterator<It>

&& std::sentinel_for<End, It>
(It from, End to) { ... }

PV264: Lambdas, Ranges, Algorithm Autumn 2020 10 / 41

More on Lambdas

beware of dangling references in capture-by-reference
auto getAdder(int x) {

return [&](int y) { return x + y; };
}

solution: use capture-by-value

capture-less lambdas can be converted to function pointers:
std::set_terminate([]() {

std::cerr << "terminate called" << std::end;
std::abort();

});
the lambda object actually defines a cast-to-function-pointer operator

the argument list can be missing: [x] { return x; }

PV264: Lambdas, Ranges, Algorithm Autumn 2020 11 / 41

More on Lambdas

beware of dangling references in capture-by-reference
auto getAdder(int x) {

return [&](int y) { return x + y; };
}

solution: use capture-by-value

capture-less lambdas can be converted to function pointers:
std::set_terminate([]() {

std::cerr << "terminate called" << std::end;
std::abort();

});
the lambda object actually defines a cast-to-function-pointer operator

the argument list can be missing: [x] { return x; }

PV264: Lambdas, Ranges, Algorithm Autumn 2020 11 / 41

More on Lambdas

beware of dangling references in capture-by-reference
auto getAdder(int x) {

return [&](int y) { return x + y; };
}

solution: use capture-by-value

capture-less lambdas can be converted to function pointers:
std::set_terminate([]() {

std::cerr << "terminate called" << std::end;
std::abort();

});
the lambda object actually defines a cast-to-function-pointer operator

the argument list can be missing: [x] { return x; }

PV264: Lambdas, Ranges, Algorithm Autumn 2020 11 / 41

Lambda as a Function Argument
The type of lambda is not known to the programmer, how can a function
take such an argument?

1 templates
template <typename Fun>
auto foo(Fun fun) { // note: passing by value

/* ... */
fun(x, y);
foo has to be defined in a header file
the types of lambda’s arguments cannot be written explicitly

2 templates with concepts 20
auto foo(std::invocable<int, int> auto fun) {

/* ... */
fun(x, y);
type is statically derived (as with plain templates)
any concept can be used – constraining return type, . . .
also std::predicate

. . .

PV264: Lambdas, Ranges, Algorithm Autumn 2020 12 / 41

Lambda as a Function Argument
The type of lambda is not known to the programmer, how can a function
take such an argument?

1 templates
template <typename Fun>
auto foo(Fun fun) { // note: passing by value

/* ... */
fun(x, y);
foo has to be defined in a header file
the types of lambda’s arguments cannot be written explicitly

2 templates with concepts 20
auto foo(std::invocable<int, int> auto fun) {

/* ... */
fun(x, y);
type is statically derived (as with plain templates)
any concept can be used – constraining return type, . . .
also std::predicate

. . .

PV264: Lambdas, Ranges, Algorithm Autumn 2020 12 / 41

Lambda as a Function Argument
The type of lambda is not known to the programmer, how can a function
take such an argument?

1 templates
template <typename Fun>
auto foo(Fun fun) { // note: passing by value

/* ... */
fun(x, y);
foo has to be defined in a header file
the types of lambda’s arguments cannot be written explicitly

2 templates with concepts 20
auto foo(std::invocable<int, int> auto fun) {

/* ... */
fun(x, y);
type is statically derived (as with plain templates)
any concept can be used – constraining return type, . . .
also std::predicate

. . .
PV264: Lambdas, Ranges, Algorithm Autumn 2020 12 / 41

Lambda as a Function Argument

3 std::function
auto foo(std::function<void (int, int)> fun)

slower (usually cannot be inlined, possibly uses virtual methods)
4 by function pointer

only capture-less lambdas
faster than std::function
slower that using templates (usually cannot be inlined)

PV264: Lambdas, Ranges, Algorithm Autumn 2020 13 / 41

std::function

a polymorphic wrapper that can hold any callable object satisfying the
given signature

basically a generalisation of a function pointer
can also hold a lambda or a functional object (instance of a class that
defines the call operator ())
can even hold a member function of an object (this has to be passed
as the first argument)

defines a call operator () that forwards all arguments to the stored
callable object
can be empty (can be assigned from nullptr)
the type of the stored object can be accessed if necessary
defined in <functional>

PV264: Lambdas, Ranges, Algorithm Autumn 2020 14 / 41

std::function Example

struct Foo { int get() { return x + 42; }; int x = 0; };
int bla(Foo &x) { return x.x + 16; }

int main() {
Foo f;
std::function<int(Foo &)> fun = &Foo::get;
std::cerr << fun(f) << '\n'; // 42
int i = 0;
fun = [&](Foo &x) { return x.x + i++; };
std::cerr << fun(f) << '\n'; // 0
std::cerr << fun(f) << '\n'; // 1
fun = &bla;
std::cerr << fun(f) << '\n'; // 16

}

PV264: Lambdas, Ranges, Algorithm Autumn 2020 15 / 41

How to Use Lambdas

do not overuse them
lambdas should be short
if you need to name a capture-less lambda, consider using an ordinary
function instead
if your lambda is long, use a function or a method instead
prefer references to copies of large data in the capture list if possible

the generated class will be smaller
however, references can be dangerous, so be careful

if the number of lambdas is higher than the number of
functions/methods, you should consider refactoring your code

PV264: Lambdas, Ranges, Algorithm Autumn 2020 16 / 41

Partial Application, std::bind, std::bind_front

Sometimes it is useful to pass a member function together with its object,
or a partially applied function to an algorithm:

by lambda: [this, x](auto y) { foo(x, y); }

using std::bind:
using namespace std::placeholders;
auto bar = std::bind(&Foo::foo, this, x, _1);
bar(5); // calls this->foo(x, 5)

binds function passed as first argument to some arguments, some of
which can be represented by placeholders (_1,. . . ,_N)
works with functions, callable objects, member functions
creates a callable object that accepts N arguments
return value type is unspecified

using std::bind_front 20
auto bar = std::bind_front(&Foo::foo, this, x);
bar(5); // calls this->foo(x, 5)

Note: Since C++14, all uses of bind can be written using a lambda.

PV264: Lambdas, Ranges, Algorithm Autumn 2020 17 / 41

Partial Application, std::bind, std::bind_front

Sometimes it is useful to pass a member function together with its object,
or a partially applied function to an algorithm:

by lambda: [this, x](auto y) { foo(x, y); }
using std::bind:
using namespace std::placeholders;
auto bar = std::bind(&Foo::foo, this, x, _1);
bar(5); // calls this->foo(x, 5)

binds function passed as first argument to some arguments, some of
which can be represented by placeholders (_1,. . . ,_N)
works with functions, callable objects, member functions
creates a callable object that accepts N arguments
return value type is unspecified

using std::bind_front 20
auto bar = std::bind_front(&Foo::foo, this, x);
bar(5); // calls this->foo(x, 5)

Note: Since C++14, all uses of bind can be written using a lambda.

PV264: Lambdas, Ranges, Algorithm Autumn 2020 17 / 41

Partial Application, std::bind, std::bind_front

Sometimes it is useful to pass a member function together with its object,
or a partially applied function to an algorithm:

by lambda: [this, x](auto y) { foo(x, y); }
using std::bind:
using namespace std::placeholders;
auto bar = std::bind(&Foo::foo, this, x, _1);
bar(5); // calls this->foo(x, 5)

binds function passed as first argument to some arguments, some of
which can be represented by placeholders (_1,. . . ,_N)
works with functions, callable objects, member functions
creates a callable object that accepts N arguments
return value type is unspecified

using std::bind_front 20
auto bar = std::bind_front(&Foo::foo, this, x);
bar(5); // calls this->foo(x, 5)

Note: Since C++14, all uses of bind can be written using a lambda.

PV264: Lambdas, Ranges, Algorithm Autumn 2020 17 / 41

Partial Application, std::bind, std::bind_front

Sometimes it is useful to pass a member function together with its object,
or a partially applied function to an algorithm:

by lambda: [this, x](auto y) { foo(x, y); }
using std::bind:
using namespace std::placeholders;
auto bar = std::bind(&Foo::foo, this, x, _1);
bar(5); // calls this->foo(x, 5)

binds function passed as first argument to some arguments, some of
which can be represented by placeholders (_1,. . . ,_N)
works with functions, callable objects, member functions
creates a callable object that accepts N arguments
return value type is unspecified

using std::bind_front 20
auto bar = std::bind_front(&Foo::foo, this, x);
bar(5); // calls this->foo(x, 5)

Note: Since C++14, all uses of bind can be written using a lambda.
PV264: Lambdas, Ranges, Algorithm Autumn 2020 17 / 41

Ranges 20

PV264: Lambdas, Ranges, Algorithm Autumn 2020 18 / 41

Boring “Corporate” Example

given a container of Employees, find the sum of all men’s salaries
to make things complicated, QA gets a 10% raise

Traditional solution:
int sum = 0;
for (const Employee& e : loadEmployees()) {

if (e.gender == Gender::Female)
continue;

sum += e.department == "QA" ? 1.1 * e.salary : e.salary;
}
return sum;

PV264: Lambdas, Ranges, Algorithm Autumn 2020 19 / 41

Boring “Corporate” Example

given a container of Employees, find the sum of all men’s salaries
to make things complicated, QA gets a 10% raise

Using STL algorithms:
std::vector<Employee> employees = loadEmployees();
employees.erase(

std::remove_if(employees.begin(), employees.end(),
[](const Employee& e) {

return e.gender == Gender::Female;
}), employees.end());

std::vector<int> s;
std::transform(employees.begin(), employees.end(),

std::back_inserter(s), [](const Employee& e) {
return e.department == "QA" ?

1.1 * e.salary : e.salary;
});

return std::accumulate(s.begin(), s.end(), 0);
PV264: Lambdas, Ranges, Algorithm Autumn 2020 20 / 41

Iterators and Algorithms in STL

are supposed to provide higher abstraction and prevent code
duplication

when you see std::copy you know what to expect
when you see for you have to put mental effort to find out what it does
algorithms should eliminate “off-by-one” bugs and similar

have terrible syntax (as seen on the previous example)
almost in all cases we go from begin() to end()
in almost all cases we back-insert the result

do not compose well (as seen on the previous example)
note the memory overhead of second solution

Solution in C++20: concept of ranges and range adaptors
provide abstraction
do not lead to code duplication
compose well and are efficient

PV264: Lambdas, Ranges, Algorithm Autumn 2020 21 / 41

Iterators and Algorithms in STL

are supposed to provide higher abstraction and prevent code
duplication

when you see std::copy you know what to expect
when you see for you have to put mental effort to find out what it does
algorithms should eliminate “off-by-one” bugs and similar

have terrible syntax (as seen on the previous example)
almost in all cases we go from begin() to end()
in almost all cases we back-insert the result

do not compose well (as seen on the previous example)
note the memory overhead of second solution

Solution in C++20: concept of ranges and range adaptors
provide abstraction
do not lead to code duplication
compose well and are efficient

PV264: Lambdas, Ranges, Algorithm Autumn 2020 21 / 41

Ranges 20

std::vector numbers = {1, 2, 3, 4, 5, 6};

auto results = numbers
| std::views::filter([](int n) { return n % 2 == 0; })
| std::views::transform([](int n) { return n * 2; });

for (auto v : results)
std::cout << v << " ";

functional style of transformation of sequences of values
composable
lazy – values computed on-demand

PV264: Lambdas, Ranges, Algorithm Autumn 2020 22 / 41

Range 20

a range is an object with begin() and end() that return iterators
can be iterated over
concept std::ranges::range

end iterator need not be the same type as begin
so-called sentinel – can be compared with an iterator to detect end of a
range
std::iterator and std::sentinel_for<It> concepts
note: range-for allows use of sentinels 17

all containers are ranges

PV264: Lambdas, Ranges, Algorithm Autumn 2020 23 / 41

Range 20

a range is an object with begin() and end() that return iterators
can be iterated over
concept std::ranges::range

end iterator need not be the same type as begin
so-called sentinel – can be compared with an iterator to detect end of a
range
std::iterator and std::sentinel_for<It> concepts
note: range-for allows use of sentinels 17

all containers are ranges

PV264: Lambdas, Ranges, Algorithm Autumn 2020 23 / 41

Range 20

a range is an object with begin() and end() that return iterators
can be iterated over
concept std::ranges::range

end iterator need not be the same type as begin
so-called sentinel – can be compared with an iterator to detect end of a
range
std::iterator and std::sentinel_for<It> concepts
note: range-for allows use of sentinels 17

all containers are ranges

PV264: Lambdas, Ranges, Algorithm Autumn 2020 23 / 41

Range 20

unlike containers, ranges do not have to own elements
range iterators can be smart
technically, there are many concepts of ranges

forward
random access
. . .

ranges come with range-enabled algorithms
std::views::filter(nums, [](int n) { return n % 2 == 0; })
nums | std::views::filter([](int n) { return n % 2 == 0; })

PV264: Lambdas, Ranges, Algorithm Autumn 2020 24 / 41

Range Adaptors 20

can be combined with a range using operator | to produce a new
range:

std::vector numbers = { 1, 2, 3, 4, 5 };
auto range = numbers | std::view::transform(multiplyBy(42));

operator |:
semantics similar to UNIX pipes: “feeds output of the left side to the
right side”
is left associative (“read it from left to right”)

auto range = numbers
| std::view::filter(isEven)
| std::view::transform(multiplyBy(42));

Views = adaptors that do not own data and are lazy

PV264: Lambdas, Ranges, Algorithm Autumn 2020 25 / 41

Boring “Corporate” Example: Now with Ranges! 20

given a container of Employees, find sum of all men’s salaries
to make things complicated, QA gets a 10% raise

auto range = loadEmployees()
| std::view::filter([](auto& e) {

return e.gender == Gender::Man })
| view::transform([](auto& e) {

return e.department == "QA" ?
1.1 * e.salary : e.salary; });

return std::accumulate(range.begin(), range.end());

named functions instead of lambdas:
loadEmployees()

| view::filter(isMan)
| view::transform(raise({ { "QA", 1.1 } }))

);
Function naming leads to more readable code!

PV264: Lambdas, Ranges, Algorithm Autumn 2020 26 / 41

Boring “Corporate” Example: Now with Ranges! 20

given a container of Employees, find sum of all men’s salaries
to make things complicated, QA gets a 10% raise

auto range = loadEmployees()
| std::view::filter([](auto& e) {

return e.gender == Gender::Man })
| view::transform([](auto& e) {

return e.department == "QA" ?
1.1 * e.salary : e.salary; });

return std::accumulate(range.begin(), range.end());

named functions instead of lambdas:
loadEmployees()

| view::filter(isMan)
| view::transform(raise({ { "QA", 1.1 } }))

);
Function naming leads to more readable code!

PV264: Lambdas, Ranges, Algorithm Autumn 2020 26 / 41

Performance of ranges 20

ranges are lazy
only the employee under transformation occupies memory
efficiency is roughly the same as for for loop implementation

PV264: Lambdas, Ranges, Algorithm Autumn 2020 27 / 41

Ranges in Practice

only GCC ≥ 10 (no clang, no MSVC so far)
“ranges are nice, but C++20 is too new”

range-v3
reference implementation of ranges for standard library
open-source, https://github.com/ericniebler/range-v3
header-only, compatible with C++11 and higher
ready to be used in practice
not everything in ranges-v3 is in C++20 (e.g., accumulate)

Boost also provides its own implementation

PV264: Lambdas, Ranges, Algorithm Autumn 2020 28 / 41

https://github.com/ericniebler/range-v3

Ranges in Practice

only GCC ≥ 10 (no clang, no MSVC so far)
“ranges are nice, but C++20 is too new”

range-v3
reference implementation of ranges for standard library
open-source, https://github.com/ericniebler/range-v3
header-only, compatible with C++11 and higher
ready to be used in practice
not everything in ranges-v3 is in C++20 (e.g., accumulate)

Boost also provides its own implementation

PV264: Lambdas, Ranges, Algorithm Autumn 2020 28 / 41

https://github.com/ericniebler/range-v3

range-v3 overview

Documentation: https://ericniebler.github.io/range-v3/
views: produce new ranges, lazy if possible:

view::zip
view::zip_with
view::take
view::tail
view::tokenize
view::reverse
...

actions: mutate container in place, not lazy:
action::sort
action::unique
...

algorithms: STL algorithms taking ranges as arguments

PV264: Lambdas, Ranges, Algorithm Autumn 2020 29 / 41

https://ericniebler.github.io/range-v3/

The Old Way – C++ Algorithm Libraries

PV264: Lambdas, Ranges, Algorithm Autumn 2020 30 / 41

C++ Algorithm Libraries

Recommended talk from CppCon 2018:
Jonathan Boccara: 105 STL Algorithms in Less Than an Hour
https://www.youtube.com/watch?v=2olsGf6JIkU

PV264: Lambdas, Ranges, Algorithm Autumn 2020 31 / 41

https://www.youtube.com/watch?v=2olsGf6JIkU

C++ Algorithm Libraries
headers <algorithm>, <numeric>
many useful algorithms on collections/iterators

sort, stable_sort, nth_element, binary_search, reverse
all_of, any_of, node_of
find, find_if, count, count_if
copy, move
accumulate, inner_product

especially usable with lambda functions
beware of using them for things that can be written clearer and
shorter with range-based for
all that take function arguments take them using templates and by
value:
template <typename InputIterator, typename T,

typename BinaryOperation>
T accumulate(InputIterator first, InputIterator last,

T init, BinaryOperation binary_op);
PV264: Lambdas, Ranges, Algorithm Autumn 2020 32 / 41

Iterators

Iterators are central concept for containers and algorithms in the standard
C++ library:

in a sense a generalisation of pointers
point to some place in a collection
can be dereferenced to obtain (a reference to) a value in the collection
can be incremented, optionally decremented, added to, compared

requirements described by the Iterator concept and its extensions
concepts are a way to describe a set of types which satisfy the same
public interface
used in C++ standard, documentation, not part of the language (yet)

PV264: Lambdas, Ranges, Algorithm Autumn 2020 33 / 41

Iterator Concepts I
Iterator concept:

for type It to be iterator it must meet the following:
be copy constructible, copy assignable, destructible
lvalues need to be swappable
if r is an lvalue of type It then *r and ++r must be valid expressions
and ++r must return It &

but certain r might not be dereferenceable:
if r points past-the-end of a container
if it was invalidated by an operation on the container
if it is not associated with any container

std::iterator_traits<It> must define the member types
value_type, difference_type, reference, pointer, and
iterator_category

this can be done by defining these types in It itself,
std::iterator_traits is a helper to allow adding those to pointer
types
iterator category is used to determine the capabilities of the iterator

PV264: Lambdas, Ranges, Algorithm Autumn 2020 34 / 41

Iterator Concepts II

InputIterator concept extends Iterator in the following ways:
is comparable (==, !=)
*i returns reference, convertible to value_type
(if i is dereferenceable)
members of object pointed to by the iterator can be accessed: i->m
postfix increment i++, but with unspecified return type
*i++ is convertible to value_type

PV264: Lambdas, Ranges, Algorithm Autumn 2020 35 / 41

Iterator Concepts III

ForwardIterator adds to InputIterator:
must be default constructible
multipass guarantee

a == b implies ++a == ++b
if a and b are equal then they must both either be non-dereferenceable
or *a and *b must be references to the same object
assignment to a mutable ForwardIterator cannot invalidate it

reference must be a (constant or non-constant) lvalue reference to
value_type
equality must be defined between all iterators to the same sequence
and (since C++14) the value-initialized iterators (It{})
i++ must return It and be equivalent to It o=i; ++i; return o;

PV264: Lambdas, Ranges, Algorithm Autumn 2020 36 / 41

Iterator Concepts IV

BidirectionalIterator adds to ForwardIterator:
--i, i--, and *i-- are defined (analogous to ++ but moving back)

RandomAccessIterator adds to BidirectionalIterator:
let a, b be iterators, n a numeric value of type difference_type
iterator a can be added to, subtracted from:
a += n, a -= n, a + n, a - n
with constant complexity
two iterators can be subtracted to obtain their distance: a - b
iterator can be indexed: a[n] which is equal to *(a + n)
they can be ordered: a < b, a >= b, . . .

a < b iff b - a > 0

PV264: Lambdas, Ranges, Algorithm Autumn 2020 37 / 41

Iterator Concepts V
ContiguousIterator adds to RandomAccessIterator (since C++17):

for dereferenceable iterator values a and (a + n), *(a + n)
equivalent to *(std::addressof(*a) + n)

where std::addressof obtains real address of a reference even if it
overloads operator &

OutputIterator adds the mutability requirement to any type which meets
the Iterator concept:

*i can be assigned to
iterators which meet OutputIterator are called mutable iterators

The concept an iterator adheres to is indicated by iterator_category
which should be typedef to one of:

input_iterator_tag, output_iterator_tag,
forward_iterator_tag, bidirectional_iterator_tag,
random_access_iterator_tag
(yes, there is none yet for ContiguousIterator)

PV264: Lambdas, Ranges, Algorithm Autumn 2020 38 / 41

More on Iterators I

inheriting from std::iterator is deprecated in C++17
there are some utilities and concepts in <iterator>
std::reverse_iterator adaptor can be used to adapt
a bidirectional iterator for reverse iteration
std::next, std::prev can be used to advance iterators in single
expression

++x.begin() might not be well defined,
but std::next(x.begin()) is
see https://en.cppreference.com/w/cpp/iterator/next#Notes
can also jump over elements: std::next(x.begin(), 4)

PV264: Lambdas, Ranges, Algorithm Autumn 2020 39 / 41

https://en.cppreference.com/w/cpp/iterator/next#Notes

More on Iterators II

std::back_inserter, std::front_inserter, std::inserter
are useful for filling containers:
std::copy_if(a.begin(), a.end(),

std::back_inserter(v),
[](auto &x) { return x.good(); });

prefer container’s insert for bulk insertion from other containers
v.insert(v.end(), a.begin(), a.end());

eliminates repeated resizes

PV264: Lambdas, Ranges, Algorithm Autumn 2020 40 / 41

More on Iterators III

std::istream_iterator, std::ostream_iterator are useful for
combining algorithms with streams:
std::copy(s.begin(), s.end(),

std::ostream_iterator<int>(std::cout, " "));
both use a template argument to set which type is read from/written
to the stream
the second (optional) argument is a separator

(well, not really; it is output after every value)
maybe we will have ostream_joiner in the future

PV264: Lambdas, Ranges, Algorithm Autumn 2020 41 / 41

More on Iterators III

std::istream_iterator, std::ostream_iterator are useful for
combining algorithms with streams:
std::copy(s.begin(), s.end(),

std::ostream_iterator<int>(std::cout, " "));
both use a template argument to set which type is read from/written
to the stream
the second (optional) argument is a separator
(well, not really; it is output after every value)
maybe we will have ostream_joiner in the future

PV264: Lambdas, Ranges, Algorithm Autumn 2020 41 / 41

	Ranges
	The Old Way – C++ Algorithm Libraries

