
N E W S L E T T E R

Central European

Olympiad in Informatics

Brno, July 1 - 7, 2007

Official Opening Ceremony

July 5 , 2007
th

Page: 1

Excursion to Brno

The Official Opening Ceremony started with the
speech of the dean of Faculty of Informatics Prof. Ji

The speech focused on Faculty of Infor-
matics and Masaryk University. The Chairman of the CEOI
2007 Dr. Tom said a few words about the history of
the CEOI and the IOI and then welcomed the participants.
The Opening Ceremony was closed by a string quartet
Clawed Forehead which played some compositions based on
known rock music bandApocalyptica.

After the Opening Ceremony the Chairman of Scientific
Committee Dr. Daniel Kr presented important issues con-
cerning competitions rules and some practical instructions
about computer equipment for the competition.

The contestants also visited competition room to test the
computer equipment for the next day.

øí
Zlatuška.

áš Pitner

á¾

The program of contestants at the first day was closed
by excursion to the center of Brno. The excursion led
the contestants around the St. James' Church, Liberty

Square, Old Town Hall, The Fruit and Vegetable Market to
the Kapuchin St. Cross Church.

From there they walk over the hill to the pilberk Castle
and fortification. The old prison Casemates was visited at the
end of the excursion.

Š

Fig. 1: The dean of FI MU and the Chairman of CEOI 2007 Fig. 2: Clawed Forehead band

Fig. 3: Liberty Square

Scientific CommitteeScientific Committee

Algorithm Hints for Competition Tasks

Central European Olympiad in Informatics Newsletter

Ministry

Faculty of Informatics

July 5 , 2007
th

Page: 2

This task can be solved in a simple bottom-up way, that
is by processing the departments in order of their
increasing depths. To achieve that, we first represent

the organizational tree by pointers to sons and parents, and
sort the departments by their depths (which can be done in
linear time by repeatedly plucking leaves of the tree). Then
we observe that all departments of depth one are equivalent
and we continue by establishing equivalence of the higher
depth departments.

Let us assume we already know which departments of
depths to are equivalent, for example we can have integer
codes assigned to them in such a way that two de partments
get the same code if and only if they are equivalent. Then we
consider the departments of depth . Two such depart-
ments are equivalent if and only if their bosses have the same
number of subordinates and the subdepartments chair by
these subordinates are equivalent, except possibly for their
order.

We can recognize that by sorting the subordinates of
each boss by their already assigned codes and then by sorting
the bosses by the triples of the subordinates' codes (if there

are less than three subordinates, we can pad the triple by some
special values). We finally scan the bosses in the sorted order,
assign new codes to those who have different triples and pro-
ceed with the depth .

This gives a nice (log) time solution, which can be
further improved to linear time by employing three-pass
bucket-sort for sorting the triples. This is a little bit tricky as
you cannot afford scanning all the possible buckets all the
time, but you can keep a list of active buckets. As we do not
really need to have the triples sorted, only the equivalent ones
have to be brought next to each other, we can keep the list of
active buckets in any order. However, due to the large multi-
plicative constants in the linear time complexity, the diffe-
rence between this solution and the previously mentioned

(log) one is negligible and both of them could have
achieved full score .

If you have any questions or if you are just curious about
some other applications of such multi-level sorting, feel free
to ask Martin or Milan .

1 d

d+1

d

d+2

n n

n n

O

O

�

�

There are two main steps leading to a solution of this
task: evaluating of expressions written in the postfix
notation and reducing unnecessary calculations. Let

us start with the former issue. The classical approach to
evaluating such expressions is the use of a stack (e.g.,
implemented in an array) to store intermediate results of the
calculation. You process the expression in a single sweep: if
you encounter a number or the symbol for , you put it on the
stack, and if you find an operator, you remove the top two
numbers from the stack and store back the result of the
operator applied to these numbers.After processing the entire
expression, the only number on the stack is the result.

The first paragraph already suggests an algorithm for
calculating the value of , but... wait, we only need the last
digit, right? Since we know that is non-negative, we have
to compute the value of mod . And since the mod
operation behaves well with all the operands which might
occur in the expression, we can use mod instead of in all
calculations. In particular, we do not have to implement long
number arithmetic. Finally, since the value of mod
depends only on mod , we can precompute the results for

and use the stored values instead of evaluation of
for every in order to save time.

x

f(x)
f(x)

f(x) B B

a B a

f(x) B
x B x

= 0, ..., B-1
f(x) x

Nasty

This was clearly the most difficult task of the first day.
The problem of reconstructing the sail is known to be
NP-complete, which means that there is only a little

hope that there exists a reasonably fast program for solving
the problem in general.

However, for the open-data task, we prepared input data
either small enough or satisfying some additional properties
which make finding solution more feasible.

The first two input files were supposed to be solved by
hand, using either the program or a pen with
a sheet of paper. The third input file contained eight types of
triangles, each of them 64 times. The dimensions of the
original sail were 64 × 64.Anatural idea seems to be to check
whether the eight triangles (representatives of each type)
cover a sail of dimension 8 × 8. Since they do, a solution can
be obtained by repeating the cover of the 8 × 8 sail 64 times.

draw_sail

Sail

Scientific CommitteeScientific CommitteeCentral European Olympiad in Informatics Newsletter

Sail (continuation)

Faculty of Informatics

July 5 , 2007
th

Page: 3

The fourth case requires a different approach. If you sum
up the lengths of all edges of the triangles which are parallel
either with the or axis, the obtained value is equal to the
perimeter of the original sail. Hence, the sides of the triangles
parallel to the axis must form the two sides of the sail
parallel to the axis. An analogous statement is true for those
parallel with the axis. Since the triangles have only four
different heights (with respect to the side parallel to one of the
axes), one can suspect the existence of a single point such
that the sail was cut by several cuts starting in and ending in
a point at the perimeter. This can be verified with a simple
program and drawing the resulting sail layout. The fifth input
file contains a similar type of data, but instead of a single
point inside, there is a triangle.

The sixth and seventh input files can be dealt with using
the same approach. They contain several right-angled tri-
angles with catheti parallel to the axes. The lengths of the
catheti parallel with the axis are half the width of the sail in
the sixth input file and one third in the seventh. Moreover, the
triangles can be paired to form rectangles. If the resulting
rectangles could be partitioned into two/three groups in such
a way that the sum of the heights of the rectangles of each

group were equal to the height of the sail, you would get
solutions of these two cases (the groups would form two or
three columns of rectangles forming the original sail).
Partitioning the rectangles into the groups is the well-known
thieves problem. In this problem, several items of possibly
different values should be divided into a given number of
groups, each containing items with the same sum of values.
The problem can be solved using dynamic programming (if
the number of groups is fixed).

The last three instances could be solved by a clever
backtracking algorithm. The eighth and ninth input files
contain triangles with sides parallel to the axis and with the
heights (corresponding to the axis) equal to the width of the
sail. Hence, it is enough to stack up the triangles in a single
column. Again, this might be quite hard in general, but the
angles of the triangles contained in the eighth input file are all
different and they are only few duplicates in the ninth case.
Either way, it is easy to find the right order of the triangles in
the column by backtracking. Finally, the sail corresponding
to the tenth input file is comprised of three such columns with
different widths.

x y

x
x

y

X
X

x

y
y

Fig. 4: Sail Fig. 5: Another Sail

Fig. 6: Solution in a standard way

Fig. 7: Solution in an old school way I Fig. 8: Solution in an old school way II

