NEWSLETTE

A Whole Day Trip To Lednice

a marvelous small town in South Moravia, known for

its castle surrounded by a beautiful park with roman-
tic lakes. In 1996 Lednice was inscribed on the UNESCO
World Heritage List (together with the twin manor of Valtice)
as "an exceptional example of the designed landscape that
evolved in the Enlightenment and afterwards under the care
of'asingle family." It contains a palace and the largest park in
the country, which covers 200 km’.

! I \he first whole-day trip led the participants to Lednice,

The history of the Lednice castle is closely related to the
House of Liechtenstein, utilizing it for representation purpo-
ses since 18th century. The palace of Lednice began its life as
a Renaissance villa; in the 17th century it became a summer
residence of the ruling Princes of Liechtenstein. The estate
house - designed and furbished by baroque architects Johann
Bernhard Fischer von Erlach, Domenico Martinelli, and
Anton Johan Ospel - proclaimed rural luxury on the grandest

o

Fig. 2: Boats cruising

scale. The Neo-Gothic reconstruction of 1846 - 1858, desig-
ned by Georg Wingelmiiller, formed todays outfit of the
castle. The castle is also famous because of its glass house
built in 1843 - 1845, according to the project by P. H.
Desvignes, leaning to the manor on the eastern side.

A French garden and its vast provincial park, one of the
largest in the Czech Republic, surround the castle together
with an English park, forming a large green area and hosting

Fig. 1: Lednice Castle

about 600 tree species. The park in Lednice is also known
because of noteworthy decorative constructions within it,
such as the Temple of the Three Graces, the Temple of
Apollon and several other structures.

Not far from the Lednice manor, on the left bank of the
Dyje river, a wonderful structure, called Janiv Hrad, was

founded after 1801. The project was
drafted by the architect, Josef Hard-
muth. The exterior of this structure,
originally conceived as a hunting lodge,
imitates a Medieval ruin, in accordance
with the then touch for romance.

The trip started in the castle and
continued on boats cruising on the water
channels in the park to minaret which is
an another architectonic monument,
constructed based on the design of Josef
Hardmuthin 1797 - 1804.

A cut-and-thrust show together with 58
an archery practice closed the cultural S
program. After the lunch, the parti-
cipants returned to Brno.

July 6", 2007

Central European Olympiad in Informatics

Newsletter

Algorithm Hints for Competition Tasks

Treasury

treasurer has a structure similar to the ministry of

paperwork reduction from the first competition day;
the only difference is that the number of subordinates of
aclerk is now unlimited.

! I \his task is one of the easy ones. The office of the royal

Let us also follow the notation of the ministry problem
by referring to a clerk and all his subordinates as to a depart-
ment with the clerk with no supervisors within the depart-
ment being its head.

Let us first focus on computing the maximum number of
pairs that can be formed by the clerks. Using a dynamic
programming approach, we will com-pute these numbers for
all departments within the office. We will actually compute
two numbers: the maximum number N, of pairs when the
head of the department can be in a pair and the maximum
number N_of pairs that be formed avoiding the head.

The numbers N, and N_will be computed in the direction
from the clerks with no subordinates towards the royal
treasurer: clerks of single-clerk departments can form no
pairs (in either of the two considered ways). In the general
case, the value of N_ for the department led by a clerk X'is the
sum of the numbers N, corresponding to the departments led
by the direct subordinates of X. The number N, for the
department led by X'is N_+1/ if the numbers N, and N_are the
same for one of the departments led by the subordinates of X,
and N, for X is N_ (for X), otherwise. This approach solves
one part of the task.

Let us now focus on the other part which asks for
determining the number of ways in which the N, pairs of

clerks can be formed. Again, we compute for each depart-
ment the number M_ of ways in which the clerks can form N_
pairs avoiding the head and the number M. of ways in which
they can form N, pairs when the head can be paired. Both the
number M, and M_ are equal to one for one-clerk depart-
ments. The number M _ for the department led by X is the
product of the numbers M., for the departments led by direct
subordinates of X. If N,.=N_, the number M, is the sum of M_
and the products of M, for the departments led by the
subordinates such that in each product one of M, is replaced
with M . Finally, if N.=N _+1, M, for the department led by X
is the sum of the products of M_for the departments led by the
subordinates of X such that M, corresponding to the depart-
ment led by a subordinate X' can be replaced with M_ in the
productif NV, and N_are the same for the department led by X".

This approach straightforwardly leads to a program that
allows to compute the results in time O(N) where N is the
number of clerks. A more careful implementation allowing
divisions of numbers can improve the running time to O(N).

Since the numbers M, and M_can be very large, it is
necessary to implement long-number arithmetic. Because of
the limits on data and time limit for this task, an O(V')-
solution is sufficient and thus this solution (which needs
implementing only additions and multiplications of long
numbers) is good enough. Finally, it remains to find an upper
bound on the numbers M, and M_: since there are at most
1000 pairs supervisor-subordinate, the numbers do not
exceed 2"~ 10™.

enables insertion and removal of elements from both

ends, and additionally, it can be copied quickly. Of
course, the standard implementations using double-linked
lists or arrays fail, as copying requires linear time and space.

! I \he task is to create an implementation of a queue that

Another well-known way to implement a queue is using
two stacks, /" and R (realized by linked lists). Let us show
how to perform the operations at the front of the queue, the
operations at the rear of the queue are performed
analogously, with the role of the stacks /' and R swapped:
when we insert to the front of the queue, we push the element
to F. When we are removing from the front of the queue, and
F is not empty, we pop the element off F. Thus we need to

ensure that F'is never empty (unless the queue is empty). To
ensure this, we force the following invariant: the stack R is at
most twice as long as F, and vice versa. If this invariant is
violated by an operation, say |F|<2|R|, we need to move
some elements from R to F, preferably in such a way that the
lengths of both new stacks are the same (we call this
operation balancing). Thus, we perform the following
actions:

len := (|F| + |R|) div 2;
newR := take (R, len);
newF :=F + reverse (drop (R, len)) ;

Here, take (L, n) returns list consisting of first n
elements of Land drop (L, n) returns list ofall elements of

July 6", 2007

Page: 2

Central European Olympiad in Informatics

Newsletter

Necklaces (continuation)

L except for the first n ones. The function reverse (L)
returns the reversed list L — the list is copied, so L remains
unchanged.

Let us analyze this queue: ignoring the balancing, both
insertion and removal of an element takes constant time.
Balancing may take linear time, but note that after balancing,
we need to perform a linear number of operations in constant
time before another balancing is necessary, thus on average
balancing takes only constant time per operation as well. And
finally, note that we may perform all the operations in such
a way that we do not modify the existing lists. Thus, copying
the queue can be done in constant time simply by copying the
pointers to /' and R.

Although this solution scores /00 points, note that there
is a small flaw in the previous analysis. What might happen

is that we take an unbalanced queue Q and perform a single
insertion that causes balancing, taking linear time.Then we
copy the same queue Q and perform the same operation,
again forcing balancing in linear time. We may repeat this
process arbitrarily many times, thus causing the time
complexity to be quadratic. To fix this problem, instead of
computing newF and newR immediately during balancing,
we can remember only the expressions that define them, and
execute the operations gradually (every time we insert or
remove an element from a queue, we perform a few steps of
the newF and newR computations). This way, we can ensure
that every operation takes exactly a constant time. However,
both the technical details of the implementation and the idea
ofthe solution is fairly nontrivial, so we decided to award full
score even to the slightly worse solution described in the
previous paragraph.

Airport Show

e examine all pairs of positions 4 and B in the

sequences of runway reservations and releases.

For each such pair, we need to determine the fol-
lowing pieces of information:

» isthe pair of positions reachable in some schedule?
» does it cause the performances to block ifit is reached?

Observe that the positions (4, B) are reachable in the
following cases:

» (A-1,B) is reachable and the 4-th operation of the first
sequence is a release of a runway, or a reservation of
arunway that is not reserved by the second performance

» (A,B-1) is reachable and the B-th operation of the second
sequence is a release of a runway, or a reservation of
arunway that is not reserved by the first performance.

The position (4, B) will block the airport if the A+/-th
operation of the first sequence is a reservation of a runway

i

that is reserved by the second performance and the B+/-th
operation of the second sequence is a reservation of a runway
thatis reserved by the first performance.

Note also that from the sets of runways reserved by the
performances in point (4-1, B), we can get the sets of
reserved runways in point (4, B) in constant time. Using these
observations and the dynamic programming approach, we
are able to compute the required information for all points in
time O(N°).

We also need to write out the sequence of actions that
blocks the airport. One needs to be a bit careful when record-
ing this information, so that we do not run out of memory;
however, we only need to remember whether the position
(A4, B) isreached from (4-1, B) or from (4, B-1),1.e., one bit of
information for each pair.

Fig. 3: Competition Day

Fig. 4: Competition Day

July 6", 2007

Central European Olympiad in Informatics Newsletter

CEOI 2007 Results

Day 1 tasks Day 2 tasks

Name Ministry Nasty Sail Airport Necklace Treasury Total

Gold medalists

1. DEUI Daniel Grunwald 100 100 0 100 80 95
2. POL4 Tomasz Kulczynski 100 100 20 20 100 100

Silver medalists

3. HUNI Andras Eisenberger 80 70 20 80 90 70
4. DEU2 Ludwig Schmidt 100 90 10 50 80 70
5. CZK3 Josef Pihera 50 100 10 70 100 64
6. DEU4 Martin Maas 100 50 10 100 50 64
7. DEU3 Benito van der Zander 0 100 10 90 70 100

Bronze medalists

8. POLI Marcin Andrychowicz 100 100 0 100 20 43

9. POL3 Jakub Kallas 100 70 30 0 100 58
10. ROM3 Victor Rusu 30 100 10 100 10 100
11. CRO2 Goran Zuzié 100 100 0 20 20 100
12. SVKI1 Vladimir Boza 100 100 20 30 20 68
13. HUN4 Gergely Nagy 50 50 10 100 50 70
14. CRO4 Relja Medi¢ 40 50 20 80 70 53
15. CROl Igor Canadi 40 100 10 70 20 70

Other contestants

16. POL2 Marcin Kurczych 100 80 0 10 20 73
17. SVK4 Jozef Jirasek 40 100 10 0 20 76
18. HUN3 Balazs Szalkai 40 40 20 10 60 70
19. ROM2 Cosmin Gheorghe 40 50 0 50 0 97
20. SVK2 Peter Ondruska 100 50 0 0 0 70
21. CRO3 Domagoj Kusali¢ 40 60 0 20 50 42
22. CZK4 Roman Smrz 60 100 0 30 20 0
23. HUN2 Tamas Peregi 20 30 10 70 0 70
24. ROMA4 Stefan-Alexandru Filip 40 50 10 0 20 67
25. ROMI Andrei Grigorean 50 50 0 10 0 70
26. SVK3 Michal Danilak 60 40 0 20 20 37
CZK6 Lukas Lansky 40 90 0 0 0 46
27. CZK2 Miroslav Klimo$ 60 10 20 30 0 43
28. CZK1 Pavel Klavik 0 50 20 0 20 69
CZK7 Libor Peltan 0 20 0 20 70 19
BRN1 Ondiej Bouda 20 30 0 0 0 40
CZKS8 Libor Plucnar 20 20 0 0 0 46
CZK5 Jakub Kaplan 0 30 0 40 0 2
BRN2 Marek Brysa 0 0 0 0 10 35

July 6", 2007 Page: 4

