
Testing & Debugging
PV264 Advanced Programming in C++

Nikola Beneš Jan Mrázek Vladimír Štill

Faculty of Informatics, Masaryk University

autumn 2020

PV264: Testing & Debugging autumn 2020 1 / 26

Three Basic Questions of Programming

Is my program well-written?
Will someone else be able to read (maintain, refactor) it?
Will I be able to read it (tomorrow, next week, next year)?

Is my program correct?
Does it do what it is supposed to?
What is it actually supposed to do?

Is my program efficient?
time, memory consumption, other resources consumption (data,
energy, . . .)

PV264: Testing & Debugging autumn 2020 2 / 26

Correctness

How to approach correctness?
testing
formal verification (automatic/semi-automatic/manual)
code inspection
. . .

Testing
important part of development process
levels of testing

unit testing
integration testing
system testing
. . .

many approaches and frameworks – our focus:
unit testing using the Catch2 framework
automated testing using the RapidCheck framework

PV264: Testing & Debugging autumn 2020 3 / 26

Using Catch2

Catch2 (C++ Automated Test Cases in Headers)
https://github.com/catchorg/Catch2
advantages:

easy to use
no dependencies, one header file
readable test cases (support for Behaviour-Driven Development)
arbitrary strings as names
test cases divided into independent sections
use standard C++ operators for comparison

PV264: Testing & Debugging autumn 2020 4 / 26

https://github.com/catchorg/Catch2

Using Catch2 — Sections

#define CATCH_CONFIG_MAIN // provide main()
#include "catch.hpp"

#include <vector>

TEST_CASE("Vector is initialised as empty") {
std::vector<int> vec;
REQUIRE(vec.size() == 0);

}

PV264: Testing & Debugging autumn 2020 5 / 26

Using Catch2 – Sections

TEST_CASE("Vector size and capacity") {
std::vector<int> vec;
vec.push_back(1);
vec.push_back(2);
auto size = vec.size();
REQUIRE(size == 2);
SECTION("push_back increases size") {

vec.push_back(3);
REQUIRE(vec.size() > size);

}
SECTION("erase decreases size") {

vec.erase(vec.begin());
REQUIRE(vec.size() < size);

}
}

PV264: Testing & Debugging autumn 2020 6 / 26

Using Catch2 – Sections

for each (leaf) SECTION the TEST_CASE is executed from the start
alternative to the traditional text fixture approach (setup/teardown)

Catch2 also supports fixtures, see docs
SECTIONs can be arbitrarily nested

failure in parent section prevents nested sections from running

BDD (Behaviour-Driven Development)
SCENARIO, GIVEN, WHEN, THEN

SCENARIO("Adding an element to a vector") {
GIVEN("A vector with no elements") {

std::vector<int> vec;
WHEN("an element is added via push_back") {

vec.push_back(0);
THEN("the size becomes 1") {

REQUIRE(vec.size() == 1); } } } }

PV264: Testing & Debugging autumn 2020 7 / 26

Using Catch2 – Asserts & Logs

REQUIRE, CHECK, REQUIRE_FALSE, CHECK_FALSE

assert condition (CHECK: execution continues even after failure)
REQUIRE_THROWS, REQUIRE_NOTHROW, CHECK_THROWS, . . .

assert that an expression throws/does not throw an expression
INFO, WARN, FAIL

logging
CAPTURE

log the value of a variable

PV264: Testing & Debugging autumn 2020 8 / 26

Using Catch2 – Useful Information

command-line parameters
which test(s) to run
output format (jUnit, XML, . . .)

configuration via macros, own main()

Recommended practice
one main source file with nothing but the main function (possibly
generated by Catch2)

#define CATCH_CONFIG_MAIN
#include "catch.hpp"
// end of file

other source files for tests

PV264: Testing & Debugging autumn 2020 9 / 26

Using Catch2 – Useful Information

command-line parameters
which test(s) to run
output format (jUnit, XML, . . .)

configuration via macros, own main()

Recommended practice
one main source file with nothing but the main function (possibly
generated by Catch2)

#define CATCH_CONFIG_MAIN
#include "catch.hpp"
// end of file

other source files for tests

PV264: Testing & Debugging autumn 2020 9 / 26

Using RapidCheck

RapidCheck
https://github.com/emil-e/rapidcheck
property-based testing
similar to Haskell’s QuickCheck, Python’s hypothesis
automatically generated test cases
counterexample shrinking

PV264: Testing & Debugging autumn 2020 10 / 26

https://github.com/emil-e/rapidcheck

Debugging

PV264: Testing & Debugging autumn 2020 11 / 26

Debugging

Tests fail, now what?
tracing (“printf debugging”)
logging
using debuggers
using other useful tools

Recommendation
try to find a minimal example where the problem occurs

“code bisection”
bugs are sometimes caused by bad memory management

don’t forget about valgrind and similar tools
to be able to employ debuggers:

compile without optimisation
compile with debug information (-g)

PV264: Testing & Debugging autumn 2020 12 / 26

Debugging

Tests fail, now what?
tracing (“printf debugging”)
logging
using debuggers
using other useful tools

Recommendation
try to find a minimal example where the problem occurs

“code bisection”
bugs are sometimes caused by bad memory management

don’t forget about valgrind and similar tools
to be able to employ debuggers:

compile without optimisation
compile with debug information (-g)

PV264: Testing & Debugging autumn 2020 12 / 26

Debuggers

Typical Debugger Functions
pause at specified breakpoints

line of code, condition, exception thrown/caught, signals, . . .
evaluate expressions
step through program
(modify program state)

Our Focus
gdb (The GNU Debugger)

command-line tool
many graphical front-ends

PV264: Testing & Debugging autumn 2020 13 / 26

Using gdb

Basic commands:
help
run – start the debugged program
list – list specified function or line
break – set breakpoint
catch – set catchpoint (exception breakpoint)
info – show information about the debugged program

info args, info registers, info breakpoints, . . .
step – step program, steps into functions
next – step program, steps over function calls
stepi, nexti – step by instructions, not lines of code
print – evaluate expression
examine – display contents of memory address
disp – evaluate expression each time the program stops
continue – continue running (after breakpoint)
kill – stop execution of the program

PV264: Testing & Debugging autumn 2020 14 / 26

Using gdb

Stack commands:
backtrace – print backtrace of stack frames
up, down, frame, select-frame – select stack frame
finish – run until current stack frame returns
info locals, info frame

Executing code at runtime:
set var = value – change the value of a variable
call func() – call a function

Watchpoints:
watch var – watch changes (writes) of a variable
rwatch var – watch reads of a variable
awatch var – watch both reads and writes

PV264: Testing & Debugging autumn 2020 15 / 26

gdb front-ends

cgdb

terminal-based front-end for gdb (uses the curses library)
displays the source code above the gdb session
https://cgdb.github.io/
module add cgdb-0.6.6 on faculty computers

Other front-ends: see
https://sourceware.org/gdb/wiki/GDB%20Front%20Ends

PV264: Testing & Debugging autumn 2020 16 / 26

https://cgdb.github.io/
https://sourceware.org/gdb/wiki/GDB%20Front%20Ends

Assembler

Assembly Language (symbolic machine code)
low-level; closest to machine code
commands – machine code instructions

Why do we want to know about it?
debugging
computer security
examine optimisation done by compiler
sometimes it is good to know what’s “under the hood”

Our focus here: brief overview; reading assembly, not writing it

PV264: Testing & Debugging autumn 2020 17 / 26

Assembler – Tools

Disassemble
clang++ -S, g++ -S, etc.
gdb

disassemble
x/10i address (such as $rip)
(print, disp)
set disassemble-next-line on

objdump -d

Show raw bytes
hexdump -C
xxd

Compiler explorer: https://godbolt.org

PV264: Testing & Debugging autumn 2020 18 / 26

https://godbolt.org

Assembler Notation

Intel
operands in order dest, src

mov rax, rbx moves from rbx to rax
add rax, 0x1f adds 0x1f to rax

memory indexing [base + index*scale + disp]
mov eax, [rbx + rcx*4 + 0x10]

AT&T
operands in order src, dest

mov %rbx, %rax
add $0x1f, %rax

memory indexing disp(base, index, scale)
movl 0x10(%rbx, %rcx, 4), %eax

size indicated in the instruction mnemonic
movb, movw, movl, movq (1, 2, 4, and 8 bytes)

immediate values with $, registers with %

PV264: Testing & Debugging autumn 2020 19 / 26

Assembler notation

How to use the Intel syntax?
clang++ -S -masm=intel
objdump -d -M intel
gdb

set disassembly-flavor intel

PV264: Testing & Debugging autumn 2020 20 / 26

x86(-64) Architecture

Registers
instruction pointer: ip (16 bit), eip (32 bit), rip (64 bit)
stack pointer: sp (16 bit), esp (32 bit), rsp (64 bit)
general purpose: ax, bx, cx, dx (eax, rax, . . .)

lower 8 bits: al, bl, cl, dl

source/destination: si, di (esi, rsi, . . .)
stack frame base pointer: bp (ebp, rbp)
64 bit general purpose: r8, r9, . . . , r15

low 32 bits: r8d, . . .
low 16 bits: r8w, . . .
low 8 bits: r8b, . . .

floating-point (80 bit) registers st0, . . . , st7
XMM 128 bit registers xmm0, . . . , xmm15

PV264: Testing & Debugging autumn 2020 21 / 26

x86(-64) Architecture

Stack
memory area given by OS to programs
LIFO data structure; x86 stack grows towards lower addresses
esp (rsp) points to the top of the stack
main use: return address, function arguments, local variables,
temporary storage

PUSH value
decrements esp (rsp) and then stores the given value at the memory
address given by (the new value of) esp (rsp)

POP register
copies the value from the memory address given by esp (rsp) into
the given register and then increments esp (rsp)

PV264: Testing & Debugging autumn 2020 22 / 26

x86(-64) Architecture

How do function calls work?
parameters are stored somewhere (see below)
call address

push address of next instruction on stack
jump to address

ret (return from function)
pops address from stack and jumps to it

Calling conventions
32bit: many different possibilities

cdecl: arguments passed on the stack in reverse order
64bit: two main approaches (Microsoft x64, System V AMD64)

both use registers to pass (some of) the arguments
registers used also depend on type (integers, floats) of arguments

PV264: Testing & Debugging autumn 2020 23 / 26

x86(-64) Architecture

Function frames (standard entry/exit sequence)
at the beginning of a function:
push rbp
mov rbp, rsp
sub rsp, 0x10 (allocate 16 bytes on stack for local variables)
rbp is the base frame pointer

local values referenced as [rbp + 0x08], . . .
note that [rbp] holds the value of the previous rbp

at the end of a function:
mov rsp, rbp
pop rbp

Note: Optimisations (frame pointer omission optimisation) may eliminate
this. (-f[no-]omit-frame-pointer)

PV264: Testing & Debugging autumn 2020 24 / 26

x86(-64) Instructions

Move instruction
MOV – copy value from src to dest

Arithmetic and logic instructions
ADD, SUB, MUL, . . .
AND, OR, XOR, . . .

Test instructions
CMP – performs SUB; does not save the result, only sets flags
TEST – similar to CMP, performs AND

Jump instructions
JMP – unconditional jump
Jxx – conditional jump, reacts to flags

JZ – jump if zero
JBE – jump if below or equal
. . .

PV264: Testing & Debugging autumn 2020 25 / 26

Optimisations

What can the compiler optimise for us?

speed
rearranging memory accesses
inline functions
tail recursion (sometimes even non-tail recursion)
loop unrolling

space
collapse common code

obvious
constant propagation

. . . and much more

PV264: Testing & Debugging autumn 2020 26 / 26

Optimisations

What can the compiler optimise for us?
speed

rearranging memory accesses
inline functions
tail recursion (sometimes even non-tail recursion)
loop unrolling

space
collapse common code

obvious
constant propagation

. . . and much more

PV264: Testing & Debugging autumn 2020 26 / 26

