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Preface

INFINITY 2002, the 4th International Workshop on Verification of Infinite-State Systems
was held as a satellite workshop of CONCUR 2002 (the 13th International Conference
on Concurrency Theory) in Brno, Czech Republic, on August 24, 2002.

The aim of the workshop is to provide a forum for researchers interested in the de-
velopment of mathematical techniques for the analysis and verification of systems with
infinitely many states.

The topics of INFINITY 2002 included the following: techniques for modeling
and analysis of infinite-state systems, equivalence-checking and model-checking with
infinite-state systems, parameterized systems, calculi for mobility and security, finite-
state abstractions of infinite-state systems.

The volume consists of eight contributed papers selected by the INFINITY 2002 pro-
gramme committee, and short abstracts of four presentations of work-in-progress which
accompanied the regular contributed talks. The programme of INFINITY 2002 was fur-
ther enriched by an invited talk given by Colin Stirling.

We would like to thank the programme committee members for their support in
composing the INFINITY 2002 programme, and the CONCUR’02 Organizing Commit-
tee for arranging all local affairs.

Final proceedings will appear as volume 68(6) in the ENTCS series published by
Elsevier. We thank Michael Mislove, the managing editor of ENTCS, for providing this
opportunity.

Brno and Freiburg, August 2002 Antonı́n Kučera
Richard Mayr
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Deciding Framed Bisimilarity

Hans Hüttel∗

BRICS, Department of Computer Science, Aalborg University

Fredrik Bajers Vej 7E, 9220 Aalborg Øst, Denmark

July 8, 2002

Abstract

The spi-calculus, proposed by Abadi and Gordon, is a process calculus based on the

π-calculus and is intended for reasoning about the behaviour of cryptographic proto-

cols. We consider the finite-control fragment of the spi-calculus, showing it to be Turing-

powerful (a result which is joint work with Josva Kleist, Uwe Nestmann, and Björn Vic-

tor.) Next, we restrict our attention to finite (non-recursive) spi-calculus. Here, we show

that framed bisimilarity, an equivalence relation proposed by Abadi and Gordon, show-

ing that it is decidable for this fragment.

1 Introduction

The spi-calculus, originally proposed by Abadi and Gordon [AG97a], is a process calculus

based on the π-calculus [MPW92] and is intended for describing and reasoning about the

behaviour of cryptographic protocols.

An important insight of the spi-calculus is that correctness properties can be expressed

as statements of behavioural equivalence. For instance, a protocol P(M) transmitting the

message x satisfies the secrecy property w.r.t. M if we cannot distinguish between two in-

stances of P which transmit different messages. Expressed using behavioural equivalence,

this reduces to stating that

∀M1,M2.P(M1) ∼ P(M2)

Deciding correctness properties of cryptographic protocols now amounts to deciding the

behavioural equivalence ∼.

∗hans@cs.auc.dk
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Various notions of behavioural equivalence have been put forward. Abadi and Gor-

don [AG97a] choose may-testing equivalence (originally proposed by De Nicola and Hen-

nessy [NH83]). While may-testing is ideal from a philosophical point of view – processes

are equivalent iff they behave in the same way under all attacks/observations – this equiv-

alence is defined via universal quantification over observer processes and is therefore less

ideal from the perspective of actually determining the equivalence of processes.

Consequently, in [AG98b] Abadi and Gordon define a bisimulation-style equivalence,

framed bisimilarity, and show it to be as a sound approximation of may-testing equivalence.

A main motivation behind their work was to define a notion of behavioural equivalence

which has a useful proof technique and is decidable.

The main focus of this paper is to examine to which extent the latter is the case.

As the full spi-calculus is Turing-powerful one can only hope for a positive decidabil-

ity result within a proper subcalculus. A natural candidate would be the finite-control

spi-calculus, the spi-calculus counterpart of regular CCS; finite-control processes have a

bounded number of parallel components and, because of the presence of recursion, are able

to describe multiple protocol runs.

However, even the finite-control spi-calculus is Turing-powerful [HKNV97]. In this pa-

per we first demonstrate this by presenting an encoding of Minsky’s two-counter machines

into the finite-control calculus, a result which is joint work with Josva Kleist, Uwe Nestmann,

and Björn Victor.

Next, we restrict our attention to finite spi-calculus processes and show that framed

bisimilarity is decidable in this fragment. The finite spi-calculus processes are the recursion-

free processes of the spi-calculus, corresponding to single runs of a cryptographic protocol.

In [AL00] Amadio and Lugiez consider a finite spi-calculus similar to ours and show

that its associated reachability problem is decidable (albeit NP-hard). As further work they

mention finding an algorithm for deciding bisimilarity.

A main problem in obtaining our result stems from matching input transitions, since two

processes must be equivalent under all value instantiations; we overcome this problem by

showing that only finitely many values need be considered.

2 The spi-calculus

The spi-calculus extends the π-calculus [MPW92, Mil99] with primitives for encryption and

decryption. As in the π-calculus, communication takes place over channels that can either
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be public or restricted. Messages may be decrypted; the perfect encryption hypothesis is

adopted in the spi-calculus – an attacker cannot guess the key of an encrypted message.

2.1 Syntax

In this section we present the two fragments of the spi-calculus that we shall study in the

rest of the paper. Our syntax largely follows that of [AG97a]. We only consider shared

key cryptography since the definitions related to framed bisimilarity in [AG98b] only use

shared key cryptography. However, an extension of the results in the present paper should

be straightforward.

2.1.1 Terms

Common to our two fragments is the set of terms that can be communicated by processes.

Unlike the π-calculus, the spi-calculus allows us to communicate composite terms. The set

of terms, T , has its syntax defined by the following grammar.

L,M,N ::= x | n | {M}N | (M,N)

In the above, x ranges over the set of variables, n ranges over the set of names, {M}N denotes

the term M encrypted using key N and (M,N) denotes the pair whose components are the

terms M and N.

2.1.2 The finite-control spi-calculus

The finite-control spi-calculus is a straightforward extension of the finite-control π-calculus

introduced by Lin [Lin91].

As the definition below shows, a finite-control process consists of a fixed number of se-

quential processes running in parallel.

Definition 1 The set of finite-control spi-calculus processes is given by the grammar

R ::= M(x).R | M〈N〉.R | (νn)R

| D(M) | 0 | [M = N] R | R1 + R2

| let (x, y) = M in R | rec D(M).R

| case L of {x}N in R

P ::= R | (νn)P | P|P
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The spi-calculus distinguishes between variables x, y, z, . . . ∈ V and names

c,m,n, k . . .N . Names refer to a key or a channel, whereas variables are instantiated to

messages. When concerning channels, a name c is used for input and its co-name c used for

output.

The spi-calculus has two communication primitives. M〈N〉.P is output; N is emitted on

the channel M. M(x).P is input; the variable x is received on the channel M, and x is bound

in P.

While encryption is handled at the level of message terms, decryption is a process con-

struct. case L of {x}N in P is used to decrypt terms; x is bound in P. The other term destructor

is let (x, y) = M in P which allows us to split a pair; the variables x and y are bound in P.

The remaining process constructs are also found in the π-calculus: (νn)P is the restriction

construct. The new name n is bound in P. P | Q denotes parallel composition and 0 is the

empty process. Finally, the match construct [M = N] P can proceed as P iff M is equal to N.

In the finite-control calculus we allow two additional constructs, namely nondetermin-

istic choice, R1 + R2 and recursively defined processes, rec D(M).R. D(M) ranges over

recursion constants which may be parameterised by a term.

We identify processes up to renaming of bound names and variables. A process without

any free variables is closed; we let P denote the set of closed processes. Furthermore we let

fn[[P]] denote the set of free names in P, and fv[[P]] the free variables in P. For any set of terms

S, we let n(S) denote the set of names occurring in S, free as well as bound. P[M/x] denotes

the substitution of the term M for all free occurrences of x in the process P and is defined as

expected.

The original presentation of the spi-calculus in [AG97a] introduces natural numbers into

the syntax. This, however, is unimportant as we can encode the naturals using encryption

and decryption. Let a, b be fresh names. We then let

[[0]] = a

[[n + 1]] = [[{[[n]]}b]]

The test-for-zero process construct now becomes

[[case v of 0 : P suc(x) : Q]] = case v of {x}b in P + [v = a]Q

In our undecidability proof in section 3 we use natural numbers freely by implicit appeal to

this encoding.
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2.1.3 Finite processes

The syntax of processes in the finite spi-calculus omits nondeterministic choice and recursion

from the finite-control fragment.

P,Q, R ::= (νn)P | M〈N〉.P | M(x).P | P | Q

| [M = N] P | 0 | let (x, y) = M in P | case L of {x}N in P

2.1.4 Agents

An agent can be a process, an abstraction or a concretion. The syntax of agents is defined by

the following grammar:

A,B ::= P | C | F

F,G ::= (x)P

C,D ::= (ν~m)〈M〉P

(x)P is an abstraction, which needs to bind a term to x before proceeding. (ν ~m)〈M〉P is a

concretion, which is immediately able to output the term M. A will denote the set of closed

agents.

2.2 Semantics

Our labelled commitment semantics of the spi-calculus is that of [AG98b].

2.2.1 Reduction and structural congruence

The reduction relation describes how processes unfold and make preparations for a reaction.

In particular, the rules describe how the term deconstructors behave (Table 1) and, for finite-

control processes, how a recursive process proceeds by unfolding the recursive definition

(Table 2) . In the case of a decryption we only proceed if the key is a name. See Table 1.

Structural congruence, ≡, is defined in Table 3. It captures the identities that should

intuitively hold.

2.2.2 The commitment relation

The commitment transition system (P, {
α

−→| α ∈ N ∪ {τ}},A) has its transition relation defined

inductively by the rules in Definition 4.
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[M = M] > P

let (x, y) = (M,N) in P > P[M/x][N/y]

case {M}n of {x}n in P > P[M/x]

Table 1: The reduction rules for term destructors

rec D(x).P > P[rec D(Mi).P/D(Mi)]

Table 2: The reduction rule for recursion

P | 0 ≡ P P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R

P + (Q + R) ≡ (P + Q) + R P + Q ≡ Q + R P + 0 ≡ P

(νm)(νn)P ≡ (νn)(νm)P (νn)0 ≡ 0 P | (νn)Q ≡ (νn)(P | Q) if n 6∈ fn[[P]]

P > Q

P ≡ Q

P ≡ Q Q ≡ R

P ≡ R P ≡ P

P ≡ Q

Q ≡ P

P ≡ Q

P | R ≡ Q | R

P ≡ Q

(νn)P ≡ (νn)Q

Table 3: Rules defining structural congruence
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In Definition 4 we use the interaction operator • defined by

C • F , (ν~n)(Q | P[N/x]) F • C , (ν~n)(P[N/x] | Q),

when {~n} ∩ fn[[P]] = ∅. Here, we extend restriction and composition as follows:

(νn)(x)P , (x)(νn)P

Q | (x)P , (x)(Q | P)

(νn)(ν~m)〈M〉P ,

(νn, ~m)〈M〉P if n ∈ fn[[M]]

(ν~m)〈M〉(νn)P otherwise

Q | (ν~m)〈M〉P , (ν~m)〈M〉(Q | P)

where we assume x 6∈ fv[[Q]], n 6∈ { ~m} and {~m} ∩ fn[[Q]] = ∅. The dual composition A | Q is

defined symmetrically.

(Input) m(x).P
m

−→ (x)P (Output) m〈M〉.P m
−→ (ν)〈M〉P

(Com-1)
P

m
−→ F Q

m
−→ C

P | Q
τ

−→ F • C
(Com-2)

P
m

−→ C Q
m

−→ F

P | Q
τ

−→ C • F

(Par-1)
P

α
−→ A

P | Q
α

−→ A | Q
(Par-2)

Q
α

−→ A

P | Q
α

−→ P | A

(Sum-1)
P

α
−→ A

P + Q
α

−→ A
(Sum-2)

Q
α

−→ A

P + Q
α

−→ A

(Res)
P

α
−→ A α 6∈ {m,m}

(νm)P
α

−→ (νm)A
(Red)

P > Q
α

−→ A

P
α

−→ A

Table 4: The commitment semantics of the spi-calculus

3 The finite-control fragment is Turing-powerful

As the finite-control spi-calculus calculus is the spi-calculus analogue of the finite-control

fragment of the π-calculus, introduced by [Lin91], one might expect the situation to be same
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as in the π-calculus. Here, Dam [Dam97] has shown that late and early bisimilarity [MPW92]

as well as open bisimilarity [San96] are all decidable. Dam’s result depends on the fact that

it is always suffices to consider a finite set of names due to the bounded parallelism of a

finite-control process.

However, the finite-control spi-calculus is in fact Turing-powerful, destroying all hope of

obtaining positive decidability results for any non-trivial notion of behavioural equivalence.

The encoding presented here is joint work with Josva Kleist, Uwe Nestmann, and Björn

Victor.

3.1 Encoding two-counter machines in the finite-control fragment

For our proof of this fact, we consider another universal model of computation, namely the

two-counter machines of [Min67]. A two-counter machine is a simple imperative program

consisting of a sequence of labelled instructions that can modify the values of two nonneg-

ative integer counters, c0 and c1. Two instructions are singled out, namely Lstart and Lstop.

The program starts with the line Lstart and halts if Lstop is reached. The instruction set con-

sists of two different types of instructions (in the indices of the counter variables we always

assume addition and subtraction modulo 2):

1. L : ck := ck + 1; goto Ln

2. L : if ck = 0 then goto L1
n else ck := ck − 1; goto L2

n

We can always assume that a type 1 instruction has L 6= Ln (if L = Ln the machine would

loop forever) and that a type 2 instruction has L 6= L1
n (here, too, if L = L1

n the machine would

loop forever) and L 6= L2
n (we can simply duplicate the instruction in question.)

Theorem 2 Any two-counter machine can be simulated in the finite-control spi-calculus.

PROOF: We define an encoding [[]] from two-counter machine instructions into the finite-

control spi-calculus. The idea is simply that the two counters are represented by processes

and the each instruction corresponds to a process that communicates with the counters.

We assume the following set of names, which we denote by n:

• For every instruction label Ln we introduce the name ln, used to signal a goto , and

the constant Dln .

• For counter ck we introduce the names

dk indicating that the counter is decremented

8



ck indicating that the counter is incremented

rk indicating that the value of the counter is being read

A counter ck is represented as the process

Ck = rec Dk(x).(rk〈x〉.Dk(x) + dk.Dk(x − 1) + ik.Dk(x + 1))

Instructions are encoded as

[[L : ck := ck + 1; goto Ln]] = rec Dl.l.ik. ln .Dl

[[L : if ck = 0 then

goto L1
n else

ck := ck − 1; goto L2
n]] = rec Dl.l.rk(y).([y = 0] l1n .Dn + [y 6= 0]dk . l2n .Dn)

Suppose that a two-counter machine M is composed of a sequence of instructions S1, . . . , Sm.

Then the encoding of the machine is given by

[[M]] = (νn)

m∏
i=1

[[Si]] | C0 | C1

It is now easy see that the two-counter machine can reach a state where c0 = v0 and c1 = v1

if and only if [[M]]
τ

−→∗
P ′ where the term P ′ has counter constants whose values are Dk(v0)

and Dk(v1), respectively. 2

Corollary 3 Any nontrivial notion of behavioural equivalence is undecidable in the finite-

control spi-calculus.

4 Framed bisimilarity

Framed bisimilarity was introduced by Abadi and Gordon in [AG98b].

4.1 Frames and theories

Processes are related with respect to a frame-theory pair which represents the knowledge of

the environment.

Definition 4 A frame fr is a finite set of names. A theory th is a finite set of pairs of terms

(M,N). We let e range over the set of frame-theory pairs.
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(Ind Var)
e ` x↔ x

(Ind Frame)
n ∈ fr

e ` n↔ n
(Ind Theory)

(M,N) ∈ th
e ` M↔ N

(Ind Pair)
e ` M↔ M ′ e ` N↔ N ′

e ` (M,N)↔ (M ′,N ′)
(Ind Enc)

e ` M↔ M ′ e ` N↔ N ′

e ` {M}N↔ {M ′}N′

Table 5: Rules defining the indistinguishability relation

Intuitively, when comparing processes P and Q, the elements of the frame are the names

from P and Q that the attacker knows. If (M,N) ∈ th the attacker cannot distinguish the

term M coming from P and the term N coming from Q.

In what follows, when given an environment e we refer to its frame part as fre and its

environment part as the.

Definition 5 Let e = (fr, th) be an environment. Terms M and N are indistinguishable under

e, written e ` M↔ N, if it can be derived by the rules in Table 5.

An environment must be consistent. This is captured by

Definition 6 Environment e is ok, written e ` ok, if:

1. ∀(M,N) ∈ th it must hold that M is closed, ∃M1,M2 : M = {M1}M2
and @N2 : e `

M2↔ N2. The converse must also hold for N.

2. whenever (M,N) ∈ th and (M ′,N ′) ∈ th, M = M ′ iff N = N ′.

Definition 7 Let e and e ′ be environments. e ′ extends e, written e ≤ e ′, iff ∀M,N : e ` M↔
N⇒ e ′ ` M↔ N.

A framed process pair is a quadruple (fr, th, P,Q), where P,Q ∈ P. If R is a set of framed

process pairs, we write e ` PRQ when (fr, th, P,Q) ∈ R. A framed relation is a set R of framed

process pairs, such that e ` ok whenever e ` PRQ.
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4.2 Framed simulations and bisimulations

Framed simulation is a late simulation [MPW92]; the choice of a matching transition for an

input transition does not depend on the value that will eventually be received.

Definition 8 A framed simulation is a framed relation S such that, whenever e ` PSQ, the

following three conditions hold

1. If P
τ

−→ P ′ then there exists a process Q ′ such that Q
τ

−→ Q ′ and e ` P ′SQ ′.

2. If P
c

−→ (x)P ′ and c ∈ fr then there exists an abstraction (x)Q ′ with Q
c

−→ (x)Q ′ and,

for all sets {~n} disjoint from fn[[P]]∪ fn[[Q]]∪f ∪ fn(th) and all closed terms M and N, if

(fr ∪{~n}, th) ` M↔ N then (f ∪ {~n}, th) ` P ′[M/x]SQ ′[N/x].

3. If P
c

−→ (ν~m)〈M〉P ′, c ∈ fr and {~m} ∩ (fn[[P]] ∪ fn(π1(th)) ∪ fr) = ∅ then there exists a

concretion (ν~n)〈N〉Q ′ with Q
c

−→ (ν~n)〈N〉Q ′ and {~n} ∩ (fn[[Q]] ∪ fn(π2(th)) ∪ f) = ∅.

Furthermore ∃e ′ : e ≤ e ′, e ′ ` M↔ N, and e ′ ` P ′SQ ′.

Definition 9 A framed bismulation is a framed simulation S such that S−1 = {e ′ ` QSP | e `
PSQ ∧ e ′ = (fr, {(M,N) | (N,M) ∈ th})} is also a framed simulation.

Definition 10 Framed bisimilarity is the greatest framed bisimulation, written ∼f.

5 A decidability result

Definitions 8 and 9 do not provide us with a straightforward means of checking bisimilarity.

The goal of the rest of our paper is to address this issue. More precisely, we shall show that

in the case of finite processes

• we only need to consider finitely many terms when matching input transitions.

• we only need to consider finitely many possible frame extensions when matching input

transitions

• we only need to consider finitely many frame-theory extensions when matching out-

put transitions

Taken together, these observations will allow us to obtain a simple decision procedure

for framed bisimilarity.

11



5.1 Matching input transitions

Assume that we are trying to determine whether (fr, th) ` P ∼f Q. We have an input com-

mitment P
c

−→ (x)P ′, have a candidate for a matching commitment, Q
c

−→ (x)Q ′, and now

need to determine whether P ′ ∼f Q ′.

Assume that the maximal number of successive term destructors in P and Q is m, and

that the maximal number of term constructors of any term in th is d. Then we need only

consider the finitely many terms of depth ≤ m + d constructed from (fr, th) and a bounded

number of new names in order to determine if (fr, th) ` P ′ ∼f Q ′. This must hold as the

process can only inspect any input term up to m levels of encryption/pairing and because

the environment may ask us to regards terms whose depth is up to d as indistinguishable.

5.1.1 The depth of terms and processes

The notion of the maximal constructor depth of a term is as expected. It counts the level of

encryption and the level of pairing. The level of decryption takes precedence over the level

of pairing and only the level of decryption within the contents of a ciphertext matters, as

terms appearing in key position must be names. Otherwise, they will cause the process not

to evolve any further.

Definition 11 The maximal constructor depth d(M) of a term M is defined inductively by the

clauses

d(n) = 0

d(x) = 0

d({M}N) = d(M) +1

d((M,N)) = max(d(M), d(N))

The above definition easily extends to frame-theory pairs.

Definition 12 Let (fr, th) be a frame-theory pair where fr = {(M1,N1), . . . , (Mk,Nk)}. The

maximal constructor depth of (fr, th) is defined b

d((fr, th)) = max{max(d(Mi), d(Ni)) | 1 ≤ i ≤ k}

The maximal destructor depth of a process P is the maximal number of encryptions and

pairing operators that can ever be removed along the process P. Decryption and pair split-
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ting operations each contribute by 1, whereas a parallel composition P | Q may contribute

with decryptions from both P and Q.

Definition 13 Let P be a finite process. The maximal destructor depth of P is denoted by

mdd(P) and defined inductively by the clauses

mdd(0) = 0

mdd((νn)P) = mdd(P)

mdd(M〈N〉.P) = mdd(P)

mdd(M(x).P) = mdd(P)

mdd(P | Q) = mdd(P) + mdd(Q)

mdd([M = N] P) = mdd(P)

mdd(let (x, y) = M in P) = mdd(P) +1

mdd(case L of {x}N in P) = mdd(P) +1

5.1.2 d-framed bisimilarity

d-framed bisimilarity is a variant of framed bisimilarity that only requires input transitions

to be matched for transmitted message terms up to a certain depth.

Definition 14 Let k be a nonnegative integer and let e be a frame-theory pair such that e `
ok. We write e ` M↔k N if e ` M↔ N and max(d(M), d(N)) = k. Whenever e ` M↔k N

we say that M and N are k-indistinguishable in e.

Since we only consider terms up to a certain depth, we need only consider finitely many

extensions of the frame. This is expressed in the following lemma.

Lemma 15 Let (fr, th) be a frame-theory pair and assume that max(d(M), d(N)) = k. If there

is a (fr ∪{~n}, th) such that (fr ∪{~n}, th) ` M ↔k N, then we may choose a {~n} where |~n| ≤ 2k

satisfying (fr ∪{~n}, th) ` M↔k N.

PROOF: If M and N are not indistinguishable under (fr, th), this must be amended by ap-

plying the constructor rules, the rule (Ind Theory) and the rule (Ind Frame) to new names.

Every application of a constructor rule can introduce at most two new names, so at most 2k

new names can be introduced. 2

Lemma 15 leads to the following definition of d-framed simulation.

Definition 16 For any nonnegative integer d, a d-framed simulation is a framed relation S
such that, whenever (fr, th) ` PSQ, the following three conditions hold

13



1. If P
τ

−→ P ′ then there exists a process Q ′ such that Q
τ

−→ Q ′ and e ` P ′SQ ′.

2. If P
c

−→ (x)P ′ and c ∈ fr then there exists an abstraction (x)Q ′ with Q
c

−→ (x)Q ′

and, for all sets {~n} disjoint from fn[[P]]∪ fn[[Q]]∪ fr ∪ fn(th) such that |~n| ≤ 2d and all

closed terms M and N, if (fr ∪{~n}, th) ` M ↔i N and 0 ≤ i ≤ d then (fr ∪{~n}, th) `
P ′[M/x]SQ ′[N/x].

3. If P
c

−→ A ≡ (ν~m)〈M〉P ′, c ∈ fr and {~m} ∩ (fn[[Q]]∪ fn(π1(th))∪ fr) = ∅ then

there is a concretion B ≡ (ν~n)〈N〉Q ′ such that Q
c

−→ B, the set {~n} is disjoint from

fn[[Q]]∪ fn(π2(th))∪ fr and e ′ ` P ′SQ ′ for some e ′ ≥ (fr, th) where e ′ ` M↔ N.

Definition 17 A d-framed bisimulation is a d-framed simulation S such that S−1 = {e ′ `
QSP | e ` PSQ ∧ e ′ = (fre, {(M,N) | (N,M) ∈ the})} is also a d-framed simulation.

Definition 18 d-framed bisimilarity is the greatest d-framed bisimulation, written ∼d
f .

Our goal is to show that for finite processes P and Q we have that P and Q are framed

bisimilar iff they are d-bisimilar where d is the critical depth.

The critical depth of (e, P,Q) is the maximal depth of terms that must be considered as

inputs when determining whether P and Q are framed bisimilar under e.

Definition 19 Let (e, P,Q) be a framed process pair. The critical depth of (e, P,Q) is defined

by

cd(e, P,Q) = d(e) + max(mdd(P), mdd(Q))

We let

cd(e, P) = cd(e, P, P)

When considering the result of an input commitment, we only need to consider instan-

tiations with terms whose depths do not exceed the critical depth. Intuitively, this suffices

as all subterms occurring below the critical depth are inaccessible by the destructors of a

process.

If two terms are indistinguishable, their subterms appearing at depth d can be replaced

by fresh names for any d such that the resulting terms will still be indistinguishable. This is

the idea behing d-pruning.

Example 20 Let M = {{a}b}c and N = {{d}e}f and assume that we have (M,N) ∈ th for some

theory th. Let fr = {h}. Then we have (fr, th) ` {M}h ↔ {N}h. We also have (fr ∪{g}, th) `
{{g}g}h ↔ {{g}g}h where g is a fresh name not found in fr. ((fr ∪{g}, th), {g}h ↔ {g}h) is the

1-pruning of (e,M,N).

14



The pruning of a pair of terms (M,N) at depth d generates a pair of pruned terms

(M ′,N ′). M ′ and N ′ are constructed by replacing subterms appearing at levels greater than

d by encryptions of arbitary fresh names by the same fresh names. The fresh names are then

added to the frame.

Definition 21 Let M and N be closed terms and let e ` ok. Further assume that e ` M↔ N,

that all subterms appearing in key position in M and N are names and that d is a nonnegative

integer. The d-pruning of (e,M,N), denoted by pr
d
((e,M,N)), is defined inductively by the

clauses

pr
0
(((fr, th), n, n)) = ((fr, th), n, n)

pr
0
(((fr, th),M,N)) = ((fr, th),M,N) if (M,N) ∈ th

pr
0
(((fr, th),M,N)) = ((fr ∪{a}, th), {a}a, {a}a)

if (M,N) 6∈ th

and a is fresh

pr
d+1

((fr, th), {M1}k, {N1}k) = (e ′, {M ′}k, {N ′}k)
where (e ′,M ′,N ′) =

pr
d
(((fr, th),M1,N1))

If M is an open term, we define pr
d
((e,M)) = (e,M).

The pruning operator extends to single terms by defining prd((e)(M)) = prd((e)(M,M)).

Note that, because of the usage of unspecified fresh names, the pruning operator as de-

fined here does not generate a unique pair of terms. This can be dealt with by means of

introducing suitable bookkeeping.

Note also how the definition exploits the fact that only names are allowed in key position.

Lemma 22 If e ` M ↔ N, d = max(d(M), d(N)) and pr
d
((e,M,N)) = (e ′,M ′,N ′) then

e ′ ` M ′ ↔d N ′.

PROOF: A straightforward induction in d, appealing to Definition 21. 2

We can extend the pruning operation to pairs of term vectors. This is done inductively;

we prune the components of the vectors successively, extending the frame as we proceed.

Definition 23 Let | ~M| = |~N| = k. Then pr
d
(( ~M, ~N)) is defined inductively by

pr
d
((e, (M1, . . . ,Mk), (N1, . . . ,Nk))) = (e ′, (M ′

1, . . . ,M
′
k), (N ′

1, . . . ,N
′
k))

15



where

(e ′′,M ′
1,N

′
1) = pr

d
((e,M1,N1))

and

(e ′, (M ′
2, . . . ,M

′
k), (N ′

2, . . . ,N
′
k)) = pr

d
((e ′′, (M2, . . . ,Mk), (N2, . . . ,Nk)))

Lemma 24 Let P be a process such that P = A[ ~M/~x] and let d = cd(e, P). P > A iff P1 > A1

where P1 = A[~N/~x] where pr
d
((e, ~M)) = (e ′, ~N) and A1 = A[~N/~x].

PROOF: Both implications are seen to hold by an inspection of the clauses in the definition

of the reduction relation. The interesting case is the decryption clause:

case {M}k of {y}k in P ′ > P ′[M/y]

If P = case {M}k of {y}k in P ′, then the definition of the pruning operator tells us that P1 =

case {N}k of {y}k in P ′
1 where P ′ = A ′

1[
~M/~x] and P ′

1 = A ′[~N/~x] for some A ′
1. We now see that

case {N}k of {y}k in P ′
1 > P ′

1[N/y]

2

Lemma 25 Let P = A[ ~M/~x] and let d = cd(e, P). P
α

−→ A ′ iff P1
α

−→ A ′
1 where P1 = A[~N/~x]

where pr
d
((e, ~M)) = (e ′, ~N) and A ′

1 = B[~N/~x] and A ′ = B[ ~M/~x] for some B.

PROOF: In the case of both implications, the proof proceeds by transition induction. The

induction hypothesis in the case concerning the rule (Red) uses Lemma 24. The only other

interesting cases are the prefix axioms. 2

Theorem 26 Let P and Q be finite spi processes and let d = cd(e, P,Q) where e ` ok. We

have that e ` P ∼f Q iff e ` P ∼d
f Q.

PROOF: By definition, any framed bisimulation is also a d-framed bisimulation. It therefore

suffices to establish that e ` P ∼f Q whenever e ` P ∼d
f Q. We show that

R =


(e, P,Q) ∃e ′, A, B, ~M, ~N.

P = A[ ~M/~x],Q = B[~N/~y]

e ′ ` A[ ~M ′/~x] ∼n
f B[ ~N ′/~y]

(e ′, ( ~M ′, ~N ′)) = pr
d
((e, ~M, ~N))

d = cd(e, P,Q)


is a framed bisimulation. This follows from Lemma 25. 2
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5.2 Matching output transitions

Next, we have to deal with matching output transitions. Fortunately, there are only finitely

many candidates for an environment extension in the case of the output clause.

Unfortunately, as was shown in [BN02], the characterization of framed bisimilarity pre-

sented in [EHHN99] is sound but not complete. We are therefore unable to fall back on the

algorithm for computing environment extensions presented in [EHHN99]. Instead we use

Lemma 27 Let e ` ok and let M,N ∈ T . It is decidable whether there is an e ≤ e ′ such that

e ` M↔ N.

PROOF: To construct an e ′ such that e ′ ` M ↔ N, we only need to add pairs of the form

(M1,N1) where max(d(M1), d(N1)) ≤ max(d(M), d(N)) and such that n[[M1]]∪n[[N1]] ⊆
n[[M]]∪n[[N]]. Only finitely many such candidate pairs exist. 2

6 Deciding framed bisimilarity

We can now state the main results of our paper.

Theorem 28 Let e ` ok and let P and Q be finite spi-calculus processes. For any d ≥ 0 it is

decidable whether e ` P ∼d
f Q.

PROOF: Table 6 presents a nondeterministic recursive algorithm B((e, (P,Q)) for determin-

ing if e ` P ∼d
f Q.

As the algorithm encodes the ‘bisimulation game’ of Definition 16, e ` P ∼d
f Q iff there

exists a successful evaluation of B((e, (P,Q))). The algorithm always terminates, as Lemma

15 and Lemma 27 guarantee that the checks performed in the conditional statements of the

algorithm are effective and as all transition sequences examined along recursive calls are

finite due to the absence of recursion. 2

Corollary 29 Let e ` ok and let P and Q be finite spi-calculus processes. It is decidable

whether e ` P ∼f Q.

7 Conclusions and further work

In this paper we have shown that framed bisimilarity is decidable for finite processes. The

ideas used in this paper are closely related to those employed in giving symbolic semantics to

process calculi. The precise relationship is a topic for further work.
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B(((fr, th), (0, 0))) = tt

B(((fr, th), (P1, P2))) =

let (fr, th) = e in

for each Pi
a

−→ (x)P ′
i where a ∈ fr

select a Pi+1
a

−→ (y)P ′
i+1

if no such P ′
i+1 exists

then fail

else

for each ~n where |~n| ≤ d, ~n ∩ fn[[Pi]]∪ fn[[Pi+1]]∪fn(th) = ∅
for each (fr ∪{~n}, th) ` M↔d N

B(((fr ∪{~n}, th), (P ′
i[M/x], P ′

i+1[N/y])))

for each Pi
a

−→ (ν~c)〈M〉P ′
i where a ∈ fr

select a Pi+1
a

−→ (ν~d)〈N〉P ′
i+1

if no such P ′
i+1 exists

then fail

else

select e ≤ (fr ′
, th ′

) such that (fr ′
, th ′

) ` M↔ N

B(((fr ′
, th ′), P ′

i, P
′
i+1))

for each Pi
τ

−→ P ′
i

select a Pi+1
τ

−→ P ′
i+1

if no such P ′
i+1 exists

then fail

else

B(((fr, th), P ′
i, P

′
i+1))

Table 6: A nondeterministic algorithm for checking bisimilarity
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Recent, currently unpublished results [FN01, BN02] establish that the environment sen-

sitive bisimilarity of Boreale et al. [BDP99] corresponds to hedged bisimilarity, the variant of

framed bisimilarity that omits the frame-component. We therefore conjecture that our re-

sults and techniques carry over to environment sensitive bisimilarity.

A topic for further work is how to develop an efficient version of the bisimulation check-

ing algorithm. However, framed bisimulation subsumes the late bisimulation equivalence of

the π-calculus and the decision problem for this latter equivalence is known to be PSPACE-

complete for a number of recursion-free process calculi with value-passing [BT00].

As we have omitted recursion, we can only study attacks that involve a given number of

runs of a protocol. Another topic for further work is therefore to study the class of attacks

that can be detected within the finite spi-calculus.

Acknowledgements I would like to thank Josva Kleist for his careful reading of an earlier

version of this paper.
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Modifications of Expansion Trees for Weak

Bisimulation in BPA

Jitka Střı́brná Ivana Černá ∗
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Masaryk University Brno, Czech Republic

1 Introduction

The purpose of this work is to examine the decidability problem of weak bisimilarity for

BPA-processes. It has been known that strong bisimilarity, which may be considered a spe-

cial case of weak bisimilarity, where the internal (silent) action τ is treated equally to observ-

able actions, is decidable for BPA-processes ([1, 2, 4]). For strong bisimilarity, these processes

are finitely branching and so for two non-bisimilar processes there exists a level n that dis-

tinguishes the two processes. Additionally, from the decidability of whether two processes

are equivalent at a given level n, semidecidability of strong non-bisimilarity directly fol-

lows. There are two closely related approaches to semidecidability of strong equivalence:

construction of a (finite) bisimulation or expansion tree and construction of a finite Caucal

base. We have attempted to find out if any of the above mentioned approaches could be

generalized to (semi)decide weak bisimilarity.

For weak bisimulation we need to consider separately semidecidability of bisimilarity

and semidecidability of non-bisimilarity. To be more precise, in case of strong bisimulation

the latter is guaranteed by the finite-image property which for weak equivalence fails to

hold. Therefore, in the following we will only consider semidecidability of weak bisimula-

tion equivalence.

The technique of bisimulation trees was proposed by Hirshfeld in [6]. In the most general

concept, bisimulation trees contain all possible derivative pairs of some initial pair. Hence

the trees are complete and correctness is obviously maintained, however it may not be fea-

sible to search such trees. In order to reach algorithmic feasibility it appears necessary to

∗Supported by GA ČR grant no. 201/00/0400
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introduce some modification into the construction of bisimulation trees. There are two kinds

of rules summarized by Jančar and Moller in [8]: omission and replacement. We can omit

a pair from a reached node if it is in some sense implied by already visited pairs. We can

replace one pair by a set of pairs in a newly constructed sibling node if we do not introduce

“false” bisimulation witnesses in this process. It now has to be proved that completeness and

correctness are maintained which is done by introducing an inductive invariant. The method

has been further modified for weak bisimulation and totally normed BPA in[7] where the cri-

teria for omission and replacement have been modified to comply with properties of weak

bisimulation. In this work we formulate additional rules to cope with weak bisimilarity of

(general) BPA and prove their correctness. We discuss the question whether these modifica-

tions are strong enough, i.e. whether they always guarantee the existence of a finite witness

of bisimilarity.

The Caucal base (i.e. a set of pairs that would generate the maximal bisimulation by

congruence closure - for more details consult [3, 4]) is used to semidecide strong bisimulation

by enumeration of finite sets for which the Caucal condition is tested. In this way, in the

positive case a finite bisimulation (Caucal) base is eventually constructed. The notion of

Caucal base can be modified into weak Caucal base which serves as generation base for the

maximal weak bisimulation equivalence. However, we can construct a pair of two weakly

bisimilar processes for which there does not exist a finite weak (Caucal) bisimulation base,

which indicates that it cannot always be used efficiently for weak bisimilarity.

The paper is structured as follows. In Section 2 we give basic definitions of BPA, bisimu-

lation equivalences and approximation of bisimulations. Section 3 describes decompositions

and bisimulations up to which are the core notions for expansion trees. The rules for creat-

ing an expansion tree are described and their correctness is proved in Section 4. Section 5 is

devoted to a discussion concerning applicability of those rules.

2 Background

In order to define Basic Process Algebras we presuppose a finite set of actions Act that

contains a special action τ, and a finite set of process variables or atoms Σ. A Basic Pro-

cess Algebra (BPA) is then a pair (Σ∗, ∆), where Σ∗ is the free monoid generated by Σ, and

∆ = {X
a−→ α | X ∈ Σ,α ∈ Σ∗, a ∈ Act} is a finite set of transitions. BPA-processes are iden-

tified with words from Σ∗. We will use capital letters X, Y to range over process variables,

α,β, γ, δ to range over BPA-processes and a, b, c to range over process actions. The empty

word ε denotes the empty process that cannot perform any action.
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The transition rules of ∆ determine a transition relation −→ on general BPA-processes:

Xβ
a−→ αβ iff there is a rule X

a−→ α in ∆.

A weak transition relation =⇒ is defined as

a=⇒def
=

{
(

τ−→)∗ a−→ (
τ−→)∗ if a 6= τ

(
τ−→)∗ if a = τ

If α is a process then the norm of α, denoted by |α|, is the minimum of lengths of deriva-

tion sequences leading from α to the empty process ε. We say that a process is normed if it

has a finite norm, otherwise it is unnormed. We also call this notion strong norm to distin-

guish it from weak norm which does not count the τ-moves on the way to ε, and is denoted

by ‖α‖. When weak norm is considered, a process is called normed if it has a finite norm,

totally normed if the norm is finite and positive, and unnormed otherwise.

Each process α of a BPA (Σ∗, ∆) generates a labeled transition system (LTS) with α la-

beling the root, processes derivable from α labeling the nodes and the action leading from

α to α ′ labeling the arc that leads from α to α ′. If two processes give rise to labeled tran-

sition systems that are isomorphic up to different names at the nodes then the processes

are considered identical. Usually we want to identify a broader class of processes, namely

processes which exhibit the same observable behavior. We will investigate two of the major

equivalences: strong and weak bisimulations ([9, 10]).

Definition 1 Let (Σ∗, ∆) be a BPA. A binary relation R over Σ∗ is a weak bisimulation if for every

pair (α,β) from R and and every action a from Act the following holds:

— for every α
a=⇒ α ′ there exists β

a=⇒ β ′ so that (α ′, β ′) ∈ R;

— for every β
a=⇒ β ′ there exists α

a=⇒ α ′ so that (α ′, β ′) ∈ R.

If we assume that τ does not appear in BPA ∆ then the relations =⇒ and −→ coincide and

we call the corresponding version of bisimulation strong bisimulation and denote it by ∼.

Processes α and β are strongly bisimilar, written α ∼ β, if they are related by some strong

bisimulation. It was shown in [9] that the union of all strong bisimulations is also a strong

bisimulation. It is the largest strong bisimulation, denoted by ∼, and it is an equivalence

relation. We will also call it strong bisimulation equivalence. Moreover, strong bisimulation is

a congruence on every BPA, i.e. if α ∼ β and γ ∼ δ then αγ ∼ βδ.

Processes α and β are weakly bisimilar, written α ≈ β, if they are related by some weak

bisimulation. The union of all weak bisimulations gives rise to the maximal weak bisimu-

lation which is denoted by ≈. An equivalent definition of weak bisimulation is phrased in
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terms of simple transition in the premise followed by weak transition. Both definitions yield

identical maximal weak bisimulations ([9]).

As opposed to strong bisimulation, a maximal weak bisimulation relation is not always

necessarily a congruence — see [12] for counterexample. In order to ensure that this desir-

able property holds it is enough to require for a BPA (Σ∗, ∆) that for all variables X ∈ Σ, if

X ≈ ε then X
τ=⇒ ε (see [12]). Another trivial assumption is formulated in [7]. Here, in

order to obtain congruence and simplify proofs, we will make a slightly stronger assump-

tion throughout the rest of the paper that P ≈ ε implies P ≡ ε, i.e. the only process with no

observable behavior is the empty process.

The strong, resp. weak, maximal bisimulations were obtained as the union of smaller

strong, resp. weak, bisimulation relations. There exists an alternative approach (see [9])

where the maximal equivalences are obtained as the limits of respective non-increasing

chains of bisimulation approximants. Weak bisimulation approximants ≈κ for a fixed BPA

(Σ∗, ∆) are defined inductively on the class of ordinal numbers On:

— α ≈0 β for all α and β from Σ∗;

— α ≈κ+1 β if for all actions a,

whenever α
a=⇒ α ′ then there exists β

a=⇒ β ′ so that α ′ ≈κ β ′;

whenever β
a=⇒ β ′ then there exists α

a=⇒ α ′ so that α ′ ≈κ β ′;

— α ≈λ β if α ≈κ β for every κ < λ, for a limit ordinal λ.

Strong bisimulation approximants ∼κ are defined analogously, with weak transition a=⇒ be-

ing replaced by single transition a−→, in both premise and conclusion.

It can be easily verified that binary relations ≈α are equivalences for every ordinal α. The

following proposition sums up the structure of the chain of approximants and the relation-

ship between individual approximants and the maximal bisimulation. A proof can be found

in [9, 12].

Proposition 2 1. for every κ, µ ∈ On, κ < µ =⇒ ≈µ ⊆ ≈κ;

2. for every κ ∈ On, ≈ ⊆ ≈κ;

3. if there is an κ such that ≈κ = ≈κ+1 then for all µ ≥ κ, ≈κ = ≈µ = ≈;

4. ≈ =
⋂

κ∈On ≈κ.

An analogous lemma holds also for strong bisimulation approximants, i.e. the sequence

of strong bisimulation approximants converges with the limit being ∼. For BPA-processes,

owing to their finite-branching structure, the convergence occurs at level ω, that is ∼ = ∼ω

=
⋂

n∈ω ∼n. Proof of this claim can be found in [5]. Additionally, this finite-branching

property guarantees that each approximant ∼n is decidable. Therefore we obtain a straight-
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forward semidecision procedure for non-bisimilarity by successive enumeration of all nat-

ural numbers n and testing equivalence at ∼n. However, this approach cannot be used for

weak bisimulation approximants because infinite branching of BPA w.r.t. weak bisimilarity

produces algebras where ≈ ( ≈ω (consult e.g. [11, 12] for more details).

When we deal with the whole class of ordinals the common induction principle for nat-

ural numbers becomes too weak for proving theorems. We need a more powerful proof

method than that and, fortunately, the well-ordered structure of ordinal numbers enables us

to formulate a statement which is a generalization of the induction principle.

The Principle of Transfinite Induction:

Let P(κ) be a statement for each ordinal κ. Assume that

1. P(0);

2. P(κ)⇒ P(κ + 1) for every κ;

3. if λ is a limit ordinal then (∀κ < λ. P(κ))⇒ P(λ).

Then for every κ ∈ On, P(κ).

Now if we want to verify that some property P holds for the class On we only have to

test three cases: the base case P(0), the successor case P(κ) ⇒ P(κ + 1) and the limit case

(∀κ < λ. P(κ)) ⇒ P(λ). If we manage to prove all three cases we can be confident that all

ordinals possess the desired property P.

A useful way to understand both strong and weak bisimulation relation is to consider

it as a bisimulation game between two players Alice and Bob (for detailed description see

i.e. [8]). For a given LTS and its two vertices α0 and β0, the two players try to achieve

opposite goals: Alice wants to show that α0 and β0 are different while Bob tries to show

their sameness. A play of the game is a sequence of pairs (α0, β0), (α1, β1), . . ., where each

consecutive pair arises in this way: Alice chooses an action a and a transition αi
a=⇒ αi+1,

resp. βi
a=⇒ βi+1. Bob then needs to produce a matching reply βi

a=⇒ βi+1, resp. αi
a=⇒

αi+1 (in the case of strong bisimulation simple transitions need to be considered). Alice wins

the play if Bob cannot respond to a move by Alice, otherwise the winner is Bob. Processes

α0 and β0 are bisimilar iff Bob is able to win every play of the game regardless of the moves

made by Alice.

3 Decompositions

All known algorithms for deciding bisimilarity between two BPA-processes ([4], [7]) are

strongly dependent on the notion of decomposability. Decomposition allows to transform

the task of deciding bisimilarity between given pairs of processes to a (finite) number of
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tasks of deciding bisimilarity between smaller pairs (for some suitably formulated criterion

of process size).

Let α1α2 and β1β2 be two BPA-processes. Let us consider one particular bisimulation

play, i.e. a sequence of pairs starting with (α1α2, β1β2). This sequence can be divided into

two subsequences: the first one beginning with (α1α2, β1β2) and the second one with the

(uniquely determined) pair (γα2, δβ2), such that in the next step of the play an action is

emitted for the first time from α2 or from β2. Both subsequences may be empty, finite or

infinite.

The strategy for deciding bisimilarity between α1α2 and β1β2 based on this concept is

the following. Let A be a suitably chosen set of pairs of processes. Then α1α2 ≈ β1β2 if

1. for every bisimulation play starting from α1α2 and β1β2,

either Bob has a winning strategy leading to his victory without emitting any action

neither from α2 nor from β2,

or the first pair such that in the next step an action is emitted from α2 or β2 has the

form (γα2, δβ2), where (γ, δ) ∈ A, and

2. γα2 ≈ δβ2 for every (γ, δ) ∈ A.

The procedure sketched above can be recursively applied to newly created pairs and is ef-

ficient under the assumption that the new pairs are “simpler”. In order to implement this

procedure we need a generalized notion of bisimulation relation that takes into account the

sets of termination pairs that occur within a bisimulation play when the first halves of the

original pair are removed. That gives rise to the notion of bisimulation up to, originally pro-

posed by Hirshfeld in [7].

3.1 Bisimulation up to

Definition 3 Given an arbitrary set of pairs A, we say that a binary relation R is a weak bisimula-

tion up to A if for every pair from R

— either (α,β) ∈ A,

— or for every action a, if α
a=⇒ α ′ then there exists β

a=⇒ β ′ with (α ′, β ′) ∈ R, and symmetrically.

Furthermore we require that if α ≡ ε and β ≡ ε, then (α,β) ∈ A.

The processes α and β are weakly bisimilar up to A, denoted by α ≈A β, if there exists a weak

bisimulation up to A that contains them. The union of all weak bisimulations up to A is a

maximal weak bisimulation up to A, denoted also ≈A. The relationship between “classical”
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bisimulation and bisimulation up to can be characterized in this way: ≈ = ≈A if and only if,

for every pair (γ, δ) ∈ A, γ ≈ ε and δ ≈ ε.

We can follow the alternative approach towards obtaining the maximal weak bisimula-

tion and define weak bisimulation approximants up.

Definition 4 For a BPA (Σ∗, ∆), and a set up to A, weak bisimulation approximants up to A

are binary relations denoted by ≈κ,A, defined by

— α ≈0,A β for all α and β ∈ Σ∗,

— α ≈κ+1,A β if (α,β) ∈ A or, for all actions a,

whenever α
a=⇒ α ′ then there exists β

a=⇒ β ′ so that α ′ ≈κ,A β ′, and

whenever β
a=⇒ β ′ then there exists α

a=⇒ α ′ so that α ′ ≈κ,A β ′;

— α ≈λ,A β if α ≈κ,A β for every κ < λ, for a limit ordinal λ.

Furthermore we require that if α ≡ ε and β ≡ ε then (α,β) ∈ A.

For any set up to A, the respective approximants form a non-increasing chain that ap-

proximates the maximal bisimulation up to A from above. The correctness of the two state-

ments can be easily verified. Regarding the former, for every pair (α,β) from ≈κ+1,A there

are two possibilities: either (α,β) belongs to the set A in which case it is also included in

≈κ,A by definition, or there must exist pairs of matching derivatives (α ′, β ′) that appear in

≈κ,A and, by inductive reasoning, in all the approximants below. From this we can conclude

that (α,β) must belong to ≈κ,A as well. The approximant labeled by 0 contains all pairs

therefore this sequence indeed forms a non-increasing chain. The correctness of the latter

claim is expressed by the lemma below:

Lemma 5 ≈A =
⋂

κ∈ω1
≈κ,A.

Proof: The first direction consists in proving that for any two BPA α and β, if α ≈A β then

for every ordinal κ, α ≈κ,A β. This needs to be done by transfinite induction on κ.

1. α ≈0,A β is trivially true from the definition of approximants.

2. α ≈κ+1,A β has to be proved from the premises that α ≈A β, and for any pair (α ′, β ′),

α ′ ≈A β ′ implies that α ′ ≈κ,A β ′. In the case that (α,β) ∈ A we are done as then, by

definition, α ≈κ+1,A β. We assume the contrary and consider any transition α
a=⇒ α ′.

As α ≈A β, and (α,β) /∈ A, there exists a matching move β
a=⇒ β ′ such that α ′ ≈A β ′.

By the other assumption, α ′ ≈κ,A β ′ and therefore we may conclude that α ≈κ+1,A β.

3. α ≈λ,A β, for a limit ordinal λ, is a straightforward consequence of the induction hy-

pothesis that α ≈κ,A β for every κ < λ.
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The other direction falls into two cases. Firstly we need to realize that the chain will con-

verge before reaching ≈ω1,A, for the simple reason that we deal with countable algebras.

Convergence will occur when we reach a level such that ≈κ,A = ≈κ+1,A, in which case

≈A = ≈κ,A = ≈µ,A, for every κ < µ. Hence we assume that for some pair (α,β), α ≈κ,A β

for every κ ∈ ω1, and we will show that α ≈A β. In case (α,β) ∈ A we are done as then,

by definition, α ≈A β. We assume that (α,β) /∈ A, and consider any move α
a=⇒ α ′. For

every κ ∈ ω1 there exists a matching transition β
a=⇒ β ′

κ with α ′ ≈κ,A β ′
κ. However, as β

is a process in a countable algebra, there may be only countably many distinct derivatives

β ′
κ, and hence one β ′ must occur among these derivatives uncountably often. Since approx-

imants form a non-increasing chain, this β ′ then satisfies the condition that α ′ ≈κ,A β ′ for

every κ ∈ ω1. So we can conclude that ≈ω1,A is in fact closed under expansion and hence

included in ≈A. �

3.2 Properties of bisimulation up to

The largest strong (weak) bisimulation is (under the described assumptions) an equivalence

relation and both ∼ and ≈ are congruences. This is the key property which allowed to build

known algorithms for deciding bisimilarity as recursive algorithms. Unfortunately bisimu-

lation up to is no longer an equivalence relation. Namely it is the property of transitivity that

fails. Nevertheless some special form of transitivity and composition holds even in this case.

Lemma 6 (Transitivity) If α ≈A β and β ≈ β ′, then there exists a set A′ such that α ≈A′ β ′, and

all pairs in A and A′ are mutually bisimilar, i.e. for every (γ, δ) ∈ A there exists (γ′, δ ′) ∈ A ′ with

γ ≈ γ ′ and δ ≈ δ ′, and symmetrically for A′.

Proof: From any R, weak bisimulation up to A, relating α and β, and any weak bisimulation

S relating β and β ′, we will construct a set up to A ′ and R ′, a weak bisimulation up to A ′,

that will contain the pair (α,β ′). Additionally, the two sets A and A ′ will consist of mutually

bisimilar couples, as described in the statement of the lemma. The two relations R ′ and A ′

are defined as follows:

A ′ = {(γ, δ) | ∃(γ, δ ′) ∈ A ∧ (δ ′, δ) ∈ S}

R ′ = {(γ, δ) | ∃(γ, δ ′) ∈ R ∧ (δ ′, δ) ∈ S}

First we shall verify that A ′ satisfies the required conditions. Any pair (γ, δ) from A ′ has its

pre-image in some pair (γ, δ ′) from A, where (δ ′, δ) ∈ S. Since S is a bisimulation relation,

every pair contained within it must be weakly bisimilar, therefore δ ′ ≈ δ. Obviously, γ ≈ γ
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and so we can conclude that every pair from A ′ has a bisimilar pre-image in A. Obviously,

the other implication is also true.

It remains to check that R ′ is indeed a weak bisimulation up to A ′. We shall express the

expansion condition by means of the diagram from Figure 1.

δ ′

a

��

(γ, δ ′) ∈ R γ

a

��

(γ, δ) ∈ R ′
δ

a

��

(δ ′, δ) ∈ S δ ′

a

��

II I III

δ ′ (γ, δ ′) ∈ R γ (γ, δ)
?
∈ R ′ δ (δ ′, δ) ∈ S δ ′

Figure 1: Case analysis

The starting point is the pair (γ, δ) from R ′ at the top of square I, for which there must

exist some (γ, δ ′) in R (top of square II) satisfying (δ ′, δ) ∈ S (top of square III). Either (γ, δ)

is contained in A ′ or we need to verify the expansion condition for the pair. We will assume

the latter, i.e. (γ, δ) /∈ A ′, from which also follows that (γ, δ ′) does not belong to A, and we

will check the transitions.

If γ does an a=⇒ and evolves into γ, then in diagram II we have a matching move from

δ ′ into δ ′ where (γ, δ ′) ∈ R. The a=⇒ transition of δ ′ (in diagram III) evokes a matching

transition of δ owing to δ ′ and δ being in S, with the resulting pair (δ ′, δ) also in S. Therefore,

the pair of matching derivatives (γ, δ) belongs to R ′.

If δ does a=⇒ into some δ then, in diagram III, there must be a matching transition of δ ′

resulting in some δ ′, where (δ, δ ′) ∈ S. The transition δ ′ a=⇒ δ ′ also appears as the left-most

transition in diagram II, where from the assumption that (γ, δ ′) /∈ A follows that γ has a

matching transition into some γ. The pair (γ, δ ′) is in R and (δ ′, δ) belongs to S hence, from

the definition of R ′, we can conclude that (γ, δ) is included in R ′. We have verified that the

expansion condition holds and therefore R ′ is a bisimulation up to A ′.

Lastly, we need to verify that if γ ≡ ε or δ ≡ ε then (γ, δ) ∈ A ′, which readily follows

from the assumptions that we have made. �
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Unfortunately, it seems impossible to say anything more precise about the exact corre-

spondence of cardinalities of A and A ′, because the size of the (minimal w.r.t. inclusion) set

up to depends on the size of branching of the two processes that we want to relate.

Lemma 7 (Composition) Whenever α1 ≈B β1 and γα2 ≈A δβ2, for every (γ, δ) ∈ B, then

α1α2 ≈A β1β2.

Proof: From the assumption that α1 ≈B β1 we can assume the existence of a bisimulation

relation R up to B, and a set of bisimulation relations up to A for every pair (γ, δ) from B,

that we denote R(γ,δ). We define a relation S = {(γα2, δβ2) | (γ, δ) ∈ R} ∪
⋃

(γ,δ)∈BR(γ,δ),

and verify that this relation is a bisimulation up to A. We need to check only those pairs

(γα2, δβ2), where (γ, δ) ∈ R.

If (γ, δ) belongs directly to B then from our assumptions, (γα2, δβ2) belongs to R(γ,δ) and

so we are done. In the other case we need to verify the expansion condition for (γα2, δβ2)

w.r.t. A. A schema of the proof is drawn in Figure 2. An initial move γα2
a=⇒ may lead to

some γ ′α2 (diagram I) or it may dispose of γ and end up in some α ′
2 (diagram II). In the first

case we have a matching move δβ2
a=⇒ δ ′β2 which belongs to S by definition.

In the latter case, if γ reduces to ε, the process δ will evolve into δ ′ such that (ε, δ ′) ∈ B.

Then we can use the assumption that εα2 ≈A δ ′β2 and hence, to the transition α2
τ=⇒ α ′

2

there must be an equivalent move β2
τ=⇒ β ′

2 leading to (α ′
2, β

′
2) ∈ R(ε,δ′).

Initial moves of δ and the combination γα2
τ=⇒ εα2

a=⇒ α ′
2 would be solved analogously.

The ε-condition on A is also easy to verify. �
Now we are ready to define the notion of decomposability we were seeking.

Definition 8 Let α,β be two processes bisimilar up to A. We say that processes α1, α2, β1, β2 and

a set B form a decomposition of (α,β)A up to B if

— α ≡ α1α2 and β ≡ β1β2,

— α1 ≈B β1,

— γα2 ≈A δβ2, for every (γ, δ) ∈ B.

Intuitively, if we play a bisimulation game for any pair of bisimilar processes, we can al-

ways split the original processes into two pairs that will be “almost” bisimilar, up to some

termination conditions. That is expressed in the following:

Fact 9 Every pair (α,β) bisimilar up to A has some decomposition.
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γα2
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))
δβ2

a

��

γ

a

��

(γ, δ) ∈ R δ

a

��

I

γ ′α2 (γ ′α2, δ
′β2) ∈ S δ ′β2 γ ′ (γ ′, δ ′) ∈ R δ ′

hh

γα2

a

��

))
δβ2

a

��

γ

a

��

(γ, δ) ∈ R δ

a

��

II

εα2

τ

��

δ ′β2

τ

��

ε (ε, δ ′) ∈ B δ ′

α ′
2

(α ′
2, β

′
2) ∈ R(ε,δ′) β ′

2

Figure 2: Case analysis

4 Expansion trees

The notion of expansion tree is due to Hirshfeld [6] who put forward this idea in order to

construct (semi)decision procedure for strong bisimulation on BPP and BPA-processes. The

idea was then developed further, namely by Jančar and Moller in [8], and Hirshfeld in [7] .

We first summarize this method for strong bisimulation on BPA processes.

Definition 10 Let V 6= ∅ and U be two sets of pairs (α,β). U is called a strong expansion of V if

it is a minimal set (w.r.t. inclusion) satisfying the following property: for every pair (α,β) ∈ V , for

every action a,

— if α
a−→ α ′ then β

a−→ β ′ with (α ′, β ′) ∈ U;

—if β
a−→ β ′ then α

a−→ α ′with (α ′, β ′) ∈ U.
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A binary relation R is a strong bisimulation iff it is a strong expansion of itself. A nonempty

set V does not have any expansion if it contains a pair (α,β) such that α 6∼1 β, that is either

α is able to emit an action β is not able to emit or vice versa. The set V = {(ε, ε)} has an

empty expansion ∅ as neither of processes is able to emit any action. Moreover, for finitely

branching processes, if a set V is finite then every strong expansion of V is finite and the

number of different expansions of V is finite, too.

The above mentioned properties give a hint how to decide bisimilarity: starting with a

singleton containing the given pair expand it until a set which is an expansion of itself is

achieved. This process is embodied into an expansion tree.

An expansion tree is a (generally infinite) tree whose nodes are labeled by sets of pairs of

vertices, in which the children of a node are precisely the expansions of that node. A leaf of

a tree is successful if it is empty; other leaves are unsuccessful. A branch is successful if it is

infinite or finishes with a successful node. We may observe that the union of all nodes along

a successful branch forms a bisimulation. The correctness of the expansion tree construction

is spelled out in the following:

Theorem 11 [8] α ∼ β iff the expansion tree rooted at {(α,β)} has a successful branch.

As we are dealing with strong bisimulation on BPA the finiteness of an expansion as well

as finite branching of an expansion tree are guaranteed. However, what we need is the

finite witness property which guarantees that if there are successful branches then as least

one of these is finite. In such a case the breadth– first search of the expansion treee would

give the decidability of bisimilarity. When dealing with strong bisimilarity on BPA it may

happen that all successful branches are of infinite length. To overcome this obstacle one has

to introduce modification rules into the construction of expansion trees. In their paper [8],

Jančar and Moller introduce the following rules:

Rule 1 (Congruence rule) Omit from node U the pair (α,β) if it belongs to the least con-

gruence containing U⇑, where U⇑ denotes the union of all ancestor nodes to U.

Rule 2 (Decomposition rule) If (Xα, Yβ) is in U where X and Y are normed, then create a

new sibling node U ′ = U \ {(Xα, Yβ)} ∪ {(X, Yγ), (γα,β)}, where |X|=|Yγ| (and symmet-

rically).

Rule 3 (Replacement rule) If (Xα, Yβ) is in U and some (Xα ′, Yβ ′) is in U⇑ , then create a

new sibling node U ′ = U \ {(Xα, Yβ)} ∪ {(α,α ′), (β,β ′)}.

Obviously, when these rules are applied to the construction we need to verify that correct-

ness is preserved. That boils down to checking that no false bisimulation witness is cre-
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ated, i.e. no pairs that would imply bisimilarity of two originally non-bisimilar processes are

added. This is guaranteed by the following correctness criterion for (modified) expansion

trees.

Lemma 12 [8] For any node V 6= ∅ and for any n ∈ N, V ⊆ ∼n+1 iff V has a child U ⊆ ∼n. As a

consequence, V ⊆ ∼ iff V has a child U ⊆ ∼.

Rule 1 ensures that a pair is not considered if it can be composed from pairs that occurred

previously (we use the fact that bisimilarity is a congruence). Rule 2 allows us to replace

pairs by their decompositions which are strictly smaller in size (here the strong norm is

taken as size criterion). However, one can easily find a pair which is not decomposable in

the sense of Rule 2. Then Rule 3 will eventually be applied. Efficiency of the modification

rules is asserted by a theorem from [4] that states that the number of undecomposable pairs

is in some sense finite and therefore the modified expansion tree with bisimilar pair in its

root always contains a finite successful branch. Hence the strong bisimilarity on BPA is

semidecidable.

When dealing with weak bisimulation, we have to consider weak expansions and weak

expansion trees that are obtained by replacing single transitions by composite ones. As in the

case of the strong bisimulation, in order to cope with infiniteness we will introduce some

modification rules that will employ decomposition and bisimulation up to. To this end, we

need to define a generalized notion of expansion tree, expansion tree up to.

Definition 13 Let V 6= ∅ and U be two sets of elements (α,β)A. U is called a weak expansion

up to of V if it is a minimal set (w.r.t. inclusion) satisfying the following property: for every pair

(α,β)A ∈ V ,

— either (α,β) ∈ A,

— or, for every action a,

if α
a=⇒ α ′ then β

a=⇒ β ′ with (α ′, β ′)A ∈ U;

if β
a=⇒ β ′ then α

a=⇒ α ′with (α ′, β ′)A ∈ U.

The notion of successful leaf, resp. successful branch, generalizes to expansion trees up to

in the obvious sense (in particular, an unsuccessful leaf contains an element (α,β)A with

α 6≈1,A β). We are proposing the following generalization of the modification rules of [8], in

the spirit of [7], for weak bisimulation and general BPA.

Rule 4 (Omitting rule) Omit (α,β)A from a node U if any of the following occurs:

1. (α,β)A appears in U⇑ ;
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2. (α,β) belongs to A;

3. α ≡ β and (ε, ε) ∈ A;

4. α ≡ β, and they are unnormed processes.

Rule 5 (Decomposition rule) If (Xα, Yβ)A belongs to U, then construct a sibling node U ′

by replacing (Xα, Yβ)A by the set {(X, Y)B} ∪ {(γα, δβ)A | (γ, δ) ∈ B}, where B is a new

set up to.

Rule 6 (Replacement rule) If (Xα, Yβ)A is in U and some (Xα ′, Yβ ′)A ′ is in U⇑, then cre-

ate a sibling node U ′ by replacing (Xα, Yβ)A with the set {(α,α ′)(ε, ε), (β,β ′)(ε, ε)} ∪
{(γ, f(γ))(ε, ε), (δ, f(δ)(ε, ε) | (γ, δ) ∈ A} ∪ {(g(γ), γ)(ε, ε), (g(δ), δ)(ε, ε) | (γ, δ) ∈ A ′},

where f : A −→ A ′, and g : A ′ −→ A are arbitrary functions.

Rule 4 describes pairs whose presence in the tree is superfluous. Rule 5 is an analog of

Decomposition Rule 2, and Rule 6 is a weak bisimulation analog of Replacement Rule 3.

Obviously, as well as with strong bisimulation expansion trees, we need to check that the

correctness of the construction has not been affected, in particular that no false witness can

be added in this way. The correctness criterion needs to reflect the fact that for weak bisim-

ulation approximants, convergence (to the maximal relation) may occur at any ordinal less

than ω1. Furthermore, we are dealing with pairs bisimilar up to. Both facts are taken into

account in the criterion below.

Proposition 14 For any node V 6= ∅ and for any µ < ω1, there exists(α,β)A in V such that

(α,β) /∈≈µ,A iff for every child U, there exist κ < µ and (α′, β ′)A ′ in U such that (α ′, β ′) /∈≈κ,A′ .

As a consequence of Proposition 14 together with the convergence criterion (≈A =⋂
κ∈ω1

≈κ,A) we arrive at Proposition 15:

Proposition 15 For any node V 6= ∅, {(α,β) | (α,β)A ∈ V} ⊆ ≈A, for every A, iff there exists a

child U with {(α,β) | (α,β)A ∈ U} ⊆ ≈A, for every A.

Clearly, if we start with a tree rooted at (α,β)(ε, ε) for a bisimilar pair then the root satisfies

condition of Proposition 15 and so it has a child also satisfying the condition, and so on. The

sequence of such nodes forms a successful branch, finite or infinite. On the other hand, if

the initial pair is not equivalent at some ≈µ, then every branch determines a sequence of

inequivalent elements (α,β) /∈≈κ,Aκ
where κ is decreasing. Since every decreasing sequence

of ordinals is finite every branch will eventually reach a node containing some (α,β) /∈≈1,A1

which denotes failure. This argument is reflected in the theorem that follows.
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Theorem 16 If a (modified) expansion tree T rooted at (α,β)(ε, ε) satisfies Proposition 14, then

α ≈ β iff there exists a successful branch in T .

This theorem states that every rule respecting Proposition 14 maintains safeness. The

next step is therefore to prove that Rules 4, 5 and 6 satisfy Proposition 14. The way of doing

so is to assume that, given some node and its successors satisfying the condition of Proposi-

tion 14, any new child arising by application of the rules will also respect it.

Rule 4 specifies when checking a pair (α,β)A would be superfluous, either because it has

been considered previously (case 1), or its bisimilarity up to A can be proved by some simple

argument (cases 2, 3, 4). The correctness of Rule 5 comes as a consequence of the following

lemma:

Lemma 17 If (α1, β1) ∈ ≈κ,B and (γα2, δβ2) ∈ ≈κ,A for every (γ, δ) ∈ B, then (α1α2, β1β2) ∈
≈κ,A.

Proof: Would be formally done by transfinite induction. First we need to consider the case

when κ = 0; that holds trivially as by definition, all pairs are equivalent at ≈0.

The successor case (P(κ)⇒ P(κ + 1)) is spelt out as follows:

[(α1, β1) ∈ ≈κ,B ∧∀(γ, δ) ∈ B.(γα2, δβ2) ∈ ≈κ,A⇒ (α1α2, β1β2) ∈ ≈κ,A]︸ ︷︷ ︸
P(κ)

=⇒
[(α1, β1) ∈ ≈κ+1,B ∧∀(γ, δ) ∈ B.(γα2, δβ2) ∈ ≈κ+1,A⇒ (α1α2, β1β2) ∈ ≈κ+1,A]︸ ︷︷ ︸

P(κ+1)

The goal therefore is to prove that, from the induction hypothesis P(κ) and assump-

tions (α1, β1) ∈ ≈κ+1,B and (γα2, δβ2) ∈ ≈κ+1,A, for every (γ, δ) ∈ B, we can conclude that

(α1α2, β1β2) ∈≈κ+1,A. We will again make use of graphical description of the situation (Fig.

3). We assume an initial move of α1α2 which may either end up in some γα2 (see diagram I),

or lead to some α ′
2 with α1 removed along the way (diagram II). In the first case we have a

matching equivalent move of β1
a=⇒ β ′

1 with α ′
1 ≈κ,B β ′

1. By applying induction hypothesis

to the pair (α ′
1, β

′
1) we obtain that (α ′

1α2, β
′
1, β2) ∈ ≈κ,A, which then validates the desired

claim α1α2 ≈κ+1,A β1β2.

In the second case we need to use the fact that if we reach ε from α1, a matching equiva-

lent move of β1 leads to some δ where (ε, δ) ∈ B. Then we can use the induction hypothesis

to conclude that (α2, δβ2) ∈ ≈κ+1,A from which the equivalence of α1α2 and β1β2 at ≈κ+1,A

follows. Moves initiating in β1 and the combination α1α2
τ=⇒ εα2

a=⇒ α ′
2 would be solved

analogously.
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α1α2

a

��

((?≈κ+1,A
β1β2

a

��

α1

a

��

≈κ+1,B β1

a

��

I

α ′
1α2 ≈κ,A β ′

1β2 α ′
1

≈κ,Bhh β ′
1

α1α2

a

��

((?≈κ+1,A
β1β2

a

��

α1

a

��

≈κ+1,B β1

a

��

II

εα2

τ

��

≈κ+1,A δβ2

τ

��

ε ≈κ,B δ

α ′
2

≈κ,A β ′
2

Figure 3: Case analysis

The limit case would consist in proving that ∀κ < λ.P(κ) ⇒ P(λ), and it would proceed

analogously to the successor case. The ε-condition on ≈κ,A is straightforward to verify. �
As a consequence of the previous lemma we obtain that if there is a node V containing

some (α,β) /∈ ≈µ,A, then there must be some (α ′, β ′) /∈ ≈κ,A′ in a new successor node U ′,

for some κ < µ.

In order to prove safeness of Rule 6 we need to build a sequence of auxiliary results

concerning restricted transitivity for approximants up to. In order to make our notation

more concise we shall write A ≈ A ′ whenever for every (γ, δ) ∈ A there exists (γ ′, δ ′) ∈ A ′

with γ ≈ γ ′ and δ ≈ δ ′, and symmetrically for A ′.

Lemma 18 If α ≈κ,A β and β ≈ β ′, then there exists a set A′ such that α ≈κ,A′ β ′ and A ≈ A ′.
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Proof: The flavor of the proof is similar to the analogous lemma for bisimulation, however

here we need to employ the principle of transfinite induction. For a fixed α, β, β ′, and A, the

set A ′ is defined using A and S, some fixed weak bisimulation relating β and β ′:

A ′ = {(γ, δ) | ∃(γ, δ ′) ∈ A ∧ (δ ′, δ) ∈ S}

As in the proof of Lemma 7, it is not difficult to verify that indeed, A ≈ A ′, hence it remains

to test the expansion condition. The case for κ = 0 is clear, and so we continue with the

successor step. The induction hypothesis P(κ) is the statement α ≈κ,A β∧β ≈ β ′ ⇒ α ≈κ,A′

β ′. We are going to assume that α ≈κ+1,A β and β ≈ β ′ and prove that α ≈κ+1,A′ β ′.

β

a

��

≈κ+1,A α

a

��

?≈κ+1,A′ β ′

a

��

(β,β ′) ∈ S β

a

��

II I III

β ≈κ,A α ≈κ,A′ β ′ (β,β ′) ∈ S β

Figure 4: Case analysis

From the definition of A ′ we can conclude that (α,β) ∈ A if and only if, (α,β ′) ∈ A ′.

Therefore we can assume that if there is a move α
a=⇒ α, then there exists β

a=⇒ β, where

α ≈κ,A β (Figure 4, square II). Then we have a matching bisimilar transition β ′ a=⇒ β
′

(square III). Now we can apply the induction hypothesis on the pairs (α,β) ∈ ≈κ,A and

β ≈ β
′. Here we need to realize that (β,β

′
) is a different pair than the original (β,β ′),

however as the former is a derivative of the latter, we may use the bisimulation S to define

the new set up to and thus we obtain the same set A ′ with α ≈κ,A′ β
′
. Therefore we may

conclude that indeed, α ≈κ+1,A′ β ′.

If we start from a transition β ′ a=⇒ β
′
, we make use of a matching bisimilar move β

a=⇒ β

(diagram III). Then in square II we have a move α
a=⇒ α with α ≈κ,A β, and using an

analogous argument, we can conclude that α ≈κ+1,A′ β ′.

For a limit ordinal λ, the proof relies on the fact that, α ≈λ,A β if and only if, α ≈κ,A β,

for every ordinal κ < λ. The argument is analogous to the successor case. �
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Corollary 19 If Xα ≈κ,A Yβ, α ≈ α ′ and β ≈ β ′, then there exists a set A′ such that Xα ′ ≈κ,A′

Yβ ′ and A ≈ A ′.

However, note that in order to obtain the corollary we need to employ a symmetric variant

of Lemma 18 where we substitute a bisimilar pair on the left hand side. The reason for

that is that in general, approximants up to (and also bisimulation up to) are not symmetric

relations.

As a consequence of the previous lemma we obtain that if there is a node V containing

some (α,β) /∈ ≈µ,A, then there must be some (α ′, β ′) /∈ ≈κ,A′ in a new successor node U ′,

for some κ < µ.

5 Applications

In the previous section we have sketched the way of building up the weak expansion tree for

a given pair of processes. Now we shall discuss applicability of this approach to deciding

weak bisimilarity.

Necessary conditions for a (modified) expansion tree to be an algorithm are:

1. the tree is finitely branching

2. every vertex is labeled by a finite set

3. if the root is labeled by a (weakly) bisimilar pair then the tree has a finite successful branch.

The first condition is not valid as a finite set can have infinite number of different weak ex-

pansions due to the composite transitions. Nevertheless its invalidity is not critical. Search-

ing the tree by dove-tailing technique results in semidecision procedure (if there is a finite

successful branch than it is found otherwise the search never halts).

The second condition also need not be true. There are two sources of infinity. Firstly,

while expanding a finite set we can come to an infinite one owing to composite transition

on the attacker side. Secondly, infiniteness can arise while decomposing a pair of processes,

namely in the set up to. A simple example is:

X
a−→ ε Y

a−→ ε B
b−→ ε U

b−→ U

X
a−→ XB Y

a−→ Y

Although XU ∼ YU we cannot decompose the pair as X 6∼ Y, moreover, at a closer look we

find out that any set A with the property that X is bisimilar to Y up to A is infinite and must

contain {(Bi, ε) | i ∈ N}. However, (finiteness of) the decision procedure is based on the fact

that any two nonbisimilar variables have only finitely many nonbisimilar completions.

One can avoid these problems by considering the variant of weak bisimulation in which

attacker is allowed to do only simple transitions (for the first type of infinity) or by allowing
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compact finite representation of the sets up to (i.e. via a finite or pushdown automaton).

But there is still the third condition we have to cope with. As the next example shows this

obstacle is the most serious one.

The following BPA represents an algebra where violation of condition 3 appears, i.e.

there exists a bisimilar pair for which the modified expansion tree has no finite successful

branch.
X

τ−→ ZY X
a−→ XW Z

τ−→ ZW Y
c−→ Y

X
τ−→ ε Z

τ−→ ε W
b−→ ε

All relevant (in)equivalence relationships are summarized below:

1. Y ≈ Yα, for any process α;

2. XWiY ≈ XWjY, for every i, j;

3. XWi 6≈ XWj, for every i 6= j;

4. WiY 6≈ WjY, for every i 6= j.

As Y is an unnormed variable, the first equivalence is easy to observe. To verify item 3., we

assume that i < j, and observe that after XWi disposes of X it will do exactly bi to reach ε,

however XWj can in any case do at least bi+1 as i < j. Similarly in case 4., if i < j then WiY

can do c after bi which cannot be matched by WjY. In order to test equivalence 2. we first

analyze all possible (composite) moves of X. They are

X
τ=⇒ ε X

a=⇒ XWi+1Y X
b=⇒WkY

X
τ=⇒ ZWkY X

a=⇒ ZWkY X
c=⇒ Y

X
τ=⇒WkY X

a=⇒WkY

Firstly, XWiY may dispose of the X in front, then the other process XW jY evolves into

WiYWjY by means of the sequence XWjY
τ−→ ZYWjY

τi

−→ ZWiYWjY
τ−→WiYWjY, which is

equivalent to WiY by equivalence 1. The other interesting move is XWiY
a−→ XWi+1Y that

is matched by XWjY
a−→ XWj+1Y. The remaining possibilities consist in X generating ZWkY

or WkY to which the other side responds by creating an exact copy (hence we obtain two

bisimilar processes ZeWkYWiY and ZeWkYWjY, where e ∈ {0, 1}).

Before we present the construction of a weak expansion tree we will make some observa-

tions about decomposability of bisimilar pairs in this algebra. From 3. and 4. above follows

that for distinct i and j the pair (XWiY, XWjY) has no classical decomposition, i.e. there is

no way of splitting XWiY and XWjY into two pairs of bisimilar processes. Furthermore, ev-

ery bisimulation relating the pair is infinite and has no finite base as it must contain the set

{(XWi+kY, XWj+kY | k ∈ N}, which is not finitely generated.
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At a closer look we may note that in any bisimulation play leading from the pair

(XWiY, XWjY), X on either side may evolve into an unnormed process by choosing to per-

form X
τ−→ ZY, or it may disappear by doing X

τ−→ ε. To the latter move the only correct

response (of the other X) is X
τ=⇒ WkY, where k depends on i or j and the current depth

of the play. Hence we may conclude that in general, X ≈A X for any set A containing

(ε,WlY), (WmY, ε), where l,m ∈ N.

Figure 5 represents a sketch of a construction of weak expansion tree for the pair

(XWY,XW2Y), that only contains correct expansions and correct applications of modifica-

tion rules. We will make use of equivalence 1. above and only consider those processes that

contain at most one Y, as the final variable. We make the following conventions: in order

to save space the set up to {(ε, ε)} is denoted by ε; pairs that are not underlined are those

omitted in further construction by application of Rule 6. We either omit identical pairs if the

set up to contains (ε, ε) (such as (WiY,WiY)ε), or identical pairs of unnormed processes. The

other application of omitting rule is whenever a pair belongs to the respective set up to (e.g.

(ε,W2Y)A, where A = {(ε,W2Y), (W3Y, ε)}). The original root is labeled by {(XWY,XW2Y)ε},

however a new root labeled by ∅ is added as a result of application of Rule 5 to the original

one. The rightmost branch actually after a few steps becomes identical to the branch on the

left which is denoted by an arrow in the picture.

The correct choices of sets up to when applying Rule 5 are influenced by the only correct

response to the transition X
τ−→ ε. When we decompose the original pair (XWY,XW2Y), the

only correct set up to is B = {(ε,WY), (W2Y, ε)} as X ≈B X and also WY ≈ WY, and W2Y ≈
W2Y. When we move to (XW2Y, XW3Y) we need to consider B ′ = A = {(ε,W2Y), (W3Y, ε)}.

Then, as X keeps generating further copies of W, also the exponents of W in the consecutive

sets up to grow. The sets are finite but unbounded in size of its elements. As the sets are all

distinct (w.r.t. weak bisimilarity), any infinite branch cannot be terminated as a successful

finite branch by the presented rules.

6 Conclusions

In this paper we have attempted to generalize the method of expansion trees for semide-

ciding weak bisimilarity of BPA-processes. The main idea was to split a given problem

(of deciding whether a given pair is weakly bisimilar) to a number a smaller tasks of the

same type which would lead to a recursive procedure. In the Application section we have

demonstrated an example of BPA-processes where even after application of the modifica-
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∅

wwoooooooooooooooooo

Rule 5''OOOOOOOOOOOO

{(XWY,XW2Y)ε}

expansion

��

{(X,X)B, (W2Y,W2Y)ε,
(WY,WY)ε},

B = {(ε,WY), (W2Y, ε)}

expansion
��

{(ZWiY,ZWiY)ε, (WiY,WiY)ε,
(XW2Y, XW3Y)ε | i ∈ N}

Rule 5
��

{(ε,WY)B, (W2Y, ε)B,

(XW,XW)B, (ZWiY,ZWiY)B,

(WiY,WiY)B | i ∈ N}

Rule 5
��

{(X,X)A, (W2Y,W2Y)ε,

(W3Y,W3Y)ε},

A = {(ε,W2Y), (W3Y, ε)}

expansion

��

{(X,X)B ′, (W3Y,W)B,

(W,W2Y)B},

B ′ = {(ε,W2Y), (W3Y, ε)} = A

expansion
��

{(XW,XW)A, (ε,W2Y)A, (W3Y, ε)A,

(ZWiY,ZWiY)A, (WiY,WiY)A | i ∈ N}

Rule 5
��

{(XW,XW)B ′, (ε,W2Y)B ′, (W3Y, ε)B ′,
(W2Y, ε)B, (ε,WY)B,

(ZWiY,ZWiY)B ′, (WiY,WiY)B ′ | i ∈ N}

Rule 5

zzuuuuuuuuuuuuuuuu

{(X,X)A ′, (W3Y,W3Y)ε,

(W4Y,W4Y)ε},

A ′ = {(ε,W3Y), (W4Y, ε)}

expansion

��
{(XW,XW)A ′, (ε,W3Y)A ′, (W4Y, ε)A ′,
(ZWiY,ZWiY)A ′, (WiY,WiY)A ′ | i ∈ N}

Rule 5

��

Figure 5: Modified expansion tree for (XWY,XW2Y)
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tion rules suggested in this paper we obtain larger and larger processes which results in

non-termination of the proposed procedure.

The example presented in the previous section is an example of a process algebra where

the maximal weak bisimulation does not have a finite Caucal base, moreover every weak

bisimulation relating e.g. the pair (XW2Y, XW3Y) also fails to have a finite base. However, we

are able to provide a finite description of a Caucal base of any such bisimulation (for instance

by means of a pushdown automaton). In general, any recursive description of a Caucal

base suffices to semidecide weak bisimilarity. The existence of a recursive Caucal base of

the maximal weak bisimulation and its efficient construction remain open questions. This

would be one possible way of attacking the (semi)decidability problem for weak bisimilarity

on BPA.
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of typed terms modulo ACI
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Abstract

We study the partial algebra of typed terms with an associative commutative and

idempotent operator (typed ACI-terms). The originality lies in the representation of the

typing policy by a graph which has a decidable monadic theory.

In this paper we show on two examples that some results on ACI-terms can be simply

raised to the level of typed ACI-terms. The examples are the results on rational subsets

(closure by complement, decidability of the emptyness) and the property reachability

problem for ground rewrite systems (equivalently process rewrite systems).

1 Introduction

Exact verification of programs is known for long to be undecidable. To bypass this limit, a

solution is to abstract programs into weaker formal models on which decision procedures

are possible.

The pushdown processes have words as states and the transitions are defined by a finite

set of suffix (or prefix but not both) rewriting rules. Pushdown processes model faithfully

the control flow and the stack mechanism of programs. Highly complex properties can be

automatically checked on such systems (e.g. monadic second order theory [17] and model

checking of the µ-calculus). However those systems lack parallelism features. The Petri nets

are defined as systems of vectors addition. They contain subtle parallelism facilities but lack

expressiveness for control flow. The difficult problem of reachability is decidable for Petri

nets [14, 11].

The two models have been combined into process rewrite systems [16, 15] which have

a decidable property reachability problem. Those process rewrite systems can be seen as

ground rewrite systems of terms with an associative-commutative symbol.

Since then, pushdown systems were extended to higher order pushdown systems (pro-

cesses with stacks of stacks of stacks . . . ), leading to a hierarchy of systems (or graphs) having
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a decidable monadic second order theory [3]. It is thus natural to try to combine those higher

order systems with Petri nets and obtain «higher order process rewrite systems.»

We believe that the correct way for this integration is the use of types. The idea originates

from [4] where graphs solution of infinite equational systems were shown to have a decid-

able first order theory with reachability if the equational system (as a graph) has a decidable

monadic theory. If the equational system is finite, then those graphs exactly coincide with

ground rewrite systems of typed terms with a finite typing policy (the result was already

known for this class of systems [7]). In fact the proof remains valid for infinite equational

systems, but there is an infinite number of types.

In this paper, we follow this direction and replace terms by terms with an associative-

commutative symbol. Those terms are restricted by a typing policy which «has a decidable

monadic theory». We show that decidability results on process rewrite systems can be raised

to the level of «typed process rewrite systems».

The remaining of the paper is divided as follows. In Section 2 we study the untyped ACI

terms. In Section 3 the corresponding study is performed in the typed case. In Section 4 we

study the typed process rewrite systems.

2 Untyped ACI terms

2.1 Terms with an ACI symbol

In this section, we introduce typed terms with an associative commutative symbol.

From now on, A stands for a finite set of symbols. We consider the algebra T (A) of (finite)

terms built with the constant 0, the unary symbols a ∈ A and the binary operator +:

t ::= 0 | a(t) | t + t .

The terms are considered modulo associativity and commutativity of the + operator and

idempotency of + for 0:

t + t ′ = t ′ + t, t + (t ′ + t ′′) = (t + t ′) + t ′′ and t = 0 + t .

For any unary symbol a ∈ A and any term t ∈ T (A), we write a instead of a(0) and call

such terms constants. We say that a term t is rooted if it has a symbol of A at its root (and

not 0 or +). We will also use the notation Σn
i=1ti to denote t1 + . . . + tn and the notation nt

for Σn
i=1t. With this notations, it is natural to decompose a term t as Σn

i=1ti where all the ti are

rooted. This decomposition is at the core of most inductive proofs presented in this paper.
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The branches of a term t are the words in br(t) defined inductively by br(0) = {ε}, br(t +

t ′) = br(t) ∪ br(t ′) and br(a(t)) = {aw | w ∈ br(t)}. One can notice that the branches are by

definition prefix closed. The height of a term is the greatest length of its branches.

2.2 Rational sets of terms

In this section, we study rational subsets of the algebra T (A). We prove that those subsets

are closed by complementation.

A (bottom-up tree) automaton is a triple (Q, δ, F) where Q is a finite set of states, δ is a set

of transitions of the form q ← 0 or q ← a(q ′) or q ← q ′ + q ′′ (where q,q ′,q ′′ belong to Q

and a to A) and F is a subset of Q of accepting states.

We define δ← as the smallest relation between states and terms closed by the following

deduction rules:

q
δ← 0

if q← 0 ∈ δ ,
q ′ δ← t ′ q ′′ δ← t ′′

q
δ← t ′ + t ′′

if q← q ′ + q ′′ ∈ δ ,

q ′ δ← t ′

q
δ← a(t ′)

if q← a(q ′) ∈ δ .

A term t of T (A) is recognized by the automaton if there exists an accepting state q ∈ F

such that q
δ← t. A subset of T (A) is rational if it is the language of terms recognized by an

automaton.

The goal of this part is to prove the closure of the rational subsets of T (A) by complement.

Following the classical approach, the proof gives a deterministic representation to rational

subsets. This cannot be done directly with automata: in their deterministic form (in the

meaning that δ← associates at most one state to a given tree), those automata have only the

expressive power of recognizable subsets and recognizable subsets are strictly included into

rational subsets when an ACI operator is present1.

Thus, we use vector automata: automata with vectors of integers as states. Vector au-

tomata are very much like hedge automata [1] (or forest automata): automata using infinite

sets of transitions for the recognition of tree languages over unranked alphabets. Vector

automata apply the same technique but with the extra commutativity property. Their use al-

lows us to simply reuse all the results about rational subsets in commutative monoids (and

in particular their closure by all boolean operations).

Given a finite set Q, we consider Q(?) the commutative monoid generated by Q. The

operation is written + and the neutral element is denoted 0. Thus, elements of Q (?) are of
1For instance, consider over the alphabet {a, b} the set of trees {na + nb | n ∈ N}. This set is rational, but not

recognizable.
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the form Σn
i=1qi for qi ∈ Q. Another representation of Q(?) is as vectors indexed by Q:

the commutative monoid NQ. The rational subsets of Q(?) are well known. It coincides

with semi-linear subsets of NQ, or equivalently with subsets of NQ satisfying a formula of

Pressburger’s arithmetic. Those rational subsets have the property to be closed by all the

boolean operations (and in particular complementation [18, 8]). The monoid Q(?) can be

identified with terms of T (Q) of height 0 or 1: terms equal to a sum of constants. The

notations are compatible. Furthermore, this identification preserves rational subsets. This

remark is at the origin of vector automata.

A vector automaton is a triple A = (Q, (Rq,a)q∈Q,a∈A, F) where Q is a finite set of state

constants, for any state constant q and any symbol a ∈ A, Rq,a is a rational subset of Q(?),

and F is a rational subset of Q(?) of accepting states. We call state of the automaton the elements

of Q(?).

We define the relation A← between a state u in Q(?) and a term t in T (A) by the following

inference rules:

q1
A← t1 . . . qn

A← tn

Σn
i=1qi

A← Σn
i=1ti

, (1)

u ∈ Rq,a u
A← t

q
A← a(t)

. (2)

The automaton recognizes a term t if u
A← t for some u ∈ F. We write as usual LA the set of

terms recognized by the automaton. It is important to notice that for u
A← t then t is a rooted

term iff u is a constant state (in Q). More generally, if Σk
i=1qi

A← Σk′
i=1ti for ti rooted terms,

then k = k ′ and, up to permutation of the indices, qi
A← ti for all i.

The following lemma justifies this approach.

LEMMA 1 A subset of T (A) is rational iff it is recognized by a vector automaton.

We say that a vector automaton is deterministic if for a fixed, the sets Rq,a are disjoint.

The direct consequence of determinism is that for all term t ∈ T (A) there is at most one

state u ∈ Q(?) such that u
A← t. A vector automaton is complete if for all a, ∪q∈QRq,a = Q(?).

The direct consequence of completeness is that for any t ∈ T (A), there is some u ∈ Q(?) such

that u
A← t. Under both constraints, A← is a mapping from T (A) to Q(?).

LEMMA 2 Every rational subset of T (A) is recognized by a deterministic and complete vector au-

tomaton.
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PROOF: Let (Q, δ, F) be a vector automaton. We construct a deterministic and complete

vector automaton (Q ′, R ′, F ′) which recognizes the same terms.

As for determinizing finite automata, we set Q ′ = 2Q.

Firstly we describe how to translate the rational subsets of Q(?) into their ‘equivalent’

in Q ′(?): for R a subset of Q(?), we define R↑⊆ Q ′(?) by

R↑= {(Σn
i=1si) ∈ Q ′(?)

| ∃(Σn
i=1qi) ∈ R, ∀i, qi ∈ si} .

For s ∈ Q ′ a state constant and a ∈ A a symbol, we set the corresponding transition by:

R ′
s,a = {v ∈ Q ′(?)

| ∀ q ∈ Q, q ∈ s⇔ v ∈ Rq,a↑} . (3)

The set of accepting states is F ′ = F↑.
Validity: To make this construction valid, we need to ensure that the subsets used are

rational. If the set R is rational then R ↑ also is2. Hence, F ′ is rational. Using the equality

(equivalent to the definition)

R ′
s,a =

⋂
q∈s

Rq,a↑ −
⋃

q∈Q−s

Rq,a↑ ,

it follows that R ′
s,a is rational.

Determinism of A ′: Let v be in R ′
s,a and R ′

s′,a, then for all q ∈ Q, q ∈ s iff v ∈ Rq,a ↑
(definition of R ′

s,a) and q ∈ s ′ iff v ∈ Rq,a↑ (definition of R ′
s′,a). Thus, s = s ′.

Completeness of A′: Let v be a state in Q ′(?) and a a symbol. Let s be {q ∈ Q | v ∈ Rq,a↑},
then v ∈ Rs,a (definition of Rs,a).

Correctness: We prove the two following properties simultaneously by induction on the

height h of t:

• for s a constant state of Q ′ and t a rooted term, then

s
A← ′

t ⇔ s = {q ∈ Q | q
A← t} , (4)

• for a state v in Q ′(?) and a term t such that v
A← ′

t,

∀R ⊆ Q(?), v ∈ R↑ ⇔ (∃u ∈ R, u
A← t) . (5)

For h = 0, there is no rooted terms: (4) is satisfied. By (1), v
A← 0 iff v = 0. By definition

of ↑, 0 ∈ R↑ iff 0 ∈ R. Hence (5) is satisfied.

Let h ≥ 1 be an integer, we suppose that properties (4) and (5) are satisfied by all terms

of height < h.

2It can be shown using e.g. a formula of the arithmetic of Pressburger.
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(4) Let a(t) be a rooted term of height h. By completeness, there is a s ∈ Q ′ such that s
A← ′

a(t). Let v be such that v ∈ R ′
s,a and v

δ← ′
t. Such a v exists (2). By definition (3), for

all q, q ∈ s iff v ∈ Rq,a↑. Applying hypothesis of induction (5), q ∈ s iff there is some

u ∈ Rq,a verifying q
A← t. Thus by rule (2), q ∈ s iff q

A← t.

(5) Let t be a term. It can be written Σn
i=1ti with the ti rooted. Let v be such that v

A← ′
t.

By (4) and (1), there is n state constants s1,. . . ,sn such that v = Σn
i=1si and for all i, si

A←
ti. By definition of ↑, v ∈ R ↑ iff there is Σn

i=1qi ∈ R with for all i, qi ∈ si. But

by (4), si = {q | q
A← ti}. Hence, v ∈ R↑ iff there is Σn

i=1qi ∈ R with for all i, qi
A← ti, or

equivalently by (1), iff there is u ∈ R with u
A← t.

Property (5) together with the definition of F ′ gives LA ′ = LA. �

COROLLARY 1 The rational subsets of T (A) are closed by complement.

According to (5), it is sufficient to replace the set of accepting states by its complementary

in a deterministic and complete vector automaton recognizing a rational subset to obtain a

vector automaton recognizing the complement of the rational subset.

3 Typed ACI terms

3.1 Partial algebra of typed terms with an ACI symbol

A typing policy is described by a set (which can be infinite) of types Θ, and a typing function τa

from types to types for all symbol a ∈ A. The intended meaning is that the symbol a, when

applied to an argument of type τa(θ) has type θ. We will often refer to the typing policy as

a graph: the vertices are the types, and there is an edge between type θ and type θ ′ labelled

by a if τa(θ) = θ ′. Notice that it does not correspond to the arrow notation used in classical

function types. As τ is a function, the graph is deterministic.

We say that a term t has type θ for the typing policy (Θ, τ), written (Θ, τ) ` t : θ if one

can derive the judgment (Θ, τ) ` t : θ by the following rules:

θ ∈ Θ

(Θ, τ) ` 0 : θ
,

(Θ, τ) ` t : τa(θ) a ∈ A

(Θ, τ) ` a(t) : θ
,

(Θ, τ) ` t : θ (Θ, τ) ` t ′ : θ

(Θ, τ) ` t + t ′ : θ
.

The second rule can only be applied if τa is defined. For this reason, some terms may not be

typable. We call typed term the couple of a term t and a type θ, and we write it t : θ. The set of

typed terms t : θ such that (Θ, τ) ` t : θ is written T Θ,τ(A). We write T Θ,τ
θ (A) the restriction

of T Θ,τ(A) to typed terms of type θ.

The following property gives a simple graphical interpretation of typing.

50



PROPOSITION 1 The terms in T Θ,τ
θ (A) are the terms such that all branches corresponds to a path of

origin θ in the graph (Θ, τ)3.

Example 1: If Θ = {θ} and τa(θ) = θ for all a ∈ A then T Θ,τ
θ (A) = T (A) (up to type

removal). It corresponds to the domain of (untyped) process rewrite systems.

Example 2: Let Θ be the natural integers, A be {a, b} and τ be such that τa(n) = n + 1,

τb(n + 1) = n. Graphically,

0
a ))1
b

ii
a ))2
b

ii
a ))3
b

ii

The paths of origin 0 in this graph contain more a’s than b’s. Reciprocally, to all word

over {a, b} such that all prefixes contain more a’s than b’s corresponds a path of origin 0

in the graph. Thus, according to Proposition 1, terms of type 0 are such that all the branches

contain more a’s than b’s (recall the branches are prefix closed). This is an example of an

infinite typing policy.

From now and on, the typing policy is fixed. Thus, we simplify slightly the nota-

tion (Θ, τ) ` t : θ by writing ` t : θ . Furthermore, by convention, we will suppose that

there is a type • ∈ Θ of out-degree 0 (no term but 0 has type •), and for any newly intro-

duced symbol q, τq(θ) = • for θ ∈ Θ − {•}. Thus, all newly introduced symbol behaves like

a constant of any type (but •).

We need now a way to perform computations on the typing policy, even if there is an

infinite number of types. The monadic second order logic presented in the next section

serves this purpose.

3.2 Monadic second order logic

In this part, we briefly recall the basis of monadic second order logic (MSO).

The MSO logic expresses properties on graphs. Our purpose is to apply it to the typing

policy. We thus adapt slightly the usual notations to fit with this use. A MSO formula follows

the syntax:

Φ ::= ∃θ,Φ | ∀θ, Φ

| ∃X,Φ | ∀X, Φ

| τa(θ) = θ | θ ∈ X

| Φ ∧ Φ | Φ ∨ Φ | ¬Φ | true | false .

The first order variables (θ,θ′,. . . ) range over types while the monadic second order variables

(written in capital letters X,Y,. . . ) range over sets of types. All the boolean connectives are

3Notice that, as the graph is deterministic, there is no ambiguity about those paths.
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allowed as well as any quantification over first and second order variables. Atomic predi-

cates allow to test the typing policy (θ = τa(θ ′)) and the membership of a first order variable

in a second order variable (θ ∈ X). We allow ourselves to use some more complex notations.

For instance we can use variables over known finite domains (e.g the states or the rules of

an automaton) and use quantification over them. The reader must keep in mind that all

those extensions are only syntactic sugar and can be encoded into standard MSO formulas

as defined previously.

Whenever a typing policy (Θ, τ) satisfies a MSO formula Φ, we write (Θ, τ) |= Φ and

say that (Θ, τ) is a model of Φ. A typing policy is said to have a decidable MSO theory if one

can decide, given a MSO formula, whether the typing policy is a model of the formula. The

typing policy being fixed, we just write |= Φ instead of (Θ, τ) |= Φ.

As a useful example, we define for any term t the predicate hastypet such that for any

type θ, |= hastypet(θ) iff ` t :θ. The predicate is built by induction:

hastypeΣn
i=1

ai(ti)
(θ) ≡ ∀i ∈ [1, n], ∃θ ′, τai

(θ) = θ ′ ∧ hastypeti
(θ ′)

The MSO logic has been extensively studied and many classes of (possibly infinite)

graphs are known to have a decidable MSO theory [17, 5, 2, 10, 3]. The infinite typing policy

of Example 2 belongs to the simplest of those families: pushdown graphs.

3.3 MSO-guarded rational sets of typed terms

In this section we extend the notion of rational subsets of T (A) to MSO-guarded rational

subsets of T Θ,τ(A). To this purpose, we introduce MSO-guarded automata: automata such

that transitions can be applied if and only if a certain MSO formula is satisfied by the type

of the terms involved in the transition. Apart from this distinction, the techniques involved

in this section are very similar to the ones of Section 2.2.

Formally, a MSO-guarded automaton over T Θ,τ(A) is a triple (Q, δ, F) where Q is a finite

set of states, δ is a finite set of transitions of the form q ←Φ 0, q ←Φ q ′ + q ′′ or q
A←Φ a(q ′)

with q, q ′ and q ′′ states and Φ a MSO formula, and F ⊆ Q is the set of accepting states. The

MSO formulas Φ are called guards. Each guard Φ has precisely one free variable and we

can bind it by using a functional notation: Φ(θ). The MSO-guarded automata behave like

standard automata, the only difference being that transitions can be applied if and only if

the guard is satisfied by the type of the term involved.

We define the relation δ← between a state and a typed term as the smallest relation satis-

fying:

q
δ← 0 :θ

if q←Φ 0 ∈ δ and |= Φ(θ) ,
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q ′ δ← t ′ :τa(θ)

q
δ← a(t ′) :θ

if q←Φ a(q ′) ∈ δ and |= Φ(θ) ,

q ′ δ← t ′ :θ q ′′ δ← t ′′ :θ

q
δ← t ′ + t ′′ :θ

if q←Φ q ′ + q ′′ ∈ δ and |= Φ(θ) .

A typed term t : θ is recognized by the automaton if there is an accepting state q ∈ F such

that q
δ← t : θ. We will write Lδ(q) the set of typed terms t : θ such that q

δ← t : θ. A set

of typed term R ⊆ T Θ,τ(A) is MSO-guarded rational if there is a MSO-guarded automaton

recognizing exactly the typed terms of R. A term can be present with different types in

the same rational subset, but, as the type information is always kept along with the term,

no confusion arises. On the contrary, the states of the automaton are not typed: it is not

necessary. The important point is that the satisfaction of the guard depends only of the

type of the term but not at all of the term itself. We will furthermore suppose that the rules

enforce the typing of terms: if there is a rule of the form q
δ←Φ a(q ′), then for all type θ,

|= Φ(θ)⇒ hastypea(θ). Thus, this rule can be applied only if it is sensible to consider a term

of root a.

The following theorem extends naturally the previous one to MSO-guarded rational sets.

THEOREM 1 The MSO-guarded rational subsets of T Θ,τ(A) are closed by complementation.

The proof works as in the untyped case. One defines similarly MSO-guarded vector

automata. The trick is that there is only a finite number of possible valuations for

(Φ1(θ), . . . ,Φk(θ)) for type θ (where Φ1,. . . ,Φk are the guards of an automaton). Given a

valuation v, by combining together the guards using the boolean connectives, it is easy to

obtain a new guard Φv such that Φv(θ) is satisfied if and only if (Φ1(θ), . . . ,Φk(θ)) = v. It

is then sufficient to apply the techniques of the previous demonstration for each of this new

guards.

This proof is completely syntactic in the meaning that there is no need to check the sat-

isfaction of the guards. The guards are simply combined together using the boolean con-

nectives. For this reason, the result remains correct if the typing policy has not a decidable

monadic theory. This is also the case for the following lemma.

LEMMA 3 If R is a MSO-guarded rational subset of T Θ,τ(A), then there is a MSO formula emptyR

such that:

|= empty
R
(θ) iff R ∩ T Θ,τ

θ (A) = ∅ .
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PROOF: Let (Q, δ, F) be a MSO-guarded automaton. The principle is to compute the sets of

types Xq for q ∈ Q such that θ ∈ Xq if and only if q
δ← t :θ for some t.

emptyR(θ0) ≡ ∀(Xq)q∈Q,

∀q←Φ 0 ∈ δ, ∀θ, Φ(θ) ⇒ θ ∈ Xq (a)

∧ ∀q←Φ q ′ + q ′′ ∈ δ, ∀θ, (Φ(θ) ∧ θ ∈ Xq′ ∧ θ ∈ Xq′′) ⇒ θ ∈ Xq (b)

∧ ∀q←Φ a(q ′) ∈ δ, ∀θ, θ ′, (Φ(θ) ∧ τa(θ) = θ ′ ∧ θ ′ ∈ Xq′) ⇒ θ ∈ Xq (c)⇒ ∃q ∈ F, θ0 ∈ Xq

The sets (Xq) such that θ ∈ Xq iff q
δ← t : θ for some t are the smallest sets solution of

constraints (a), (b) and (c). For instance constraint (a) can be read: «if there is a transition

q ←Φ 0 in the automaton, then, for all type θ such that the guard is satisfied, there is a

term of type θ in Lδ(q).» As the constraints are continuous (in the meaning of complete

partial orders), testing if θ0 ∈ Xq for the smallest solution of (a), (b) and (c) amounts to

verify that θ0 ∈ Xq for all solution of (a), (b) and (c). This is what performs the universal

quantification over (Xq). �

COROLLARY 2 If the typing policy has a decidable monadic theory then the emptyness of R is decid-

able.

4 Ground rewrite systems

4.1 Typed process rewrite systems

In this section, we introduce MSO-guarded rational process rewrite systems. It is a natural

extension to types of process rewrite systems. Following the scheme of Mayr’s proof [15],

we then state a normalization lemma.

DEFINITION 1 A MSO-guarded rational process rewrite system over TΘ,τ(A) labelled by E is a

finite set ∆ of rules of the form R
e→ R ′ where R and R ′ are MSO-guarded rational subsets of T Θ,τ(A)

and e is a label in E.

A transition of the process rewrite systems corresponds to the replacement of a subterm

by another according to the set of rules: we define inductively between typed terms of same

type t1 :θ and t2 :θ the rewrite judgment t1
e⇒∆ t2 :θ by

t1 :θ ∈ R1 t2 :θ ∈ R2 R1
e→ R2 ∈ ∆

t1
e⇒∆ t2 :θ

,

` t :θ t1
e⇒∆ t2 :θ

t + t1
e⇒∆ t + t2 :θ

,
t1

e⇒∆ t2 :τa(θ)

a(t1)
e⇒∆ a(t2) :θ

.
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We also define the reflexive and transitive closure ∗⇒∆ of e⇒∆ by:

` t :θ

t
∗⇒∆ t :θ

,
t

∗⇒∆ t ′ :θ t ′ e⇒∆ t ′′ :θ
t

∗⇒∆ t ′′ :θ
.

When t
∗⇒∆ t ′ :θ, we will say that there is a path of type θ between t and t ′ for the rules ∆.

We will omit to specify the set of rules when there is no ambiguity about it.

DEFINITION 2 A MSO-guarded rational process rewrite system ∆ is normalized if for all rule R1
e→

R2 ∈ ∆ there is a MSO formula Φ and two terms t1, t2 such that R1 = {t1 : θ | |= Φ(θ)},

R2 = {t2 :θ | |= Φ(θ)} and (t1, t2) has one of the following forms:

• sequential rules: (a, b(c)) or (a(b), c)

• parallel rules: (a, b + c), (a + b, c), (0, a), (a, 0) or (a, b).

In this case, we write ∆seq the set of sequential rules and ∆par the set of parallel rules. We also use

notations similar to MSO-guarded automata for rules: a
e→Φ b(c) ∈ ∆, a(b)

e→Φ c ∈ ∆, . . .

PROPOSITION 2 Given ∆ a MSO-guarded rational process rewrite system over TΘ,τ(A), there is a

MSO-guarded normalized process rewrite system ∆′ over T Θ,τ(A∪C) (where C is a finite set of new

constants of any type) such that for all t, t′ ∈ T Θ,τ(A), t
∗⇒∆ t ′ iff t

∗⇒∆′ t ′.

PROOF: Let R1
e1→ R ′

1, . . . , Rk
ek→ R ′

k be the rules in ∆ with Ri = L(Qi,δi,Fi) and R ′
i = L(Q′

i
,δ′

i
,F′

i
).

We assume, without loss of generality, that the Qi’s, the Q ′
i’s and A are all disjoint. Let C be

Q1 ∪ · · · ∪ Qk ∪ Q ′
1 ∪ · · · ∪ Q ′

k. We define now ∆ ′ by:

∆ ′ = {t
$→Φ q | ∃i, q

δ←Φ t ∈ δi}

∪ {q
e→true q ′ | ∃i, q ∈ Fi, e = ei, q ′ ∈ F ′

i}

∪ {q
$→Φ t | ∃i, q

δ←Φ t ∈ δ ′
i}

The normalized process rewrite system mimics the behavior of the automata by using ex-

actly the same rules (labelled by a dummy symbol $). Obviously, if t
∗⇒∆ t ′ then t

∗⇒∆′ t ′.

The other direction is more technical, we do not show it here. �

4.2 Reachability in typed process rewrite systems

In this section we show that (providing that the typing policy has a decidable monadic the-

ory) the reachability problem between constants is decidable for typed process rewrite sys-

tems.

Many proofs of reachability in infinite state systems rely on the rationality of the set of

reachable states (for instance [7] for ground rewrite systems or [13] for PA processes). Such
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an approach cannot be used in the case of process rewrite systems (typed or not): the closure

properties of rational subset would give the decidability of the equivalence of reachable sets

for process rewrite systems and this problem is not decidable (it has been proved for the

subclass of Petri Nets [9]).

The core of our approach is a direct translation to typed terms of [15]. The idea is to

obtain a representation of the (potentially infinite) set:

Λ∆ = {(a, b, θ) | a
∗⇒∆ b :θ}

To this purpose, we use the following lemma:

LEMMA 4 The set Λ∆ is the smallest set satisfying:

a
e→Φ b(c) ∈ ∆ |= Φ(θ) (c, c ′, τb(θ)) ∈ Λ∆ b(c ′) e′→Φ′ a ′ ∈ ∆ |= Φ ′(θ)

(a, a ′, θ) ∈ Λ∆

,

a
∗⇒∆′ b ∆ ′ = ∆

par
θ ∪ {c

$→ d : θ | (c, d, θ) ∈ Λ∆}

(a, b, θ) ∈ Λ∆

.

The first rule states that a path of type θ between a and b can start with a rule a
e→Φ b(c)

and end with a rule b(c ′) e′→Φ′ a ′ providing that the guard are satisfied and that there is a

path of type τb(θ) between c and c ′. The second rule states that if there is a path of type θ

between a and b using the parallel rules and what is already known in Λ∆, then there is a

path of type θ between a and b. As a consequence, the second rule inserts all the paths of

length 0 (i.e. (a, a, θ) with ` a :θ). The test a
∗⇒∆′ b performed by the second rule is handled

by the following lemma:

LEMMA 5 If ∆ contains only parallel rules and no guard (equivalently the guard is true), then a
∗⇒∆

b :θ is decidable.

This is an instance of the reachability problem for Petri nets. It is decidable [14, 11].

In Mayr’s proof, the set Λ∆ is finite (there is no type information) and a saturation algo-

rithm is sufficient for computing it. In our case, we can define this set by monadic formulas:

LEMMA 6 Given a normalized MSO-guarded process rewrite system ∆ over TΘ,τ(A), there is |A|2

monadic formulas λa,b for a, b in A such that:

(a, b, θ) ∈ Λ∆ iff |= λa,b(θ)

The set Λ∆ can be represented by |A|2 second order variables (Xa,b)a,b∈A:

θ ∈ Xa,b iff (a, b, θ) ∈ Λ∆
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Lemma 4 describes the set Λ∆ as the smallest set satisfying some constraints. Thus, a tech-

nique similar to the proof of Lemma 3 can be used. The test a
∗⇒∆′ b with ∆ ′ = ∆

par
θ ∪ {c

$→
d : θ | (c, d, θ) ∈ Λ∆} can be performed using Lemma 5 and the remark that there is only a

finite number of possible parallel rules for a given set of symbol A. Thus all the cases can

be treated in a MSO formula of exponential size (one for each of the possible sets of parallel

rules).

4.3 Property reachability

In this section we show that (providing that the typing policy has a decidable monadic the-

ory), the reachable property problem is decidable (Theorem 2).

Given a MSO-guarded rational process rewrite system ∆ with labels in E, a property has

the following syntax:

φ ::= e | ¬φ | φ ∨ φ | φ ∧ φ ,

with e ∈ E. An atomic property e is satisfied by a term t if there is some t ′ such that t
e⇒∆

t ′. The boolean connectives have their standard semantics. An instance of the reachability

property problem is: «given a MSO-guarded rational process rewrite system ∆, a term t and

a property φ, is it possible to reach a term satisfying φ from t by using the rewriting rules

in ∆?».

To show this result, we just have to prove that the set of terms satisfied by a property

is MSO-guarded rational. It is sufficient to do this for atomic properties according to the

closure by union, intersection and complementation of MSO-guarded rational sets.

LEMMA 7 Given a label e ∈ E, the set of typed terms t :θ such that t
e⇒∆ t ′ :θ for some term t′ is

MSO-guarded rational.

PROOF: Thanks to the closure of MSO-guarded rational subsets by union, it is sufficient to

show the result for only one rule labelled by e. Let R1
e→ R2 be such a rule. One can apply

this rule on a term t if and only if it contains a subterm t ′ in R1 of type θ and there is a term of

type θ in R2. Let A = (Q, δ, F) be the automaton recognizing R1. We construct the automaton

(Q ′, δ ′, F ′) recognizing the set of terms such that t
e⇒∆ t ′ :θ for some term t ′ by:

Q ′ = Q ∪ {q0, q1}

δ ′ = δ

∪ {q1←Φ t | q←Ψ t ∈ δ, q ∈ F, Φ(θ) = Ψ(θ) ∧ ¬empty
R2

(θ)}

∪ {q1← q1 + q0}

∪ {q0← a(q0) | a ∈ A} ∪ {q0← 0, q0← q0 + q0}

F ′ = {q1}
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Figure 1: A hierarchy of ground rewrite systems.

The states in Q perform the same computation as in A. The state q0 recognizes any term

of T Θ,τ(A). Notice the use of the empty predicate for checking that there is a term of type θ

in R2. �

THEOREM 2 If the typing policy has a decidable monadic theory then the reachable property problem

of typed process rewrite systems is decidable.

PROOF: Given a tree t and a type θ, then the set R1 = {t : θ} is MSO-guarded rational.

According to Lemma 7, the set R2 of typed terms satisfying the property is MSO-guarded

rational. We add to the system the new symbols a1 and a2 and the transitions ai →true R1

and R2 →true a2. Then, the satisfaction of the property reachability problem amounts to

check the satisfaction of λa1,a2
(θ). �

5 Conclusion

In this paper we studied the partial algebra of typed terms with an ACI operator. We have

shown that results on untyped terms could be simply raised to the level of typed terms. This

phenomenon can be presented more generally as depicted in Figure 1 where different known

systems are presented in the common framework of ground rewriting. Each of the families

of systems can be of finite or infinite degree (finite number of rewrite rules or rational set of

rules).

The pushdown systems correspond to a finite set of prefix rewriting rules on words [17].

The corresponding systems of infinite degree are the prefix recognizable graphs [2]. The

first typed version can be found in [6] but for different purposes. A study of those systems

can be found in [3] in a different framework: there is no explicit references to types. Given

58



a deterministic graph (which can be seen as the typing policy), it is unfolded and then an

inverse rational substitution is applied to it. Those two transformations exactly correspond

to considering a «typed prefix recognizable graph» over this typing policy. All those systems

seen as graphs share a decidable monadic theory.

The ground rewrite systems in the free algebra of terms were first studied in [7] and then

in a structural way in [12]. The typed version in [4] is presented in the framework of graphs

solution of infinite equational systems with the vertex replacement with product operators.

The infinite equational system exactly corresponds to the typing policy. All those systems

share a decidable first order theory with reachability, but, because they contain the infinite

grid, the monadic theory is undecidable.

The ground rewrite systems over the term algebra with ACI symbols are presented in

[15] under the name of process rewrite systems. The present paper extends those results to

the partial algebra of typed terms with ACI symbols. Those systems share the decidability

of the property reachability. The first order theory with reachability is undecidable (one can

encode the problem of equivalence of reachable states in Petri nets, and it has been shown

undecidable in [9]).
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The synchronized graphs trace

the context-sensitive languages

Chloé RISPAL
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Abstract

Morvan and Stirling have proved that the context-sensitive languages are exactly the

traces of graphs defined by transducers with labelled final states. We prove that this re-

sult is still true if we restrict to the traces of graphs defined by synchronized transducers

with labelled final states. From their construction, we deduce that the context-sensitive

languages are the languages of path labels leading from and to rational vertex sets of

letter-to-letter rational graphs.

1 Introduction

As for formal languages, an infinite graph hierarchy exists. First of all, Muller and Schupp

[MS 85] have defined the transition graphs of pushdown automata. Then, Courcelle has

defined the family of equational graphs which are the graphs generated by deterministic

graph grammars [Co 90]. Caucal has extended these families to prefix recognizable graphs

which are the prefix transitions of recognizable systems [Cau 96]. More recently, Morvan

has introduced the rational graphs which are recognized by word transducers with labelled

final states [Mo 00]. Finally, Caucal has presented the transition graphs of Turing machines

[Cau 01].

A trace of a graph is the language of path labels leading from and to finite vertex sets. Traces

of graphs are a link between infinite graph hierarchy and the Chomsky hierarchy of lan-

guages. The traces of finite graphs are the rational languages, the traces of prefix recog-

nizable graphs are the context-free languages [Cau 96], the traces of rational graphs are the

context-sensitive languages [MoS 01] and finally, the traces of Turing graphs are the recur-

sively enumerable languages [Cau 01].
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A particular rational relation is the left-synchronized relation which is recognized by a letter-

to-letter transducer followed by a recognizable relation for each final state [EM 65] and

[FS 93]. These left-synchronized relations form a boolean algebra and are recognized by

deterministic transducers. A graph is synchronized if it is isomorphic to some graph having

words as vertices and such that each labelled transition is a left-synchronized relation. The

synchronized graphs are the automatic graphs of Blumensath and Grädel [BG 00]. In this

paper, we adapt the construction of Morvan and Stirling [MoS 01] to prove that the context-

sensitive languages are exactly the traces of synchronized graphs. We also characterize the

context-sensitive languages as the languages of path labels leading from and to rational ver-

tex sets of letter-to-letter rational graphs.

2 Rational synchronized graphs

Let N be a finite alphabet. We denote by N∗ the set of words over letters of N, and we write

ε for the empty word.

A transducer T is defined by a finite subset of Q×N∗×N∗×Q of labelled edges where Q is

a finite set of states, by a set I ⊆ Q of initial states, and by a set F ⊆ Q of final states. So a

transducer is a finite automaton labelled by pairs of words. Any transition (p, u, v, q) of a

transducer T will be denoted by p
u/v−→

T
q or by p

u/v−→ q when T is understood.

A path p0
u1/v1−→ p1 . . . pn−1

un/vn−→ pn with u = u1...un and v = v1...vn is labelled u/v and

is denoted by p0
u/v
=⇒

T
pn. A path is successful if it leads from an initial state to a final one. A

pair (u, v) ∈ N∗×N∗ is recognized by a transducer if there exists a successful path labelled

u/v. A relation is rational if it is recognized by a transducer.

Example 2.1 The following transducer:

p q

B/AAA/B

B/AA

with initial state p and final state q recognizes the rational relation

{ (AnBm , BnA2m) | n ≥ 0,m > 0 }.

From studies concerning rational relations, Elgot and Mezei [EM 65] and then Frougny

and Sakarovitch [FS 93] have defined the subfamily of left-synchronized relations.
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If a transducer has labels over N×N it is called a letter-to-letter 2-automaton: it is a transducer

labelled by pairs of letters instead of pairs of words. Adding a rational terminal function

completing one side of the recognized pairs, it recognizes a left-synchronized relation.

Definition 2.2 A relation over N∗×N∗ is left-synchronized if it is recognized by a letter-to-

letter 2-automaton with terminal function taking values in

DifRat = (Rat(N∗) × {ε}) ∪ ({ε} × Rat(N∗))

That is a left-synchronized relation is a finite union of elementary relations of the form

R.S where R ∈ Rat((N × N)∗) and S ∈ DifRat

Example 2.3 For all integer p, the relation |p defined by x|py if x is a power of p dividing y,

is left-synchronized. For instance, in base two with weak weigths on the left, |2 is recognized

by the following letter-to-letter 2-automaton:

q

r

1/ 1

1/ 0

0/ 0

p

with the terminal function f defined by f(p) = (ε, 0)∗(ε, 1){(ε, 0), (ε, 1)}∗ and f(q) = (ε, ε)

As the terminal function is rational, it can be introduced in the transducer. A left-synchronized

transducer is a transducer such that each path leading from an initial vertex to a final one can

be divided in two parts: The first one only contains edges of the form

{p
A/B−→q|p, q ∈ Q ∧ A,B ∈ N} while the second part contains edges of the form

{p
A/ε−→q|p, q ∈ Q ∧ A ∈ N} exclusive or {p

ε/B−→q|p, q ∈ Q ∧ B ∈ N}.

Example 2.4 The following left-synchronized transducer recognizes the left-synchronized

relation of example 2.3.
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q

r

1/ 1

1/ 0

0/ 0

p

ε/ 0

ε/ 1

ε/ 0
ε/ 1

s

A right-synchronized relation is defined symmetrically using a rational initial function.

The left-synchronized relations form a subfamily of rational relations with useful closure

properties.

Theorem 2.5 [EM 65] The synchronized relations form a boolean algebra.

We will use also particular left-synchronized relations. A binary relation R is recognizable if it

is a finite union of products S×T where S, T ∈ Rat(N∗). A binary relation R over words is of

bounded length difference if there exists an integer b such that | |u| − |v| | ≤ b for any (u, v) ∈ R.

Proposition 2.6 [FS 93] The family of synchronized relations contains the recognizable relations

and the rational relations of bounded length difference.

Proof. Let A be a finite set of labels. A simple edge labelled graph is a subset of V×A×V

where V is an arbitrary set of vertices. For any label a ∈ A, the a-transition of

a graph G is the relation a−→
G

:= { (s, t) | (s, a, t) ∈ G }. A graph G ⊆ N∗×A×N∗ is

left-synchronized if for each a ∈ A, the relation a−→
G

is left-synchronized. An arbitrary graph is

synchronized if it is isomorphic to some left-synchronized graph.

Definition 2.7 A graph G is synchronized (respectively rational, rational of bounded length

difference) if it is isomorphic to some graph G ⊆ N∗×A×N∗ such that for each a ∈ A, the

relation a−→
G

is left-synchronized (respectively rational, rational and of bounded length

difference).
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Note that the synchronized graph family is also the closure by isomorphism of the rigth-

synchronized graphs.

Example 2.8 The following grid :

a a

a

aa

a
b

b

b

b b

b

is synchronized because we can code its vertices by words to get the following left-

synchronized graph G defined by a−→
G

= (A,A)∗(B,A)(B,B)∗(ε, B) and b−→
G

=

(A,A)∗(B,B)∗(ε, B). Note that it is also a rational graph of bounded length difference.

Synchronized graphs are the automatic graphs of Blumensath and Grädel [BG 00]. These

graphs have a decidable first order theory. But the accessibility of these graphs is undecid-

able in general.

3 Traces of synchronized graphs

A trace of a graph G is the language L(G, I, F) of path labels leading from a set I of initial

vertices to a set F of final vertices:

L(G, I, F) = { u | ∃ s ∈ I ∃ t ∈ F, s
u=⇒
G

t }

but with the condition that I and F are finite.

Morvan and Stirling [MoS 01] have proved that the traces of rational graphs are the context-

sensitive languages. So any trace of a synchronized graph is a context-sensitive language.

It remains to show that any context-sensitive language L is also the trace of a synchronized

graph. We get this result by adapting the construction of [MoS 01].

We only need to find a left-synchronized graph G ⊆ N∗×A×N∗ and two rational sets

I, F ∈ Rat(N∗) such that L = L(G, I, F).
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Lemma 3.1 Let G ⊆ N∗×A×N∗ be a left-synchronized graph.

Let I, F ∈ Rat(N∗) and i, f /∈ N.

There exists a left-synchronized graph H ⊆ (N∗ ∪ {i, f})×A×(N∗ ∪ {i, f}) such that

L(G, I, F) = L(H, {i}, {f}).

Proof. i) For all a ∈ A, the relation a−→
G

is left-synchronized.

We define the graph G
′

by erasing all edges of G leading to a terminal state of F. This graph

G
′

is still left-synchronized as for all a ∈ A, the relation

a−→
G

′
:= a−→

G
∩ N∗×F

is a synchronized relation as the intersection of a synchronized relation with a recognizable

relation (using Theorem 2.5 and Proposition 2.6). For all a ∈ A, we denote

Fa := Dom(
a−→
G

∩ N∗×F)

the set of vertices which are source of an erased edge. This set is rational as a domain of a

rational relation. Then we create new edges leading from those vertices to the vertex f. More

precisely, we define the graph G such that for all a ∈ A,

a−→
G

:= a−→
G

′
∪ Fa×a×{f}.

This relation is left-synchronized as the union of a left-synchronized relation with a recog-

nizable set. Moreover and by construction,

L(G, I, F) = L(G, I, {f}).

ii) Denoting by ũ the mirror of u ∈ A∗ and by G−1 the graph such that p
a−→
G

q if and only if

q
a−→

G−1
p, we apply i) in order to get a unique initial vertex :

L(G, I, {f}) =
˜

L(G
−1

, {f}, I)
(i)
=

˜
L(G

−1
, {f}, {i}) = L(G

−1
, {i}, {f}).

2

There are different ways to characterize a context-sensitive language L. As Morvan and

Stirling [MoS 01], we choose the ‘left’ form due to Penttonen [Pe 74].

Definition 3.2 A rewriting system Γ = Γ1 ∪ Γ2 is a 2-system if every rule of Γ2 is of the

form AB → AC with B 6= C and every rule of Γ1 is of the form A → a where A,B,C are

letters of the non-terminal alphabet N and a ∈ A.
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Context-sensitive languages are obtained by derivation of a 2-system from a linear language.

Theorem 3.3 [Pe 74] There exists a linear language LLin such that every context-sensitive lan-

guage is {v ∈ A∗ | ∃ u ∈ LLin , u
∗−→
Γ

v} for some 2-system Γ .

Given a context-sensitive language L, we first look for a graph GLin such that L =

L(GLin, LLin, {ε}). Let Γ be a 2-system. From Γ2 , we define the relation R2 recognized by

the following transducer T2 :

I
[B/[A−→ (A,B,A) for all A,B ∈ N (type 1)

(A,B,C)
B/D−→ (A,B,D) for all A,B,C,D ∈ N such that BC −→

Γ2

BD (type 2)

(A,B,C)
D/C−→ (A,D,C) for all A,B,C,D ∈ N (type 3)

(A,B,C)
]A/]−→ F for all A,B,C ∈ N (type 4)

This transducer starting at I and ending at F recognizes pairs of the form

([AA1. . .Am]B, [BB1. . .Bm])

meaning that under the successive context A,A1, . . ., Am the letter B can be rewritten suc-

cessively B,B1, . . ., Bm. If the context does not change: Ai = Ai+1, and one can apply a rule

AiBi −→
Γ2

Ai+1Bi+1. Note that it is possible even if Bi = Bi+1 as a rule of type 3 can be applied

with B = D. If the context changes: Ai 6= Ai+1, we copy the letter Bi = Bi+1.

Note that R2 is a bounded length difference relation.

Example 3.4 Let Γ2 = { (AB,AC) , (AC,AD) , (DA,DE) , (EA,EE) }.

We have [AAA]B R2 [BCD] because under the context A, letter B can be rewritten to C and

then to D. The following derivation:

ABAA −→
Γ2

ACAA −→
Γ2

ADAA −→
Γ2

ADEA −→
Γ2

ADEE

is represented as follows:

AABA

A C A A

A D A A

A D E

A D E

A

E

We have [AAAAA]B R2 [BCDDD] and [BCDDD]A R2 [AAAEE]

and [AAAEE]A R2 [AAAAE].

Let us give an elementary property of transducer T2 .
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Lemma 3.5 If I
[UA/[BVC

=⇒
T2

s with A,B,C ∈ N and U,V ∈ N∗ then s = (B,A,C).

Proof. By induction on the length of any non-empty derivation from I.

2

Consider a word X1 ∈ LLin of size n and a derivation X1 −→
Γ2

X2 −→
Γ2

. . . −→
Γ2

Xm to a word

Xm. Given the m successive letters at a position i according to the derivation, the transducer

gives the m successive letters at position i + 1.

For any words X, Y ∈ N∗ of the same length n, we denote by X 4 Y the cardinal of { 1 ≤ i ≤
n | X(i) 6= Y(i) }.

Lemma 3.6 The two following properties are equivalent:

a) X1 −→
Γ2

X2 −→
Γ2

. . . −→
Γ2

Xm

b) [X1(i − 1)X2(i − 1). . .Xm(i − 1)]X1(i) R2 [X1(i). . .Xm(i)] for all 2 ≤ i ≤ |X1|;

|Xj−1| = |Xj| , Xj−1 4 Xj = 1 and Xj−1(1) = Xj(1) for all 2 ≤ j ≤ m.

Proof. The words X1, . . . , Xm of same length n are represented as follows.

. . .. . .

Xm(n)

Xm−1(n)

Xm(i)

Xj(i − 1)

X3(i − 1)

X2(i − 1)

X1(i − 1)

Xm(i − 1)

Xm−1(i − 1)

X1(n)

X2(n)

X3(n)

Xj(n)

X1 X1(1)

X2(1)

X3(1)

Xj(1)

X1(2)

X2(2)

X3(2)

Xm(1)

Xj(2)

Xm−1(2)Xm−1(1)

Xm(2)

. . . . . . . . .

. . .

. . .

. . .

. . . . . .

. . .

. . . . . .. . .

X1(i)

. . .

. . .

. . .

. . .

. . .

X2

X3

. . .

Xj

. . .

Xm−1

Xm

X2(i)

X3(i)

Xj(i)

Xm−1(i)

. . .

. . .

. . .

. . .

. . .

. . .

. . .

i) Let us show that (a) =⇒ (b).

By definition of Γ2, we have, for all 2 ≤ j ≤ m,

|Xj−1| = |Xj| and Xj−1 4 Xj = 1 and Xj−1(1) = Xj(1) .

Let us show that

[X1(i − 1)X2(i − 1). . .Xm(i − 1)]X1(i) R2 [X1(i). . .Xm(i)]
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by induction on m ≥ 1.

Basis case : m = 1. For all 2 ≤ i ≤ |X1|, we have

[X1(i − 1)]X1(i) R2 [X1(i)]

considering the path

I
[X1(i−1)/[X1(i)−→

T2

(X1(i), X1(i − 1), X1(i))
]X1(i)/]−→

T2

F.

Inductive case : m =⇒ m + 1.

Suppose the implication for a derivation of length m and let X1 −→
Γ2

. . . −→
Γ2

Xm −→
Γ2

Xm+1.

There exists 2 ≤ k ≤ |X1| such that Xm(k) 6= Xm+1(k) and for all i 6= k, Xm(i) = Xm+1(i).

Let 2 ≤ i ≤ |X1|. We want to show that

[X1(i − 1). . .Xm(i − 1)Xm+1(i − 1)]X1(i) R2 [X1(i). . .Xm+1(i)].

By inductive hypothesis, we have

[X1(i − 1). . .Xm(i − 1)]X1(i) R2 [X1(i). . .Xm(i)].

Using Lemma 3.5, we have

I
[X1(i−1)...Xm(i−1)/[X1(i)...Xm(i)

=⇒
T2

(X1(i), Xm(i − 1), Xm(i)).

We distinguish the two complementary cases below.

Case 1 : i 6= k. We add an edge of type 3.

(X1(i), Xm(i − 1), Xm(i)) = (X1(i), Xm(i − 1), Xm+1(i))

Xm+1(i−1)/Xm+1(i)−→
T2

(X1(i), Xm+1(i − 1), Xm+1(i)).

Case 2 : i = k. We have the rule Xm(i − 1)Xm(i) Γ2 Xm+1(i − 1)Xm+1(i).

To this rule is associated the following edge of type 2:

(X1(i), Xm(i − 1), Xm(i))
Xm+1(i−1)/Xm+1(i)−→

T2

(X1(i), Xm+1(i − 1), Xm+1(i)).

Finally, we add the edge leading to the final state:

(X1(i), Xm+1(i − 1), Xm+1(i))
]X1(i)/]−→

T2

F.

We get the result for m + 1 and the direct implication.

ii) Let us show that (b) =⇒ (a).

Suppose that [X1(i − 1). . .Xm(i − 1)]X1(i) R2 [X1(i). . .Xm(i)] for all 2 ≤ i ≤ |X1|
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and |Xj−1| = |Xj| and Xj−1 4 Xj = 1 and X1(j − 1) = X1(j) for all 2 ≤ j ≤ m.

Let 2 ≤ j ≤ m. Let us show that Xj−1 −→
Γ2

Xj .

As Xj−1 4 Xj = 1, there exists a unique 2 ≤ k ≤ |X1| such that Xj−1(k) 6= Xj(k).

Moreover Xj−1(1) = Xj(1) so k 6= 1 and Xj−1(k − 1) = Xj(k − 1).

We have [X1(k − 1). . .Xm(k − 1)]X1(k) R2 [X1(k). . .Xm(k)].

Lemma 3.5 gives the existence of the following edge

(X1(k), Xj−1(k − 1), Xj−1(k))
Xj(k−1)/Xj(k)

−→
T2

(X1(k), Xj(k − 1), Xj(k)).

This edge is of type 2 and gives the existence of the following rule of Γ2

Xj−1(k − 1)Xj−1(k) −→ Xj(k − 1)Xj(k).

2

Let L be a context-sensitive language obtained by derivation of a 2-system Γ from LLin.

Adding to T2 the set of edges {F
A/A−→ F | A ∈ N}, we get a transducer recognizing a ratio-

nal graph GLin of bounded length difference with edges of the form [U]AW → [AV ]W. If

X1 ∈ LLin with |X1| = n and X1
m−1−→

Γ2

Xm, the graph GLin contains the following path:

[X1(1)
m]X1(2). . .X1(n) → [X1(2). . .Xm(2)]X1(3). . .X1(n) . . .→ [X1(n). . .Xm(n)]

If we add edges of the form [U] → ε for any word U and if we label edges of G such

that [U]AW
a−→[AV ]W if the last letter of U can be derived to a according to Γ1 then we

get a left-synchronized graph G such that L = L(G, LLin, {ε}). The problem is that LLin

is not rational. In order to reduce LLin to a rational set, we complete T2 to a transducer

generating words of LLin successively from left to right.

Let Gr be a grammar in Greibach normal form generating LLin from a non-terminal S.

Each rule of Gr is of the form Z → AW where Z ∈ Nr is a non-terminal of Gr, A ∈ N

is a terminal (which is also a non-terminal of Γ ) and W ∈ N∗
r is a non-terminal word of Gr.

Let the transducer

T ′
2 := T2 ∪ {F

Z/U−→ F ′ | (Z,U) ∈ Gr} ∪ {F ′ Z/Z−→ F ′ | Z ∈ Nr}

where F ′ is a new state of the transducer. We denote by R ′
2 the relation recognized by T ′

2

from I to F ′. This relation is still of bounded length difference. Let

LRat := { [Am]BW | S
2−→

Gr
ABW ∧ A,B ∈ N ∧ W ∈ N∗

r ∧ m ≥ 1 }.

Let us reformulate Lemma 3.6 for derivations starting from LLin .
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Lemma 3.7 Let X1, . . . , Xm ∈ N∗ and n = |X1|.

The two following properties are equivalent:

a) X1 −→
Γ2

X2 −→
Γ2

. . .−→
Γ2

Xm and X1 ∈ LLin

b) There exists W1, . . . ,Wn−1 ∈ N∗
r such that

[X1(1). . .Xm(1)]X1(2)W1 ∈ LRat and Wn−1 = ε

and [X1(n − 1). . .Xm(n − 1)]X1(n) R2 [X1(n). . .Xm(n)]

and [X1(i − 1). . .Xm(i − 1)]X1(i)Wi−1 R ′
2 [X1(i). . .Xm(i)]X1(i + 1)Wi

for all 2 ≤ i < n

and |Xj−1| = |Xj| and Xj−1 4 Xj = 1 and Xj−1(1) = Xj(1) for all 2 ≤ j ≤ m.

Proof. i) We suppose (a) and show (b).

As X1 ∈ LLin, we consider the derivation from S to X1 according to Gr: there exists non-

terminal words W1, . . . ,Wn−2 of Gr such that

S
2−→

Gr
X1(1)X1(2)W1 −→

Gr
. . .−→

Gr
X1(1). . .X1(n − 1)Wn−2 −→

Gr
X1(1). . .X1(n)

By Lemma 3.6, we have for all 2 ≤ i ≤ |X1|

[X1(i − 1). . .Xm(i − 1)]X1(i) R2 [X1(i). . .Xm(i)]

and |Xj−1| = |Xj| and Xj−1 4 Xj = 1 and Xj−1(1) = Xj(1) for all 2 ≤ j ≤ m.

Let 2 ≤ i ≤ n − 1. We know that Wi is obtained from Wi−1 by the rewriting of the

non-terminal Wi−1(1) :

Wi−1 = ZV −→
Gr

UV = X2(i + 1)Wi.

We complete the preceeding path leading to F with the edge F
Z/U−→ F ′ and then with edges

F ′ Z/Z−→
T ′

2

F ′ for V . Thus, we have

[X1(i − 1). . .Xm(i − 1)]X1(i)Wi−1 R ′
2 [X1(i). . .Xm(i)]X1(i + 1)Wi .

ii) We suppose (b) and show (a).

We cut the paths

[X1(i − 1). . .Xm(i − 1)]X1(i)Wi−1 R ′
2 [X1(i). . .Xm(i)]X1(i + 1)Wi

which become

[X1(i − 1)X2(i − 1). . .Xm(i − 1)]X1(i) R2 [X1(i). . .Xm(i)] .

By Lemma 3.6, we have X1 −→
Γ2

X2 −→
Γ2

. . .−→
Γ2

Xm.

By hypothesis [X1(1). . .Xm(1)]X1(2)W1 ∈ LRat and X1(1) = . . . = Xm(1). So
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S
2−→

Gr
X1(1)X1(2)W1. Thus S

∗−→
Gr

X1(1). . .X1(n) = X1 hence X1 ∈ LLin.

2

The transducer T ′
2 successively generates letters of X1 . Let us construct a graph of bounded

length difference such that the language of path labels leading from the rational vertex set

LRat to a rational vertex set FRat is the context-sensitive language defined by Γ .

Proposition 3.8 Any context-sensitive language is the language L(G, LRat, FRat) of path labels

leading from a rational set of vertices LRat to another FRat and where G is a graph of bounded

length difference.

Proof. Let L be a context-sensitive language. There exists a 2-system Γ such that

L = { v ∈ A∗ | ∃ u ∈ LLin , u
∗−→
Γ

v }.

For all letter a ∈ A, we denote by

Na := { A ∈ N | A −→
Γ1

a }

the set of non-terminals generating the terminal a in Γ .

We define the graph G0 such that for any a ∈ A,

a−→
G0

:= R ′
2 ∩ [N∗Na]NN∗

r×([N+]NN∗
r ∪ [N+]) .

As R ′
2 is a bounded length difference relation, so G0 is and the following graph:

G := G0 ∪
⋃

a∈A{ [UA]
a−→[UA]$ | U ∈ N∗ ∧ A ∈ Na }

is also of bounded length difference.

We recall that

LRat := { [Am]BW | S
2−→

Gr
ABW ∧ m ≥ 1 }

where S is the axiom of Gr and let

FRat := [N∗]$ .

We have

u ∈ L with |u| = n > 1

⇐⇒
there exists X1, . . . , Xm ∈ N∗ of length n such that
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X1 ∈ LLin and X1 −→
Γ2

X2 −→
Γ2

. . .−→
Γ2

Xm and Xm(i) −→
Γ1

u(i) for all 1 ≤ i ≤ n

⇐⇒ (by Lemma 3.7)

there exists non-terminal words W1, . . . ,Wn−1 of Gr such that

[X1(1). . .Xm(1)]X1(2)W1 ∈ IRat , Wn−1 = ε

[X1(1). . .Xm(1)]X1(2)W1
u(1)−→
G0

[X1(2). . .Xm(2)]X1(3)W2
u(2)−→
G0

. . .
u(n−1)−→

G0

[X1(n). . .Xm(n)] and

Xm(n) ∈ Nu(n)

⇐⇒
u ∈ L(G, LRat, FRat)

Thus

L = L(G, LRat, FRat) ∪ { u ∈ L | |u| ≤ 1 }

2

It remains to apply Lemma 3.1 to get the following proposition:

Proposition 3.9 Any context-sensitive language is trace of a synchronized graph.

Proof. Any synchronized graph is a rational graph, hence any trace of a synchronized

graph is a context-sensitive language [MoS 01]. Proposition 3.9 gives the converse.

Theorem 3.10 The context-sensitive languages are the traces of synchronized graphs.

Moreover, using Lemma 3.1, we get that any language L(G, LRat, FRat) of path labels lead-

ing from and to a rational vertex set of a graph G of bounded length difference is a context-

sensitive language as the trace of a synchronized (thus rational) graph. Proposition 3.8 gives

the converse.

Theorem 3.11 The context-sensitive languages are the languages L(G, LRat, FRat) of path labels

leading from and to a rational vertex set of a graph G of bounded length difference.
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The synchronized relation of bounded length difference R
′
2 we used in the proof of Proposi-

tion 3.8 can be completed into a letter-to-letter relation.

Lemma 3.12 Let R ⊆ N∗ × N∗ be a left-synchronized relation and let 3 be a symbol such that

3 6∈ N. We can transform R into a letter-to-letter relation Rl such that

∀(U,V) ∈ N∗ × N∗,∀n ≥ 0,

(U
n−→
R

V) ⇐⇒ (∃k ≥ 0,∃k
′ ≥ 0 such that U3k n−→

Rl

V3k
′
)

Proof. Let T be a left-synchronized transducer recognizing R. We construct the transducer

Tl from T replacing each edge of the form p
ε/A−→q (respectively p

A/ε−→ q) with A ∈ N by the

edge p
3/A−→q (respectively p

A/3−→ q). Then for each final vertex f of T , create a new final state

f
′

of Tl and add the edges f
3/3−→f

′
and f

′3/3−→f
′
.

2

Proposition 3.13 Any context-sensitive language is the language L(G, LRat, FRat) of path labels

leading from a rational set of vertices LRat to another FRat and where G is a letter-to-letter rational

graph.

Proof. Using Proposition 2.6 we get that R ′
2 is a left-synchronized relation. Let 3 be a

symbol such that 3 6∈ N ∪ Nr . Using Lemma 3.12, we complete R
′
2 into a letter-to-letter

relation Rl. We get the result adapting the proof of Proposition 3.8 with

a−→
G0

:= Rl ∩ [N∗Na]NN∗
r3

∗×([N+]NN∗
r3

∗ ∪ [N+]3∗)

G := G0 ∪
⋃

a∈A{ [UA]3k a−→ $|[UA]|+k | U ∈ N∗ ∧ A ∈ Na }

LRat := { [Am]BW3k | S
2−→

Gr
ABW ∧ m ≥ 1 ∧ k ≥ 0}

and

FRat := $+

2

The converse is given by Theorem 3.11.
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Theorem 3.14 The context-sensitive languages are the languages L(G, LRat, FRat) of path labels

leading from and to a rational vertex set of a letter-to-letter rational graph G.

4 Conclusion

Since synchronized binary relations form a boolean algebra and are recognized by determin-

istic 2-automata, the consideration of context-sensitive languages as traces of synchronized

graphs could help for the conjecture of determinism of context-sensitive languages [Ku 64]:

does any context-sensitive language can be recognized by a deterministic linear bounded

Turing machine ? The characterization of context-sensitive langages using rational letter-

to-letter graphs could also be useful to solve this problem as every connex component of a

rational letter-to-letter graph is a finite graph. In [Car 01] Arnaud Carayol considers glob-

ally deterministic sets of transducers (i.e. in a case of non-determinism, only one output

produced is accepted). He shows that the traces of those graphs with rational initial ver-

tex sets are deterministic context-sensitive langages. His proof suggests that we could have

worked directly on LBA Turing machin instead of using Pentonnen form.
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Abstract

A natural way to describe a family of languages is to use rational transformations

from a generator. Infinite graphs are natural models for verification. We study fami-

lies of infinite graphs that are described from generators by transformations preserving

monadic second order logic decision. We call them Abstract Family of Graphs (AFG).

We make a link with language theory by showing that traces of AFG are rational cones

and traces of principal AFG are AFL. We generalize some properties of prefix recogniz-

able graphs to AFG and we apply these tools and the notion of geometrical complexity

to study sub-families of prefix recognizable graphs (REC). We exibit a strictly increasing

chain of AFG in REC.

Introduction

A large number of families of formal languages arising from either computer science or lin-

guistics were investigated for their properties. These families first described with sophisti-

cated acceptors, were also described by combinatorial or algebraic properties. A well known

example is the Chomsky-Schützenberger characterization of context-free languages as ratio-

nal transductions from the Dyck language [7]. A lot of language families were found to

be closed by rational transductions and some other operations like union or concatenation.

From these closure operations, Ginsburg and Greibach have derived the Abstract Family of

Languages (AFL) [11]. In the same paper, they have defined the Abstract Family of Accep-

tors (AFA). They showed the direct relation between language families and machine families.

The notion of AFA fell into disuse but the one of AFL was intensively studied and refined.

Many structures defined by closure operations like rational cones, or cylinders were also

considered (See [2] or [1] for a survey).

77



The development of model checking rised up a new interest for behavioral properties of

machines. A main task of model checking is to decide if a given machine modelized by a

(finite or infinite) graph satisfy or not a given logical sentence. This problem is unsolvable in

general but Muller and Shupp showed that Monadic Second Order (MSO) logic, is decidable

for the transition graphs of pushdown automata [15]. This result has been extended to HR-

equational graphs by Courcelle [8] and to prefix recognizable graphs by Caucal [5]. Different

characterizations of these graph families are summarized in [3].

Verification of logical properties is not the only interest of graph families: they also pro-

vide a natural tool to study formal languages. A trace of a graph is the language of path

labels from and to finite sets of vertices. A main graph hierarchy is constructed in parallel

of the Chomsky hierarchy: the traces of finite graphs are the rational languages, the traces

of prefix recognizable graphs are the context-free languages [5], the traces of rational graphs

are the context-sensitive languages [14] and the traces of Turing graphs are the recursively

enumerable languages [6]. A survey about this hierarchy is done in [16].

This present paper studies the relation between languages families and graphs families.

In [6], the family of prefix recognizable graphs is generated from the Dyck graph ∆2 (See

Figure 4) with two closure operations: rational coloring and inverse rational substitution.

We study these operators in a more general context: Given a graph Γ , we consider the family

of graphs generated from Γ by rational coloring, inverse rational substitution and product

with a finite graph. We call Abstract Family of Graphs (AFG) a graph family that is closed by

these operators. We show that traces of AFG are rational cones, we also show that traces of

principal AFG are AFL. We show that geometrical complexity of graphs is preserved by AFG

transformations: this is a criterion to compare Graph families. We apply these tools to sub-

families of prefix recognizable graphs like linear or polynomial graphs. We use geometrical

complexity to show that polynomial graphs constitute a strictly increasing chain of AFG.

This paper is divided into three sections. In Section 1 some facts about languages families

are reviewed. In Section 2 we define generic graph families and we study their properties.

In section 3 we apply the concepts of Section 2 to sub-families of prefix recognizable graphs.

We exhibit a strictly increasing chain of AFG.

1 Languages Families

The reader is supposed to be familiar with the basic notions of formal languages described

in [12]. We recall here briefly some notions about language families. See [1], [2] or [10] for a

complete reference.
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1.1 Language Transformations

A monoid morphism f from X∗ to Y∗ is a mapping which associates a word of Y∗ to each letter

of X. It is extended to words by morphism: f(ε) = ε and f(au) = f(a)f(u) ∀a ∈ X,u ∈ X∗.

When f−1(ε) = {ε}, f is called non-erasing; when f(X) ⊆ Y ∪ {ε}, f is called alphabetic. The

projection or erasing pa : X∗ −→ Y∗ is the alphabetic morphism defined by pa(a) = ε and

pa(b) = b ∀b 6= a. The copy c : X∗ −→ Y∗ is an alphabetic morphism defined by an injection

from X to Y. A rational substitution of domain X is a mapping which associates a rational

language to each letter of X. A finite substitution is a rational substitution which associate a

finite language to each letter. Substitutions are extended to words by morphism rules.

We use the notation Fin(M) to design the finite subsets of a set M. If M is a monoid,

we use the notation Rat(M) to design its rational subsets. A rational transduction (or simply

transduction) between two monoids X∗ and Y∗ is a relation T ∈ Rat(X∗ × Y∗); it is faithful or

non-erasing if for any y ∈ Y∗, T−1(y) ∈ Fin(X∗). A non-erasing transduction is the composi-

tion of an inverse morphism, an intersection with a rational set and a non-erasing morphism.

A transduction is the composition of a non-erasing transduction and a morphism. Note that

inverse rational (resp. finite) substitutions are particular cases of transductions (resp. non-

erasing transductions).

1.2 AFL and Rational Cones

A family of languages is a nonempty set of languages that is closed under copy. A cone is

a family of languages that is closed by transduction. A cone C is principal of generator Λ

if Λ ∈ C and if any L in C is the image of Λ by a transduction. If we adopt the notation

of [10], we write C = C(Λ). The relation L � L ′ when L is the image by a transduction

of L ′ is a way to mesure the “complexity” of a language, in that sense the generators of C

are its most complex languages. Consider the Dyck language D2 = aD2aD2 + bD2bD2 + ε,

which is the language of “well formed” words over two types of parentheses. The Chomsky-

Schützenberger theorem [7] gives a characterization of context-free languages as being the

principal cone Alg = C(D2).

There are different types of language families classified by closure properties: Figure 1

gives a summary of these properties for cone and AFL. All families of the Chomsky hierarchy

except context sensitive languages are full-AFL. The family Ocl of one-counter languages is

a principal full-AFL. The family Lin of linear languages and the family Rocl of restricted one

counter languages are example of principal cones. The intersection of two principal cones is

trivialy a cone, but showing the principality of this intersection is a difficult problem. It was
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closure properties

types inverse

morphism

rational

∩
non-erasing

mor-

phism

erasing ∪ L+

semi-cone × × ×
cone × × × ×
AFL × × × × ×
full-AFL × × × × × ×

Figure 1: Different types of languages families.

conjectured for a long time that Lin ∩ Rocl = C(S) with S = {anbn | n ≥ 1}. This conjecture

has been shown to be false in [4] by considering acceptor’s structure.

2 Graphs Families

2.1 Preliminaries on graphs

Given an arbitrary set of vertices V , and an arbitrary set of symbols Σ, a graph G is a subset

of V × Σ × V where ΣG := {a ∈ Σ | (s, a, t) ∈ G} is finite and VG := {s ∈ V | ∃t, (s, a, t) ∈
G ∨ (t, a, s) ∈ G} is countable. The existence of an arc (s, a, t) of source s and of goal t in

G is denoted s
a

−→
G

t, or simply s
a

−→ t when G is understood. We write s
w

=⇒ t with a word

w = w1 . . . wn ∈ Σ∗
G the existence of a path s

w1
−→ s1 . . . sn−1

wn
−→ t in G.

When I ∈ Fin(VG) and F ∈ Fin(VG), the language L(G, I, F) = {w ∈ Σ∗
G | ∃i ∈ I, f ∈

F, i
w

=⇒
G

f} is called a trace of G. With a special symbol τ ∈ ΣG, we may also consider the trace

with ε-transitions pτ(L(G, I, F)). A graph G is deterministic if for all s, t, t ′ ∈ VG we have

s
a

−→
G

t∧s
a

−→
G

t ′ ⇒ t = t ′. It is strongly connected when for any s, t ∈ VG there is a word w such

that s
w

=⇒
G

t, it is simply connected if G∪G−1 is strongly connected (G−1 = {(t, a, s) | s
a

−→
G

t}). The

distance between two vertices in a connected graph G is the function defined by dG(s, t) =

min{|w| | s
w

=⇒
G∪G−1

t}. The degree of a vertex s is dG(s) = |{(s, a, t) ∈ G∪G−1 a ∈ ΣG∧t ∈ VG}|.

2.2 Graph Transformations

The most general aproach to transform a graph by preserving MSO decidability is to use all

MSO-interpretations [9]. Our approach is different since we want to define graphs families
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in relation with languages families: we want a reduced set of transformations corresponding

to languages transformations. Given a graph G, a transformations T is internal if VT(G) ⊆ VG.

2.2.1 Internal Transformations

copy: Given a bijection c between two alphabets, the copy by c of a graph G is the graph

c(G) = {(s, c(a), t) | s
a

−→
G

t}.

Rational Coloring: Let G be a graph and let f be a substitution from Σ to Rat(Σ∗
G). The col-

oring of G from the source V ∈ Fin(VG) according to f is the graph #V,fG = G∪{(t, a, t) | ∃w ∈
f(a), v ∈ V, v

w
=⇒

G
t}. To enlight notations we write #fG when no confusion is possible about

V .

Inverse Substitution: Let G be a graph and f be a substitution from an alphabet Σ to 2Σ∗
G .

The inverse substitution of G according to f is the graph f−1(G) = {(s, a, t) | ∃w ∈ f(a), s
w

=⇒
G

t}.

ε-closure: The ε-closure is a particular inverse substitution. Let G be a graph with a special

symbol τ for ε-transitions and let # be a transparent color. Consider the rational substitution

φ from ΣG − {τ} to Rat((ΣG + #)∗) defined by φ(a) = #τ∗aτ∗# for all a ∈ ΣG − {τ, #}. We

call epsilon closure of G the graph G = φ−1(G). Let pτ be the erasing of τ. If f is the mapping

defined by f(#) = {ε} and if ε 6∈ pτ(L(G, I, F)) then the trace with ε-transition pτ(L(G, I, F)) is

L(f−1(G), I, F).

2.2.2 Other Transformations

Isomorphism If f is a mapping of domain VG then f(G) = {(f(s), a, f(t)) | s
a

−→
G

t}. A graph

isomorphism between G and H is an injective mapping f : VG −→ VH such that f(G) = H.

The graphs G and H are isomorphic and we write G ∼ H when there is a graph isomorphism

between G and H.

Products: To study the intersection between the traces of two graphs, it may be useful

to consider the synchronized product of these graphs but the concatenation and desynchronized

product are more easy to handle. Given graphs G and H, we define products between G and

H as subsets of (VG×VH)×ΣG∪ΣH× (VG×VH). Let v be a vertex of H. The concatenation of

H to G at v is the graph G ·vH = {((s, s ′), a, (t, t ′)) | (s
a

−→
G

t∧s ′ = t ′ = v)∨(s = t∧s ′ a
−→
H

t ′)}.

The desynchronized product of G by H is the graph G2H = {((s, s′), a, (t, t ′)) | (s
a

−→
G

t ∧
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s ′ = t ′) ∨ (s ′ a
−→
H

t ′ ∧ s = t)}. The synchronized product of G by H is the graph G × H =

{((s, s ′), a, (t, t ′)) | s
a

−→
G

t ∧ s ′ a
−→
H

t ′}.

2.3 Abstract Graphs Families

An internal graph family is a non-empty set of graphs that is closed by copy. A graph family

is an internal graph family that is closed by isomorphism. Some operations like union or

intersection of graphs may be well defined in an internal family but does not make sense

when considered up to isomorphism.

2.3.1 Closure Operators

Each graph transformation considered in Section 2.1 is naturally extended to graph fami-

lies: Let F be a graph family, we denote respectively by #F , Fin−1(F), Rat−1(F) and F the

closures by rational coloring, inverse finite substitution, inverse rational substitution and ε-

closure of F . We denote by Fin the family of finite graphs; We denote by F · Fin,F2Fin and

F × Fin the smallest family of graphs containing F that is respectively closed by concatena-

tion, desynchronized product and synchronized product with a finite graph.

2.3.2 Finite Product Equivalence

We consider a particular family of finite graphs for concatenation and show the equivalence

of finite products. Let n ∈ IN and the alphabet Σn = Σn,+ ∪ Σn,− where Σn,+ = {σ0, . . . , σn}

and Σn,− = {σi | σi ∈ Σn,+}. We extend the a bijection to words by the rules a · w = w ·a and

a = a. The segment ∆n
0 ⊂ IN × Σn × IN is the graph

∆n
0 = {(i − 1, σi, i) | 1 ≤ i ≤ n} ∪ {(i, σi, i − 1) | 1 ≤ i ≤ n} ∪ {(0, σ0, 0), (0, σ0, 0)}

0 1 2 n−1 n

σ1

σ1

σ2

σ2

σn

σn

σ0, σ0

This graph is deterministic and strongly connected, for any 0 ≤ i, j ≤ n, it verifies: i
σi...σj
=⇒
∆n

0

j

and j
σi...σj
=⇒
∆n

0

i. When F is a graph family, we denote by F ·0 ∆n
0 the smallest family of graphs

containing F that is closed under concatenation with ∆n
0 at 0. An illustration of the segment

concatenation is given in Figure 2.

Property 1 If F = Fin−1(F) these four statements are equivalents:
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b
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b
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b

aa a

Figure 2: The comb tree concatenation with ∆n
0

1. F = F ·0 ∆n
0 ∀n ∈ IN;

2. F = F · Fin;

3. F = F2Fin;

4. F = F × Fin.

PROOF.

(1⇒ 2) Let us show that F · Fin ⊆ F .

Let G ∈ F and H be a finite graph of vertices VH = {s0, . . . , sn}. Let c(G) be a copy of G

such that c(ΣG) ∩ Σn = ∅. We have G ·s0
H ∼ {((s, 0), a, (t, 0)) | s

a
−→

G
t} ∪ {((s, i), a, (s, j)) | s ∈

VG ∧ si
a

−→
H

sj} hence G ·s0
H ∼ h−1(c(G) ·0 ∆n

0) ∈ F with h : ΣG∪ΣH −→ c(ΣG)∪Fin(Σ∗
n)

defined by

h(a) = c(a) +
∑

si
a

−→
H

sj

σ0 . . . σi σ0 . . . σj

(2⇒ 3) Let us show that F2Fin ⊆ F .

Let G ∈ F and H be a finite graph of vertices VH = {s0, . . . , sn}. Let c(G) be a copy of G such

that c(ΣG) ∩ Σn = ∅.

c(G)2H ∼

{((s, i), c(a), (t, i)) | s
a

−→
G

t ∧ si ∈ VH} ∪ {((s, i), a, (s, j)) | s ∈ VG ∧ si
a

−→
H

sj}

we have G2H ∼ h−1(c(G) ·0 ∆n
0) ∈ F with h defined by

h(a) =

n∑
i=0

σ0 . . . σi c(a) σ0 . . . σi +
∑

si
a

−→
H

sj

σ0 . . . σi σ0 . . . σj

(3⇒ 4) Let us show that F × Fin ⊆ F .

Let G ∈ F and H be a finite graph. Let c(G) be a copy of G such that c(ΣG) ∩ ΣH = ∅. We
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have G × H = h−1(c(G)2H) ∈ F with h(a) = c(a)a ∀a ∈ ΣG ∩ ΣH because

h−1(c(G)2H) = {((s, s ′), a, (t, t ′)) | (s, s ′)
c(a)
−→

c(G)2H
(t, s ′) ∧ (t, s ′) a

−→
c(G)2H

(t, t ′)}

(4⇒ 1) Let us show that ∀n ∈ IN, F ·0 ∆n
0 ⊆ F .

Let G ∈ F and n ∈ IN. Let c(G) be a copy of G such that c(ΣG) ∩ Σn = ∅. We define the

projection p : c(ΣG)∪Σn −→ c(ΣG)∪ {ε} by p(a) = a ∀a ∈ c(ΣG) and p(σ) = ε ∀σ ∈ Σn We

also define g by g(a) = σ0 ∀a ∈ c(ΣG) and g(σ) = σ ∀σ ∈ Σn. Then we have c(G) ·s0
∆n

0 =

p−1(c(G))×g−1(∆n
0). We then project c(ΣG)∪Σn to ΣG∪Σn: G ·s0

∆n
0 = h−1(c(G) ·s0

∆n
0) ∈ F

with h(a) = c(a) ∀a ∈ ΣG and h(σ) = σ ∀σ ∈ Σn.

2

2.3.3 Abstract Families

As for languages, we define different types of families by their closure properties: Figure 3

summarize these definitions. The Rat−1 operator does not appear in Figure 3, the following

closure properties

types F = #F F = Fin−1(F) F = F F = F · ∆n
0

AFG × × ×
full-AFG × × × ×

Figure 3: Different types of graphs families.

property explain this disparition.

Property 2 If F = F · Fin then Fin−1(F) = Rat−1(F)

PROOF.

⊆
Let G be a graph of Fin−1(F). Let H ∈ F and let f be a mapping from ΣG ∪ {τ, #} to Fin(Σ∗

H)

such that G = f−1(H). Recall that φ is defined by φ(a) = #τ∗aτ∗# for any a ∈ ΣG, the com-

position of f by φ is a mapping from ΣG to Rat(Σ∗
H) hence G = φ−1(f−1(H)) is in Rat−1(F).

⊇
Let G be a graph of Rat−1(F). Let H ∈ F and let f be a mapping from ΣG to Rat(Σ∗

H) such

that G = f−1(H). We suppose that τ, # 6∈ ΣH and ΣH ∩ Σn = ∅ for any n ∈ IN (we may take a

copy of H in F). Let A ⊆ Q × ΣH × Q be a finite automaton such that for each letter a ∈ ΣG

there is an initial state ia and a final set Fa with L(A, {ia}, Fa) = f(a). Let n = |Q|, and N be
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a bijection between Q and {1, . . . , n}. Let us consider the graph K = H ·0 ∆n
0 . We define the

mapping g from ΣG ∪ {τ, #} to Fin(Σ∗
K) by g(#) = σ0, g(a) = σ0 . . . σN(ia) ∀a ∈ ΣG and

g(τ) =
∑

a∈ΣG,q∈Fa

σ0 . . . σN(q) +
∑

p
a

−→
A

q

σ0 . . . σN(p)aσ0 . . . σN(q)

By construction, we have G ∼ g−1(K).

2

A family F is principal if there is a strongly connected and deterministic graph Γ ∈ F such

that F is the closure of {Γ } by AFG operators, we write F = AFG(Γ). An AFG F = AFG(Γ) is

principal if and only if F = Fin−1(#Γ ·0 ∆n
0).

Most operators do not commute, for example from the graph Γ = {(0, a, 1), (1, a, 0)} we

have a strict inclusion #Fin−1(Γ) ⊂ Fin−1(#Γ). Principality is a strong property since it can

give some sense to the union operator.

Lemma 3 If F is a principal AFL then

1. F is closed under union with finite graphs;

2. F is closed under disjoint union.

PROOF.

Let Γ be a generator of F .

(1) union with a finite graph:

Let G ∈ F and H a finite graph. As Γ is a generator of F there exist two mappings f, g, an

integer n and a set V ∈ Fin(VΓ × {0, . . . , n}) such that for K = Γ2∆n
0 , we have G ∼ f−1(#V,gK).

Let $ be a special symbol and h the mapping defined by h($) = ε We color one vertex v ∈ V

with $ by #v,hK. As Γ is strongly connected and deterministic, there is a mapping i from ΣH

to Fin(#Σ∗
Γ) such that H ∼ i−1(#v,hK). Let j be the mapping defined by j(a) = f(a) ∪ i(a)

when a ∈ ΣG ∩ ΣH, j(a) = f(a) when a ∈ ΣG − ΣH and j(a) = i(a) when a ∈ ΣH − ΣG. By

construction G ∪ H ∼ j−1(#v,h#V,gK) ∈ F .

(2) disjoint union:

Let G,H ∈ F . As Γ is a generator of F there exist four mappings f, g, h, i with

Dom(g) ∩ Dom(i) = ∅, a set V ∈ Fin(VΓ × {0, . . . , n}) and an integer n such that for

K = Γ2∆n
0 , we have G ∼ f−1(#V,gK) and H ∼ h−1(#V,iK). Let c(∆2) be a copy of ∆2 such

that c(Σ2) ∩ ΣK = ∅. We have G ∼ I = f−1(#g(K ·0 ∆2)) and H ∼ J = j−1(#i(K ·0 ∆2)) with

j defined by j(a) = c(σ1)h(a)c(σ1). By construction we have VI = VΓ × {0, . . . n} × {0},
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VJ = VΓ × {0, . . . n} × {1} hence I ∪ J ∈ F .

2

2.3.4 Traces of AFG

We denote the traces of a family F by L(F) := {L(G, I, F) | G ∈ F ∧ I, F ∈ Fin(VG)}.

Theorem 4 If F is an AFG (resp. a full-AFG) then L(F) is a semi-cone (resp. a cone), If F is a

principal AFG (resp. a principal full-AFG) then L(F) is an AFL (resp. a full-AFL).

PROOF.

Cone and semi-cone:

Let F be an AFG and L ∈ L(F). There is a graph G ∈ F , and two sets IG, FG ∈ Fin(VG)

such that L = L(G, IG, FG). To show that L(F) is a cone (resp. a semi-cone) we show that

L(F) is closed under inverse morphism, intersection with rational set, and morphism (resp.

non-erasing morphism).

Inverse morphism: Let f : Σ∗
G −→ Σ∗ be a morphism and g defined by g(a) = {f(a)} its

corresponding finite substitution. We have f−1(L) = L(g−1(G), IG, FG) hence f−1(L) ∈ L(F).

Intersection with a rational set: Let R ∈ Rat(Σ∗
G), let us show that L ∩ R ∈ L(F). Let A be the

finite automaton recognizing R: R = L(A, iA, FA). The intersection of L(G, IG, FG) and R is

L(G ×A, IF × {iA}, FG × FA). By Property 1 we have G ×A ∈ F hence L ∩ R ∈ L(F).

Non erasing rational substitution (non-erasing morphism): Let f : ΣG −→ Rat(Σ+) be a

non-erasing rational substitution (f may also be a morphism). Let a be a letter of ΣG. As

ε 6∈ f(a), there is a finite automaton A ⊆ Q × Σ × Q with two distinct vertices ia, fa ∈ Q

such that f(a) = L(A, {ia}, {fa}). For convenience we take Q = {0, . . . , n}, ia = 0 and fa = n.

Let c(G) be a copy of G such that c(ΣG) ∩ Σ = ∅, and c(ΣG) ∩ Σn = ∅. We define h : Σ −→
Fin((c(ΣG) ∪ Σn)∗) for each letter a ∈ ΣG by

h(a) =
∑

p
a

−→
A

q

σ0 . . . σpσ0 . . . σq +
∑

p
a

−→
A

n

σ0 . . . σpc(a)

By construction, the graph H = h−1(c(G) ·0 ∆n
0) verifies

L(H, IG, FG) = f(L(G, IG, FG)) = f(L)

Rational substitution (morphism): To extend the preceding proof to any rational substitu-

tion, we use an automaton with τ transitions and we do the ε-closure to get L(H, I, F) = f(L).
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AFL and full-AFL:

Let F be a principal AFG of generator Γ . Let L and L ′ in L(F). To show that L(F) is an AFL

we show that L ∪ L ′, L∗ and L · L ′ stay in L(F). Let G ∈ F such that L = L(G, IG, FG) and let

H ∈ F such that L ′ = L(H, IH, FH) and VG ∩ VH = ∅.

Union: We have L ∪ L ′ = L(G ∪ H, IG ∪ IH, FG ∪ FH). From Lemma 3 we have L ∪ L ′ ∈ F
hence L ∪ L ′ ∈ L(F).

L∗ operation: To get L∗ the transformation is the same as for finite automata: Let C be the

graph defined by C ⊆ VGΣG × Σ and

C = {(s, a, t) | s ∈ FG ∧ ∃v ∈ IG, v
a

−→
H

t}

We have L∗ = L(G ∪ C, IG, FH), from Lemma 3 G ∪ C ∈ F hence L∗ ∈ L(F)

Concatenation: To get L ·L ′ the transformation is the same as for finite automata: we take the

graph C = {(s, a, t ′) | s ∈ FG ∧ t
a

=⇒
H

t ′}, so that L · L ′ = L(G ∪ C ∪ H, IG, FH), from Lemma 3

we deduce L · L ′ ∈ L(F).

2

3 Application to Pushdown Graphs

In this section, we consider some properties of pushdown graphs and prefix recognizable graphs

from the AFG point of view. We define the notion of geometrical complexity which is preserved

by AFG transformations. We then consider subfamilies of prefix recognizable graphs like

one-reversal pushdown graphs or polynomial graphs.

3.1 Pushdown Graphs

A pushdown automaton is a finite set of rules R ⊆ QS×T ×QS∗ where Q is a finite set of states,

S is a (disjoint) stack alphabet and T is an alphabet of terminals. A configuration of the machine

is defined by a word qw ∈ QS∗ where q is a state and w is a stack word. Its transition graph

restricted to a rational set L ⊆ QS∗ of acceptable configurations is the graph

G := (RS∗)|L = {uw
a

−→ vw | u
a

−→
R

v ∧ uw, vw ∈ L} (1)

Any graph isomorphic to such a graph is called a pushdown graph. We denote this family

PDG.
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3.1.1 Prefix Recognizable Graphs:

The family of prefix recognizable graphs is a natural extension of pushdown graphs to rec-

ognizable sets of rewriting rules. We give here an internal representation, similar to the one

of Equation (1): Let X be an alphabet, we denote U
a

−→V := {(u, a, v) | u ∈ U ∧ v ∈ V} the

graph of transitions from U ⊆ X∗ to V ⊆ X∗ labelled by a ∈ Σ. A recognizable graph is a finite

union of graphs U
a

−→V where U,V ∈ Rat(X∗). A prefix recognizable graph is a graph of the

form

(RX∗)|L = {uw
a

−→ vw | u
a

−→
R

v ∧ uw, vw ∈ L} (2)

Where R is a recognizable graph and L ∈ Rat(X∗) is a set of acceptable configurations. Any

graph isomorphic to such a graph is called a prefix recognizable graph We denote this family

REC.

3.1.2 The Dyck Graph:

We define the two parentheses semi-Dyck graph by ∆2 = {u
a

−→au | u ∈ (a + b)∗} ∪
{u

b
−→bu | u ∈ (a + b)∗} ∪ {bu

b
−→u | u ∈ (a + b)∗} ∪ {au

a
−→u | u ∈ (a + b)∗}. A representa-

tion of ∆2 is given in Figure 4. The trace L(∆2, {ε}, {ε}) is the Dyck language D2 presented in

Section 1.2.

ba
a

b

b

a

ba

a

b

b

a

a

a
b

b

a b

a

b

Figure 4: The two letters Dyck graph ∆2.

Theorem 5 [5]

1. PDG = Fin−1(#{∆2});

2. REC = Rat−1(#{∆2});

We show easily that PDG is a principal full-AFL, and from Property 2 we deduce this result

originally due to Knapik:
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Property 6 REC = PDG.

3.2 Other Generators:

3.2.1 One-reversal Pushdown Graphs

A one-reversal pushdown automaton is a pushdown automaton which first writes informations

in the stack and secondly reads these informations. We define the diamond graph of Figure 5

by

32 = {(u, a, au) | u ∈ (a + b)∗} ∪ {(u, b, bu) | u ∈ (a + b)∗}

∪ {(u, τ, #u) | u ∈ (a + b)∗} ∪ {(#au, a, #u) | u ∈ (a + b)∗}

∪ {(#bu, b, #u) | u ∈ (a + b)∗}

The trace pτ(L(32, ε, #)) is the symmetric language S2 = aS2a + bS2b + ε. The 32 graph is a

generator of the one-reversal pushdown graphs which traces define the cone of linear languages

Lin.

τ
τ

τ
τ

τ τ τ

b a

ab

ab

b a

b a

bb a a

ab

b a b a

Figure 5: one-reversal pushdow graphs generator: L
(
Fin−1(#32)

)
= Lin.

3.2.2 Linear Pushdown Graphs

A one-counter automaton is a pushdown automaton with only one stack symbol. As only the

length of the stack can be used for computation, it can also be considered as a finite state

machine associated with an integer register. The traces of one-counter automaton transition
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graphs define the Ocl AFL which generator is the Dyck set with one symbol D1 = aD1aD1+

ε. The linear Dyck graph ∆1 described on Figure 6, is a generator of this graph family.

a

a

a

a

a

a

a

a

Figure 6: The one letter Dyck graph ∆1.

3.3 Geometrical Complexity

We will show that geometrical complexity is a mesure preserved by AFG transformations. This

criterion is used to show strict inclusion (up to isomorphism) between graph families.

3.3.1 General Definition

Let G be a graph of finite degree and let v ∈ VG. The distance between two vertices in a same

connected component of G is the function dG(s, t) = min{|w| | s
w

=⇒
G∪G−1

t}. Let us consider the

set BG(v, n) := {s ∈ VG | dG(v, s) ≤ n}. We call complexity of G from v the function defined

by cG,v(n) = |BG,v(n)|. Let f, g : IN −→ IN be two functions, g dominate homothetically f and

we write f � g when ∃λ, n0, ∀n ≥ n0, f(n) ≤ g(λn). We say that f and g are homothetically

equivalent and we write f ≡ g when both f � g and g � f.

Property 7 Let G be a connected graph of finite degree, for any s, t ∈ VG we have cG,s ≡ cG,t.

PROOF. Let δ = dG(s, t). For any n ∈ IN we have BG(t, n) ⊆ BG(s, δ + n). For every n ≥ δ

we have cG,t(n) ≤ cG,s(2n) i.e. cG,t � cG,s. By permutation we get cG,s � cG,t therefore

cG,s ≡ cG,t.

2

This property allows us to define a complexity order cG(n) for each connected graph G. This

homothetic domination is a criterion to classify graph families.

Property 8 Let G,H be two connected graphs of finite degree such that H is image by AFG transfor-

mations from G then cH � cG.

PROOF. The rational coloring does not change the complexity of a graph, so does the finite

product. Let h be a finite substitution such that H ∼ K = h−1(G). Let λ = max{|w| | ∃a ∈
ΣG, w ∈ h(a)}. Let v ∈ VG. Let us show that cH,v(n) ≤ cG,v(λn) i.e. BK(v, n) ⊆ BG(v, λn).

If dK(v, s) ≤ n then ∃u, |u| ≤ n ∧ v
u

=⇒
K

s thus v
h(u)
=⇒

G
s. As |h(u)| ≤ λ|u| ≤ λn, we have

s ∈ BG(v, λn). Thus BK(v, n) ⊆ BG(v, λn) hence cH,v(n) ≤ cG,v(λn).
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2

3.3.2 Complexity in REC

The concept of geometrical complexity was initialy studied by [13]. He first defined the com-

plexity for pushdown graphs and gave an extended definition for HR-equational graphs

(which may be have infinite degree). Leaning on the property that a pushdown graph only

admits a finite set of isomorphic connected components, we extend the complexity mesure

to any prefix recognizable graph: Let G ∈ REC, H ∈ PDG such that G = H and C1, . . . , Cn

be the classes of connected components of H. cG = max{cCi
| 1 ≤ i ≤ n}.

3.4 Polynomial Pushdown Graphs

A generalisation of one-counter automaton is the notion of counter-stack automaton: A

counter-stack automaton is a finite automaton associated with a finite stack of counters each

of one may be acceded only when on top of the stack. We define the alternation languages An

by A0 = ε, A2k+1 = a∗A2k and A2k+2 = b∗A2k+1. The comb graph of order n is the graph

defined by restriction from the Dyck graph by ∆n
1 ∼ {(u, a, v) ∈ ∆2 | u, v ∈ An}. The comb

tree is represented in Figure 2. Figure 7 gives a fractal representation of these graphs.

The family of polynomial pushdown graphs Xn is the principal AFG of generator ∆n
1 .

Property 9 If G ∈ Xn then cG � kn.

This result is a direct consequence of Property 8. We exhibit a strictly increasing chain of

AFG in PDG: for any n, Xn+1 − Xn 6= ∅.

4 Conclusion

The general model of acceptors used by [11] to define AFA is a finite state machine asso-

ciated with an auxiliary storage system. The infinite graph formalism is an elegant way to

modelize these machines. A language is defined as a trace of an infinite graph. This infinite

graph is obtained by simple transformations from a generator which may be considered as

an auxiliary storage structure (e.g. ∆2 is a stack, ∆1 is a counter. . . ). The intrinsic complex-

ity of the graph and therefore of its traces are inherited from the generator. Figure 8 gives

a summary of AFG properties for some graph families (See [14] and [6] for a definition of

rational graphs and Turing graphs).
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1

2

1

1

ω

1

3

∆ ∆

∆∆

Figure 7: Polynomial Generators: c∆1
≡ k, c∆2

1
≡ k2, c∆3

1
≡ k3, c∆n

1
≡ kn.
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one reversal pushdown
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Abstract

We show undecidability of (action based) linear-time temporal logic (LTL) for timed

Petri nets. This is to be contrasted with decidability of both the problem of checking

safety properties for timed Petri nets, and the problem of checking LTL formulae for

(untimed) Petri nets. The undecidability result is shown through a reduction from a

similar problem for lossy counter machines [May00].

1 Introduction

In this paper we show undecidability of (action based) linear-time temporal logic (LTL) for

Timed Petri Nets (TPNs). The model of TPNs is a generalization of standard Petri nets in the

sense that each token is equipped with a real-valued clock representing the age of the token.

Furthermore each arc in the net is provided with an interval restricting the ages of tokens

allowed to travel through the arc.

In fact, we show that it is already undecidable to check a certain fixed property express-

ible in LTL for TPNs. More precisely, we show undecidability of whether there exists a

computation of the TPN along which a given transition is fired infinitely often. The un-

decidability result is shown through a reduction from a similar problem for lossy counter

machines [May00].

Our result should be contrasted with decidability of the following two related problems:

• Checking safety properties for TPNs [AN00, AN01]. More precisely, in [AN01] we

show how to characterize the set of markings in a TPN from which a given upward

closed set of markings is reachable.
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• Checking LTL formulae for standard (untimed) Petri nets [Esp94]. In fact [BM99]

shows that there is an effectively constructible representation of the set of markings

satisfying a formula.

We recall that (even small fragments) of branching time logics are known to be unde-

cidable for Petri nets [Esp97, May01]. Undecidability holds also for all state based temporal

logics [Esp97].

Outline In the next section TPNs and the recurrent place problem for TPNs are introduced.

In Section 3 we present LCMs and the recurrent state problem. In Section 4 we prove that

LTL is undecidable for TPNs.

2 Timed Petri Nets

Timed Petri Nets (TPNs) are Petri nets where each token is equipped with a real-valued clock

representing the age of the token. The firing conditions for transitions include the usual

ones for Petri nets. Furthermore, each arc between a place and a transition is labeled with

an interval. When a transition is fired, the tokens removed from the input places of the

transition and the tokens added to the output places should have ages lying in the intervals

of the corresponding arcs.

We let N and R≥0 denote the sets of natural numbers and nonnegative reals respectively.

A multiset B over a set A is a mapping from A to N such that for a ∈ A, B(a) is the number

of occurrences of a in B. We define AM to be the set of multisets over A. Sometimes we

write multisets as lists, so e.g. (2.4, 5.1, 5.1, 2.4, 2.4) represents a multiset B over R≥0 where

B(2.4) = 3, B(5.1) = 2 and B(x) = 0 for x 6= 2.4, 5.1. We may also write B as
(
2.43, 5.12

)
. For

multisets B1 and B2 over a set A, we say that B1 ≤ B2 if B1(a) ≤ B2(a) for each a ∈ A. We

define B1 + B2 to be the multiset B where B(a) = B1(a) + B2(a), and (assuming B1 ≤ B2) we

define B2 − B1 to be the multiset B where B(a) = B2(a) − B1(a), for each a ∈ A. We use ∅ to

denote the empty multiset, i.e., ∅(a) = 0 for each a ∈ A.

We use a set Intrv of intervals of the form [a : b], where a ∈ N and b ∈ N ∪ {∞}. For

x ∈ R≥0, we write x ∈ [a : b] to denote that a ≤ x ≤ b.

A Timed Petri Net (TPN) is a tuple N = (P, T, In, Out) where P is a finite set of places, T is a

finite set of transitions and In, Out : T × P → IntrvM describes the flow relation. If In(t, p) 6= ∅
(Out(t, p) 6= ∅) we say that p is an input (output) place of t.

A marking M of N is a finite multiset over P×R≥0. The marking M defines numbers and

ages of the tokens in each place in the net. That is, M(p, x) defines the number of tokens
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with age x in place p. For example if marking M = ((p1, 2.5) , (p1, 1.3) , (p2, 4.7) , (p2, 4.7)),

then there are two tokens in p1 with ages 2.5 and 1.3 and two tokens each with age 4.7 in

the place p2 in M. For each place p we define M(p) to be the multiset over R≥0, where

M(p)(x) = M(p, x). Notice that untimed Petri nets are a special case in our model where all

intervals are of the form [0 :∞].

We define two types of transition relations on markings. A timed transition increases the

age of all tokens by the same real number. Formally M1 −→δ M2 if M1 is of the form

((p1, x1) , . . . , (pn, xn)) and there is δ ∈ R≥0 such that M2 = ((p1, x1 + δ) , . . . , (pn, xn + δ)).

We define the set of discrete transitions −→D as
⋃

t∈T −→t, where −→t represents the effect

of firing the transition t. More precisely, we define M1 −→t M2 if, for each place p with

In(t, p) = (I1, . . . ,Im) and Out(t, p) = (J1, . . . ,Jn), there are multisets B1 = (x1, . . . , xm)

and B2 = (y1, . . . , yn) over R≥0, such that the following holds.

• B1 ≤ M1(p).

• xi ∈ Ii, for i : 1 ≤ i ≤ m.

• yi ∈ Ji, for i : 1 ≤ i ≤ n.

• M2(p) = M1(p) − B1 + B2.

Intuitively, a transition t may be fired only if for each incoming arc to the transition, there

is a token with the right age in the corresponding input place. This token will be removed

from the input place when the transition is fired. Furthermore, for each outgoing arc a token

with an age in the interval will be added to the output place. We define the relation −→ to

be −→δ ∪ −→D.

For a marking M0 of a TPN N, an M0-computation π of N is of the form M0,M1,M2, . . .,

where Mi −→Mi+1, for i ≥ 0. We say that π visits a place p infinitely often if there are infinitely

many i such that Mi(p) 6= ∅. The recurrent place problem for TPNs (RPP-TPN) is defined as

follows.

Instance A TPN N, a marking M of N and a place p of N.

Question Is there an M-computation of N visiting p infinitely often?

In Theorem 4.1, we will show that RPP-TPN is undecidable.

3 Lossy Counter Machines

A lossy counter machine (LCM) is a tuple L = (Q,C, δ), where Q is a finite set of states, C is

a finite set of counters and δ is a finite set of transitions. A transition is a triple of the form
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(q1, instr, q2), where q1, q2 ∈ Q and instr is an instruction. An instruction is of one of the

following three forms

• c+ which increases the value of counter c by 1.

• c− which decreases the value of counter c by 1.

• c? which tests whether the value of counter c is equal to 0.

A configuration γ of L is of the form (q, Val), where q ∈ Q and Val is a mapping from the

set C of counters to the set N of natural numbers. We define a transition relation −→ on the

set of configurations such that (q1, Val1) −→ (q2, Val2) iff one of the following conditions is

satisfied:

1. (q1, c+, q2) ∈ δ, Val2(c) = Val1(c) + 1 and Val2(c ′) = Val1(c ′) if c ′ 6= c.

2. (q1, c−, q2) ∈ δ, Val1(c) > 0, Val2(c) = Val1(c) − 1 and Val2(c ′) = Val1(c ′) if c ′ 6= c.

3. (q1, c?, q2) ∈ δ, Val1(c) = 0 and Val2 = Val1.

4. q2 = q1, Val2(c) = Val1(c) − 1 for some c ∈ C, and Val2(c ′) = Val1(c ′) if c ′ 6= c.

For a configuration γ0, a γ0-computation π of L is of the form γ0, γ1, γ2, . . ., where γi −→ γi+1,

for i ≥ 0. For a state q ∈ Q, we say that π visits q infinitely often if there are infinitely many

i such that γi is of the form (q, Vali). The recurrent state problem for LCMs (RSP-LCM) is

defined as follows.

Instance A LCM L, a configuration γ of L and a state q of L.

Question Is there a γ-computation of L visiting q infinitely often?

Theorem 3.1 [May00] RSP-LCM is undecidable.

4 Undecidability of LTL

In this section, we show undecidability of linear-time temporal logic (LTL) for TPNs. We do

that by showing that RPP-TPN (see Section 2) is undecidable through a reduction from RSP-

LCM (Section 3). It is straightforward to show that RPP-TPN is reducible to the problem of

checking whether there is a computation of the TPN along which a given transition is fired

infinitely often. It follows that (action based) LTL is also undecidable.

Theorem 4.1 RPP-TPN is undecidable.
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Figure 1: (a) Simulating the operation of increasing the counter. (b) Simulating the operation

of decreasing the counter.

We show this through a reduction from RSP-LCM.

Theorem 4.2 RSP-LCM can be reduced to RPP-TPN.

Proof. We say that an instance of RSP-LCM or RPP-TPN is a positive instance if there is a

computation such that the state or place is visited infinitely often, that is if the answer to the

question in the definition of the problem is yes. Given an instance of RSP-LCM we construct

an instance of RPP-TPN such that one of them is a positive instance if and only if the other

one is a positive instance. Suppose that we are given an instance of RSP-LCM, i.e., an LCM

L, a configuration γ of L and a state q of L. We construct an equivalent instance of RPP-TPN,

i.e., we derive a TPN N, a marking M of N, and a place p of N, such that RPP-TPN has a

positive answer if and only if RSP-LCM has a positive answer.

Suppose that LCM L = (Q,C, δ). We construct a corresponding TPN N = (P, T, In, Out)

as follows. For each state q ∈ Q there is a place in P which we call place q. We use PQ to

denote to the set of places of N corresponding to states. Also, for each counter c ∈ C there

is a place in P which we call place c. We use PC to denote to the set of places corresponding

to counters. Intuitively, the state of L is defined in N by the element of PQ which contains a

token. (The TPN N satisfies the invariant that there is at most one place in PQ which contains

a token). The value of counter c in L is defined in N by the number of tokens in place c which

have ages less than 1 (tokens which have ages more than 1 are considered to have been lost

and do not affect the value of the counter). Losses in L are simulated either by making the

age of the token at least 1, or by firing a special loss transition which can always remove

tokens from the places in PC. The flow relation corresponding to In and Out reflects these

properties and is defined as follows.
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Figure 2: Simulating the operation of testing the value of the counter c.

• A transition (q1, c+, q2) in δ is simulated by a transition in T which is of the form in

Figure 1(a). The transition moves a token from place q1 to place q2 and adds a token

to place c.

• A transition (q1, c−, q2) in δ is simulated by a transition in T which is of the form in

Figure 1(b). The transition moves a token from place q1 to place q2 and removes a

token from place c.

• Transitions of the form (q1, c?, q2) have the most complicated simulations. The con-

struction is shown in Figure 2. We use two intermediate places r1 and r2. The transi-

tion t is first fired adding a token to each of the places r1 and r2. The token in r2 will

either stay in r2 for exactly on time unit, or it will forever stay in place r2 after which

no tokens will ever reside in any place in PQ. The idea is that we reset the value of

counter c to 0, by making the ages of all tokens in place c at least 1. Observe that we

simulate testing for 0 in L by resetting the counter in N. This is possible since L is lossy

and therefore it may choose to decrease the counter c to 0 each time c is tested for 0.

Furthermore, in order to avoid resetting the values of the rest of the counters, we add,

for each c ′ ∈ C− {c} a new transition. In Figure 2, we assume that C− {c} = {c1, . . . , cn},

and thus we add the transitions t1, . . . , tn. The transition is used to refresh the ages of

the tokens in the places in PC−{c}. For instance, if a token in place c1 is about to become

1 and thus become too old, the transition t1 can be fired replacing the token by a new

fresh token with age 0. When the transition t ′ is fired, the new control state will be q2,
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Figure 3: Simulating losses.

and each token in place c will have an age which is at least 1. The resulting marking

will therefore correspond to the counter c having the value 0. We also observe that the

refreshing process for the rest of the counters will be stopped after firing t ′, since the

token in r1 will now be removed.

• For each place c in PC there is a transition which we call lossc (Figure 3).

Consider a marking M of N and a configuration γ = (q, Val) of L. We say that M is an

encoding of γ if M contains one token in place q and the number of tokens with ages less than

1 in place c is equal to Val(c). Furthermore, all other places in M are empty.

We derive N from L as described above. We define M to be the encoding of γ and define

p to be q.

Consider a γ-computation π = γ0, γ1, γ2, . . . of L. We show that there is a M-computation

π ′ = M0,M1,M2, . . . of N, such that for each i there is a j ≥ i where Mj is an encoding of

γi. This implies that if π visits q infinitely often then π ′ visits p infinitely often. We use

induction on i. The base case is trivial. We know that γi −→ γi+1. This means that we can

derive γi+1 from γi, using one of the four possible types of transitions described above. We

explain only the least obvious case, namely when γi+1 is derived from γi by testing the value

of a counter c for 0. The other cases can be explained in a similar manner. Let γi = (qi, Vali).

We know that Vali(c) = 0. By induction hypothesis we know that there is a j such that Mj

is a encoding of γi. This means that place qi in Mj contains a token. From the construction

described above (Figure 2) we know that we can fire a sequence of transitions, which result

in moving the token from place qi to place qi+1, making the ages of all tokens in place c at

least 1 and keeping the number of tokens in PC − {c} which have ages less than one. This

means that the new marking will be a encoding of γi+1.

Suppose that there is an M-computation π of N visiting place q infinitely often. Let π

be of the form M0,M1,M2, . . .. Consider the maximal subsequence π ′ = M ′
0,M

′
1,M

′
2, . . .

of π, where each M ′
i is an encoding of some configuration of L. The sequence π ′ exists

and is infinite since q is visited infinitely often. Let γi = (qi, Vali) be the configuration
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which is encoded by M ′
i. We show that γi

∗
−→ γi+1. It follows immediately that there is a

computation π ′′ of L visiting q infinitely often.

Since M ′
i

∗
−→M ′

i+1 we know that there are M0,M1, . . . ,Mm such that M0 = M ′
i, Mm =

M ′
i+1 and M0 −→ M1 −→ · · · −→ Mm. There are two cases. If m = 1, i.e., M ′

i −→ M ′
i+1,

we know that M ′
i+1 can be derived from M ′

i by firing a transition corresponding to one of

those in Figure 1 or Figure 3. In this case the proof is straightforward. If m > 1, then M ′
i+1

is obtained from M ′
i by firing transitions corresponding to those in Figure 2 (these are the

only transitions in N which can make all places in PQ empty and thus prevent the markings

M1, . . . ,Mm−1 from being encodings of configurations of L). This means that (qi, c?, qi+1)

is a transition in L, for some counter c. From the construction of Figure 2, we know that

all tokens in place c will eventually have ages which are at least 1. Furthermore, the ages of

some of the tokens in PC−{c} may also exceed 1, since not all tokens need to be refreshed. We

can derive γi+1 from γi by first performing loss transitions corresponding to tokens which

become too old followed by the transition (qi, c?, qi+1). 2
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Abstract

Walukiewicz gave in 1996 a solution for parity games on pushdown graphs: he

proved the existence of pushdown strategies and determined the winner with an EX-

PTIME procedure. We give a new presentation and a new algorithmic proof of these

results, obtain a uniform solution for parity games (independent of their initial configu-

ration), and extend the results to prefix-recognizable graphs. The winning regions of the

players are proved to be effectively regular, and winning strategies are computed.

1 Introduction

Games are an important model of reactive computation and a versatile tool for the analysis

of logics like the µ-calculus [4, 5]. Namely we know that the model checking problem of

the µ-calculus is polynomialy equivalent to the problem of solving parity games. In recent

years, games over infinite graphs have attracted attention as a framework for the verification

and synthesis of infinite-state systems [6].

In the present paper we consider two-player parity games on pushdown graphs (tran-

sition graphs of pushdown automata) and on prefix-recognizable graphs. It was shown in

[9] that one can determine in EXPTIME the winner of a pushdown game, and that winning

strategies can be realized also by pushdown automata.

The drawback of these results [6, 9] is a dependency of the analysis on a given initial

game position, and a lack of algorithmic description of the (computation of) winning strate-

gies. In this paper we extend the results of [9] to a uniform solution for parity games on

prefix-recognizable graphs (independent of initial configuration), and we define explicitly

the (computation of a) winning strategy.
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In Section 2 we give a new presentation and proof of the results of [9] stressing upon

effectivity. Section 3 presents an exemple of pushdown game. Then in Section 4 we extend

these results to compute uniformly the winning region of the game (the set of configurations

from which Player I can win). It is proved to be effectively regular, and a corresponding win-

ning pushdown strategy is also uniformly defined. In Section 5 we consider parity games on

prefix-recognizable graphs, which are an extension of pushdown graphs, where the degree

of a vertex can be infinite [2]. We show that any prefix-recognizable game can be “simulated”

by a pushdown game, in the sense that under a certain correspondence of game positions,

the winner of one game is the same player as the winner of the other game. An exemple is

also provided. Applying the uniform solution of Section 4, we get a uniform solution and

an effective winning strategy also over prefix-recognizable graphs.

2 Pushdown Games: Walukiewicz’s Results

Sections 3 and 4 of [9] are not stated in an effective (i.e., algorithmic) framework, and their

results “become” effective only with the help of Section 5 of [9]. We prefer to give first a new

presentation of the construction of Section 5 of [9]. Then the most important results can be

deduced, including all algorithmic claims.

The idea of [9] is to “reduce” the pushdown game to a parity game on a finite graph. This

allows to determine the winner, and also the winning strategy. We assume the positional

(“memoryless”) determinacy of parity games over finite graphs, see [4].

A Finite State Parity game (FSP) is a tuple (S, E, λ) where S = SI ] SII is the finite set of

vertices of the game graph, E ⊆ S × S is the edge relation, and λ : S −→ {0, · · · ,max − 1} is

the priority function (max > 0). It is assumed in [9] that E ⊆ (SI × SII) ∪ (SII × SI), but this

is not essential. From now on we use the infix notation→ for the edge relation: ∀s, s ′ ∈ S,

(s, s ′) ∈ E ⇔ s→ s ′.

Starting in a given initial vertex π0 ∈ S, a play in (S, E, λ) proceeds as follows: if π0 ∈ SI,

Player I picks the first transition (move) to π1, else Player II does, and so on from the new ver-

tex π1. A play is a (possibly infinite) maximal sequence π0π1 · · · of successive vertices. For

the winning condition we consider the max-parity version: Player I wins the play π0π1 · · ·
iff lim supk→∞ λ(πk) is odd, i.e., iff the maximal priority seen infinitely often in the play is

odd.

A Pushdown Game System (PDS) is a tuple (P, Γ, ∆), where P = PI]PII is the partitioned set

of control locations, Γ the stack alphabet, and ∆ a (finite) transition relation ∆ ⊆ P×Γ×P×Γ62,

where Γ62 = ε ∪ Γ ∪ Γ2. The set of configurations of the PDS is V = PΓ ∗, partitioned into

106



VI = PIΓ
∗, VII = PIIΓ

∗. The set of transitions, or edge relation, is {(pγν, p ′µν) | (p, γ, p ′, µ) ∈
∆,ν ∈ Γ∗}. We also have a priority function Ω : P −→ {0, · · · ,max − 1}, extended to V by

Ω(pν) = Ω(p). A play starting from an initial configuration π0, and the winning condition

are defined in the same way as for the FSP, replacing SI and SII by VI and VII. Player I wins

a play π0π1 · · · iff lim supk→∞Ω(πk) is odd. In this section we consider a particular initial

configuration π0 = p0 ⊥, where ⊥∈ Γ , p0 ∈ P.

A pushdown strategy for I in its general form is a deterministic pushdown automaton with

input and output. It “reads” the moves of Player II (elements of ∆) and outputs the moves

(choices) of Player I , like a pushdown transducer.

Definition 2.1 Given a game over a PDS (P, Γ, ∆), where ∆σ is the set of transition rules in ∆ depart-

ing from Player σ configurations, a pushdown strategy for Player I in this game is a deterministic

pushdown automaton S = (Q,A,Π), with a set Q of control states, some stack alphabet A, and a

finite transition relation Π ⊆ ((Q × A × ∆II) × (Q × A∗)) ∪ ((Q × A) × (Q × A∗ × ∆I)).

Theorem 2.2 [9] Given a Pushdown Game System G with a parity winning condition, one can

construct a Finite State Parity game such that:

1. the winner of the parity game over G from the initial configuration p0 ⊥ is the winner of the FSP

from a certain initial vertex denoted Check(p0,⊥, B,Ω(p0)), where B ∈ (P(P))max,

2. a winning pushdown strategy for Player I in the parity game over G from the initial configuration

p0 ⊥ can be constructed from a winning strategy for Player I in the FSP from the initial vertex

mentioned above..

In the sequel we present informally how a play on the PDS is “simulated” in the FSP. We will

see later that a configuration pγν of the PDS, where p ∈ P, γ ∈ Γ , and ν ∈ Γ ∗, is represented

in the FSP by a vertex Check(p, γ, B,m), where m ∈ {0, · · · ,max − 1} is a priority, and

B ∈ (P(P))max “summarizes” information about ν. (the number m is the highest priority

seen in a certain part of the game, and B represents the set of control states q such that

Player I can win the game from qν, under certain conditions depending on m). To begin

with, consider the initial configuration (p0 ⊥), where the symbol ⊥∈ Γ cannot be erased

w.r.t. the rules of ∆. The corresponding vertex of the FSP is Check(p0,⊥, B,m), where in this

particular case B and m are not relevant.

From a configuration pγν, simulated by Check(p, γ, B,m), the player whose turn is it is

determined by p, in the PDS as well as in the FSP: either p ∈ PI or p ∈ PII. Let σ ∈ {I, II} such

that p ∈ Pσ. Different types of moves are possible in the PDS.

If Player σ chooses a transition (p, γ, p ′, γ ′), i.e., if the stack length remains constant, then

the FSP proceeds to the vertex Check(p ′, γ ′, B, max(m,Ω(p ′))). This means that B remains
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the same, m is updated for later use and represents the maximal priority seen since last

initialization of m (see below). The priority of this vertex is Ω(p ′) in the FSP, as well as the

corresponding configuration in the PDS, and the play goes on like that until some “push” or

“pop” operation occurs.

The key point is the treatment of the push operation, because one cannot store in the FSP

the whole information contained in the stack. If Player σ chooses a transition (p, γ, p ′, γ ′η) ∈
∆, i.e., “pushes” one more symbol onto the stack, then in the FSP the corresponding new

vertex is Push(B,m, p ′, γ ′η). This is an intermediate vertex were Player I (always) has to

make a decision. He has to guess what can happen later, and what he can guarantee. Player I

chooses a tuple C ∈ (P(P))max such that he claims/guesses that whenever the symbol γ ′

currently at the top of the stack is “popped”, then after this pop operation, the PDS will be

in a control-state q ∈ C` such that ` is the highest priority seen between the “push” and the

“pop” of this γ ′. This part of the game is a “subgame” in [9], and this notion is not so far

from the idea of “detour” in [7]. More precisely, γ ′ can be replaced later by another letter, but

the condition on C must hold when the length of the stack decreases and symbol η comes at

the top of the stack.

So Player I goes to the vertex Claim(B,m, p ′, γ ′η,C), which is a vertex of Player II . In

particular, if C = (∅, · · · , ∅), then Player I is claiming that the stack will never become again

shorter. And Player I can claim that the highest priority that can be seen in the subgame is `

by choosing C as (C1, · · · , C`, ∅, · · · , ∅). Player II has to answer the claim of Player I : either

he thinks that Player I is bluffing, and he challenges the claim, or he believes that Player I

can achieve his claim, and he wants to see what happens after the subgame.

The second case is simple: Player II goes to vertex Jump(q, η, B,m, `) such that q ∈ C`.

This is an intermediate vertex which, as a shortcut, simulates one of the above mentioned

subgames: among the propositions of Player I , Player II chooses that the highest priority

seen in this subgame was `, and when η appears again at the top of the stack, the new

control state is q. The priority of this Jump() vertex is ` in the FSP. Then the play goes on to

Check(q, η, B, max(`,m,Ω(q))) without any alternative.

In the first case, when Player II challenges the claim, he goes to vertex

Check(p ′, γ ′, C,Ω(p ′)). This means that the last component is reset to Ω(p ′), and will re-

member the maximal priority seen in the subgame we just entered. The tuple C is stored,

and whenever a “pop” operation occurs later, it is possible to check if the claim of Player I is

achieved. If it is, this means immediate win for Player I . If it is not, this means immediate

win for Player II (see the proof for details, and above for the update of m). But the play can

also stay forever in the Check() vertices, i.e., without “pop”. In this case the winner is deter-
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mined by the parity condition. In fact the claim of Player I after a push operation means also

that if no pop occurs later, then he has to win the subgame just with the parity condition.

We restrict ourselves in this paper to the following form of pushdown strategy. We consider

a strategy automaton (Q,A,Π) where Q = P = PI ] PII, A = Γ × Σ, Σ is any alphabet, and

Π ⊆ ((PII×A×∆II)×(P×A∗))∪((PI×A)×(P×A∗×∆I)). Moreover we have the condition

that whenever the game is in a configuration pγ0 · · ·γn, the strategy automaton should be

in a configuration p(γ0, σ0) · · · (γn, σn), which means that the strategy has more information

in its stack, represented by σ0 · · ·σn, but follows the play. If p ∈ PI, then p(γ0, σ0) deter-

mines the move of Player I w.r.t. Π, and the strategy updates its stack. If p ∈ PII, then for

any move of Player II , i.e., for any transition in ∆II, the strategy should update its stack. At

the beginning of the play, the strategy has to be initialized properly, according to the initial

configuration of the game. Then for each move of the play, the strategy executes a transition.

In our particular form of strategy, there is a redundancy in the transition relation: sup-

pose p(γ0, σ0) is the top of the stack, if p ∈ PI, then a unique transition is possible in

the strategy, and the output of the move δI ∈ ∆I can be deduced from the update of the

stack. If p ∈ PII, then a unique transition can follow the choice of Player II and update

the stack accordingly, so the input of δII ∈ ∆II is redundant. From now on we consider

Π ⊆ (P × A) × (P × A62).

Formally, if p ∈ PI, then ∀a ∈ A ∃!(p, a, p ′,w) ∈ Π. Moreover if (p, a, p ′,w) ∈ Π and

a = (γ, σ), w = (γ1, σ1) · · · (γk, σk) (2 > k > 0), then (p, γ, p ′, γ1 · · · γk) ∈ ∆, that is to say the

hint of the strategy is valid. If p ∈ PII, then ∀(p, γ, p ′, γ1 · · · γk) ∈ ∆ ∃!(p, a, p ′,w) ∈ Π such

that a = (γ, σ) and w = (γ1, σ1) · · · (γk, σk) (2 > k > 0).

Proof of Theorem 2.2

Definition of the FSP

The PDS is given by G = (P, Γ, ∆), P = PI ] PII, and Ω.

For every p, p ′, q ∈ P; γ, γ ′, η ∈ Γ ; m, ` ∈ {0, · · · ,max − 1}; B,C ∈ (P(P))max, the FSP has the

following vertices:

Check(p, γ, B,m), Push(B,m, p ′, γ ′η),

Claim(B,m, p ′, γ ′η,C), Jump(p, γ, B,m, `), WinI(p),WinII(p),

and the following transitions:

Check(p, γ, B,m)→ Check(p ′, γ ′, B, max(m,Ω(p ′))) if (p, γ, p ′, γ ′) ∈ ∆,

Check(p, γ, B,m)→WinI(p
′) if (p, γ, p ′, ε) ∈ ∆ and p ′ ∈ Bm,

Check(p, γ, B,m)→WinII(p
′) if (p, γ, p ′, ε) ∈ ∆ and p ′ 6∈ Bm,
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Check(p, γ, B,m)→ Push(B,m, p ′, γ ′η) if (p, γ, p ′, γ ′η) ∈ ∆,

Push(B,m, p ′, γ ′η)→ Claim(B,m, p ′, γ ′η,C),

Claim(B,m, p ′, γ ′η,C)→ Check(p ′, γ ′, C,Ω(p ′)),

Claim(B,m, p ′, γ ′η,C)→ Jump(q, η, B,m, `) if q ∈ C`, and

Jump(q, η, B,m, `)→ Check(q, η, B, max(`,m,Ω(q))).

One defines in the FSP the player whose turn it is: Check(p, γ, B,m) ∈ SI ⇔ p ∈ PI, but

Push(B,m, p ′, γ ′η) ∈ SI and Claim(B,m, p ′, γ ′η,C) ∈ SII. From other vertices, the players

have no alternative: there is a unique successor.

One has the following priorities:

λ(Check(p, γ, B,m)) = Ω(p), λ(Jump(q, γ, B,m, `)) = `, and

λ(Push(B,m, p ′, γ ′η)) = λ(Claim(B,m, p ′, γ ′η,C)) = 0 because the latter are intermediate

vertices which should not interfere with the parity condition.

It remains to clarify the situation concerning deadlocks. If the first letter of the stack and

the control state do not permit to execute a transition, there is a deadlock in the PDS as in the

corresponding vertex of the FSP. We leave to the reader to choose the convention concerning

which player wins in that case.

If one needs a bottom stack symbol (⊥), that cannot be erased and cannot be pushed, one

has to care for this explicitly in Γ and ∆. Otherwise when the stack is empty, no transition

is possible in our framework of PDS. We have again to choose a convention for this type of

deadlock. It concerns the choice of B in the initial vertex Check(p0,⊥, B,Ω(p0)) of the FSP.

Equivalence between the games: from FSP to PDS

Suppose that Player I has a winning strategy in the FSP from vertex

Check(p0,⊥, B,Ω(p0)). Since the game graph is finite, and the strategy can be taken posi-

tional [4], it is effectively given as a subset of the set of transitions, and denoted str→ ⊆→.

We will define from it a winning pushdown strategy in the PDS. This construction will be

effective.

The strategy automaton is (P,A,Π), with A = Γ × Σ. We fix Σ = (P(P))max ×
{0, · · · ,max − 1}. For notational convenience, an element (γ, (B,m)) of A will be written

γBm, and a transition ((p, γBm), (p ′, γ ′B ′m ′)) ∈ Π will be written as a prefix rewriting rule

p γBm str
↪→ p ′ γ ′B ′m ′. Similarly p γBm str

↪→ p ′ ε, and p γBm str
↪→ p ′ γ ′B ′m ′ γ ′′B ′′m ′′.

The initial configuration of the PDS is p0 ⊥, and the one of the FSP is Check(p0,⊥
, B,Ω(p0)), where B is chosen according to the convention about empty stack (see above).

The initial configuration of the strategy is p0 ⊥ BΩ(p0). From a configuration p γBmw of

the strategy automaton, where w ∈ A∗, the transition in Π is defined as follows:
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If p ∈ PI, then we know that in the FSP Player I chooses the next vertex from

Check(p, γ, B,m) according to str→ .

- If Check(p, γ, B,m) str→ Check(p ′, γ ′, B, max(m,Ω(p ′))), then use the transition

p γBm str
↪→ p ′ γ ′B max(m,Ω(p ′)).

- If Check(p, γ, B,m) str→ WinI(p
′), then apply p γBm str

↪→ p ′ ε. Of course in the PDS there

is no immediate win, but the game goes on (cf jump move). Moreover it is necessary, in the

new top letter γ ′B ′m ′ of the stack to update m ′ according to m and Ω(p ′), as follows (details

are left to the reader): p γBmγ ′B ′m ′ str
↪→ (p ′,m)γ ′B ′m ′ str

↪→ p ′ γ ′B ′ max(m,m ′,Ω(p ′)).

- If Check(p, γ, B,m) str→ Push(B,m, p ′, γ ′η) str→ Claim(B,m, p ′, γ ′η,C), then apply

p γBm str
↪→ p ′ γ ′CΩ(p ′)ηBm. Of course in the PDS Player II has no opportunity to jump,

he must enter the subgame.

If p ∈ PII, then Player II chooses any possible transition in the PDS, and the

Strategy automaton updates its stack according to the winning strategy str→ of the

FSP. More precisely, if Player II chooses (p, γ, p ′, γ ′) ∈ ∆, then the strategy exe-

cutes p γBm str
↪→ p ′ γ ′B max(m,Ω(p ′)). If II chooses (p, γ, p ′, ε) ∈ ∆, then the

strategy choses p γBm str
↪→ p ′ ε, followed by an update of m ′. If II chooses

(p, γ, p ′, γ ′η) ∈ ∆, then we have to follow str→ in the FSP, and find C such that

Push(B,m, p ′, γ ′η) str→ Claim(B,m, p ′, γ ′η,C). Then p γBm str
↪→ p ′ γ ′CΩ(p ′)ηBm is ap-

plied.

Because str→ is winning in the FSP, str
↪→ is also winning in the PDS. Moreover using

known algorithms to solve the FSP, we have constructed a pushdown strategy which is win-

ning.

from PDS to FSP

Given a winning strategy in the PDS, we will define a winning strategy in the FSP. Here

a strategy in the PDS from initial configuration p0 ⊥= π0 is a function Str which associates

to the prefix π0 · · ·πn of a play a “next move”, i.e., a transition in ∆. We consider a strategy

for Player I , so it is defined if πn ∈ VI. This function is not necessarily computable, so this

part is not effective.

As above, a vertex Check(p, γ, B,m) corresponds to a configuration pγν of the PDS. If

p ∈ PII, the PDS has to follow the move of the FSP in the usual way, whereas if p ∈ PI,

the strategy Str determines the “good” move of the FSP. The only difficult point is the push

operation: from Push(B,m, p ′, γ ′η) Player I has to guess a tuple C ∈ (P(P))max of sets of

possible control states after the next pop. This is well defined if function Str is well defined,

although this is a second reason why this part is not effective (even if Str is effective). �
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Corollary 2.3 If there is a winning strategy for Player I in the parity game over the PDS, then there

is effectively a winning pushdown strategy.

The results in [6, 7] are in some sense stronger. One can deduce from them the winner, and

a winning strategy defined by a finite automaton with output. It reads the current configu-

ration and outputs the “next move”. This strategy is positional and can also be executed by

a pushdown automaton.

Note that in the above construction, the FSP has the same number max of priorities than

the PDS, and the number of vertices is exponential in |P| (more precisely, in O(|∆|e2max|P|)).

So far the best known algorithms to solve finite state parity game are polynomial in the

number of vertices and exponential in the number of priorities. Applied here, we get a

solution for parity games over pushdown systems (P, Γ, ∆) which is exponential in max|P|.

3 Example

We present here a simple example of pushdown game to illustrate the previous section. Let

Γ = {a,⊥}, PI = {p1}, PII = {p0, p2},

∆ = {(p0,⊥, p0, a⊥), (p0, a, p0, aa), (p0, a, p1, a), (p1, a, p1, ε),

(p1,⊥, p0,⊥), (p1,⊥, p2,⊥), (p2,⊥, p2,⊥), (p2, a, p2, ε)},

Ω(p0) = 1, Ω(p1) = Ω(p2) = 0, max = 2.

The game graph looks like the following:

p0⊥ /1 p1⊥ /0 p2⊥ /0

p0a⊥ /1 p1a⊥ /0 p2a⊥ /0

p0aa⊥ /1 p1aa⊥ /0 p2aa⊥ /0

· · · · · · · · ·

We consider the initial configuration p1⊥. We represent below the part of the corresponding

FSP that is relevant for Player I . Namely the solid-arrows define a winning strategy for

Player I , other arrows are dashed. We will write B0B1 for a tuple (B0, B1) in (P(P))2. The

symbol ⊥ cannot be removed from the stack, so the initial value of the tuple B ∈ (P(P))2 is
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not relevant. We set it to ∅∅ in the initial vertex Check(p1,⊥, ∅∅, 0).

Check(p1,⊥, ∅∅, 0) Check(p2,⊥, ∅∅, 0)

Check(p0,⊥, ∅∅, 1) Check(p1,⊥, ∅∅, 1) Check(p2,⊥, ∅∅, 1)

Push(∅∅, 1, p0, a⊥) Jump(p1,⊥, ∅∅, 1, 1)

Claim(∅∅, 1, p0, a⊥, ∅{p1})

Check(p0, a, ∅{p1}, 1) Check(p1, a, ∅{p1}, 1) Win(p1)

Push(∅{p1}, 1, p0, aa) Jump(p1, a, ∅{p1}, 1, 1)

Claim(∅{p1}, 1, p0, aa, ∅{p1})

We see that Player I has a winning strategy from Check(p1,⊥, ∅∅, 0), by choosing always

(∅, {p1}) after a Push node, and, of course, going from p1⊥ to p0⊥.

4 Extension to a Uniform Solution

The deficit of the result of [9] is that the winner is determined only from the initial position

p0 ⊥. We give here an algorithm which determines the winner from any position. One need

a pre-computation to solve the FSP below, e.g. with the algorithm of [8]. Moreover we get

a global or “symbolic” representation of the whole winning region, which will be proved to

be regular (configurations are words over the alphabet P ∪ Γ ).

We have seen that a configuration pγν of the PDS is represented in the FSP by

Check(p, γ, B,m) where B “summarizes” information about ν. This can be used more sys-

tematically if we know from which configurations qν Player I can win. For all B ⊆ P, we

write [B]max = (B, · · · , B) ∈ (P(P))max.

Algorithm 4.1 (uniform solution for parity game on PDS)

Input: a PDS (P, Γ, ∆), P = PI ] PII, and a priority function Ω : P −→ {0, · · · ,max − 1}, a

configuration π0 = pγ0γ1 · · ·γn ∈ PΓ∗

Output: a winning strategy from π0, or the answer “π0 is not in the winning region”
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Solve first the FSP corresponding to the PDS (see proof of Theorem 2.2). Determine the winning

region WI: the set of vertices from which Player I has a winning strategy in the FSP, and compute

a positional (and uniform) winning strategy on WI.

Dn+1 := ∅
for i := n downto 0 do

Di := {q ∈ P | Check(q, γi, [Di+1]
max,Ω(q)) ∈ WI}

end for

if p 6∈ D0 then

answer “π0 is not in the winning region”

else

answer “there is a winning pushdown strategy with initial configuration

p γ0[D1]
maxΩ(p) γ1[D2]

max0 · · · γn[Dn+1]
max0, and transitions like in the proof of Theo-

rem 2.2.”

end if

In the initialization of Dn+1, ∅ should be replaced by some Dn+1 ⊆ P if there is another con-

vention about empty stack. More formally, this iterative computation can be transformed

into an alternating automaton reading the word pγ0γ1 · · · γn, where the transitions are de-

fined depending on which configurations are winning in the FSP. This proves that the win-

ning region of the PDS is regular.

Theorem 4.2 Given a PDS with a parity winning condition, one can compute uniformly the win-

ning region of Player I , which is regular, and a winning pushdown strategy with Algorithm 4.1.

For the proof we observe that the winning condition concerns only the priorities seen in-

finitely often, and the result of a play does not depend on a finite prefix of it. The initializa-

tion of the strategy, as well as determining the winner, is in linear time in the length of the

configuration, and the computation of the “next step” is in constant time.

It remains open how to extend the techniques of [6, 7] also to a uniform solution.

Example

We consider the same example as in section 3. If we solve completely the FSP, we see that
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the following nodes are in the winning region of Player I :

Check(p0,⊥, B0B1, 1) for all (B0, B1) ∈ (P(P))2,

Check(p1,⊥, B0B1, 0) for all (B0, B1) ∈ (P(P))2,

Check(p0, a, B0B1, 1) if p1 ∈ B1,

Check(p1, a, B0B1, 0) if p1 ∈ B0,

Check(p2, a, B0B1, 0) if p2 ∈ B0.

Applaying the algorithm to a configuration π0 = pa · · · a⊥, we get Dn+1 := ∅ and for all

i ∈ {0, n} Di = {p0, p1}. Then the winning region of Player I in the PDS is {p0, p1}a
∗⊥.

5 Parity Games on Prefix-Recognizable Graphs

Among several equivalent definitions of Prefix-Recognizable Graph (class RECRAT in [2]) we

choose the following. Given a finite alphabet Γ , a graph, or set of edges G ⊆ Γ ∗× Γ∗ is a PRG

iff

G = {uw ↪→ vw | u ∈ Ui, v ∈ Vi,w ∈ Wi, 1 > i > N} ,

where for all i, 1 6 i 6 N, the Ui, Vi,Wi are regular sets over Γ .

Games over PRG are defined in a natural way. In a configuration x ∈ Γ+, the first letter

determines the priority and the player whose turn it is. For technical reasons the priority

function is Ω : Γ −→ {2, · · · ,max − 1}, extended to Γ + by Ω(ax) = Ω(a),∀a ∈ Γ, x ∈ Γ∗.

And we have Γ = ΓI ] ΓII, VI = ΓIΓ
∗, and VII = ΓIIΓ

∗, similarly to the PDS. A game starting

from π0 ∈ Γ+ is defined in the usual way. Again we consider max-parity: I wins π0π1 · · · iff

lim sup
k→∞Ω(πk) is odd.

Reduction to Parity Game on Pushdown Graph

We will define a PDS (P, Γ ′, ∆) which is equivalent to the PRG in the sense that Player I

wins the PDS iff he wins the PRG, and a winning strategy in one game can be effectively

constructed from a winning strategy in the other game.

Let Γ ′ = Γ ] {⊥}. A vertex ax ∈ Γ+ of the PRG (a ∈ Γ ) is represented by the configuration

tI
kax⊥ or tII

kax⊥, if k = Ω(a) and a is in ΓI or ΓII respectively (tI
k, tII

k ∈ P). The idea of

the reduction is to decompose the transition uw ↪→ vw of the PRG letter by letter, using

intermediate configurations in the PDS.

Theorem 5.1 Given a PRG with parity condition, one can construct in linear time a PDS which is

equivalent to the PRG in the following sense: a play over the PRG is mapped to a play over the PDS
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preserving the winning condition. Consequently:

1. the winner of the parity-PRG from a given configuration is the winner of the parity-PDS from the

corresponding configuration,

2. a winning strategy in the parity-PRG can be calculated from a winning strategy in the parity-PDS.

Proof: Each regular set is recognized by a (say deterministic, complete) finite automaton:

Bi for Ui, Ci for Ṽi, Di for Wi. Here Ṽi is the mirror language of Vi, i.e., Ci is reading

from right to left. We note pij the states of Bi, qij and rij those of Ci and Di respectively.

The corresponding initial states are pi0, qi0, and ri0. We note pij
a−→ pij′ a transition in Bi

labeled by the letter a. In the following j is always an integer in the finite range [0,NS] where

NS is the maximal number of states of the automata Bi, Ci, and Di.

We define now the PDS that simulates the PRG. The control-states of the PDS have the

same names as the states of the automata Bi, Ci, and Di, with additional superscript I or II

(i is ranging over [1,N]):

PI = {pI
ij | 0 6 j 6 NS} ∪ {tI

k | 2 6 k < max} ∪ {sI
i}

PII = {pII
ij | 0 6 j 6 NS} ∪ {tII

k | 2 6 k < max} ∪ {sII
i } .

Additional control states tI
k and tII

k are used to mark the configurations of the PDS that cor-

respond to vertices of the PRG. States sI
i, s

II
i are added for technical reasons.

The transitions rules of the PDS are the following: for all a, b ∈ Γ, c ∈ Γ ′,

tI
kc ↪→ pI

i0c (Player I chooses to use in the PRG a transition of type i:

uiwi ↪→ viwi ui ∈ Ui, vi ∈ Vi,wi ∈ Wi),

tII
kc ↪→ pII

i0c (similarly for Player II ).

Then for all σ ∈ {I, II},

pσ
ija ↪→ pσ

ij′ if pij
a−→
Bi

pij′ (“reading” of ui),

pσ
ijc ↪→ sσ̄

i c if pij is a final state of Bi (Player σ decides that the word ui

ends here, and asks the opponent for agreement).

The opponent of σ is denoted σ̄.

sσ̄
i c ↪→ rσ

i0c (the opponent wants to verify that the rest of the stack

is really in Wi, because he thinks that this is not the case)

rσ
ija ↪→ rσ

ij′ if rij
a−→

Di
rij′ (“reading” of wi, then:)

rσ
ij⊥ is immediate lost for σ if rσ

ij is not final in Di,

and immediate win for σ if rσ
ij is final in Di,

sσ̄
i c ↪→ qσ

i0c (otherwise, the opponent is trusting Player σ, and lets him continue),

qσ
ijc ↪→ qσ

ij′bc if qij
b−→
Ci

qij′ ( “writing” of vi, chosen by Player σ),
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qσ
ija ↪→ tI

ka if qij is a final state of Ci, a ∈ ΓI and k = Ω(a)

(Player σ chooses that vi ends here),

qσ
ija ↪→ tII

ka if qij is a final state of Ci, a ∈ ΓII and k = Ω(a) (similarly).

Note that the control state tI
k is redundant with the first letter.

Of course the priority of tσ
k is Ω(tσ

k) = k. Given x ∈ Γ+, it is clear that: x ↪→ y in the PRG

(y ∈ Γ∗) iff from the corresponding configuration tσ
kx⊥, Player σ can reach the configuration

tσ′
k y⊥ corresponding to y or wins immediately (if the opponent σ̄ thinks that σ wants to

violate the transition rule).

Now the unique deficit of this construction is that Player σ can stay forever in the states

qσ
ij, pushing infinitely many new letters onto the stack. To avoid this unfair behavior, which

does not correspond to a real transition of the PRG, we define the following priorities:

Ω(pI
ij) = Ω(qI

ij) = Ω(rI
ij) = Ω(sI

i) = 0, Ω(pII
ij) = Ω(qII

ij) = Ω(rII
ij) = Ω(sII

i ) = 1. These

priorities are lower than the normal priorities, so they have no influence on the winning

condition of the “real” game. One takes 0 for Player I , while Player I wants an odd number;

so he can’t win by staying in those intermediate states. Similarly for Player II . �
The reduction presented here is not so far from the result of [3] (Proposition 4.2 of the

full version), that the prefix recognizable graphs are obtained from the pushdown graphs by

ε-closure. It should be possible to extend the symbolic solution of [1] for reachability and

Büchi games on pushdown graphs to prefix-recognizable graphs (with the new feature of

optimal strategy).

Example

Let Γ = {a, b}, we consider the following PRG:

G = (a ↪→ ε)a+ ∪ (a ↪→ b)ε ∪ (b ↪→ a+)ε ,

writen here in the form (U1 ↪→ V1)W1 ∪ (U2 ↪→ V2)W2 ∪ (U3 ↪→ V3)W3, with N = 3. Let

max = 4, Ω(a) = 2, Ω(b) = 3, ΓI = {a}, ΓII = {b}. The game graph is pictured here:

b /3 a /2

... aa /2

aaa /2

· · ·
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According to the above construction, a vertex ai is represented in the PDS by tI
2a

i⊥, and b is

represented by tII
3b⊥. The automaton recognizing Ui, Vi and Wi are very simple, we do not

define them explicitely. We draw a part of the graph of the corresponding PDS:

pII
31⊥ pII

30b⊥ tII
3b⊥ qI

21b⊥ qI
20⊥ sII

2⊥

sI
3⊥ qII

30⊥ qII
31a⊥ tI

2a⊥ pI
20a⊥ pI

21⊥

qI
11a⊥ sII

1a⊥

qII
31aa⊥ tI

2aa⊥ pI
10aa⊥ pI

11a⊥

qI
11aa⊥ sII

1aa⊥

qII
31aaa⊥ tI

2aaa⊥ pI
10aaa⊥ pI

11aa⊥

· · · · · ·
Player I has a winning strategy from b in the PRG.

Discussion

It remains open how to apply the MSO-definability of a winning region (either for deciding

the winner or for extracting a winning strategy). Another question is to develop a theory of

game simulation which covers the examples of Sections 2 and 5.
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Abstract

In this paper, we revisite the forward and backward approaches to the verification

of extensions of infinite state Petri Nets. As contributions, we propose an efficient data

structure to represent infinite downward closed sets of markings and to compute sym-

bolically the minimal coverability set of Petri Nets, we identify a subclass of Transfer

Nets for which the forward approach generalizes and we propose a general strategy to

use both the forward and the backward approach for the efficient verification of general

Transfer Nets.

1 Introduction

Model-checking techniques have proven useful for the verification of finite state abstrac-

tions of various concurrent and distributed computer systems. Unfortunately, useful finite

state abstractions are often difficult to obtain from the concrete systems to verify. As a con-

sequence, a lot of efforts have been made recently to extend the successful techniques for

model-checking of finite state systems to infinite state systems and parametric verification.

A lot of interesting theoretical results have been obtained, see for example [3, 6, 13, 16].
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Nevertheless, a lot of work remains to be done to turn those positive theoretical results into

practical verification algorithms.

In parametric verification, we want to verify at once an entire family of systems. For

example, some mutual exclusion protocols have been designed to work for any number of

processes that want to share common resources and the verification of such protocols for a

specific number of process is not relevant. In this context, several abstraction have proven

to be useful, see for example [1, 4, 17]. The work in this paper is directly connected to the

context of the so-called counting abstraction. When considering the counting abstraction, the

model of (infinite) Petri Nets and its extensions, like Transfer Nets and Reset Nets, are partic-

ularly important. In this paper, we will discuss efficient techniques to analyze infinite state

Petri Nets and Transfer Nets (note that Reset Nets can be viewed as a subclass of Transfer

Nets).

There are two main different approaches for the verification of Petri Nets. The first one

is the forward approach (that was first defined by Karp and Miller in [20]). This approach

starts from the (possibly parametric) set of initial markings and computes an approximation

of the closure of the transition relation (often referred as the Post relation) over markings

defined by the Petri net. That over-approximation is sufficiently precise to completely an-

swer interesting questions about Petri Nets. One of the most important class of properties

we can verify is a subclass of the so-called safety properties, i.e. ”can the Petri net ever reach a

set of bad markings?”, with the restriction that the set of bad markings is upward closed. That

result allows us in theory to automatically answer any mutual exclusion property for example.

The backward approach represents an alternative to the forward approach for the verification

of such properties. The backward approach consists in applying iteratively from the set of

Bad markings the Pre relation (which is the inverse of the Post relation). If the closure of the

Pre relation intersects with the set of initial markings then we know that some Bad markings

are reachable. The application of the Pre relation is guaranteed to terminate if the set of Bad

markings is upward closed [3, 16]. Unfortunately, in the two cases, a naive implementation

of the abstract algorithm is not practical. It is not surprising as we know that the theoretical

complexity of the reachability problem of upward closed sets (also called coverability problem)

for that class of infinite state models is very high, see [22].

So, further research was necessary to obtain more practically useful verification tech-

niques. For the forward approach, we have defined in [15] an heuristic to minimize the set

of markings to consider when computing the Karp-Miller covering tree. For the backward

approach, we have defined in [9] a BDD-like structure that allow us to compactly represent

the infinite sets that are generated during the iteration of the Pre relation. The resulting al-
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gorithm for the backward search is symbolic in the sense that (minimal) markings are never

enumerated during the computation and all the operations on sets involved in the algorithm

are directly computed on the underlying compact structure that represents the sets. Practical

evaluation of the algorithm has shown that it is much more effective than the naive enumer-

ative approach, see [10] for details.

In this paper, as a first contribution, we show how to turn into a symbolic algorithm the

enumerative algorithm that we have defined in [15] to compute the minimal coverability

set of an infinite state Petri net. For this we use a variant of the data structure that we have

defined in [9]. As we have now two symbolic algorithms (one for the forward search, one for

the backward search) , we are able to make a fair comparison between the relative practical

merits of the two approaches.

A main advantage of the backward search is its robustness in the following sense: it is not

only applicable to the basic class of infinite Petri Nets but also to all the extensions that pre-

serve monotonicity (see [3]). Transfer Nets (and so broadcast protocols that they generalize)

and Reset Nets maintain monotonicity for example. Unfortunately, the forward approach

does not generalize for those models (see [8, 13]) i.e. in those cases the search is not guar-

anteed to terminate. Indeed, there are negative results [8] that show us that it is not always

possible to compute the coverability set for those extensions. Nevertheless, as a second

contribution, we show in this paper that we can compute forwardly a weak version of the

coverability set for an interesting subclass of Transfer Nets. That weak version allow us to

decide the safety properties that can be expressed as upward closed sets of markings. This

subclass is of practical interest as it covers all the examples of abstractions of multi-threated

JAVA programs that we have analyzed backwardly in [12]. The advantage of the forward

approach is that it starts from the set of initial markings and usually generate sets that are

more structured than those generated with the backward search.

In [10], we have shown that the efficiency of the backward search can be improved sub-

stantially by using rough approximations of the forward reachable states in order to guide

the search toward initial markings. In our previous works, the over-approximation is ob-

tained automatically by computing the structural invariants of the net ([24]). As a third

contribution, we propose here to use the symbolic implementation of the minimal coverabil-

ity set for Petri nets to compute another over-approximation of the forward reachable states

of general Transfer Nets that do not fall in the class of models that we have identified. If the

over-approximation is too large to give an conclusive answer to the safety verification prob-

lem, we propose to use this over-approximation to guide the exact backward search. The

information collected during this over-approximation is potentially (and often much) richer
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than the one computed with the invariants. Those heuristics seems necessary to attack those

verification problems that have very high theoretical complexities [23].

Structure of the paper In section 2, we introduce the model of Multi Transfer Nets that con-

tains Petri Nets as a subclass. We also recall some notions about upward closed sets, down-

ward closed sets and covering sets. In section 3, we show how to represent efficiently infinite

downward closed sets with a graph based data structure. Section 4 presents a symbolic al-

gorithm to compute the minimal coverability tree of a Petri Net. We have implemented this

symbolic algorithm and used our graph based structure to represent the downward closed

sets it manipulates. We report in section 5 on the practical behavior of our new symbolic

forward algorithm and compare its performances with a symbolic backward algorithm that

we have defined and implemented in previous works. In section 6, we identify an interest-

ing subclass of Multi Transfer Nets for which the forward search can be extended, we call

this class the Multi Isolated Transfer Nets. In section 7, we suggest the cooperative use of a

forward approximation and the backward search for the full class of Multi Transfer Nets.

2 Petri Nets and Multi Transfer Nets

In this section, we define Multi Transfer Nets (MTNs for short), an extension of Petri Nets

with fairly general transfers. That extension maintains the monotonicity property of Petri

Nets 1.

Definition 1 (Multi Transfer Net) A Multi Transfer Net is a pair 〈P,B〉 where: P =

{p1, . . . , pn} is a set of places, and B = {M1, . . . ,Mm} is a set of multi transfers. A multi

transfer M is a tuple 〈T, {B1, . . . , Bu}〉 such that

• T = 〈I,O〉 is the Petri Net transition part of the multi transfer: I,O : P → N;

• each Bi = 〈Pi, pi〉 with Pi ⊆ P (a set of source places) and pi ∈ P (a target place) is a

transfer.

In order to avoid cyclic transfers, a multi transfer M with set of transfers {B1, . . . , Bu}

must satisfy the following conditions:

1. for any Bi, we require that pi 6∈ Pi;

1By monotonicity property, we mean that if a transition t can be fired in a marking m, it can also be fired in

any markings m ′ greater than m.
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2. for any transfers Bi and Bj with Bi 6= Bj, we require that (Pi ∪ {pi}) ∩ (Pj ∪ {pj}) = ∅.

2

A Petri Net is a MTN where each multi transfer contains an empty set of transfer (then the

multi transfer is just a plain Petri Net transition).

A marking m : P → N is a function which assigns a value c ∈ N to each place. That

function can equivalently be seen as a vector of size |P |. We define � on markings such that

m � m ′ iff m(p) ≤ m ′(p),∀p ∈ P. We say that m is covered by m ′ when m � m ′. We denote∑
p∈P m(p) by m(P).

Definition 2 (Multi Transfer-Enabling) Let M be a multi-transfer with the Petri Net transi-

tion part 〈I,O〉. We say that M is enabled in m if I � m. 2

Definition 3 (Multi Transfer-Firing) Let M = 〈T, {B1, . . . , Bu}〉 be a multi transfer enabled in

m. Firing M in m leads to the marking m ′ (written m �M m ′). To define m ′, we need to

define the intermediary markings m1 and m2:

• m1 = m − I . That is, we first remove the tokens needed by the Petri Net part of the

transition;

• then we define m2 as follows:

– for any place p which is target of a transfer, i.e. p = pi for some 1 ≤ i ≤ u, we

have m2(p) = m1(p) + m1(Pi). That is, we transfer all the remaining tokens from

the sources to the target;

– for any place p which is a source of a transfer, i.e. p ∈ Pi for some 1 ≤ i ≤ u, we

have m2(p) = 0;

– for all other places p (which are neither a source nor the target of a transfer), we

have m2(p) = m1(p);

• Finally, m ′ is obtained from m2 by adding the tokens produced by the Petri Net part

of the transition, that is: m ′ = m2 + O.

2

Fig. 1 shows an example of MTN modeling the MESI protocol [18]. Dashed arrows represent

transfer arcs and plain arrows represent classical Petri Nets arcs. When transition d is fired,

one token is removed from the place invalid, then the tokens of the places shared, modified

and exclusive are transferred to the place invalid and finally one token is put in exclusive. We

now define the semantics of MTNs.
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Figure 1: MTN of the MESI protocol.

Definition 4 (Operational Semantics) Let M = 〈P,B〉 be an MTN. A run of M is a se-

quence of markings m0m1 . . . mn such that for any i, 0 ≤ i < n, there exists M ∈ B such that

mi �M mi+1, m0 is the initial marking of the run and mn the target marking of the run. A

marking m ′ is reachable from a marking m, written m �∗ m ′, if and only if there exists a run

with initial marking m and target marking m ′. The set of reachable markings of M from a set

of markings S0, written Reach(M, S0), is defined as the set {m ′ | ∃m ∈ S0 : m �∗ m ′}. 2

Given a MTN M, a set of initial markings S0 and a set of Bad markings U, we are interested

by the following two decision problems:

1. “Can the MTN M reach a Bad marking in U starting from an marking in S0 ?”, i.e.

Reach(M, S0) ∩ U =? ∅. This is called the safety verification problem.

2. “Is there a bound c ∈ N for the place p such that in any reachable marking of M
starting from S0, the number of tokens in p does not exceed c ?”, i.e. ∃c ∈ N : ∀m ∈
Reach(M, S0) : m(p) ≤ c?. 2 This is called the place boundedness problem.

Before going further, we need some more notations. We define a special value ω. For any

c ∈ N, we have c < ω, and furthermore we have ω+c = ω−c = ω,∀c ∈ N∪ {ω}. We extend

markings to ω-markings which assigns a value c ∈ N∪ {ω} to each places. The � relation on

markings is extended to ω-markings in the obvious way.

Definition 5 (Least Upper Bound) The least upper bound (lub) of a (possibly infinite) set of

markings {m1, m2, . . .} is the marking m such that:{
m(p) = ω if ∀c ∈ N : ∃i ≥ 1 : mi(p) > c

m(p) = max({m1(p), m2(p), . . .}) otherwise.

2Let us note that the weaker question “Is c ∈ N a bound for the place p ?” is a particular case of the safety

verification problem.
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2

We say that a set of markings S is downward closed iff we have

∀m : (m ∈ S→ ∀m ′ � m : m ′ ∈ S).

Symmetrically, we say that a set of markings S is upward closed iff we have

∀m : (m ∈ S→ ∀m ′ � m : m ′ ∈ S).

Given a upward closed set S, we note Min(S) the set of minimal elements defined as:

Min(S) = {m ∈ S | ¬∃m ′ ∈ S : m ′ ≺ m}.

Given a downward closed set S, we note Lim(S) the set of its limits elements defined as:

Lim(S) = {m ∈ Slim|¬∃m ′ ∈ Slim : m ≺ m ′} ∪ {m ∈ S|¬∃m ′ ∈ S : m ≺ m ′}

where Slim = {m|m = lub({ m1, m2, . . . , mn, . . .}) with ∀i ≥ 1 : mi ∈ S ∧ mi ≺ mi+1}.

Given a set of ω-markings, we define its downward closure as follows:

Definition 6 (Downward Closure) Let S be a set of ω-markings, the downward closure of S,

noted ↓ S, is the set of markings {m|∃m ′ ∈ S and m � m ′} 2

In Nk, any upward closed set S is identified by its finite set of minimal elements and any

downward closed set S is identified by its finite set of limit elements (that are vectors po-

tentially with ωs). We are now equipped to define the notion of coverability set which is an

important tool to answer the decision problems that we have mentioned above.

Definition 7 (Coverability Set [15, 14]) A coverability set for a MTN M and a set S0 of initial

markings, noted CS(M, S0), is a set of ω-markings such that :

(1) for every m ∈ CS(M, S0) \ Reach(M, S0), there exists an infinite sequence m1 ≺ m2 ≺
m3 . . . with for all i ≥ 1 : mi ∈ Reach(M, S0) and such that m = lub({m1, m2, m3, . . .}).

(2) ∀m ∈ Reach(M, S0), there exists m ′ ∈ CS(M, S0) such that m � m ′.

2

In all the coverability sets, there is an interesting one which is called the minimal coverability

set.

Definition 8 (Minimal Coverability Set [15, 14]) The minimal coverability set of a Petri Net

M for a set S0 of initial markings is the intersection of all the finite coverability sets of M for

S0. 2
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We have shown in a previous work [15] that the minimal coverability set is unique and can

be computed effectively for any Petri Net M and any finite set of initial ω-markings S0.

Let us now recall some properties of coverability sets, see [15] for details.

1. any CS(M, S0) is an approximation of the reachable markings in the following sense :

Reach(M, S0) ⊆↓ CS(M, S0)

2. any CS(M, S0) is sufficient to answer any safety verification problem if the set of Bad

markings U is upward closed. In fact, we have:

Reach(M, S0) ∩ U = ∅ iff ↓ CS(M, S0) ∩ U = ∅

3. any CS(M, S0) is sufficient to give an answer to the place boundedness problem. A

place p is bounded in Reach(M, S0) iff there does not exist a ω-marking m ∈ CS(M, S0)

such that m(p) = ω.

3 Downward Closed Covering Sharing Trees

The motivation of this section is to define a way to compactly represent (possibly infinite)

downward closed sets of markings. We start from Sharing Trees (STs) that are data structures

introduced in [25] to efficiently store tuples of integers. A sharing tree S is a rooted acyclic

graph with nodes partitioned in k-layers such that: all nodes of layer i have successors in

the layer i + 1; a node cannot have two successors with the same label; finally, two nodes

with the same label in the same layer do not have the same set of successors. Formally,

S is a tuple (N,V, root, end, val, succ), where N = {root} ∪ N1 ∪ . . . ∪ Nk ∪ {end} is the

finite set of nodes (Ni is the set of nodes of layer i and, by convention, N0 = {root} and

Nk+1 = {end}), V = {x1, x2, . . . , xk} is a set of variables. Intuitively, Ni is associated to xi.

val : N → N ∪ {>,⊥} is a labeling function for the nodes, and succ : N → 2N defines the

successors of a node. Furthermore, (1) val(n) = > iff n = root, succ(root)=N1, val(n) = ⊥
iff n = end, succ(end)=∅; (2) for i : 0, . . . , k, ∀n ∈ Ni, succ(n) ⊆ Ni+1 and succ(n) 6= ∅;

(3) ∀n ∈ N, ∀ n1, n2 ∈ succ(n), if n1 6= n2 then val(n1) 6= val(n2). (4) ∀i, 0 ≤ i ≤ k,

∀n1, n2 ∈ Ni, n1 6= n2, if val(n1) = val(n2) then succ(n1) 6= succ(n2). A path of a k-sharing

tree is a sequence of nodes 〈>, n1, . . . , nk,⊥〉 such that ni+1 ∈ succ(ni) for i = 1, . . . , k-

1. Paths represent tuples of size k of natural numbers. We use elem(S) to denote the flat

denotation of a k-sharing tree S :

elem(S) = { 〈val(n1), . . . , val(nk)〉 | 〈>, n1, . . . , nk,⊥〉 is a path of S }.
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Figure 2: Example of a dcCST that represents an infinite downward closed set.

Conditions (3) and (4) ensure the maximal sharing of prefixes and suffixes among the tuples

of the flat denotation of a sharing tree. The size of a sharing tree is the number of its nodes

and edges. The number of tuples in elem(S) can be exponentially larger than the size of S .

As shown in [25], given a set of tuples A of size k, there exists a unique sharing tree such

that elem(SA) = A (modulo isomorphisms of graphs). Given two finite sets of tuples of

integers represented as two STs S1 and S2, there are polynomial time algorithms in the size

of the two STs to compute S3 such that S3 = S1 ∩ S2, S3 = S1 ∪ S2 and S3 = S1 \ S2 and

a polynomial algorithm to decide if S1 ⊆ S2. But STs can only represent finite sets. In [11],

we have proposed to use an extension of that data-structure to represent infinite upward

closed sets of markings. We adapt here this idea in order to represent (potentially infinite)

downward closed sets of markings. We know that a (potentially infinite) downward closed

set of markings is identified by its finite set of limit elements. This set is a finite set of ω-

markings. We will use ST to represent this finite set of ω-markings. We define downward

closed covering ST as ST with val : N → N ∪ {>,⊥} ∪ {ω}. A downward closed covering ST

S has the following semantics :

[[S]] = {m ∈ Nk|∃m ′ ∈ elem(S) : m � m ′}

So, [[S]] is the downward closure of elem(S), i.e. [[S]] =↓ elem(S). We will say that a downward

closed covering ST (dcCST) S is irredundant if ¬∃m1, m2 ∈ elem(S) with m1 ≺ m2. In our

experience, it is often better to keep S irredundant. An example of dcCST is given in Fig. 2. It

represents the infinite downward closed set {m ∈ N5|m � 〈0, 0, 0, 0,ω〉 ∨ m � 〈0, 0, 0, 1, 1〉 ∨

m � 〈0, 0, 0,ω, 0〉}. Note that the dcCST encodes efficiently this infinite downward closed set

as its limits elements share large prefixes. It is easy to show with straightforward adaptations

of proofs from [11] (where we define CST to represent infinite upward-closed sets) that (i)

there is no polynomial time algorithm (unless P = NP) to decide [[S1]] ⊆ [[S2]] where S1,S2 are

two dcCSTs, (ii) there is no polynomial time algorithm (unless P = NP) to compute from S1

an irredundant dcCST S2 such that [[S1]] = [[S2]]. We will show that those negative theoretical

results seems not to be a practical obstacle to the use of dcCST in a symbolic algorithm

129



computing the minimal coverability set. The algorithm using dcCSTs is given in the next

section. Practical evaluation of the algorithm is given in section 5.

4 Symbolic Computation of the Minimal Covering Set for PN

To compute a coverability set of a Petri Net, we generally construct what we call a cover-

ability tree (see [20]). This is mainly a tree where the nodes are labeled by the elements of a

coverability set and the edges are an approximation of the successor relation between the

ω-markings labeling the nodes. Unfortunately, the procedure presented in [20] computes

unmanageable trees, even for small Petri Nets. An efficient heuristic is presented in [15].

This algorithm construct the minimal coverability tree, which is a tree where the values of

the nodes correspond to the limit elements of the minimal coverability set of the Petri Net.

The main idea of the algorithms of [20, 15] is to use an acceleration function fa when a

marking m is accessible from a markings m ′ in the tree with m ′ ≺ m. The definition of fa is

as follows :

fa(m ′, m) = m ′′ such that

{
m ′′(p) = m ′(p) if m(p) = m ′(p)

m ′′(p) = ω if m(p) > m ′(p)

More precisely, the algorithm of [15] works as follows. At each step of the construction

of the tree, an untreated node annotated with the ω-marking m is developed by computing

its successors (at the beginning, untreated nodes correspond to initial markings). For each

successors m ′ of m, we have three cases :

(1) there is an already computed ω-marking m ′′ such that m ′ � m ′′, then m ′ is forgotten.

(2) there is at least one path in the tree from a ω-marking m ′′ to m such that m ′′ ≺ m ′,

then we take the largest such path and constructs n = fa(m ′′, m ′). Finally, we take the

farest predecessor m ′′′ of m with m ′′′ ≺ n (possibly different from m ′′) and replace the

subtree rooted by m ′′′ by n (see Fig. 3(a)). We finally remove all the subtrees rooted by

m ′′ with m ′′ ≺ n (see Fig. 3(b)).

(3) In the other cases, a new node connected to the node of m and annoted with m ′ is

added to the tree. As in the previous case, all the subtrees rooted by a marking m ′′

such that m ′′ ≺ m ′ are removed.
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Figure 3: operations on trees

An improvement of this algorithm is to symbolically treat the sets of ω-markings instead

of enumerating them. Symbolically means that the computations on sets are done by mak-

ing some global computations on the data structures used to represent them. To make this

possible, we first define a set-based version of the algorithm of [15]. Fig. 4 shows such an

high-level algorithm manipulating sets. In [15], the minimal coverability tree is constructed

to manage case (2) and (3). But note that, for those cases, we only need the reachability

relation between ω-markings rather than the direct successor relation of the tree. For this

reason, we do not compute a coverability tree in the symbolic algorithm: we do not main-

tain the successor relation but only the closure of that relation. It is easy to see that this is

sufficient for the case (2) and case (3) of the previous algorithm when we want to answer

reachability of an upward closed set of markings or place boundness3.

All the operations of the enumerative algorithm are replaced by operations on down-

ward closed sets. The symbolic algorithm computing the minimal coverability set of a Petri

net is given in figure 4 and works as follows. The algorithm maintains a set F of ω-markings

that are untreated (this is the frontier of the search), a set S of ω-markings that contains the

nodes already treated, and R+ is a set of pairs of ω-markings 〈m, m ′〉 such that m, m ′ ∈ S∪ F

and m �∗ m ′. All the sets of ω-markings or pairs of ω-markings are represented using

dcCSTs and all the operations of the algorithm are symbolic in the sense that they all works

3Note that the construction of the coverability graph allow us to answer to the regularity problem (is the lan-

guage of the net regular). As the elements of a coverability set are the nodes of a coverability graph, such a graph

is constructed by adding edges between the elements of the set by simply applying the Post operation on each

of them.
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1: function MinimalCoverabilitySet (〈P ,B〉; S0) return S

2: F←− S0

3: S←− S0

4: R+ ←− ∅
5: while F 6= ∅ do

6: Succ←− {m ′|∃m ∈ F, M ∈ B : m �M m ′}

7: Succ←− max(Succ) \ {m|∃m ′ ∈ S : m � m ′}

8: R+ ←− R+ ∪ {〈m, m ′〉|m ∈ F ∧ m ′ ∈ Succ ∧ ∃M ∈ B : m �M m ′}

9: R+ ←− R+ ∪ {〈m, m ′〉|m ′ ∈ Succ ∧ ∃m ′′ ∈ F, M ∈ B : m ′′ �M m ′ ∧ 〈m, m ′′〉 ∈ R+}

10: Succ ′, R+ ′ ←− Acc(S, Succ, R+)

11: S←− S ∪ Succ ′

12: S←− max(S)

13: F←− max(Succ ′)

14: R+ ′ ←− R+ ∩ (S × S)

15: endwhile

Figure 4: Symbolic Algorithm that computes the minimal coverability set for a Petri net

〈P,B〉 and a set of initial ω-marking S0.

directly on the structure of the dcCSTs representing the sets. All the algorithms on dcC-

STs are easy adaptations of algorithms on CSTs that we have defined in [11].

At each iteration of the loop (line 5), the following operations are performed. In line (6),

the set of the new reachable ω-markings (Succ) is computed and only the maximal elements

of this set that are not covered by an ω-marking computed in previous iterations are kept

(line 7). Lines 8 and 9 update R+ for those markings. In line 10, we compute the accelerations

(see description of the function Acc). We then add the successor ω-markings of the frontier

that are obtained after acceleration to the set S of ω-markings computed so far (line 11). In

line 12, we suppress from S all the ω-markings that are not maximal. As the new frontier

we only consider the maximal elements computed during the current iteration (possibly

accelerated) (line 13). After the minimization of S, the relation R+ is updated.

The acceleration function is given in Fig. 5 and works as follows. It takes as arguments

the set of new reachable ω-markings (Succ), the set of reachable ω-markings computed

in the previous iterations (S) and the accessibility relations on all those ω-markings (R+).

First, the set of pairs that have to be accelerated is computed (line 2). The first component

of those pairs are called source of the acceleration, the second one is called the target of the

acceleration and the result of the acceleration is called the accelerated ω-marking. The arcs

between the source of the acceleration and the accelerated ω-marking are computed (line
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3), the arcs between a predecessors of a source of an acceleration and the corresponding

accelerated ω-marking are computed (line 4) and finally, the arcs between the successors of

a source of an acceleration that are predecessors of the target of the acceleration are linked

to the accelerated ω-marking (line 5). R+ is adjusted by adding all those arcs and the set of

successors is adjusted by adding all the accelerated elements (lines 7-8).

1: function Acc (S;Succ;R+) return Succ ′,R+ ′

2: G←− {〈m, m ′〉 ∈ R+ : m ≺ m ′}

3: H1 ←− {〈m, m ′〉|∃m ′′ : 〈m, m ′′〉 ∈ G ∧ m ′ = fa(m ′, m ′′)}

4: H2 ←− {〈m, m ′〉|∃〈m ′′′, m ′′〉 ∈ G : m ′ = fa(m ′′′, m ′′) ∧ 〈m, m ′′′〉 ∈ R+}

5: H3 ←− {〈m, m ′〉|∃〈m ′′′, m ′′〉 ∈ G : m ′ = fa(m ′′′, m ′′) ∧ 〈m ′′′, m〉 ∈ R+ ∧ 〈m, m ′′〉 ∈ R+}

6: H←− H1 ∪ H2 ∪ H3

7: R+ ′ ←− R+ ∪ H

8: Succ ′ ←− Succ ∪ {m|∃m ′ : 〈m ′, m〉 ∈ H}

Figure 5: Function that accelerates all the accelerable cycles.

As previously explained, the size of dcCST can be logarithmic in the size of the set of

limit elements it represents. In this way, we can potentially have an exponential gain both

in memory usage and execution time using dcCST to represent sets of ω-markings and the

closure of the transition relation.

5 Comparison With Backward Approach

5.1 Conceptual Comparison

In this section, we recall some facts about the forward and backward approach for the veri-

fication of infinite states Petri Nets and their monotonic extensions.

Forward Backward

Downward closed Sets Upward closed Sets

Over-approximation of successors Exact set of predecessors

Acceleration No Acceleration

Not Robust Robust

Safety, Place boundedness Safety

Depends on initial markings Depends on bad markings

Figure 6: Conceptual differences between forward and backward search.
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Sets. Starting from an upward closed set, the application of Pre preserves the upward

closure of the set. So, the backward search manipulates upward closed sets. As we have

seen, a coverability set is the set of limit elements of a downward closed set of markings

that over-approximates the set of reachable markings. So, forward approach manipulates

downward closed sets.

Approximation of the computation. The backward approach computes the exact set of

predecessors of an upward closed set of bad markings and the forward approach computes

an approximation of the reachable markings that is still precise enough to verify upward

closed safety properties.

Techniques to guarantee termination. By applying the Pre operation, it is guaranteed to

reach a fixpoint after a finite number of iterations. Forward approach needs an acceleration

function to reach a fixpoint when the net is unbounded.

Robustness. Backward approach is robust for extensions of Petri Nets that maintain

monotonicity of the model, on the other hand forward approach cannot always be extended

for those natural extensions of Petri Nets.

Properties. Only covering properties can be decided with the backward algorithm but in

addition place boundness can be solved with the forward approach.

Dependence of the search. When computing the coverability tree, we start the construc-

tion of the tree from the set of initial markings and the tree does not depend on the property

that we want verify. On the other hand, with the backward approach, the computation

depends on the property to verify. Note that if Pre∗(U) does not intersect with the set of ini-

tial markings then no set computed during the fixpoint computation contains any reachable

marking.

5.2 Practical Comparison

We have applied our symbolic forward algorithm on a set of parametrized Petri Nets 4. The

results of the experiments are shown in Fig. 7 and compared with the results obtained using

our symbolic backward algorithm defined in [10]. We have run the backward algorithm with

4see the web page http://www.ulb.ac.be/di/ssd/lvbegin/CST/index.html for a detailed description of

the examples.
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and without the invariant heuristic of [10]. The invariant heuristic computes structural in-

variants of the Petri net and uses them to prune the backward search: every minimal element

defining an upward closed set that does not intersect with the set of solutions of the struc-

tural invariants is suppressed. This heuristic is safe as the set of solutions of the structural

invariants over-approximates the reachable markings of the Petri net. Our set of examples is

composed by some concurrent and production systems as the multipoll ([21]), the mesh2x2

([2]) and its extension to 3x2 case, the flexible manufacturing system (FMS) of [7], the central

server model (CSM) of [2] and the PNCSA protocol analysed in [5, 15].

As we can see from the figures, the forward search is always faster than the backward

search. This is due to the fact that the behavior of the Petri net is much more regular when ex-

ecuted from its initial markings than when executed backwardly from a possible non reach-

able set of markings. As we can see for the PNCSA1 and PNCSA2 examples where we verify

two different properties, efficiency of the backward search can depend a lot on the property

that we want to verify. The invariant heuristic is very useful to obtain reasonable execution

times in the backward search, this confirms the observation that getting some information

about (an over-approximation of) the reachable markings is important.

Case Study P T NNPost NEPost IPost EXPost MPost NNPre NEPre IPre EX1
Pre MPre EX2

Pre

PNCSA1 31 36 100 80 56 1s 2336kb 176 89 17 16.42s 3720kb 2.5s

PNCSA2 31 36 100 80 56 1s 2336kb 368 132 38 >4h 48620kb 43.79s

CSM 14 13 35 16 10 0.02s 1472kb 109 152 11 0.1s 2116kb 0.07s

FMS 22 20 36 24 16 0.08s 1712kb 881 1695 46 6.13s 5680kb 5.98s

mesh2x2 32 32 78 256 8 0.13s 1784kb 344 427 15 0.8s 2600kb 0.8s

mesh3x2 52 54 106 6400 10 0.48s 2176kb 987 2224 21 6.5s 4992kb 6.5s

multipool 18 21 104 220 11 0.14s 1676kb 196 5641 18 2.1s 2516kb -

Figure 7: Benchmarks on an AMD Athlon 900Mhz 500Mbytes : P=No. of places; T = No. of

transitions; NNPost (NNPre) = nodes of the sharing tree describing the minimal coverability

set (the backward fixpoint); NEPost (NEPre) = cardinality the minimal coverability set (the

backward fixpoint); IPost (IPre) =No. of iterations of the forward (backward) algorithm to

reach the fixpoint; EXPost(EX1
Pre) = Execution time to reach the forward (backward) fixpoint

; EX2
Pre = Execution time to reach the backward fixpoint using structural invariants;

6 A Weaker Notion of the Minimal Coverability Set

As we have seen in the last section, there are conceptual advantages to use the backward

approach and practical evidences that plead for the forward approach. Unfortunately, we

know that it is not always possible to compute a coverability set for natural extensions of
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Petri Nets [8]. In this section, we identify a subclass of MTNs for which we can compute

a weaker notion of coverability set. We call this class Multi Isolated Transfer Nets as the

restriction is that any two transfers do not share places. This class is of practical importance

as it covers all the examples of abstraction of JAVA programs that we have analyzed with the

backward approach in [12].

This section is organized as follows. We first formally define the subclass of Multi Iso-

lated Transfer Nets. Then we define the weaker notion of coverability set that we can con-

struct for this class of systems. We then define an algorithm to compute this weak coverabil-

ity set and illustrate its behavior on a simple example.

6.1 Multi Isolated Transfer Nets

Given a multi transfer M = 〈T, {B1, B2, . . . , Bu}〉, we use the notation Transfer(M) to desig-

nate its set of transfers {B1, B2, . . . , Bu}. Remember that each Bi is a pair 〈Pi, pi〉, where Pi is

the set of sources and pi is the target of the transfer Bi.

Definition 9 A Multi Isolated Transfer Net M = 〈P,B〉 is a MTN satisfying the following

additional conditions, expressed informally as :

(i) a place cannot be a source of two different transfers;

(ii) a place cannot be the target of one transfer and source in another one;

(iii) a place source of a transfer cannot be source of the Petri Net part of a multi transfer.

and formally as follows:

(i) ∀p ∈ P : ¬∃Mi,Mj ∈ B with 〈Pi, pi〉 ∈ Transfer(Mi), 〈Pj, pj〉 ∈ Transfer(Mj), (〈Pi, pi〉 6=
〈Pj, pj〉), p ∈ Pi and p ∈ Pj.

(ii) ¬∃p ∈ P such that ∃Mi,Mj ∈ B with 〈Pi, pi〉 ∈ Transfer(Mi), 〈Pj, pj〉 ∈ Transfer(Mj)

and p ∈ Pi and p = pj.

(iii) ∀Mi ∈ B,∀〈Pi, pi〉 ∈ Transfer(Mi),∀p ∈ Pi : ¬∃Mj ∈ B with Mj = 〈〈I,O〉, B〉 and

I(p) > 0.

2

As an illustration of Multi Isolated Transfer Net, consider Fig. 8. We now define a weak

notion of coverability set that is parametrized by a upward closed set U.
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s1 s2

s3 s4

t3

t4

t2

t1

Figure 8: An example of Multi Isolated Transfer Net.

Definition 10 (Weak Coverability Set) Given a MTN M, a set of initial ω-markings S0 and

an upward closed set U defined by an unique minimal marking mU
5, a weak coverability

set of M according to S0 and mU (noted WCS(M, S0, mU)) is a set of ω-markings such that

the two following conditions holds:

(1) ∀m ∈ WCS(M, S0, mU) \ Reach(M, S0), there exists an infinite sequence m1 � m2 �
. . . � mn � . . . with mi ∈ Reach(M, S0) for any i ≥ 1 and such that:

- if m(p) = ω then either mi(p) > mi−1(p), for all i > 1, or mi(p) ≥ mU(p), for all

i ≥ 1.

- if m(p) 6= ω, we have for any i ≥ 0 : mi(p) = mi+1(p) and m(p) = m0(p).

(2) ∀m ∈ Reach(M, S0), there exists m ′ ∈ WCS(M, S0, mU) with m � m ′.

2

A weak coverability set over-approximates the set of reachable states and all the coverability

sets. Nevertheless, it is still sufficiently precise to verify upward closed safety properties.

On the contrary, it cannot always be used to decide place boundedness. This is formally

expressed by the following proposition:

Proposition 1 Let M be a MTN, an initial marking S0 and an upward-closed set U with the mini-

mal marking mU, the following holds :

Reach(M, S0) ⊆↓ CS(M, S0) ⊆↓ WCS(M, S0, mU)↓ WCS(M, S0, mU) ∩ U 6= ∅ iff Reach(M, S0) ∩ U 6= ∅

2

5This restriction is to simplify the presentation, the extension to a finite set of minimal markings (and so to

any upward closed set) is not difficult.
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6.2 Algorithm to Compute a WCS

In this section, we give an algorithm that computes a weak coverability set for a Multi Iso-

lated Transfer Net M, a set of initial markings and an upward closed set U, defined by mU.

The algorithm is presented as an extension of the enumerative algorithm given in section 4.

At each step of the construction of the tree, an untreated node annoted with the ω-marking

m is developed by computing its successors (at the beginning, untreated nodes corresponds

to initial markings). For each successors m ′ of m by firing M, we have three cases as in the

algorithm of section 4 for computing the minimal coverability set of a Petri Net. Cases (1),

(3) are identical to the enumerative algorithm of section 4, we only detail case (2) that define

the following acceleration (that we call AccIsolated) adapted to our subclass of Transfer

Nets.

(2) if there is a sequence of transitions σ in the tree from a marking m ′′ to m such that

m ′′ ≺ m ′ (so, we have m ′′ �σ m �M m ′), then we construct n as follows :

we have n(p) = ω if ∃ a path from m ′′ to m corresponding to the sequence of transition

σ with m ′′ ≺ m ′ and

(1) p is not the source or the target of a transition in σ · M and the marking strictly

increases from m ′′ to m. More formally:

∀〈P, pt〉 ∈ Transfer(σ · M) : p 6∈ ({pt} ∪ P) and m ′′(p) < m ′(p)

(2) p is the target of a transfer in σ · M and either the marking of p increases strictly

from m ′′ to m ′ or there is a source of that transfer that increases strictly from m ′′

to m ′. More formally:

∃〈P, pt〉 ∈ Transfer(σ · M) with (p = pt) and

(m ′′(p) < m ′(p) ∨ ∃p ′ ∈ P : m ′′(p ′) < m ′(p ′))

(3) p is a source of a transfer in σ · M and the marking of p increases strictly from

m ′′ to m ′, and furthermore the marking of p is greater or equal to mU(p). More

formally:

∃〈P, pt〉 ∈ Transfer(σ · M) with p ∈ P and m ′′(p) < m ′(p) and m(p) ≥ mU(p)

otherwise, n(p) = m ′(p).

Finally, we take the farest predecessor m ′′′ of m with m ′′′ ≺ n (possibly different from

m ′′) and replace the subtree rooted by m ′′′ by n.
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Note that as we consider Multi Isolated Transfer Net, those three cases are mutually exclu-

sive. The following theorem states the correction of the algorithm defined with the accelera-

tion above :

Theorem 1 If M is a Multi Isolated Transfer Net, S0 a finite set of initial ω-marking, mU a marking

defining a non-empty upward closed set U, then the algorithm defined in section 4 with the accelera-

tion AccIsolated, terminates and computes a weak coverability set.

Due to space limitation, we omit the formal proof of this statement and give the main idea

that underlies the proof of correctness. The only particularity of the acceleration defined

above is for places involved in a transfer. Let us take the case of a target place t. In the

definition of the accelaration, we put ω in two cases : (1) when t has strictly increased, (2)

if one of its sources has strictly increased. Case (1) is classically justified by monotonicity of

the model, i.e. repeating σ · M will add at least the same number of tokens in t each time

(remember that t is not the source of any transfer). Case (2) is justified as follows: t is not the

source of any transfer, so the sequence σ ·M takes out of t a constant number of tokens each

time σ · M is fired. Furthermore, as a source of t strictly increased between m ′′ and m ′ and

this place is not the source of another transfer, when repeating σ ·M, from m ′, we know that

the target will increase strictly and then we simply apply the justification of case (1). For the

sources, the justification is as follows. When a source increases strictly between m ′′ and m ′,

we are not sure that it will increase beyond any bound, but we know that it will not decrease

when repeating σ ·M. So if its value is greater or equal to mU(s), we know that it will stay so.

By putting ω in s, we do not take a too rough approximation for the following two reasons.

First, putting ω in s is safe w.r.t. the intersection with U, that is n has an intersection with U

iff m ′ and all the marking reachable from m ′ by iterating σ · M has an intersection with U.

Second, it is easy to see that if we put ω in a source s, then there is also a ω in the target t of

the transfer, and this ω will never leave the place t as we know that t is not the source of a

transfer. As a consequence, the ω in s is guaranteed not to “propage” unsafely in the net.

We are planning to extend our symbolic implementation of the algorithm of section 4

and test it in the near future.

6.3 An Examplative Run of the Algorithm

We have seen in the previous subsection that our acceleration for Multi Isolated Transfer

Nets does not always put a ω in a source that is increasing. Note that this is the only dif-

ference with the algorithm for Petri Net. Applying the usual algorithm for Petri net to a

MTN may result in an over-approximation. We illustrate this phenomenon on an example.
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Fig. 9(a) shows a simple example of Multi Isolated Transfer Net. We consider 〈1, 0, 0,ω〉
as initial ω-marking. Fig. 9(b-d) shows the computations of algorithms presented in the

previous sections. Fig. 9(b) presents the tree of the enumerative algorithm for Petri Net after

two iterations. At this step, it detects that the successor for the transition b is greater than

the initial ω-marking 〈1, 0, 0,ω〉. Thus, case (2) is applied (so, here we forget that s3 is a

source of a transfer in a) : ω is added to the initial ω-marking in s3, the initial marking is

then replaced and the procedure continue from this new unique node. Finally, the algorithm

ends after computing the tree shown in Fig. 9(c).

According to the upward closed set s2 ≥ 1 ∧ s3 ≥ 1, the algorithm specialized for Multi

Isolated Transfer net computes the same tree. Thus, the computed weak coverability set

coincides with the over-approximation computed by the algorithm for Petri net and the two

algorithms allow us to conclude that there is a mutual exclusion between place s2 and s3.

But if the safety property to be verified is ”no reachable markings satisfies s3 ≥ 2”, only

our algorithm computing the weak coverability set returns the right answer. At the second

step, as shown by Fig. 9(b) the algorithm also detects that the successor for transition b is

greater than the initial marking but doesn’t put ω for the place s3 because s3 is the source

of a transfer and the number of tokens is not enough to intersect with the upward closed set

s3 ≥ 2. Fig. 9(d) shows the final tree computed by the new algorithm.

=b

s1
s2

s3 s4

a

��

a) d)c)b)

〈1, 0, 0, ω〉

b

a

〈1, 0, ω, ω〉

〈1, 0, 1, ω〉

a

b b

a

〈1, 0, 1, ω〉

〈0, 1, 0, ω〉〈0, 1, 0, ω〉

〈1, 0, 1, ω〉

〈0, 1, 0, ω〉

〈1, 0, 1, ω〉

Figure 9: An example of Isolated Multi-transfer Net.

7 The General Case: Combination of Forward and Backward

Search

As we already recalled the forward approach cannot be extended to the full class of

MTNs [8]. But as shown in Fig. 7, backward approach seems to be more explosion prone

and seems to be useful only when some information about potential reachable markings can
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be used to guide the search. Structural invariants have been used to prune the backward

search space in [10, 12]. Unfortunately, results of Fig. 7 show that this technique does not

always speed up the search.

Fig. 10 shows results on some MTNs corresponding to abstractions of Java programs

analysed with the symbolic backward algorithm of [12]. Without information to prune the

search space, the backward algorithm can take a lot of time, about one hour for the P/Cbug

example and for the corrected version of the model. In those particular examples, the over-

approximation computed by the structural invariants is very effective, compare the columns

in the table of Fig. 10 giving the time for the computation of Pre∗ without and with the

invariant heuristic. But this is not always the case.

On the other hand, the forward symbolic algorithm of section 4 has always very short

execution times on those examples. Unfortunately, that algorithm only computes an over-

approximation of the coverability set for that class of system. For the P/C1
correct and P/C2

examples, the algorithm of section 4 established that the bad markings were not reachable.

In the other cases, that is for P/C1
bug and the I/D systems, the forward over-approximation

cannot be conclusive as bad markings are reachable. Note that bad markings are really

reachable but we can not decide it with the over-approximation given by this algorithm. So

in those cases, the backward algorithm has to be applied 6.

Case Study P T NNPost NEPost IPost EXPost MPost NNPre NEPre IPre EX1
Pre NPre EX2

Pre

I/D 32 28 218 40 73 3.16s 2728kb 800 3073 30 20.11s 6008kb 3.3s

P/C1
bug

44 37 688 93 78 37.4s 4772kb 8418 12234 29 1h12m 33884kb 9.21s

P/C1
correct 44 37 306 25 18 0.63s 2248kb 12479 8396 29 55m50s 31884kb 0.02s

P/C2 20 16 107 14 33 0.23s 1732kb 566 810 19 3.1s 3012kb 0.04s

Figure 10: verification of MTNson an AMD Athlon 900Mhz 500Mbytes

Let us now show that the forward approximation computed by the algorithm of section

4 can give more information than the structural invariants. The parametrized MTN of the

MESI protocol (see [18]) has only one structural invariant which says that the number of to-

kens in all the places is constant in all the forward reachable markings. As the place invalid

can contain any number of tokens (it contains ω tokens in the initial ω-markings), this invari-

ant does not give any information to prune the backward search (see [10] for more details).

But by applying the symbolic algorithm presented in section 4, we obtain that the reachable

markings are covered by the ω-markings {〈ω,ω,ω, 0〉, 〈ω, 0,ω,ω〉} (where markings are en-

coded as 〈invalid, shared, modified, exclusive〉). This over-approximation allows us to verify
6We could have applied the algorithm of section 6 to compute a WCS that is sufficient to verify the safety

properties but our remarks in this section are more general and apply to the full class of MTNs and we do not

have currently an efficient symbolic implementation of that algorithm
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the mutual exclusion property between shared and exclusive. Other interesting properties

cannot be verified with this over-approximation. As an example, consider the mutual exclu-

sion property that asks that at most one token can be in exclusive. The backward approach

can be applied efficiently to answer this question by eliminating during the search all the

upward closed sets that do not intersect with the over-approximation computed forwardly.

This over-approximation contains more information than the structural invariants and so is

potentially more effective than the structural invariant heuristic. So, instead of opposing the

forward and backward approaches, we propose to use them together.

First, if we have to verify that a Multi Transfer Net that does not fall in the class of

Multi Isolated Transfer Net cannot reach an upward closed set of Bad markings U, we first

compute an over-approximation of the minimal coverability set with the symbolic procedure

defined in section 4. Let us note O this set of ω-markings. Then, we check if ↓O ∩ U 6= ∅.

If this is the case, then we are done, we know that the MTN cannot reach U. Otherwise,

we can use O in conjunction with the backward search as follows. Instead of computing

µX · U ∪ Pre(X) we compute µX · ((Uu ↓O) ∪ (Pre(X)u ↓O)) where u is defined as :

u : upward closed set × downward closed set → upward closed set

S u T = {m|∃m ′ ∈ S : m ′ � m and m ′ ∈ T }

So, we remove from S any marking whose upward closure does not intersect with T . This

is mainly the same idea that we use in the invariant heuristic defined in [10]. But the infor-

mation computed using the forward search is always at least as precise as the one computed

using the structural invariants and often much more precise. We will experiment with this

heuristic in the near future.
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Abstract

One of the aspects of computation that state-of-the-art model checking does not deal with

very well is that of dynamic allocation and deallocation (birth and death) of entities. This is es-

pecially true if the number of entities is not known beforehand, or even unbounded (causing

the state space to become infinite). Nevertheless, allocation and deallocation are fundamental

concepts in many fields of computer science. For example, in object-orientation, systems are

composed by dynamic objects (entities) that can be created (allocated) in an arbitrary number

during the computation. Moreover objects can be destroyed (deallocated) e.g., by a garbage

collector. Yet another significant field of application is certainly security where properties of

systems related with fresh secure resources as keys are mostly investigated.

Though there are now calculi (such as the π-calculus [7]) that can express the generation

of fresh names, as well as models (such as history-dependent automata [8]) that can de-

scribe both the birth and the death of entities, what has been missing so far is a logic where

these concepts are captured as primitives; a logic that should be as fundamental to reason-

ing about dynamic allocation as standard propositional logic is to reasoning about a fixed

state space. A formalism that, in a natural way, would allow the specification of properties

like a fresh entity will always eventually be allocated or before a particular entity is deallocated, two

new entities will be allocated. Returning to the example of object-oriented systems, we would

like to express properties like every object in the current state will be eventually deallocated or the

number of running objects will never be less than two, etc. For security: an authentication server

never provides already used secret session keys (in general, authentication servers are trusted to

generate new keys in a proper manner, however, it is easy to imagine a naive or, even faulty,

implementation of such servers).
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An attempt to formulate such a logic will be presented in this talk (based on [4]). Called

allocational temporal logic (A``TL), it has the following features: (i) Entity variables x, y, in-

terpreted by a mapping to the entities existing (i.e., alive) in a given state. The interpretation

is partial: a variable not mapped onto an existing entity stands for an entity that has died.

(ii) Entity equations x = y (where x, y are entity variables), asserting that x and y refer to

the same entity. This cannot hold if either x or y has died; (iii) Entity quantification ∃x.φ,

which holds in a given state if φ holds for some interpretation of x, provided that x is alive.

(iv) A predicate x new to express that the entity referred to by x is fresh, i.e., newly born. In

addition, A``TL has the standard LTL temporal operators.

The logic is interpreted over high-level allocational Büchi automata (HABA), which extend

history-dependent automata [8] with a predicate for the unboundedness of (the number of entities

in) a state, and with a (generalized) Büchi acceptance condition. As for history-dependent

automata, a crucial point is that entity identity is local to a state.

HABA can be used as finite-state abstraction of certain kind of infinite-state systems. As

an example, we define a small imperative language whose main features are the allocation

and deallocation of entities. Although the number of entities allocated by a program in this

language can be unbounded, the operational semantics yields a finite HABA (a significant

condition for the application of model checking).

Together with the logic A``TL, the main contribution of this work is that the model-

checking problem for A``TL is shown to be decidable on HABA. In particular, we present a

tableau-based model-checking algorithm that decides whether a given A``TL-formula holds

for a given HABA. Our algorithm extends the tableau-based algorithm for LTL [6]. To the

best of our knowledge, this yields the first approach to effectively model-check models with

an unbounded number of entities. This is of particular interest to e.g. the verification of

object-oriented systems in which the number of objects is typically not known in advance

and may be even unbounded. Currently, in tools for model checking object-oriented systems

(such as [3, 5]) dynamic creation of objects is only supported to a limited extent (the number

of created objects must be bounded). Furthermore, reasoning about (de)allocation of fresh

entities is relevant also in relation to privacy and locality as discussed in, e.g., [1, 2, 7].
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Linear temporal logic (LTL) [Pnu77] is a popular formalism for specifying properties of (con-

current) programs. It extends propositional logic by two modal connectives—the unary X

(‘next’) operator and the binary U (‘until’) operator. A natural question is how the nesting-

depth of these modalities influences the expressive power of LTL. To answer this (and re-

lated) questions, we formulate and prove a general pumping lemma admitted by LTL lan-

guages. Thus, we obtain a powerful tool which allows to demonstrate the semantical strict-

ness of three hierarchies of LTL formulae, which are parametrized either by the nesting depth

of just one of the two modalities, or by both of them. This part of our presentation is closely

related to the work of Etessami and Wilke [EW00] (see also [Wil99] for an overview of related

results).

The designed pumping lemma provides a necessary condition for the membership to a

given class in a given hierarchy, which is, at least in one case, also sufficient. We discuss this

issue in greater detail and presenting some recent results.

Finally, we shall also discuss a potential applicability of our results to the problem of

state-space explosion in the context of model-checking with LTL [CGP99].

∗Some of the presented results will appear in Proc. of CSL’02.
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Infinity’02 Presentation

(Abstract)

Bisimilarity checking of infinite-state systems has been an active and fascinating area of

research for the last decade [1] and a number of original techniques were invented in order

to explore the decidability barriers of strong and weak bisimilarity. Typical representatives

of systems with unboundedly many reachable states are for example Pushdown Automata

(PDA), Petri Nets (PN), Basic Process Algebra (BPA) and Basic Parallel Processes (BPP).

Recently, new techniques were developed to better classify the decidability and com-

plexity aspects of bisimilarity checking for infinite-state systems. One of them is called the

existential quantification technique. This technique was first used by Jančar [2] in the context of

high undecidability of weak bisimilarity for PN and explicitly formulated by Srba in [3, 4].

The existential quantification technique gives the defender (in the usual bisimulation game)

the possibility to make independent choices in case of nondeterministic branching.

The technique was beneficial for showing that strong bisimilarity of BPP [3] and later

also of BPA [4] are PSPACE-hard problems. These proofs were achieved by polynomial

∗The author is supported in part by the GACR, grant No. 201/00/0400.
†Basic Research in Computer Science,

Danish National Research Foundation.
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time reductions from the problem of quantified boolean formula (QBF) and even though the

classes BPA and BPP differ substantially in their capabilities, the proof strategies are similar.

The reductions can be divided into two phases.

First, a quantified assignment of boolean variables is generated and the clauses of QBF

satisfied by this assignment are remembered in the current states. Second, the condition

that all clauses are satisfied is checked. It is the first (and the main) phase of assignment

generation where the existential quantification technique is used. Moreover, this assignment

generation is general enough to be uniformly described both for BPA and BPP. The only

place where the proofs for BPA and BPP necessarily differ is in the second phase where the

satisfied clauses are checked.

In this presentation we aim at providing a general meta-theorem which formally de-

scribes the sufficient conditions for process algebras to be capable of the assignment gener-

ation. We also present four applications in order to demonstrate the usefulness of the meta-

theorem. The first two applications briefly repeat the PSPACE-hardness of strong bisimilar-

ity for BPA and BPP. The third application deals with strong bisimilarity of normed PDA1.

The last application proves a new result, namely PSPACE-hardness of weak bisimilarity for

normed BPA.
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An effective construction of a finite set of linear equations characterizing bisimulation

equivalence on a given BPP (Basic Parallel Processes) system will be presented. The descrip-

tion has exponential size but (a variant of it) can be ‘traversed’ in polynomial space.

This clarifies various problems related to bisimilarity on BPP. E.g., it can be shown that

the bisimilarity problem for BPP is in PSPACE; combined with PSPACE-hardness which has

been shown recently by J. Srba, PSPACE-completeness of the problem is thus established.

Possibilities to use the introduced method in the case of weak bisimilarity will be briefly

discussed.
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