
N E W S L E T T E R

Central European

Olympiad in Informatics

Brno, July 1 - 7, 2007

A Whole Day Trip To Lednice

July 6 , 2007
th

Page: 1

Fig. 1: The dean of FI MU and the Chairman of CEOI 2007

Fig. 2: Boats cruising

Fig. 1: Lednice Castle

Scientific CommitteeScientific Committee

Algorithm Hints for Competition Tasks

Central European Olympiad in Informatics Newsletter

Treasury

Faculty of Informatics

July 6 , 2007
th

Page: 2

This task is one of the easy ones. The office of the royal
treasurer has a structure similar to the ministry of
paperwork reduction from the first competition day;

the only difference is that the number of subordinates of
a clerk is now unlimited.

Let us also follow the notation of the ministry problem
by referring to a clerk and all his subordinates as to a depart-
ment with the clerk with no supervisors within the depart-
ment being its head.

Let us first focus on computing the maximum number of
pairs that can be formed by the clerks. Using a dynamic
programming approach, we will com-pute these numbers for
all departments within the office. We will actually compute
two numbers: the maximum number of pairs when the
head of the department can be in a pair and the maximum
number of pairs that be formed avoiding the head.

The numbers and will be computed in the direction
from the clerks with no subordinates towards the royal
treasurer: clerks of single-clerk departments can form no
pairs (in either of the two considered ways). In the general
case, the value of for the department led by a clerk is the
sum of the numbers corresponding to the departments led
by the direct subordinates of . The number for the
department led by is if the numbers and are the
same for one of the departments led by the subordinates of ,
and for is (for), otherwise. This approach solves
one part of the task.

Let us now focus on the other part which asks for
determining the number of ways in which the pairs of

clerks can be formed. Again, we compute for each depart-
ment the number of ways in which the clerks can form
pairs avoiding the head and the number of ways in which
they can form pairs when the head can be paired. Both the
number and are equal to one for one-clerk depart-
ments. The number for the department led by is the
product of the numbers for the departments led by direct
subordinates of . If = , the number is the sum of
and the products of for the departments led by the
subordinates such that in each product one of is replaced
with . Finally, if , for the department led by
is the sum of the products of for the departments led by the
subordinates of such that corresponding to the depart-
ment led by a subordinate can be replaced with in the
product if and are the same for the department led by .

This approach straightforwardly leads to a program that
allows to compute the results in time () where is the
number of clerks. A more careful implementation allowing
divisions of numbers can improve the running time to .

Since the numbers and can be very large, it is
necessary to implement long-number arithmetic. Because of
the limits on data and time limit for this task, an -
solution is sufficient and thus this solution (which needs
implementing only additions and multiplications of long
numbers) is good enough. Finally, it remains to find an upper
bound on the numbers and : since there are at most

pairs supervisor-subordinate, the numbers do not
exceed .

N

N

X

X

X +1

X
X X

M

M

X

X

+1 X

X

X'

X'

N N

1000

2 10

+

+

�

N N

N

N

N

N N N

N N

N

N

N

M M

M

M

N N M M

M

M

M N N M

M

M

M

N N

N

M M

N

M M

+

+

+

+

+

+

+

+

+

+ +

+

+

+ +

+

+

+

+

�

�

� �

�

� �

�

�

� �

� �

�

�

�

�

�

=

()

()

O
2

1000 300

O

O
2

�

Sail
The task is to create an implementation of a queue that

enables insertion and removal of elements from both
ends, and additionally, it can be copied quickly. Of

course, the standard implementations using double-linked
lists or arrays fail, as copying requires linear time and space.

Another well-known way to implement a queue is using
two stacks, and (realized by linked lists). Let us show
how to perform the operations at the front of the queue, the
operations at the rear of the queue are performed
analogously, with the role of the stacks and swapped:
when we insert to the front of the queue, we push the element
to . When we are removing from the front of the queue, and

is not empty, we pop the element off . Thus we need to

ensure that is never empty (unless the queue is empty). To
ensure this, we force the following invariant: the stack is at
most twice as long as , and vice versa. If this invariant is
violated by an operation, say , we need to move
some elements from to , preferably in such a way that the
lengths of both new stacks are the same (we call this
operation). Thus, we perform the following
actions:

Here, returns list consisting of first
elements of and returns list of all elements of

F R

F R

F
F F

F
R

F
|F|<2|R|

R F

n

L

balancing

len := (|F| + |R|) div 2;

newR := take (R, len);

newF := F + reverse (drop (R, len));

take (L, n)

drop(L,n)

Necklaces

Scientific CommitteeScientific CommitteeCentral European Olympiad in Informatics Newsletter

Faculty of Informatics

July 6 , 2007
th

Page: 3

Sail

Airport Show

We examine all pairs of positions and in the
sequences of runway reservations and releases.
For each such pair, we need to determine the fol-

lowing pieces of information:

is the pair of positions reachable in some schedule?
does it cause the performances to block if it is reached?

Observe that the positions are reachable in the
following cases:

is reachable and the -th operation of the first
sequence is a release of a runway, or a reservation of
a runway that is not reserved by the second performance

is reachable and the -th operation of the second
sequence is a release of a runway, or a reservation of
a runway that is not reserved by the first performance.

The position will block the airport if the -th
operation of the first sequence is a reservation of a runway

that is reserved by the second performance and the -th
operation of the second sequence is a reservation of a runway
that is reserved by the first performance.

Note also that from the sets of runways reserved by the
performances in point , we can get the sets of
reserved runways in point in constant time. Using these
observations and the dynamic programming approach, we
are able to compute the required information for all points in
time ().

We also need to write out the sequence of actions that
blocks the airport. One needs to be a bit careful when record-
ing this information, so that we do not run out of memory;
however, we only need to remember whether the position

is reached from or from , i.e., one bit of
information for each pair.

A B

(A, B)

(A-1,B) A

(A,B-1) B

(A, B) A+1

B+1

(A-1, B)
(A, B)

N

(A, B) (A-1, B) (A, B-1)

�

�

�

�

O
2

L n

L L

F R

100

Q

Q

except for the first ones. The function
returns the reversed list the list is copied, so remains
unchanged.

Let us analyze this queue: ignoring the balancing, both
insertion and removal of an element takes constant time.
Balancing may take linear time, but note that after balancing,
we need to perform a linear number of operations in constant
time before another balancing is necessary, thus on average
balancing takes only constant time per operation as well.And
finally, note that we may perform all the operations in such
a way that we do not modify the existing lists. Thus, copying
the queue can be done in constant time simply by copying the
pointers to and .

Although this solution scores points, note that there
is a small flaw in the previous analysis. What might happen

is that we take an unbalanced queue and perform a single
insertion that causes balancing, taking linear time.Then we
copy the same queue and perform the same operation,
again forcing balancing in linear time. We may repeat this
process arbitrarily many times, thus causing the time
complexity to be quadratic. To fix this problem, instead of
computing and immediately during balancing,
we can remember only the expressions that define them, and
execute the operations gradually (every time we insert or
remove an element from a queue, we perform a few steps of
the and computations). This way, we can ensure
that every operation takes exactly a constant time. However,
both the technical details of the implementation and the idea
of the solution is fairly nontrivial, so we decided to award full
score even to the slightly worse solution described in the
previous paragraph.

reverse (L)

newF newR

newF newR

–

Necklaces (continuation)

Fig. 3: Competition Day Fig. 4: Competition Day

Scientific CommitteeScientific Committee

CEOI 2007 Results

Central European Olympiad in Informatics Newsletter

July 6 , 2007
th

Page: 4

Day 1 tasks Day 2 tasks

1. Daniel Grunwald 100 100 0 100 80 95
2. Tomasz Kulczyñski 100 100 20 20 100 100

3. András Eisenberger 80 70 20 80 90 70
4. Ludwig Schmidt 100 90 10 50 80 70
5. Josef Pihera 50 100 10 70 100 64
6. Martin Maas 100 50 10 100 50 64
7. Benito van der Zander 0 100 10 90 70 100

8. Marcin Andrychowicz 100 100 0 100 20 43
9. Jakub Kallas 100 70 30 0 100 58

10. Victor Rusu 30 100 10 100 10 100
11. Goran �u�iæ 100 100 0 20 20 100
12. Vladimír Bo�a 100 100 20 30 20 68
13. Gergely Nagy 50 50 10 100 50 70
14. Relja Mediæ 40 50 20 80 70 53
15. Igor Èanadi 40 100 10 70 20 70

16. Marcin Kurczych 100 80 0 10 20 73
17. Jozef Jirásek 40 100 10 0 20 76
18. Balázs Szalkai 40 40 20 10 60 70
19. Cosmin Gheorghe 40 50 0 50 0 97
20. Peter Ondrúška 100 50 0 0 0 70
21. Domagoj Kusaliæ 40 60 0 20 50 42
22. Roman Smr� 60 100 0 30 20 0
23. Tamás Peregi 20 30 10 70 0 70
24. Stefan-Alexandru Filip 40 50 10 0 20 67
25. Andrei Grigorean 50 50 0 10 0 70
26. Michal Danilák 60 40 0 20 20 37

Lukáš Lánský 40 90 0 0 0 46
27. Miroslav Klimoš 60 10 20 30 0 43
28. Pavel Klavík 0 50 20 0 20 69

Libor Peltan 0 20 0 20 70 19
Ondøej Bouda 20 30 0 0 0 40
Libor Plucnar 20 20 0 0 0 46
Jakub Kaplan 0 30 0 40 0 2
Marek Bryša 0 0 0 0 10 35

Name Ministry Nasty Sail Airport Necklace Treasury Total

475
440

410
400
394
374
370

363
358
350
340
338
330
313
310

283
246
240
237
220
212
210
200
187
180
177
176
163
159
129
90
86
72
45

DEU1
POL4

HUN1
DEU2
CZK3
DEU4
DEU3

POL1
POL3
ROM3
CRO2
SVK1
HUN4
CRO4
CRO1

POL2
SVK4
HUN3
ROM2
SVK2
CRO3
CZK4
HUN2
ROM4
ROM1
SVK3
CZK6
CZK2
CZK1
CZK7
BRN1
CZK8
CZK5
BRN2

Gold medalists

Silver medalists

Bronze medalists

Other contestants

