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Question(Lovasz): What is the maximum of the length
1>C .= Z:|| over all unitivectors z1,...,%, € R® such that
among any three, some pair is orthogonal?

Answer(Konyagin 81, Alon 94): ©(n?/3).

Question(Erdds): What is the maximum number of vectors in
R%such that among any three, some pair is orthogonal?

Answer(Rosenfeld 81): 2d.

Question(Erdds): What about if among any k + 1, some pair is
orthogonal? Is the answer kd?

Answer and follow-up question(Firedi and Stanley 92): No!
But maybe the answer is still at most (kd)©(1)?

Answer(Alon and Szegedy 99): No! Can have d‘?(ogk/loglogk)
many vectors.
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Cool, but why should we care?
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complete graph on k vertices.
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Question(B., Letzter, Sudakov 20): Is the answer closer to v/ or
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Answer(B. 24) At least nl—CUoglogk/logk)

Theorem(Lovész 79): 9(G) < msr(G) and 9(G)I(G) > n

So Y(G) > n/msr(G).
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Definition: For a graph G, MaxCut(G) is defined to be the
maximum over all partitions A, B of the vertex set V(G) of the

number of edges between A and B.

Theorem(Edwards 73): MaxCut(G) > m/2 + Q(/m) for any
graph G with m edges.

Question(Alon, Bollobéas, Krivelevich, Sudakov 03): What is the

minimum of MaxCut(G) — m/2 over all H-free graphs G with
m edges?

Erdos and Lovasz 79, Shearer 92 studied the case H a triangle.
Answer(Alon 94, 96): ©(m*/®) when H is the triangle.

Conjecture(Alon, Bollobas, Krivelevich, Sudakov 03): For any
fixed H there exists £ > 0, such that the answer is at least
QlmPEE).
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Question(Alon, Bollobas, Krivelevich, Sudakov 03): What is the
minimum of MaxCut(G) — m/2 over all H-free graphs G with
m edges?

Answer(Alon, Krivelevich, Sudakov 05): Q(m*+1)/(k+2)) \when

H is an even cycle of length k.

Answer(Glock, Janzer, and Sudakov 23): Q(m*+1/(++2)) when
H is an odd cycle of length k.

Theorem(B., Janzer, and Sudakov 24):

MaxCut(G) — 2 > £ . —2— for any graph G with m edges.

9(G)—1

Corollary(B., Janzer, and Sudakov 24): Q(m(*+1/(:+2)) when
H is a cycle of length k.
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Theorem(B., Janzer, and Sudakov 24):

MaxCut(G) — 2 > = . T for any graph G with m edges.

Definition: The Lovasz theta function ¥(G) is the minimum «,
such that there exists a map f: V(G) — (unit sphere) satisfying

(f(u), flu)i= —1/(w 1) for all au ¢ E(G).

Proof idea: Choose a random
hyperplane and partition the
vertices according to which side of
it they fall on.

flu)

The probability that edge uv falls
in different sides is

L+ Larcsin (—(f(u), f(v)))
REOBIG)
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Definition: The vector chromatic number Xvec(G) is the
minimum «, such that there exists a map f: V(G) — (unit sphere)
satisfying (f(u), f(v)) < —1/(k —1) for all uv € E(G) .

Theorem(B., Janzer, and Sudakov 24):

MaxCut(G) — 3 > + - ——7¢— for any graph G with m edges.

Conjecture(Elphick 23): MaxCut(G) —
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ank (M) over

Question(Hrubes 12): What is the maximum o
all nonnegative n X n matrices?

Answer(Kwan, Sauermann, Zhao 22): At least n' —~O(loglogn/v/Togn)

Answer(B. 24): At least nl—O(Vicglogn/iogn)

Proof sketch: For a nonnegative matrix M, rank, (M) is at

least the minimum number of rectangles whose union is the
support of M.

Consider the Gram matrix M of an orthonormal representation
of an H-free graph on nvertices (for H being the complete
bipartite graph with parts of size k).

So any rectangle in the support of M has cardinality at most 2kn

and thus rank, (M) > 57, where m is the size of the support.




Can the following be improved (or proven)?




Can the following be improved (or proven)?

Let F,, be the family of all H-free graphs on n vertices where H
is the clique of size k.

() (ng/k) < min{msr(G) : G € F,} < nO(loglog k/log k)

pi=OW IR k) o e lEN e L () (nl_Q/k)




Can the following be improved (or proven)?

Let F,, be the family of all H-free graphs on n vertices where H
is the clique of size k.

() (ng/k) <t min{msr(G G e Ak = ntlasesky ek
plQUIoek) < mafd(G) -+ G e F b 1O (nl20F)

Fix H and let JF;;, be the family of all H-free graphs with m edges.

Conjecture(Alon, Krivelevich, Sudakov 05): Does there exist ¢(H)
such that min{MaxCut(G) —m/2: G € F,,} = © (mH))?




Can the following be improved (or proven)?
Let F,, be the family of all H-free graphs on n vertices where H

is the clique of size k.
() (ng/k) <t min{msr(G G e Ak = ntlasesky ek

plQUIoek) < mafd(G) -+ G e F b 1O (nl20F)

Fix H and let JF;;, be the family of all H-free graphs with m edges.

Conjecture(Alon, Krivelevich, Sudakov 05): Does there exist ¢(H)
such that min{MaxCut(G) —m/2: G € F,,} = © (mH))?

Conjecture(Alon, Bollobas, Krivelevich, Sudakov 03): ¢(H) > 1/4.




Can the following be improved (or proven)?

Let F,, be the family of all H-free graphs on n vertices where H
is the clique of size k.

() (ng/k) < min{msr(G) : G € F,} < nO(loglog k/log k)

pi=OW IR k) o e lEN e L () (nl_Q/k)

Fix H and let JF;;, be the family of all H-free graphs with m edges.

Conjecture(Alon, Krivelevich, Sudakov 05): Does there exist ¢(H)
such that min{MaxCut(G) —m/2: G € F,,} = © (mH))?

Conjecture(Alon, Bollobas, Krivelevich, Sudakov 03): ¢(H) > 1/4.

Conjecture(Elphick 23): MaxCut(G) —




Can the following be improved (or proven)?
Let F,, be the family of all H-free graphs on n vertices where H

is the clique of size k.
() (ng/k) <t min{msr(G G e Ak = ntlasesky ek

plQUIoek) < mafd(G) -+ G e F b 1O (nl20F)

Fix H and let JF;;, be the family of all H-free graphs with m edges.

Conjecture(Alon, Krivelevich, Sudakov 05): Does there exist ¢(H)
such that min{MaxCut(G) —m/2: G € F,,} = © (mH))?

Conjecture(Alon, Bollobas, Krivelevich, Sudakov 03): ¢(H) > 1/4.

<7




aaaaa %]‘ =8 nglyabonga
6da | kB <2 teseklr ederim,
— = litos glie= B P !l ] e EAAIAN S ...
l h k [a c I a 8 == asanle manana

dneredlemsm[lﬂhﬁhakkﬂlam

kUj chnmakaluulluun racies 3""’“ = gﬂ I'a I hh m a |th agal

[jb[i 10 ““::Ls,:mglgulkgnva !i")Elfh"'.'anﬁfg,a o dgald == dakujem e

Z ansihbamits ahmet =3 i dhanyavadagely o Sk & E MepcK

T el b MG

{apa dh Ieat

bayarlalaa nan
gracie

™
— =.
°c|:

hvala

mauruu
kiszonom
murakoze
tenki

kun dankon 4l

enkosi



