
Course Introduction
PV264 Advanced Programming in C++

Nikola Beneš Jan Mrázek Vladimír Štill

Faculty of Informatics, Masaryk University

autumn 2020

PV264: Course Introduction autumn 2020 1 / 36

Course Introduction

Course language: English
all study materials in English
lectures in English
seminars/consultations Czech or English (depends on the students)
questions or one-to-one discussions can be in Czech on both seminars
documentation/comments in English
(but you should do that always)

Course organisation
video lectures
seminars/consultations are online on Discord

in the times specified in the timetable
more info on the course web

https://www.fi.muni.cz/pv264

PV264: Course Introduction autumn 2020 2 / 36

https://www.fi.muni.cz/pv264

Course Introduction

Topic: Advanced usage of modern C++
ISO C++17, parts of ISO C++20 (as implemented in current
compilers)
known concepts of C++ in more detail
move semantics (rvalue references)
functional programming in C++, ranges
generic programming and metaprogramming in C++ (templates,
concepts)
resource management (smart pointers, RAII)
modern C++ idioms
parallel programming (threads, atomic)
optimisation, profiling, debugging
interesting C++ libraries
future of C++

PV264: Course Introduction autumn 2020 3 / 36

Course Introduction

Prerequisites: PB071, PB161 or equivalent knowledge
basic syntax and semantics of C and C++
some programming skills
compilation workflow
pointer arithmetic, working with strings and arrays (C and C++)
value semantics of C++, references
C++ standard library (containers, algorithms)
constructors/destructors, copying, basic resource management
input/output
basic OOP principles, virtual methods (late binding), inheritance
exceptions
basic understanding of templates
unique_ptr

PV264: Course Introduction autumn 2020 4 / 36

Course Organisation

Lectures
Seminars

exercises related to the current lecture’s topic
(in the 2nd half of the semester) partially project consultation

Homework
two assignments, evaluation: pass/fail
need to pass both assignments
automatic testing + checked by tutor
some tests available to students: need to pass all of those!

Projects
groups of at most 3 students, evaluation: score
topic chosen by you; details later
project presentation (last two weeks of the semester)
code review of another group’s project (twice)
main submission before the end of semester; resubmission during the
exam period (if you do not gain enough points)

PV264: Course Introduction autumn 2020 5 / 36

Course Organisation

Evaluation
the whole course is pass/fail only, no grades
homeworks pass/fail
project: 6 points in total, need at least 4 to pass

checkpoint (8th week of semester): pass/fail
functionality: 3 points
code/design quality: 3 points
presentation: -1 point if not done or done badly
code review: -1 point if not done (twice per semester)

PV264: Course Introduction autumn 2020 6 / 36

Course Organisation

Standards, Compilers
we use C++20 (-std=c++20 for current gcc/clang;
-std=c++2a for slightly older gcc/clang)
see the web for information about compilers and other tools:
https://www.fi.muni.cz/pv264/tools

Documentation
recommended source: http://en.cppreference.com/w/cpp

PV264: Course Introduction autumn 2020 7 / 36

https://www.fi.muni.cz/pv264/tools
http://en.cppreference.com/w/cpp

Outline for Today’s Lecture

Part 1
the C++ build process, cmake

Part 2
useful tools: clang-tidy, sanitizers, valgrind
basic C++ knowledge review + extension

pointers, references
initialization, initializer_list
C++11: auto, range-based for, nullptr, using, final, override,
default/delete
C++11 standard library: tuples, hashtables
unique_ptr (basic usage)

Part 3
some notes on testing and debugging

PV264: Course Introduction autumn 2020 8 / 36

The Build Process

Header Files (.h or .hpp)
contain (function, class) declarations
may also contain function definitions

inline free functions (inline specifier)
inline member functions
(inline not needed, if they are inside class declarations)
inline variables

also contain full definitions of templated functions, classes, and
variables

Source Files (.cpp)
contain function definitions

Note: various other extension are used (.cc, .cxx, .C, .c++), we are
going to use .cpp in this course.

PV264: Course Introduction autumn 2020 9 / 36

The Build Process

Header Files (.h or .hpp)
contain (function, class) declarations
may also contain function definitions

inline free functions (inline specifier)
inline member functions
(inline not needed, if they are inside class declarations)
inline variables

also contain full definitions of templated functions, classes, and
variables

Source Files (.cpp)
contain function definitions

Note: various other extension are used (.cc, .cxx, .C, .c++), we are
going to use .cpp in this course.

PV264: Course Introduction autumn 2020 9 / 36

The Build Process

1 Preprocessing g++ -E example.cpp
source file + header files → expanded source file

2 Compilation g++ compile options -S example.cpp (does 1, 2)
source file → assembler file (.s)

3 Assembly g++ compile options -c example.cpp (does 1, 2, 3)
assembler file → object file (.o)

4 Linking g++ example.o main.o -lm -o example (does 4)
object files + library files → executable file

g++ compile options example.cpp main.cpp -lm -o example
(does 1–4)

PV264: Course Introduction autumn 2020 10 / 36

The Build Process

Build Automation
basic: make, Makefile

program: main.o example.o
$(CXX) $< -o $@

%.o: %.cpp example.h
$(CXX) -std=c++20 -Wall -Wextra -pedantic -g $< -o $@

rules: target, dependencies, command
checks if a dependency is newer than target and only runs those rules
quite powerful (see documentation)
$(CXX) – variable, refers to the C++ compiler ($(CC) for C compiler)

defaults to g++ on Linux, or to the value of the CXX environment
variable
make CXX=g++-10 CC=gcc-10

PV264: Course Introduction autumn 2020 11 / 36

The Build Process

Build Script Generation using CMake
cross-platform tool
generates Makefiles (and also files for other build systems)

you may want to look at ninja (cmake -GNinja)
main file CMakeLists.txt

cmake_minimum_required(VERSION 3.5)
project(example)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++17 \

-Wall -Wextra -pedantic")
set(SOURCE_FILES example.cpp main.cpp)
add_executable(example ${SOURCE_FILES})
target_link_libraries(example ...libraries...)

PV264: Course Introduction autumn 2020 12 / 36

The Build Process

Using cmake

create a separate build directory
mkdir build
from the build directory run cmake path to source directory
cd build
cmake ..
run make in the build directory

Useful tricks
change default compiler

CC=clang CXX=clang++ cmake .. or
cmake -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ ..

change build configuration: ccmake
CMAKE_BUILD_TYPE: Release / Debug / RelWithDebInfo

PV264: Course Introduction autumn 2020 13 / 36

Dependency Management

C++ does not come with a standard package manager
popular package managers for C++:

Conan: becoming de-facto standard, suitable for complex
dependencies, distributed repositories, precompiled packages
vcpkg: multi-platform manager maintained by Microsoft, always builds
everything from source
Hunter: completely integrated within CMake (no extra file for
dependencies)

if you feel the need for package manager, try Conan first
FetchContent: much simpler alternative to package managers –
often best solution in most cases

PV264: Course Introduction autumn 2020 14 / 36

Dependency Management

C++ does not come with a standard package manager
popular package managers for C++:

Conan: becoming de-facto standard, suitable for complex
dependencies, distributed repositories, precompiled packages
vcpkg: multi-platform manager maintained by Microsoft, always builds
everything from source
Hunter: completely integrated within CMake (no extra file for
dependencies)

if you feel the need for package manager, try Conan first
FetchContent: much simpler alternative to package managers –
often best solution in most cases

PV264: Course Introduction autumn 2020 14 / 36

FetchContent

available since CMake 3.11
specify dependency from various source (zip, git, SVN, . . .)
dependency is fetched at the configuration step
can work with both; CMake-based and other build system’s
dependencies

CMake-based dependency example:
FetchContent_Declare(

fmt
GIT_REPOSITORY https://github.com/fmtlib/fmt.git
GIT_TAG 7.0.3 # Can be tag/commit/branch

)
FetchContent_MakeAvailable(fmt) # Available since CMake 3.14

Specify your project here
Link the fmt library
target_link_libraries(myProject PRIVATE fmt)

PV264: Course Introduction autumn 2020 15 / 36

FetchContent – Older CMake

FetchContent_MakeAvailable is not available in version prior 3.14
you have to write FetchContent_MakeAvailable by yourself:

FetchContent_GetProperties(fmt)
if(NOT fmt_POPULATED)

FetchContent_Populate(fmt)
add_subdirectory(${fmt_SOURCE_DIR} ${fmt_BINARY_DIR})

endif()

Note that if(NOT fmt_POPULATED) is recommended, so parent
CMakes can override (thus unify) dependencies

PV264: Course Introduction autumn 2020 16 / 36

FetchContent – Non-CMake Dependency

write custom alternative to FetchContent_MakeAvailable
either use ExternalProject_Add to preserve original build process
write custom CMake build process

FetchContent_GetProperties(nonCmakeLib)
if(NOT nonCmakeLib_POPULATED)

FetchContent_Populate(nonCmakeLib)
Specify CMake build process
file(GLOB_RECURSE src "${nonCmakeLib_SOURCE_DIR}/*cpp")
add_library(extLib STATIC ${src})
target_include_directories(extLib PUBLIC

"${nonCmakeLib_SOURCE_DIR}/include")
endif()

Use your library
target_link_library(myProject PRIVATE extLib)

PV264: Course Introduction autumn 2020 17 / 36

Useful Tools

valgrind tool suite
(you should already know about this)
memcheck – checks memory-related errors

memory leaks
uninitialized memory
wrong memory access, invalid free/delete

other tools – heap/cache profiling, call graph analysis, . . .

currently works on Linux and OS X only
there are some alternatives for Windows (Dr. Memory)

cannot detect some stack-related memory errors

PV264: Course Introduction autumn 2020 18 / 36

Useful Tools

clang-tidy (static analysis)
diagnose and fix typical programming errors and style violations
also runs clang static analyser
Note: We use clang-tidy to check your code, the list of enabled
checks is given on the web.

clang/gcc sanitizers (at runtime)
AddressSanitizer -fsanitize=address

out-of-bound accesses, memory leaks, . . .
MemorySanitizer -fsanitize=memory

uninitialized memory access, clang only
UndefinedBehaviourSanitizer -fsanitize=undefined

detect undefined behaviour

see documentation on the web

PV264: Course Introduction autumn 2020 19 / 36

Pointers, references

Main differences between pointers and references in C++

pointers may be uninitialized
references are always initialized

pointers may point to null (nullptr)
references always point to an object

pointers may be redirected (if not const)
reference may never be redirected

int* ptr = &x; int& ref = x;
*ptr = 3; ref = 3;
ptr = &y; // cannot do this

PV264: Course Introduction autumn 2020 20 / 36

Pointers, references

Main differences between pointers and references in C++
pointers may be uninitialized

references are always initialized
pointers may point to null (nullptr)

references always point to an object1

pointers may be redirected (if not const)
reference may never be redirected

int* ptr = &x; int& ref = x;
*ptr = 3; ref = 3;
ptr = &y; // cannot do this

1Really?
PV264: Course Introduction autumn 2020 20 / 36

Pointers, references

Main differences between pointers and references in C++
pointers may be uninitialized

references are always initialized
pointers may point to null (nullptr)

references always point to an object1

pointers may be redirected (if not const)
reference may never be redirected

int* ptr = &x; int& ref = x;
*ptr = 3; ref = 3;
ptr = &y; // cannot do this

1Really? Yes!
PV264: Course Introduction autumn 2020 20 / 36

Pointers, references

Main differences between pointers and references in C++
pointers may be uninitialized

references are always initialized
pointers may point to null (nullptr)

references always point to an object1

pointers may be redirected (if not const)
reference may never be redirected

int* ptr = &x; int& ref = x;
*ptr = 3; ref = 3;
ptr = &y; // cannot do this

1Really? Yes!
PV264: Course Introduction autumn 2020 20 / 36

Pointers, references + const

modify object redirect pointer
int*
const int*
int* const
const int* const
int&
const int&

int& is almost like int* const
with different syntax

PV264: Course Introduction autumn 2020 21 / 36

Pointers, references + const

modify object redirect pointer
int* Yes Yes
const int*
int* const
const int* const
int&
const int&

int& is almost like int* const
with different syntax

PV264: Course Introduction autumn 2020 21 / 36

Pointers, references + const

modify object redirect pointer
int* Yes Yes
const int* No Yes
int* const
const int* const
int&
const int&

int& is almost like int* const
with different syntax

PV264: Course Introduction autumn 2020 21 / 36

Pointers, references + const

modify object redirect pointer
int* Yes Yes
const int* No Yes
int* const Yes No
const int* const
int&
const int&

int& is almost like int* const
with different syntax

PV264: Course Introduction autumn 2020 21 / 36

Pointers, references + const

modify object redirect pointer
int* Yes Yes
const int* No Yes
int* const Yes No
const int* const No No
int&
const int&

int& is almost like int* const
with different syntax

PV264: Course Introduction autumn 2020 21 / 36

Pointers, references + const

modify object redirect pointer
int* Yes Yes
const int* No Yes
int* const Yes No
const int* const No No
int& Yes No
const int&

int& is almost like int* const
with different syntax

PV264: Course Introduction autumn 2020 21 / 36

Pointers, references + const

modify object redirect pointer
int* Yes Yes
const int* No Yes
int* const Yes No
const int* const No No
int& Yes No
const int& No No

int& is almost like int* const
with different syntax

PV264: Course Introduction autumn 2020 21 / 36

Pointers, references + const

modify object redirect pointer
int* Yes Yes
const int* No Yes
int* const Yes No
const int* const No No
int& Yes No
const int& No No

int& is almost like int* const
with different syntax

PV264: Course Introduction autumn 2020 21 / 36

Initialization

Initialization in C++(14)

Object x;
Object x = y;
Object x(y);
Object x(a, b, c);
Object x(); // NOT initialization! "most vexing parse"
Object x{}; // C++11
Object x{a, b, c}; // C++11
Object x = {a, b, c}; // not only C++11

is that all?
we forgot about temporary objects and dynamically allocated objects
temporary: Object(), Object(a, b), Object{}, Object{a, b},
{a, b} (if the type can be inferred), y (what does this mean?)
dynamic: new Object, . . .

PV264: Course Introduction autumn 2020 22 / 36

Initialization

Initialization in C++(14)
Object x;
Object x = y;
Object x(y);
Object x(a, b, c);
Object x(); // NOT initialization! "most vexing parse"
Object x{}; // C++11
Object x{a, b, c}; // C++11
Object x = {a, b, c}; // not only C++11

is that all?

we forgot about temporary objects and dynamically allocated objects
temporary: Object(), Object(a, b), Object{}, Object{a, b},
{a, b} (if the type can be inferred), y (what does this mean?)
dynamic: new Object, . . .

PV264: Course Introduction autumn 2020 22 / 36

Initialization

Initialization in C++(14)
Object x;
Object x = y;
Object x(y);
Object x(a, b, c);
Object x(); // NOT initialization! "most vexing parse"
Object x{}; // C++11
Object x{a, b, c}; // C++11
Object x = {a, b, c}; // not only C++11

is that all?
we forgot about temporary objects and dynamically allocated objects
temporary: Object(), Object(a, b), Object{}, Object{a, b},
{a, b} (if the type can be inferred), y (what does this mean?)
dynamic: new Object, . . .

PV264: Course Introduction autumn 2020 22 / 36

Initialization (simplified!)

Default initialization
variable declared without initializer
new expression without initializer
base class or member variable not included in member initializer list of
a constructor

What happens?

class type: default constructor is called
arrays: all elements default-initialized
otherwise: nothing

static/global variables: value is zero
other variables: undefined value

PV264: Course Introduction autumn 2020 23 / 36

Initialization (simplified!)

Default initialization
variable declared without initializer
new expression without initializer
base class or member variable not included in member initializer list of
a constructor

What happens?
class type: default constructor is called
arrays: all elements default-initialized
otherwise: nothing

static/global variables: value is zero
other variables: undefined value

PV264: Course Introduction autumn 2020 23 / 36

Initialization (simplified!)

Value initialization
variable declared with {}
new, temporary object, member variable created with () or {}

What happens?

class type: default constructor is called (if it exists
otherwise: zero-initialized

Note: This is very simplified. If you want the full story, go read
cppreference.com.

PV264: Course Introduction autumn 2020 24 / 36

http://en.cppreference.com/w/cpp/language/value_initialization

Initialization (simplified!)

Value initialization
variable declared with {}
new, temporary object, member variable created with () or {}

What happens?
class type: default constructor is called (if it exists2)
otherwise: zero-initialized

Note: This is very simplified. If you want the full story, go read
cppreference.com.

2otherwise, initializer list constructor may be called, see next slide
PV264: Course Introduction autumn 2020 24 / 36

http://en.cppreference.com/w/cpp/language/value_initialization

Initializer List

Motivation: Arrays can be initialized by lists.
int array[] = { 0, 0, 7, 42 };

Since C++11 we can do the same with user-defined types:
std::initializer_list
constructor with one parameter of type std::initializer_list<T>

used if initializing using braces and
all elements of the list have type T (can be converted to T)

priority over any other constructor (except for default)

struct MyVec {
MyVec(std::initializer_list<int>);

};
int main() {

MyVec vec{ 1, 2, 3 };
}

PV264: Course Introduction autumn 2020 25 / 36

Initializer List

std::initializer_list is a lightweight immutable object
copying it does not copy the elements
typical use: pass-by-value

defines methods begin, end, size
can be also created when binding a brace-enclosed list to auto

sometimes useful in range-based for

auto x = { 1, 2, 3, 4 };
// x is std::initializer_list<int>

for (int n : { 1, 1, 2, 3, 5 }) { /* ... */ }

PV264: Course Introduction autumn 2020 26 / 36

auto

(you should know this already)
automatic type deduction:

same rules as for template types deduction
except for std::initializer_list (see previous slide)
does not create references! for that, use auto&

When should we use auto?

we don’t know the real type (but the compiler knows)
how can this happen?

we know the real type but it is either:
too ugly (typical use: iterators), or
it can be clearly inferred (by humans) from context

auto printer = printerFactory.createInkPrinter();
auto ptr = std::make_unique<ListNode>();
for (const auto& person: people) { /* ... */ }

PV264: Course Introduction autumn 2020 27 / 36

auto

(you should know this already)
automatic type deduction:

same rules as for template types deduction
except for std::initializer_list (see previous slide)
does not create references! for that, use auto&

When should we use auto?
we don’t know the real type (but the compiler knows)

how can this happen?
we know the real type but it is either:

too ugly (typical use: iterators), or
it can be clearly inferred (by humans) from context

auto printer = printerFactory.createInkPrinter();
auto ptr = std::make_unique<ListNode>();
for (const auto& person: people) { /* ... */ }

PV264: Course Introduction autumn 2020 27 / 36

range-based for

(you should know this already)
for (type var : container) { do_something(var); }

what does this translate to?

{
auto&& __l = container;
auto __i = std::begin(__l),

__e = std::end(__l);
for (; __i != __e; ++__i) {

type var = *__i;
do_something(var);

}
}

note: this holds for C++11/14, in C++17 __i and __e do not have
to be the same type (why is this useful?)

PV264: Course Introduction autumn 2020 28 / 36

range-based for

(you should know this already)
for (type var : container) { do_something(var); }

what does this translate to?
{

auto&& __l = container;
auto __i = std::begin(__l),

__e = std::end(__l);
for (; __i != __e; ++__i) {

type var = *__i;
do_something(var);

}
}

note: this holds for C++11/14, in C++17 __i and __e do not have
to be the same type (why is this useful?)

PV264: Course Introduction autumn 2020 28 / 36

range-based for

(you should know this already)
for (type var : container) { do_something(var); }

what does this translate to?
{

auto&& __l = container;
auto __i = std::begin(__l),

__e = std::end(__l);
for (; __i != __e; ++__i) {

type var = *__i;
do_something(var);

}
}

note: this holds for C++11/14, in C++17 __i and __e do not have
to be the same type (why is this useful?)

PV264: Course Introduction autumn 2020 28 / 36

nullptr

use instead of NULL; why?

not a macro
distinct type std::nullptr_t
convertible to other pointers, bool, but NOT to int

void foo(int x); // 1
void foo(const char* ptr); // 2

// What does this call?
foo(nullptr); // calls 2
foo(NULL); // who knows... (maybe 1, maybe 2, maybe error)

PV264: Course Introduction autumn 2020 29 / 36

nullptr

use instead of NULL; why?
not a macro
distinct type std::nullptr_t
convertible to other pointers, bool, but NOT to int

void foo(int x); // 1
void foo(const char* ptr); // 2

// What does this call?
foo(nullptr); // calls 2
foo(NULL); // who knows... (maybe 1, maybe 2, maybe error)

PV264: Course Introduction autumn 2020 29 / 36

using

“Better typedef”
nicer syntax; can be templated

using IntVec = std::vector<int>;

template <typename T>
using Matrix = std::vector<std::vector<T>>;

Matrix<int> matrix;

PV264: Course Introduction autumn 2020 30 / 36

override, final

For member functions:
written after method signature (like const)
both denote virtual function override

prevent signature mistakes
final also prevents further override

use with care
For classes:

final makes class non-inheritable

Recommendation:
write virtual only when not overriding
write override when overriding
write final if you really have to

hint: you most probably don’t

PV264: Course Introduction autumn 2020 31 / 36

default/delete

default

force the compiler to automatically generate the given method
only works for default constructor, copy constructor/assignment, move
constructor/assignment and destructor
when is this needed?

something inhibits the automatic generation
e.g. parametric constructor inhibits default constructor

delete

forbid the compiler to call the function
can be used with all functions

struct A {
A() = default;
A(const A&) = delete; // forbid copying
A& operator=(const A&) = delete;

};

PV264: Course Introduction autumn 2020 32 / 36

default/delete

default

force the compiler to automatically generate the given method
only works for default constructor, copy constructor/assignment, move
constructor/assignment and destructor
when is this needed?

something inhibits the automatic generation
e.g. parametric constructor inhibits default constructor

delete

forbid the compiler to call the function
can be used with all functions

struct A {
A() = default;
A(const A&) = delete; // forbid copying
A& operator=(const A&) = delete;

};

PV264: Course Introduction autumn 2020 32 / 36

C++11 standard library additions

std::tuple

fixed-size collection of different types
useful function std::make_tuple, std::tie
since C++17, can be also initialized with { a, b, c }

std::unordered_set, std::unordered_map

work like set and map, but are implemented with a hash table
the elements need to implement a hash function
by specializing the std::hash<T> template

std::array

wrapper around C-style fixed-size arrays
has the interface of standard containers, size method etc.

std::forward_list

singly linked list

PV264: Course Introduction autumn 2020 33 / 36

C++17 structured binding

Unpacking std::tuple

in C++11/14: std::tie(a, b, c) = getTuple();
a, b, c have to be declared first
a, b, c are copies of the values (even if getTuple() returns a tuple of
references)

in C++17: structured binding
auto [a, b, c] = getTuple();
(types of a, b, c are automatically deduced)
auto& [a, b, c] = getTuple(); (force references)
(also const auto&, auto&&)

usable with
C-like arrays
anything tuple-like (std::tuple, std::pair, std::array, anything
that specialises std::tuple_size and std::tuple_element)
public data members

PV264: Course Introduction autumn 2020 34 / 36

unique_ptr

unique_ptr

header <memory>
one of C++11 smart pointers
zero-overhead at runtime
unique_ptr owns the allocated memory; once the unique_ptr
object goes out of scope, the memory is deallocated
no other unique_ptr may own the same memory (unique)
we can still have raw pointers pointing to the same memory
(non-owning pointers)
ownership may be transferred
(uses move semantics – we will talk about this later)

PV264: Course Introduction autumn 2020 35 / 36

unique_ptr Example

// creating new unique_ptr
std::unique_ptr< Object > ptr(new Object(params));
// since C++14, better use this:
auto ptr = std::make_unique< Object >(params);

// operators ->, * work as usual
ptr->method();
function(*ptr);

// get underlying raw pointer
Object* rawPtr = ptr.get();

// transfer ownership
std::unique_ptr< Object > otherPtr = std::move(ptr);
// ptr is now equal to nullptr
// otherPtr owns the allocated memory

PV264: Course Introduction autumn 2020 36 / 36

