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Abstract

The recently emerged theory of graph limits provides analytic tools
to represent and analyse large graphs, which appear in various sce-
narios in mathematics and computer science. We survey basic con-
cepts concerning dense graph limits and then focus on recent results
on finitely forcible graph limits. We conclude with presenting some
of the existing notions concerning sparse graph limits and discussing
their mutual relation.

1 Introduction

Large graphs appear as representations of huge networks in many different
areas of life. One should mention in particular the internet network of hy-
perlinks, acquaintance graphs of social networks, etc. Since such graphs are
often too huge to be examined by standard graph theoretic or algorithmic
approaches, there has been a need for developing tools specifically for large
graphs that can be used to gain some information from local sampling, study-
ing global properties, or observing the behaviour of various processes on the
graph through a longer time interval. In this short survey, we present ana-
lytic tools for representing and analysing large graphs provided by the theory
of graph limits as a response to these new challenges.
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The theory of graph limits has highlighted new exciting links between
analysis, combinatorics, computer science, ergodic theory, group theory and
probability theory. The techniques have been developed to some extent inde-
pendently for dense graphs and sparse graphs, which is also reflected in the
way that this survey is structured. For many applications, the concept of a
convergence of a sequence of graphs, without explicitly defining an analytic
object representing its limit, could be sufficient. However, a better under-
standing can often be gained if an analytic object that properly captures the
interplay of local and global parameters is available. In our exposition, we
will be concerned with the convergence and limit representations of graphs.
However, many of the results presented further can be translated to other
discrete objects, e.g., permutations [37, 53, 54, 63] or partial orders [51, 55].
We also refer the reader to a recent monograph by Lovász [67], where the
theory of graph limits is treated in a more detailed and thorough way.

In this survey, we are primarily concerned with results on limits of dense
graphs, i.e., graphs where the number of edges is quadratic in its number
of vertices. The foundations of the theory of dense graph limits were laid
in a series of papers by Borgs, Chayes, Lovász, Sós, Szegedy and Veszter-
gombi [15–17,69,70]. In Section 3, we survey basic concepts concerning limits
of dense graphs, and we then focus on the uniqueness of the limit structures
in Section 4. Limits of dense graphs turned out to be very useful with respect
to applications in extremal combinatorics. In particular, the closely related
flag algebra method, which was introduced by Razborov [84], enables the
use semidefinite programming to search for bounds on problems studied in
extremal graph theory. Using this method, Razborov [85] solved the famous
problem, which dates back to the work of Rademacher in the 1940’s and Erdős
in the 1950’s, on the minimum possible density of triangles in a graph with a
given edge density. This result was later generalized by Nikiforov [81] and by
Reiher [87] using similar but finer techniques from triangles to larger com-
plete graphs. It should be emphasized that the flag algebra method can also
be used in relation to other combinatorial objects such as directed graphs,
hypergraphs, permutations, etc. The method has seen many profound ap-
plications and resulted in substantial progress on many long standing open
problems in extremal combinatorics, e.g. [5–8, 45, 48, 49, 59, 61, 82, 83, 86].

Another application of graph limits that we would like to mention here
belongs to computer science. A property testing algorithm is an algorithm
that determines with high probability a property or approximates a parame-
ter of a large input based on a constant size sample; such algorithms started
to be systematically studied in the 1990’s [41–43, 88], also see, e.g., the sur-
veys in [40]. The theory of graph limits led to an analytic characterization
of properties and parameters that can be computed in this way [67, 70]. In
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particular, it is possible to define a notion of distance, which is called cut
distance, between large graphs of not necessarily the same order; this no-
tion extends to the setting of graphons representing graph limits. Inputs
that are close in the cut distance cannot be distinguished using property
testing algorithms. The converse, which is also true, can be exploited to
provide a characterization of properties and parameters amenable to such
algorithms [67, 70].

The area of limits of sparse graphs, such as graphs of bounded degree, is
less developed than the area of limits of dense graphs. Several notions of con-
vergence of such graphs were proposed and the sparse graph convergence is
considered to be significantly less understood than the convergence of dense
graphs. Still, the area of sparse limits offers one of the most fundamental
open problems on graph limits: the conjecture of Aldous and Lyons [1]. This
conjecture gives a necessary and sufficient condition on a local neighbour-
hood distribution to correspond to a sequence of graphs, and is essentially
equivalent to Gromov’s question whether all countable discrete groups are
sofic. We will cover basic notions concerning the sparse graph convergence,
including the conjecture of Aldous and Lyons, in Section 5.

2 Preliminaries

In this section, we introduce basic notation used throughout the paper. The
set of all positive integers is denoted by N, the set of all non-negative integers
by N0, and the set of integers between 1 and k (inclusive) by [k]. All measures
considered in this paper are Borel measures on R

d, d ∈ N. If a set X ⊆ R
d

is measurable, then we write |X| for its measure, and if X and Y are two
measurable sets, then we write X ⊑ Y if |X \ Y | = 0.

All graphs considered in this paper are simple graphs without loops. If
G is a graph, we write |G| for its order, i.e., the number of its vertices, and
||G|| for its size, i.e., the number of its edges.

For completeness, we next give a brief overview of results from the proba-
bility theory that we particularly need in our exposition; we refer the reader
to, e.g., [3] for further details. We start with the Borel-Cantelli lemma.

Lemma 1 (Borel-Cantelli lemma). Let (En)n∈N be a sequence of probability
events. If the sum of probabilities of En, n ∈ N, is finite, i.e.,

∑

n∈N

P(En) <∞ ,

then the probability that infinitely many of the events En occur is zero.
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We next define a notion of a martingale. Fix a probability space Ω and let
(Xn)n∈N be a sequence of random real variables on Ω. The sequence (Xn)n∈N
forms a martingale if the expected value of each Xn is equal to a real number
X0 and

E(Xn+1|X1, . . . , Xn) = Xn for every n ∈ N,

i.e., the expected value of Xn+1 conditioned on the values of X1, . . . , Xn is
the value of Xn. With a slight abuse of notation, X0 can be understood
to be the random variable on Ω equal to X0 everywhere. For a martingale
(Xn)n∈N, we can bound the probability of a large deviation of Xn from its
expected value.

Theorem 2 (Azuma-Hoeffding inequality). Let (Xn)n∈N be a martingale with
EXn = X0 for all n ∈ N, and let (cn)n∈N be a sequence of reals. If it holds
for every n ∈ N that |Xn −Xn−1| ≤ cn with probability one, then

P (|Xn −X0| ≥ t) ≤ 2e
−t2

2
∑n

k=1
c2
k

for every n ∈ N and every t ∈ R.

Finally, we will need the following corollary of Doob’s Martingale Con-
vergence Theorem.

Corollary 3. Let (Xn)n∈N be a martingale on a probability space Ω with
probability µ. If there exists K ∈ R such that E|Xn| < K for every n ∈ N,
then there exists a random variable X on Ω such that

lim
n→∞

Xn(ω) = X(ω)

for µ-almost all ω ∈ Ω.

3 Dense graph limits

In this section, we are primarily concerned with limits of dense graphs, i.e.,
graphs where the number of edges is quadratic in the number of vertices.
If G and H are two graphs, the density of H in G, denoted by d(H,G), is
the probability that a randomly chosen subset of |H| vertices of G induces
a subgraph isomorphic to H . A sequence (Gn)n∈N of graphs is convergent
if the sequence of densities d(H,Gn) converges for every graph H . In what
follows, we will only consider convergent sequences (Gn)n∈N of graphs such
that the number of vertices of Gn tends to infinity.
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Simple examples of convergent sequences of graphs include the sequence
of complete graphs Kn, the sequence of complete bipartite graphs Kn,n with
parts of equal size and the sequence of complete bipartite graphs K⌊αn⌋,n for
α ∈ (0, 1). A less trivial example of a convergent sequence of graphs is the
sequence of Erdős-Rényi random graphs Gn,p. Recall that the Erdős-Rényi
random graph G(n, p), n ∈ N and p ∈ [0, 1], is the graph with n vertices
such that any two of its vertices are joined by an edge with probability p
independently of all the other pairs of vertices. The convergence of this
sequence of graphs can be shown using the Borel-Cantelli lemma (Lemma 1)
and the Azuma-Hoeffding inequality (Theorem 2).

Assume now that (Gn)n∈N is a sequence of sparse graphs, which means
that the number of edges of Gn is o(|Gn|

2), i.e.,

lim
n→∞

||Gn||

|Gn|2
= 0.

Consequently, the density d(H,Gn) of any non-edgeless graph H converges
to zero and the density d(H,Gn) of any edgeless graph H converges to one.
Hence, the sequence (Gn)n∈N is convergent in the sense that we have de-
fined earlier. Consequently, it holds that any sequence of sparse graphs is
convergent regardless of its structure. This is the reason why the notion of
convergence that we have just defined is of interest for dense graphs. Notions
of convergence appropriate for sparse graphs will be described in Section 5.

Another way of defining convergent sequences of graphs is to consider
homomorphic densities of graphs. If G and H are two graphs, the homo-
morphic density of H in G, which is denoted by t(H,G), is the probability
that a random map from the vertex set of H to the vertex set of G is a
homomorphism from H to G. A simple application of the Principle of In-
clusion and Exclusion shows that d(H,G) is determined by the values of
t(H ′, G) for all spanning subgraphs H ′ of H , and t(H,G) is determined by
the values of d(H ′, G) for all supergraphs H ′ of H with the same number of
vertices. Hence, a sequence (Gn)n∈N of graphs is convergent if and only if if
the sequence of homomorphic densities t(H,Gn) converges for every graph
H .

We next introduce an analytic object that is used to represent a conver-
gent sequence of graphs. This object is called a graphon. A graphon is a
symmetric measurable function W : [0, 1]2 → [0, 1], where symmetric stands
for the property that W (x, y) = W (y, x) for all x, y ∈ [0, 1]. One can think
of a graphon as a continuous analogue of the adjacency matrix of a graph;
this analogy provides a good first intuition when working with graphons,
however, the matter is more complex as we will see in the following. The
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Figure 1: Graphons that are limits of the sequences (Kn)n∈N, (Kn,n)n∈N,
(Kn,2n)n∈N and (G(n, 1/2))n∈N.

analogy with adjacency matrices also motivates some of the definitions that
follow.

A graphon can be viewed as a recipe for creating a random graph as we
know present. If W is a graphon, then a W -random graph of order n is the
random graph obtained by sampling n points x1, . . . , xn independently and
uniformly in the unit interval [0, 1] and joining the i-th vertex and the j-th
vertex of the graph by an edge with probability W (xi, xj). Note that if W is
the graphon equal to p ∈ [0, 1] for all x, y ∈ [0, 1], then the W -random graph
of order n is the Erdős-Rényi random graph G(n, p). Graphons are usually
depicted in the unit square with values being different shades of gray, where
white represents zero and black represents one. The origin of the coordinate
system is usually in the top left corner to follow the analogy with adjacency
matrices. An example of such visualization can be found in Figure 1.

We now relate graphons to convergent sequences of graphs. Let the den-
sity of a graph H in a graphon W be the probability that the W -random
graph of order |H| is isomorphic toH ; this probability is denoted by d(H,W ).
It can be shown that the following holds:

d(H,W ) =
|H|!

|Aut(H)|

∫

[0,1]|H|

∏

vivj∈E(H)

W (xi, xj)
∏

vivj 6∈E(H)

(1−W (xi, xj)) dx1 · · ·x|H|

where V (H) = {v1, . . . , v|H|} and Aut(H) is the automorphism group of H .
We say that a graphon W is the limit of a convergent sequence (Gn)n∈N of
graphs if

d(H,W ) = lim
n→∞

d(H,Gn)

for every graph H . Examples of graphons that are limits of some simple
convergent sequences of graphs are given in Figure 1. In what follows, we
will also consider a special type of graphons called step graphons: a graphon
W is a step graphon if there exist an integer k and a partition of [0, 1] into k
measurable sets A1, . . . , Ak such that the graphon W is constant on Ai ×Aj

for all i, j ∈ [k]. Examples of step graphons can be found in Figure 2.
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Figure 2: Examples of step graphons.

It is natural to ask whether every convergent sequence of graphs has a
limit, whether this limit is unique (if it exists), and whether every graphon
is a limit of a convergent sequence of graphs. We start with the latter of
these questions, which is simpler to answer, and we discuss the former of the
questions later in this section.

Theorem 4. Let W be a graphon and let Gn be a W -random graph of order
n, n ∈ N. The sequence (Gn)n∈N is convergent and the graphon W is its limit
with probability one.

Proof. Fix a graph H and an integer n such that n ≥ |H|. The probability
that a particular |H|-tuple of vertices of Gn induces a copy of H is d(H,W ).
The linearity of expectation implies that the expected number of copies of H
in Gn is equal to d(H,W )

(

n
|H|

)

. We next estimate the probability of a large
deviation from this expected value. Let Xi, i = 0, . . . , n, be the random
variable equal to the expected number of copies of H after the first i choices
of the vertices of Gn are made in the interval [0, 1] and the edges between
the first i vertices are fixed when constructing the W -random graph of order
n. Observe that Xn is just the number of copies of H in Gn and X0 is equal
to d(H,W )

(

n
|H|

)

.
Since the random variables X0, . . . , Xn form a martingale, we can apply

the Azuma-Hoeffding inequality (Theorem 2) with ci ≤ n|H|−1 and get that

P (|Xn −X0| ≥ t) ≤ 2e
−t2

2n2|H|−1

for every t ∈ R. Substituting t = εn|H|, we get that

P
(

|Xn −X0| ≥ εn|H|
)

≤ 2e−ε2n/2 ,

which yields that

P
(

|d(H,Gn)− d(H,W )| ≥ |H|!2|H|ε
)

≤ 2e−ε2n/2

if n ≥ 2|H|. The Borel-Cantelli lemma implies that the sequence (d(H,Gn))n∈N
is convergent with probability one and its limit is d(H,W ). In particular,
the sequence (Gn)n∈N is convergent and the graphon W is its limit with
probability one.
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Proving that there exists a limit graphon for every convergent sequence
of graphs is harder. We will present here the proof by Lovász and Szegedy
from [69]. The proof uses weak regularity of graphs introduced by Frieze and
Kannan in [35]; this notion is weaker than the more well-known notion of
Szemerédi regularity. However, it is simpler and sufficient for our purposes.
If G is a graph and S and T are two subsets of its vertices, then e(S, T )
denotes the number of pairs of vertices s ∈ S and t ∈ T joined by an edge and
d(S, T ) denotes the corresponding density, i.e., d(S, T ) = e(S,T )

|S|·|T |
. A partition

V1, . . . , Vk of a vertex set of a graph G is an equipartition if | |Vi| − |Vj| | ≤ 1
for every i, j ∈ [k], and it is weak ε-regular if it is an equipartition and it
holds that

∣

∣

∣

∣

∣

e(S, T )−
k

∑

i,j=1

d(Vi, Vj) |S ∩ Vi| |T ∩ Vj|

∣

∣

∣

∣

∣

≤ ε|G|2

for any two subsets S and T of the vertex set of G. Frieze and Kannan [35]
proved the following theorem.

Theorem 5. For every ε ∈ (0, 1), there exists K = 2O(ε−2) such that every
graph G has a weak ε-regular partition with at most K parts.

We will need a strengthening of Theorem 5, whose proof follows the same
lines as the proof of Theorem 5. We say that a partition V ′

1 , . . . , V
′
k′ of a

vertex set of a graph G is a refinement of a partition V1, . . . , Vk if for every
j ∈ [k′], there exists i ∈ [k] such that V ′

j ⊆ Vi.

Theorem 6. For every ε ∈ (0, 1), there exists K = 2O(ε−2) such that every
equipartition of the vertex set of a graph G into k parts can be refined to a
weak ε-regular partition with at most K · k parts.

Finally, weak regular partitions are related to subgraph densities as fol-
lows [35].

Theorem 7. For every graph H and every δ ∈ (0, 1), there exists ε ∈ (0, 1)
such that if G is a graph with at least ε−1 vertices and V1, . . . , Vk is a weak
ε-regular partition of its vertex set, then

∣

∣

∣

∣

∣

∣

d(H,G)−
|H|!

|Aut(H)|k|H|

k
∑

i1,...,i|H|=1

∏

vjvj′∈E(H)

d(Vij , Vij′ )
∏

vjvj′ 6∈E(H)

(1− d(Vij , Vij′ ))

∣

∣

∣

∣

∣

∣

≤ δ

where V (H) = {v1, . . . , v|H|}.

8



We are now ready to prove that every convergent sequence of graphs can
be represented by a graphon.

Theorem 8 (Lovász and Szegedy [69]). Let (Gn)n∈N be a convergent sequence
of graphs. There exists a graphon W that is a limit of the sequence (Gn)n∈N.

Proof. Fix a convergent sequence (Gn)n∈N, and set εℓ = 2−ℓ for ℓ ∈ N. For
every graph Gn in the sequence, fix a weak ε1-regular partition V

n,1
1 , . . . , V n,1

kn,1

of its vertex set; such a partition exists by Theorem 5. Suppose that we
have already fixed a weak εℓ-regular partition V

n,ℓ
1 , . . . , V n,ℓ

kn,ℓ
of Gn for some

n ∈ N and ℓ ∈ N. By Theorem 6, there exists a weak εℓ+1-regular partition
V n,ℓ+1
1 , . . . , V n,ℓ+1

kn,ℓ+1
of Gn that is a refinement of the partition V n,ℓ

1 , . . . , V n,ℓ
kn,ℓ

.

By reordering the sets in the partition, we can assume that if V n,ℓ+1
i ⊆ V n,ℓ

j ,

V n,ℓ+1
i′ ⊆ V n,ℓ

j′ and i < i′, then it holds that j ≤ j′. We will refer to this
property as the ordering property. Note that Theorems 5 and 6 yield the
existence of a constant Kℓ, ℓ ∈ N, such that kn,ℓ ≤ Kℓ for every n ∈ N and
every ℓ ∈ N.

For every n ∈ N and ℓ ∈ N, associate the graph Gn with a (kn,ℓ × kn,ℓ)-

matrix An,ℓ such that the entry An,ℓ
ij is equal to d(V n,ℓ

i , V n,ℓ
j ). Next choose a

subsequence (G′
n)n∈N of the sequence (Gn)n∈N such that the following holds

for every ℓ ∈ N:

• all but finitely values of kn,ℓ are the same, and

• the matrices An,ℓ coordinate-wise converge.

Note that kn,ℓ can have only values between 1 and Kℓ, which implies that it
is possible to choose a subsequence satisfying the first of the two properties.
For such a subsequence, all but finitely many matrices An,ℓ have the same
size and since their coordinates are reals between 0 and 1, it is possible to
choose a subsequence of the former subsequence that also satisfies the second
property. So, the subsequence (G′

n)n∈N indeed exists.
Let kℓ be the value that appears infinitely often among the values kn,ℓ

for the subsequence (G′
n)n∈N. Further, let A

ℓ be the (kℓ × kℓ)-matrix that is
the coordinate-wise limit of the matrices An,ℓ for the subsequence (G′

n)n∈N.
Theorem 7 implies that the following holds for every graph H :

lim
n→∞

d(H,G′
n) = lim

ℓ→∞

|H|!

|Aut(H)|k
|H|
ℓ

kℓ
∑

i1,...,i|H|=1

∏

vjvj′∈E(H)

Aℓ
ij ,ij′

∏

vjvj′ 6∈E(H)

(1−Aℓ
ij ,ij′

)
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where V (H) = {v1, . . . , v|H|}. Since (G
′
n)n∈N is a subsequence of the sequence

(Gn)n∈N, it follows that

lim
n→∞

d(H,Gn) = lim
ℓ→∞

|H|!

|Aut(H)|k|H|
ℓ

kℓ
∑

i1,...,i|H|=1

∏

vjvj′∈E(H)

Aℓ
ij ,ij′

∏

vjvj′ 6∈E(H)

(1−Aℓ
ij ,ij′

) .

(1)
The matrices Aℓ yield random variables Xℓ on [0, 1)2 defined as follows:

Xℓ(x, y) = Aℓ
⌊x·kℓ⌋+1,⌊y·kℓ⌋+1 .

By the ordering property, the random variables Xℓ, ℓ ∈ N, form a martingale.
Hence, Corollary 3 implies that there exists a measurable function W from
[0, 1]2 to [0, 1] such that

W (x, y) = lim
ℓ→∞

Xℓ(x, y)

for almost every (x, y) ∈ [0, 1)2. Observe that the following holds for every
m and every J ⊆ [m]2:

∫

[0,1]m

∏

jj′∈J

W (xj , xj′) dx1 · · ·xm = lim
ℓ→∞

∫

[0,1)m

∏

jj′∈J

Xℓ(xj , xj′) dx1 · · ·xm . (2)

Since it also holds for every ℓ ∈ N, every m ∈ N and every J ⊆ [m]2 that

1

kmℓ

kℓ
∑

i1,...,im=1

∏

jj′∈J

Aℓ
ij ,ij′

=

∫

[0,1)m

∏

jj′∈J

Xℓ(xj, xj′) dx1 · · ·xm ,

it follows that
d(H,W ) = lim

n→∞
d(H,Gn)

by (1) and (2).

The proof that we have presented here is not the only proof of the exis-
tence of a limit graphon of a convergent sequence of graphs that is known.
The existence of the limit graphon can be derived from the representation the-
orem on symmetrically exchangeable random variables due to Aldous [2] and
Hoover [52] and further developed by Kallenberg [56]; see [4, 27] for further
details. Another way of proving the existence of a limit graphon is using the
arguments concerning a suitable measure space defined using the ultraprod-
uct of graphs in the sequence as presented by Elek and Szegedy in [32]. More
recently, another approach was given by Doležal, Greb́ık, Hladký, Rocha
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and Rozhoň [28–30]: in a certain sense, they consider all weak* accumu-
lation points of zero-one step graphons associated with the graphs in the
sequence and define a certain “structuredness” order on them such that the
most structured points are limit graphons.

While graphons were originally developed to represent large graphs, there
are various mathematical properties of graphons that are of their own interest
to study. Among many such properties, we would like to mention the notion
of weakly norming graphs and relate it to one of the most important open
problems in extremal graph theory—Sidorenko’s Conjecture. This beautiful
conjecture of Erdős and Simonovits [90] and of Sidorenko [89] asserts, in the
language of graphons, that t(K2,W )||H|| ≤ t(H,W ) for every bipartite graph
H and every graphon W and every graphon W , i.e., a quasirandom graph
minimizes the density of H among all graphs with the same edge density.
Sidorenko [89] confirmed the conjecture for trees, cycles and bipartite graphs
with one of the sides having at most three vertices; it is interesting that
the case of paths is equivalent to the Blakley-Roy inequality for matrices,
which was proven in [10]. Additional graphs were added to the list of graphs
satisfying the conjecture by Conlon, Fox and Sudakov [21], by Hatami [47],
and by Szegedy [93]. More general results concerning recursively described
classes of bipartite graphs were obtained by Conlon, Kim, Lee and Lee [22],
by Kim, Lee and Lee [58], by Li and Szegedy [64] and by Szegedy [92]. In
particular, Szegedy [92] has described a class of graphs called thick graphs
that satisfy the conjecture. More recently, Conlon and Lee [24] showed that
the conjecture is satisfied by bipartite graphs such that one of the parts has
many vertices of maximum degree. Sidorenko’s Conjecture is also known to
hold in the local sense [67, Proposition 16.27], i.e., it holds for graphons W
close to the constant graphon; a stronger statement with uniform quantitative
bounds has recently been proven by Fox and Wei [34].

We say that a graph H is weakly norming if the function ‖W‖H =
t(H,W )1/‖H‖ is a norm on the space of graphons. A stronger notion of
norming graphs concerns a generalization of graphons to functions on [0, 1]2

that do not need to be non-negative on [0, 1]2, however, we prefer not de-
viating from the main topic of our survey and we avoid giving further de-
tails here. It is easy to show that every weakly norming graph satisfies
Sidorenko’s conjecture, and some results on Sidorenko’s conjecture actually
deal with this stronger property of graphs. Hatami [47] characterized weakly
norming graphs as those satisfying a certain Hölder-type inequality involving
graphs edge-decorated by graphons; also see [23,62] for additional results on
weakly norming graphs. However, it is interesting that the property of being
weakly norming is equivalent to a generalization of the property concerned
in Sidorenko’s conjecture. To state this link precisely, we need several defini-
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tions. Let P = {J1, . . . , Jk} be a partition of the interval [0, 1] into non-null
measurable sets. If W is a graphon, then the graphon WP is defined as the
average on the parts in P, i.e.,

WP(x, y) =
1

|Ji| · |Jj|

∫

Ji×Jj

W (s, t)dsdt

where Ji and Jj are the unique parts from P such that x ∈ Ji and y ∈ Jj. We
say that a graph H has the step Sidorenko property if t(H,WP) ≤ t(H,W )
for every graphon W and every finite partition P. Considering the partition
P with a single part implies that every graph that has the step Sidorenko
property satisfies Sidorenko’s conjecture. The converse is not true; the graph
obtained from C4 by adding a new vertex adjacent to one of the vertices of the
cycle is known to satisfy Sidorenko’s conjecture but does not have the step
Sidorenko property [62]. However, a graph H is weakly norming if and only
if H has the step Sidorenko property. The proof of one of the implications
can be found in [67, Proposition 14.13] and the other implication has recently
been proven by Doležal et al. in [28].

We conclude this section by describing an analytic object representing
k-uniform hypergraphs. While it may be natural to expect this object to be
a function from [0, 1]k to [0, 1], the situation is more complex for the same
reasons why graph regularity does not straightforwardly generalize to the
setting of hypergraphs. A k-hypergraph is a hypergraph where every edge
contains exactly k vertices. In the analogy to graphs, the density of an ℓ-
vertex hypergraph H in a hypergraph G is the probability that a randomly
chosen subset of ℓ vertices of G induces a subhypergraph isomorphic to H .
A sequence (Gn)n∈N of hypergraphs is convergent if the density of every
hypergraph H in the hypergraphs Gn converges.

We next define an analytic object, which we call k-hypergraphon. A k-
hypergraphon is a measurable function W from [0, 1]2

k−2 to [0, 1] such that
the 2k − 2 variables of W are associated with the 2k − 2 proper subsets
of [k] and satisfy that W (~x) = W (π(~x)) for every ~x ∈ [0, 1]2

k−2 and every
permutation π ∈ Sk, where π(J) = {π(j), j ∈ J} for J ⊆ [k]. Observe that
the definition of a 2-hypergraphon coincide with the definition of a graphon.
Given a k-hypergraphon W , we may define a W -random k-hypergraph of
order n as follows. Fix n vertices and assign to every ℓ-element subset of
vertices, ℓ ∈ [k − 1], independently and uniformly a number from the unit
interval [0, 1]. The vertices v1, . . . , vk form an edge with probability W (~x)
where the coordinate of x associated with a J ⊆ [k], J 6∈ {∅, [k]}, is equal
to the number assigned to the |J |-tuple of vertices {vj, j ∈ J}. Again, we
define the density of a k-hypergraph H with n vertices as the probability
that a W -random k-hypergraph of order n is isomorphic to H , and say that

12



Figure 3: Two weakly isomorphic graphons.

a k-hypergraphon W is a limit of a convergent sequence of k-hypergraphs
if the density of every k-hypergraph H in W is the limit density of H in
the sequence. The existence of a limit k-hypergraph for every convergent
sequence of k-hypergraphs was established by Elek and Szegedy [32] using
the ultraproduct argument that we have mentioned earlier in relation to
graphons, however, the existence of a limit hypergraphon can also be proven
using arguments similar to those that we have presented in the graph setting
earlier as shown by Zhao [96].

4 Finite forcibility

In this section, we will discuss in what sense a limit graphon of a convergent
sequence of graphs is unique and when its structure is determined by finitely
many densities. We will say that two graphons W1 and W2 are weakly iso-
morphic if d(H,W1) = d(H,W2) for every graphH , i.e., the graphonsW1 and
W2 are limits of the same sequences of graphs. For example, the graphons de-
picted Figure 3 are weakly isomorphic; they both are a limit of the sequence
(Kn,n)n∈N of complete bipartite graphs with parts of equal sizes.

The following is a general way of constructing weakly isomorphic graph-
ons. Let ϕ be a measure preserving map from [0, 1] to [0, 1], i.e., |ϕ−1(A)| =
|A| for every measurable subset A of [0, 1]. If W is a graphon, we define
a graphon W ϕ by setting W ϕ(x, y) = W (ϕ(x), ϕ(y)). A standard measure
theory argument yields that d(H,W ) = d(H,W ϕ), i.e., the graphons W and
W ϕ are weakly isomorphic. For example, consider the following measure
preserving map:

ϕ(x) =

{

2x if x ≤ 1/2,
2x− 1 otherwise.

If W1 and W2 are the two graphons depicted in Figure 3, then W2 =W ϕ
1 .

Borgs, Chayes and Lovász [14], also see [67, Chapter 13] for further dis-
cussion, have shown that the above way of constructing weakly isomorphic
graphons is in a certain sense the only way of obtaining weakly isomorphic

13



Figure 4: A graphon that is not finitely forcible.

graphons (note that the following two theorems are not obviously equivalent
since the maps ϕ1 and ϕ2 need not be bijective).

Theorem 9. If W1 and W2 are weakly isomorphic graphons, then there exist
a graphon W and measure preserving maps ϕ1 and ϕ2 such that the graphons
W ϕ1 and W1 are equal almost everywhere, and W ϕ2 and W2 are equal almost
everywhere.

Theorem 10. If W1 and W2 are weakly isomorphic graphons, then there
exist measure preserving maps ϕ1 and ϕ2 such that the graphons W ϕ1

1 and
W ϕ2

2 are equal almost everywhere.

In general, it is necessary to know the densities d(G,W ) of all graphs G
in a graphonW to know the structure ofW . For example, see [37] for a more
detailed discussion, ifW is the graphon depicted in Figure 4, then for every fi-
nite set G of graphs, there exists a graphonW ′ such that d(H,W ) = d(H,W ′)
for every H ∈ G but W and W ′ are not weakly isomorphic, i.e., there exists
a graph H ′ such that d(H,W ) 6= d(H ′,W ). On the other hand, the classical
results on quasirandom graphs due to Thomasson [94] and Chung, Graham
and Wilson [19] yield that if a graphon W satisfies that t(K2,W ) = p and
t(C4,W ) = p4 for some p ∈ [0, 1], then W is equal to p almost everywhere.
In particular, there are graphons such that their structure is determined by
finitely many densities. In the rest of the section, we will be interested in
such graphons.

The ideas presented in the previous paragraph leads to the following
definition: a graphon W is finitely forcible if there exists a finite set G of
graphs such that any graphon W ′ satisfying d(H,W ) = d(H,W ′) for every
graph H ∈ G is weakly isomorphic to W ; such a set G is called a forcing
family of W . In particular, the constant graphon is finitely forcible and its
forcing family is {K2, C4, K4 \ e,K4} (note that t(C4,W ) is determined by
d(C4,W ), d(K4 \ e,W ) and d(K4,W ) ), and the graphon given in Figure 4 is
not finitely forcible. In fact, finitely forcible graphons are rather rare in the
sense that the set of finitely forcible graphons is of the first category in the
space L2 ([0, 1]2) as shown by Lovász and Szegedy [71].
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The study of finitely forcible graphons is motivated by the link to extremal
combinatorics captured in the following (folklore) proposition.

Proposition 11. Let W0 be a finitely forcible graphon. There exists a lin-
ear combination of subgraph densities such that W0 is its unique (up to a
weak isomorphism) minimizer, i.e., there exist α1, . . . , αk ∈ R and graphs
H1, . . . , Hk such that the graphon W0 minimizes the expression

min
W

k
∑

i=1

αid(Hi,W )

and any graphon minimizing this expression is weakly isomorphic to W0.

Examples of finitely forcible graphons include many graphons that ap-
pear as optimal solutions of problems in extremal graph theory. For example,
Lovász and Sós [68], also see [91], showed that every step graphon is finitely
forcible. A more systematic study of finitely forcible graph limits was initi-
ated by Lovász and Szegedy in [71]. In particular, they showed that if p is a
polynomial in x and y such that the function W : [0, 1]2 → [0, 1] defined as

W (x, y) =

{

1 if p(x, y) ≥ 0, and

0 otherwise,

is symmetric, then W is a finitely forcible graphon.
Inspired by the known examples of finitely forcible graphons, Lovász and

Szegedy [71] conjectured that all finitely forcible graphons posses a simple
structure in the sense that we now describe. To state this precisely, we need
the following definition. For a graphon W and x ∈ [0, 1], define a function
fW
x : [0, 1] → [0, 1] to be

fW
x (y) :=W (x, y).

Since the function fW
x belongs to L1([0, 1]) for almost every x ∈ [0, 1], the

graphon W naturally defines a probability measure µ on L1([0, 1]) [71]. The
space T (W ) is formed by the support of the measure µ equipped with the
topology inherited from L1([0, 1]), and is referred to as the space of typical
vertices of W . A vertex x of the graphon W is called typical if fW

x ∈ T (W ).
Lovász and Szegedy [71, Conjectures 9 and 10] conjectured the following; we
cite both conjectures verbatim.

Conjecture 1. If W is a finitely forcible graphon, then T (W ) is a compact
space. (We can’t even prove that T (W ) is locally compact.)
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Conjecture 2. If W is a finitely forcible graphon, then T (W ) is finite di-
mensional. (We intentionally do not specify which notion of dimension is
meant here—a result concerning any variant would be interesting.)

The interest in Conjecture 2 comes from the following link to weak regu-
larity partitions of graphons. It is possible to define a different notion of the
space of typical vertices of a graphon as follows. If f and g are two functions
from L1([0, 1]), we define

dW (f, g) :=

∫

[0,1]

∣

∣

∣

∣

∣

∣

∣

∫

[0,1]

W (x, y)(f(y)− g(y))dy

∣

∣

∣

∣

∣

∣

∣

dx ,

and refer to dW (f, g) as the similarity distance of the functions f and g. Note
that the similarity distance dW depends on the graphonW . The space T (W )
is formed by the closure (with respect to dW ) of the support of the measure
µ, which we have defined earlier, equipped with the topology given by the
metric dW . The structure of the space T (W ) is related to weak regularity
partitions of W as follows [67, Chapter 13]: if the Minkowski dimension of
T (W ) (with respect to the metric dW ) is d, then W has a weak ε-regular
partition with O(ε−d) parts for every ε > 0. Note that the number of parts

of a weak ε-regular partition may need to be 2Θ(ε
−2), and this is the best

possible as shown by Conlon and Fox [20].
Conjectures 1 and 2 were disproved in [39] and [38], respectively. More

specifically, a construction of a finitely forcible graphon W such that T (W )
fails to be locally compact was given in [39] (the graphon can be found in
Figure 5) and a construction of a finitely forcible graphonW such that T (W )
contains a space homeomorphic to [0, 1]N in [38] (this graphon is depicted in
Figure 6). A stronger counterexample to Conjecture 2 was given in [25],
where the authors constructed a finitely forcible graphon W such that any
weak ε-regular partition must have a number of parts almost exponential in
ε−2 for infinitely many ε > 0, which is close to the general lower bound. This
graphon can be found in Figure 7. This line of research culminated with the
following general result of Cooper et al. [26] (the graphon is visualized in
Figure 8), which we state as Theorem 12. To state the result, we need the
following definition: ifW1 andW2 are two graphons and X ⊆ [0, 1] a non-null
measurable set, then we say that W1 is a subgraphon of W2 induced by X if
there exist measure-preserving maps ϕ1 : X → [0, |X|) and ϕ2 : X → X such
that

W1

(

|X|−1 · ϕ1(x), |X|−1 · ϕ1(y)
)

=W2 (ϕ2(x), ϕ2(y))

for almost every (x, y) ∈ X ×X .
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Theorem 12. For every graphon WF , there exists a finitely forcible graphon
W0 such that WF is a subgraphon of W0 induced by a 1/14 fraction of the
vertices of W0.

Theorem 12 provides a universal framework for constructing finitely for-
cible graphons with very complex structure, including counterexamples to
Conjectures 1 and 2. In view of Proposition 11, Theorem 12 says that prob-
lems on minimizing a linear combination of subgraph densities, which are
among the problems of the simplest kind in extremal graph theory, may have
unique optimal solutions with highly complex structure. Given the general
nature of Theorem 12, it is surprising that the forcing family for the graphon
W0 in Theorem 12 is the same for all choices of WF , i.e., the structure of
W0 is controlled by choosing the densities of the graphs in the forcing family
only.

It is natural to ask whether the fraction 1/14 given in Theorem 12 can
be improved. The techniques presented in [26] would easily yield that the
fraction 1/14 can be replaced by 1/2− ε for any ε > 0. A recent result given
in [60] shows that it is possible to improve this fraction to be arbitrarily close
to 1.

Theorem 13. For every ε > 0 and every graphon WF , there exists a finitely
forcible graphon W0 such that WF is a subgraphon of W0 induced by a 1− ε
fraction of the vertices of W0.

Recall that the forcing family in Theorem 12 was the same for all choices
of WF . However, the forcing family in Theorem 13 depends on ε and this
dependance is necessary as shown in [60].

We now briefly outline the ideas used in the proofs that the graphons
depicted in Figures 5–8 are finitely forcible. The arguments are based on the
method of decorated constraints, which was developed in [39] and formalized
in [38], and which builds on the flag algebra method of Razborov. Each of the
graphons depicted in Figures 5–8 have the property that the interval [0, 1] is
split into finitely many sets X1, . . . , Xk such that the integral

∫

[0,1]

W (x, y) dy

is the same for all x from the same set Xi, i.e., the degrees of the vertices
in each of the parts are the same. We will refer to these sets as parts and
to graphons with this structure as partitioned graphons. The flag algebra
arguments can be used to show that there is a polynomial combination of
densities that is zero if and only if a graphon has a given number of parts
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Figure 5: The finitely forcible graphon W with the space T (W ) of typical
vertices that is not compact constructed in [39].
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Figure 6: The finitely forcible graphon W with the space T (W ) of typical
vertices containing a subspace homeomorphic to [0, 1]N that was constructed
in [38].
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Figure 7: The finitely forcible graphon W constructed in [25]. Any weak
ε-regular partition of W must have a number of parts almost exponential in
ε−2 for infinitely many ε > 0.
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WF

Figure 8: Visualization of the universal construction of complex finitely
forcible graphon given in [26].

21



with given sizes and vertices of given degrees. In particular, the structure of
a partitioned graphon can be forced by finitely many densities. The method
of decorated constraints uses the power of the flag algebra method to restrict
the structure inside and between the parts of a partitioned graphon by con-
straints that are simple to analyse even for complex graphons such as those
in Figures 5–8.

We would like to conclude this section with a recent result concerning
the relation of finitely forcible graphons and optimal solutions of problems in
extremal graph theory. As a motivation, let us have a look at several classical
results in extremal graph theory. One of the oldest results in extremal graph
theory is the theorem of Mantel [73], which says that the maximum number
of edges of an n-vertex triangle-free graph is ⌊n/2⌋ · ⌈n/2⌉ and the maximum
is attained only by the balanced complete bipartite graph, i.e., the graph
K⌊n/2⌋,⌈n/2⌉. In the language of graph limits, Mantel’s theorem says that
the maximum value of d(K2,W ) among all graphons W with d(K3,W ) =
0 is 1/2 and every graphon achieving this maximum is weakly isomorphic
to the graphon representing (large) complete bipartite graphs with parts of
equal sizes. Mantel’s theorem was extended by Turán [95] to graphs avoiding
complete graphs of arbitrary sizes and by Erdős and Stone [33] to all graphs.
In the language of graph limits, we obtain that, for every graph H , the
maximum value of d(K2,W ) among all graphonsW with t(H,W ) = 0 is equal

to χ(H)−2
χ(H)−1

and every graphon achieving this maximum is weakly isomorphic

to the graphon representing (large) complete (χ(H)− 1)-partite graphs with
parts of equal sizes.

Since the graphon representing (large) complete (χ(H)−1)-partite graphs
with parts of equal sizes is finitely forcible, it may be tempting to think that
the converse of Proposition 11 could hold, i.e., the optimal configurations for
every extremal graph theory problem are asymptotically unique. However,
the following shows that this is not true. Let us consider the problem of min-
imizing the sum d(K3,W ) + d(K3,W ), i.e., the sum of the induced densities
of K3 and its complement. A classical result of Goodman [44] implies that
this sum is minimized by any graphon such that

∫

[0,1]

W (x, y)dy =
1

2

for almost every x ∈ [0, 1], i.e., by any graphon representing graphs where
almost every vertex has degree close to the number of vertices divided by
two. However, the structure of an optimal solution can be made unique by
adding additional constraints. For example, any graphon W that minimizes
the sum and that satisfies d(K3,W ) = 0 corresponds to (large) complete
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bipartite graphs with parts of equal sizes, any graphon W that minimizes
the sum and that satisfies d(K3,W ) = 0 corresponds to (large) graphs that
are the union of two complete graphs of equal sizes, or any graphon W that
minimizes the sum and that satisfies t(C4,W ) = 1/16 is equal to 1/2 almost
everywhere, i.e., it corresponds to Erdős-Rényi random graphs Gn,1/2.

A conjecture of Lovász asserts that the phenomenon that we have just
described is a more general one. The conjecture has been the most frequently
quoted conjecture concerning dense graph limits, it also sometimes appeared
as a question, and we include only some of the many references to its state-
ment.

Conjecture 3 (Lovász [65, Conjecture 3], [66, Conjecture 9.12], [67, Conjec-
ture 16.45], and [71, Conjecture 7]). Let H1, . . . , Hℓ be graphs and d1, . . . , dℓ
reals. If there exists a convergent sequence of graphs with the limit density
of Hi equal to di, i = 1, . . . , ℓ, then there exists such a sequence that its limit
graphon is finitely forcible.

Informally speaking, the conjecture says that “every extremal problem
has a finitely forcible optimum”, see [67, p. 308]. The conjecture has been
recently disproved in [46] using the universal construction of complex finitely
forcible graph limits from [26]. More precisely, the authors proved the fol-
lowing theorem in [46].

Theorem 14. There exists a family of graphons W, graphs H1, . . . , Hℓ and
reals d1, . . . , dℓ such that

• a graphon W is weakly isomorphic to a graphon contained in W if and
only if d(Hi,W ) = di for every i ∈ [ℓ], and

• no graphon in W is finitely forcible, i.e., for all graphs H ′
1, . . . , H

′
r and

reals d′1, . . . , d
′
r, the family W contains either zero or infinitely many

graphons W with d(H ′
i,W ) = d′i, i ∈ [r].

The familyW of graphons from Theorem 14 is visualized in Figure 9. Un-
like in the results that we have mentioned earlier, the graphons in the family
W have a part that depends on a countable vector z ∈ [0, 1]N and analytic
tools are applied to understand and to restrict the behaviour of graphons in
the family W. We remark that Theorem 14 can be further generalized [46]
in the way that all graphons in the family W have the same value of a given
graphon parameter that behaves nicely on the space of graphons. An example
of such a parameter may be the graphon entropy, i.e., informally speaking,
there are problems in extremal graph theory with no single “typical” graphon
at the exponential scale.
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Figure 9: Visualization of the graphons forming the familyW in Theorem 14.
The family is obtained by varying densities in the sqaure in the third row
and the third column in a controlled way.
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5 Sparse graph limits

In this section, we give a brief overview of the main notions of convergence for
sparse graphs. We restrict our attention to graphs with bounded maximum
degree though many of the presented concepts can be extended to more
general settings. We will also be less technical than in the previous sections,
primarily focusing on presenting the main ideas behind the relevant concepts.

As we said earlier, the theory of limits of sparse graphs is developed in
a less satisfactory way than the theory of limits of dense graphs. While this
can be caused by the lack of our understanding of the structure of sparse
graphs, many believe that there is no perfect notion of convergence because
of the nature of sparse graphs. Such a perfect notion of convergence should
be able to distinguish graphs with different local and global structures, i.e.,
sequences of graphs such that their local or global properties differ substan-
tially should not be convergent. The notion should also be robust enough
that sublinear modifications of graphs in the sequence do not affect the con-
vergence, i.e., a convergent sequence should stay convergent if a sublinear
number of edges is added or removed. Finally, the notion should ideally
allow representing convergent sequences of sparse graphs with an analytic
object that captures the interplay between local and global properties, sim-
ilarly to the way that graphons in the dense setting capture the interplay
between subgraph densities (a local property) and regularity partitions (a
global property). In what follows, we present several notions of convergence
for sparse graphs that have been studied and we will discuss their mutual
relation and demonstrate their power on examples of particular sequences of
graphs that do or do not converge with respect to these notions.

The most widely used notion of convergence in relation to graphs with
bounded degrees is the one defined by Benjamini and Schramm [9], known
as Benjamini-Schramm convergence, shortly BS-convergence, and also as left
convergence. Suppose that (Gn)n∈N is a sequence of graphs with maximum
degree at most ∆. For every d ∈ N, let Gv(d,∆) be the set of all rooted
graphs with maximum degree ∆ where all vertices have distance at most d
from the root. Note that the set Gv(d,∆) is finite for every pair d and ∆.
By choosing a root in Gn randomly and restricting the graph Gn to the d-
neighbourhood of the root, i.e., the vertices at distance at most d from the
root, we get a (finite) probability distribution on graphs from Gv(d,∆). Let
pn,d ∈ [0, 1]G

v(d,∆) be the corresponding vector of probabilities. We say that
the sequence (Gn)n∈N is BS-convergent if the sequence (pn,d)n∈N converges
for every d. Benjamini-Schramm convergent sequences of graphs can be
associated with an analytic representation called a graphing [31], however,
we omit further details concerning this representation here and explore the

25



view on limits of BS-convergent sequences in terms of distribution on rooted
neighbourhoods of vertices.

Every BS-convergent sequence yields a probability measure on the space
Gv(∆) of (not necessarily finite) rooted graphs with maximum degree ∆. The
topology on Gv(∆) is generated by clopen sets of rooted graphs with the same
d-neighbourhood of the root for some d, and the limit probabilities from the
definition of Benjamini-Schramm convergence give a probability measure on
the corresponding σ-algebra on Gv(∆) by Carathéodory’s Extension Theo-
rem. In what follows, we will just write Gv instead of Gv(∆) when ∆ is clear
from the context.

It is not true that every probability measure µ on Gv corresponds to a
BS-convergent sequence of graphs. Let us fix ∆ = 3, i.e., we restrict our
attention to graphs with maximum degree three in the following exposition.
Let T be the infinite rooted tree where the vertices at even levels (including
the root) have degree three and the vertices at odd levels have degree two. If
µ({T}) = 1, then there is no BS-convergent sequence of graphs corresponding
to µ. Indeed, graphs in such a sequence would have almost all vertices of
degree three but almost every vertex of degree three would have neighbours
of degree two only—this is clearly impossible.

We now describe a condition on a probability measure µ that is necessary
in order that µ corresponds to a BS-convergent sequence of graphs. We start
with defining a different probability measure µ′ on Gv as

µ′(S) =

∫

S

δ(G)dG

∫

Gv

δ(G)dG
,

where the integration is with respect to the measure µ and δ(G) for G ∈ Gv

is the degree of the root of G (we may assume that δ(G) > 0 with non-zero
probability, i.e., µ′ is well-defined, since otherwise µ clearly corresponds to a
BS-convergent sequence of graphs).

We next define a probability measure µe on rooted graphs Ge with one
distinguished edge at the root. Choose a rooted graph G ∈ Gv according to
µ′ and make randomly one of the edges incident with the root distinguished.
This defines the probability measure µe on rooted graphs Ge. Another prob-
ability measure µ′

e on Ge can be obtained from µe by choosing a random
graph G ∈ Ge according to µe and making the other end of the distinguished
edge to be the root. If µ corresponds to a BS-convergent sequence of graphs,
then the probability measures µe and µ

′
e are the same. The conjecture that is

known as the conjecture of Aldous and Lyons [1] asserts that this necessary
condition is also sufficient for a probability measure µ on Gv to correspond
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Figure 10: The construction of an infinite graph presented in relation to
Benjamini-Schramm convergence: a part the original directed infinite tree
and the corresponding part of the obtained undirected graph.

to a BS-convergent sequence of graphs. We remark that this conjecture is
closely related to a question of Gromov whether all countable discrete groups
are sofic, see [67, Chapter 19].

It is tempting to think that the following condition, which is weaker than
the one presented in the previous paragraph, can also be sufficient for a
probability measure µ to correspond to a BS-convergent sequence of graphs.
Let µv be the probability distribution on Gv obtained as follows: sample a
rooted graph with a distinguished edge based on µe and keep the root, i.e.,
forget that any edge of the sampled graph is distinguished. Note that µv

differs from µ if µ({T}) > 0 where T is the single vertex graph with its only
vertex being the root, and µv and µ are the same if µ({T}) = 0. We define µ′

v

based on µ′
e in the analogous way. Informally speaking, µ′

v is the distribution
obtained from µv by rerooting to a random neighbour of the root (in an
appropriately weighted way). Clearly, if µ corresponds to a BS-convergent
sequence of graphs, then the probability measures µv and µ′

v are the same.
It may be tempting to think that if µv and µ′

v are the same for a measure µ
on Gv, then µ corresponds to a BS-convergent sequence of graphs. However,
this is not true as we explain in the next paragraph.

Consider an infinite tree T0 where every vertex has degree three and each
edge is directed in such a way that each vertex has out-degree exactly one
(note that this determines the tree T0 completely) and let T be the infinite
(undirected) graph obtained from T0 by joining two vertices by an edge if
they are joined by a directed path of length one or two; see Figure 10 for an
illustration of the construction. Since T0 is vertex-transitive, T is also vertex-
transitive. In particular, if µ({T}) = 1, then the corresponding measures µv
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and µ′
v are the same. However, there is no sequence (Gn)n∈N of graphs such

that µ is the resulting measure on Gv. To see this, we proceed as follows.
Assume that a sequence (Gn)n∈N of graphs with maximum degree eight is BS-
convergent and µ is the resulting measure on Gv. A vertex of Gn is typical if
its 2-neighbourhood is the same as the 2-neighbourhood of vertices in T . For
ε > 0, consider n ∈ N such that the 2-neighbourhood of all but ε|Gn| vertices
of Gn are typical. We consider each typical vertex v of Gn and orient some
of the edges incident with v as follows. The vertex v is incident with exactly
three edges e1, e2 and e3 contained in three triangles and all but a single pair
of these three edges are contained in a common triangle, i.e., we can assume
by symmetry that e1 and e2 are contained in a common triangle and e1 and
e3 are contained in a common triangle. We now orient the edge e1 from the
vertex v and the edges e2 and e3 towards v. Because the 2-neighbourhood of
v is the same as the 2-neighbourhood of the vertices in T , no edge is oriented
in two different ways. Observe that the sum of in-degrees of the vertices of
Gn is at least 2(1− ε)|Gn| (each typical vertex has two incoming edges) but
the sum of out-degrees is at most (1 + 8ε)|Gn| (each typical vertex has a
single outgoing edge and each vertex that is not typical can have at most
eight such edges). However, this is impossible if ε < 1/10. We conclude that
there is no BS-convergent sequence of graphs such that µ is the resulting
measure on Gv.

Benjamini-Schramm convergence has the drawback that we next describe.
Let us consider a setting of graphs with maximum degree three.

Example 1. Let (Gn)n∈N be a sequence of graphs such that Gn is a random
(2n)-vertex cubic graph when n is odd, and Gn is a random (2n)-vertex cubic
bipartite graph when n is even.

We claim that the sequence from Example 1 is BS-convergent with proba-
bility one. Indeed, the probability that a randomly chosen vertex of a random
cubic graph is contained in a cycle of length k tends to 0 for any fixed integer
k. The same is true for random cubic bipartite graphs. Hence, the sequence
from Example 1 is BS-convergent and the corresponding probability measure
µ on Gv satisfies that µ({T}) = 1 for the infinite rooted cubic tree T . How-
ever, the independence number of a random n-vertex cubic graph is at most
0.455n with probability tending to one [74], i.e., it is bounded away from
n/2. In other words, Example 1 shows that BS-convergence is not robust
enough to distinguish bipartite graphs from graphs that are far from being
bipartite. We consider one more example.

Example 2. Let (Gn)n∈N be a sequence of graphs such that Gn is Hn when n
is odd, and Gn is the union of two copies of Hn when n is even, where (Hn)n∈N
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is a BS-convergent sequence of cubic expanders (to obtain (Hn)n∈N, consider
a sequence of cubic expanders and one of its convergent subsequences).

Since (Hn)n∈N is BS-convergent, the sequence (Gn)n∈N is also BS-con-
vergent. This example shows that BS-convergence is not robust to distin-
guish well-connected graphs, which appear in the sequence (Gn)n∈N on even
positions, from disconnected graphs, which appear in the sequence on odd
positions.

To overcome the phenomenon demonstrated by Examples 1 and 2, a finer
notion of convergence called local-global convergence was proposed in [11] and
further studied in [50]. This notion of convergence takes into account possible
partitions of vertex sets of graphs in a sequence. Formally, let Gv(d, k,∆) be
the set of all rooted k-vertex-coloured graphs with maximum degree ∆ (the
vertex colouring need not be proper) such that every vertex is at distance at
most d from the root. For a graph G with maximum degree ∆, let Pd,k(G)
be the set of all vectors from [0, 1]G

v(d,k,∆) that corresponds to the probability
distribution on d-neighbourhoods for all k-vertex-colourings ofG. A sequence
(Gn)n∈N of graphs with maximum degree ∆ is local-global convergent if the
sets (Pd,k(Gn))n∈N converge in the Hausdorff metric for every d ∈ N and
k ∈ N, i.e., for every ε > 0, there exists n0 such that the Hausdorff distance
of Pd,k(Gi) and Pd,k(Gj) is at most ε for every i, j ≥ n0. Recall, that the
Hausdorff distance of two subsets A and B of RD is

max{sup
x∈A

inf
y∈B

d(x, y), sup
x∈B

inf
y∈A

d(x, y)},

where d(x, y) is the distance between points x and y (in this definition, it
does not matter which of the standard metrics on R

D we use, so, we can
use the L1-metric for example). Informally speaking, the definition says that
the sequence (Gn)n∈N is local-global convergent if and only if for every k-
colouring of Gi, there exists a k-colouring of Gj with a close statistic of
d-neighbourhoods assuming that both i and j are sufficiently large.

Observe that if a sequence of graphs is local-global convergent, it is also
BS-convergent (set k = 1 in the definition). However, the converse is not
necessarily true: neither of the sequences given in Examples 1 and 2 is local-
global convergent. In Example 1, an (2n)-vertex random cubic bipartite
graphs has a vertex-colouring with two colours, say red and blue, such that
the number of red vertices is n and there are no red-red edges. However,
a 2-vertex-colouring with a neighbourhood statistic close to this 2-vertex-
colouring does not exist for (2n)-vertex random cubic graphs with high prob-
ability since the size of their largest independent set is at most 0.91n with
high probability as we have mentioned earlier. In Example 2, the union of two
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n-vertex (cubic) expanders has a 2-vertex-colouring such that each colour is
used on half of the vertices and all edges are monochromatic but no n-vertex
cubic expander has a 2-vertex-colouring with a neighbourhood statistic close
to this 2-vertex-colouring.

Another notion of convergence related to BS-convergence is that of right
convergence. Let H be a complete graph with a loop at each vertex such that
all its vertices and edges are assigned positive weights. We refer to such a
graph H as to a target. We remark that such graphs are also often called soft
cores, while graphs, where non-negative weights are allowed are called hard
cores. The definition that we use here is weaker than the original definition,
which was using hard cores instead of soft cores, however, every sequence of
graphs that is convergent in the definition that we use can be modified by
changing a sublinear number of edges to a sequence of graphs convergent in
the original (stronger) definition, see [12] for further details.

The number of weighted homomorphisms from a graph G to H , denoted
by hom(G,H), is

∑

f :V (G)→V (H)

∏

v∈V (G)

w(f(v))
∏

vv′∈E(G)

w(f(v)f(v′)) ,

where w is the weight function of H . For a homomorphism f , the corre-
sponding summand in the expression above is referred as the weight of the
homomorphism f . A sequence (Gn)n∈N of graphs is right convergent if the
fraction

log hom(Gn, H)

|Gn|

convergences for every target H . It can be shown [13], also see [72], that if a
sequence (Gn)n∈N of graphs with bounded maximum degree is right conver-
gent, then it is also BS-convergent. However, the converse is not true since
the sequence given in Example 1 is not right convergent, i.e., informally
speaking, right convergence can distinguish graphs close to being bipartite
and those far from being bipartite. To see that the sequence given in Exam-
ple 1 is not right convergent, consider the target graph HK , K ∈ N, with two
vertices v and w such that the weight of the vertex v is K, the weight of the
loop at v is 1/K, the weights of w, the loop at w and the edge vw are one.
Observe that Gn has a homomorphism to H of weight Km if and only if the
independence number of Gn is m. This can be used to show that

lim
K→∞

lim
n→∞

log hom(Gn, H)

|Gn|
= lim

n→∞

α(Gn)

|Gn|
.

Hence, the sequence given in Example 1 is not right convergent.
We next consider the following modification of Example 2.
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Example 3. Let (Gn)n∈N be a sequence of graphs such that Gn is Hn when n
is odd, and Gn is the union of two copies of Hn when n is even, where (Hn)n∈N
is a right convergent sequence of cubic expanders (to obtain (Hn)n∈N, consider
a sequence of cubic expanders and one of its convergent subsequences).

Observe that it holds that

log hom(G,H)

|G|
=

log hom(G ∪G,H)

|G ∪G|

for every graphG and every targetH , where G∪G stands for the union of two
disjoint copies of G. Consequently, Example 3 shows that right convergence
does not imply local-global convergence.

Another notion of convergence of sparse graphs, which is entirely based
on possible vertex partitions, was proposed by Bollobás and Riordan in [11].
A k-partition of a graph G is a partition of its vertex set into k subsets.

The statistic of a k-partition P = (P1, . . . , Pk) is a vector s(P) ∈ R
k+(k+1

2 )

whose first k coordinates are the relative sizes pi = |Pi|
|G|

of the parts and

the remaining
(

k+1
2

)

coordinates are the edge densities eij =
e(Pi,Pj)

|G|
between

the parts (including the cases when i = j), where e(Pi, Pj) stands for the
number of edges between parts Pi and Pj . Note that the normalization
here is different than the one used in Section 3 when dealing with dense

graphs. Let Pk(G) ⊆ R
k+(k+1

2 ) be the set of statistics s(P) of all k-partitions
P of a graph G. A sequence (Gn)n∈N of graphs with bounded maximum
degree is partition convergent if the sequence (Pk(Gn))n∈N converges in the
Hausdorff metric for every k ∈ N. Observe that local-global convergence of
a sequence of graphs trivially implies partition convergence but Example 2
and its modification considered in the previous paragraph yield that neither
BS-convergence nor right convergence implies partition convergence.

We will now show that there exists a sequence (Gn)n∈N of graphs that
is partition convergent but is not BS-convergent (and so is neither right
convergent nor local-global convergent). Consider the following sequence of
2-regular graphs.

Example 4. Let (Gn)n∈N be a sequence of graphs such that Gn is the union
of n cycles of length four, i.e., the graph n C4, when n is odd, and it is the
union of n cycles of length six, i.e., the graph n C6, when n is even.

The sequence from Example 4 is clearly not BS-convergent, however, the
sequence (Pk(Gn))n∈N converges in the the Hausdorff metric for every k ∈ N,
i.e., the sequence from Example 4 is partition convergent. We sketch the
argument for k = 2. Let U2 ⊆ R

5 be the set of all non-negative real vectors
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Figure 11: The relation between the presented notions of convergence of
bounded degree graphs. The bold arrows represent that the notion at the
tail of an arrow implies the other and the dashed arrows that this is not the
case in general. When an arrow is missing, the relation between the notions
is not known.

(p1, p2, e11, e12, e22) such that p1+p2 = 1, p1 = e11+e12/2 and p2 = e22+e12/2.
Observe that P2(G) ⊆ U2 for every 2-regular graph G. It can be shown that
both the sequence (P2(n C4))n∈N and the sequence (P2(n C6))n∈N converge
to U2 in the Hausdorff metric, i.e., the statistics of the partitions into two
parts of the vertices of the graphs in these sequences converge to the set of all
possible statistics of the partitions into two parts of the vertices of 2-regular
graphs.

We refer the reader to Figure 11 for the relation between the notions of
convergence of sparse graphs that we have already discussed and the notion
of large deviation convergence that we introduce next. The recent notion of
large deviation convergence, which was introduced in [12], is a common re-
finement of right convergence and partition convergence. A sequence (Gn)n∈N
of graphs with bounded maximum degree is LD-convergent if the following
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limit exists (while possibly being infinite)

Ik(x) = lim
ε→0

lim
n→∞

−
log |{P such that ||s(P)−x||1≤ε}|

k|Gn|

|Gn|

for every k and x ∈ R
k+(k+1

2 ), where s(P) is the statistic of a k-partition
P as defined earlier. Note that Ik(x) ∈ [0, log k] ∪ {∞}. On the intuitive
level, one can think that the number of k-partitions of Gn, if n is large,
with statistic close to x is approximately k|Gn| · e−Ik(x)|Gn|. If a sequence
(Gn)n∈N is LD-convergent, then it is also partition convergent. In fact, the
sequence (Pk(Gn))n∈N converges to the set {x | Ik(x) <∞} in the Hausdorff
metric. A more involved argument shows that every LD-convergent sequence
of graphs is right convergent [12], which implies that it is also BS-convergent.
We would like to emphasize here that it is important here that we consider
targets with positive weights only (soft cores). If the definition of right
convergence uses targets with non-negative weights (hard cores), when LD-
convergence does not imply right convergence. An example showing this is
the sequence (Cn)n∈N of cycles with alternating parities that can be shown
to be LD-convergent but it is not right convergent when targets are allowed
to have elements with zero weight (a cycle can be homomorphically mapped
to K2 if and only if its length is even).

The final notion of convergence of graphs that we would like to mention
is the notion of first order convergence introduced in [76, 77, 80] and further
studied in [18,36,57,78,79]. This notion is an attempt to provide a universal
notion of graph convergence that can be applied both in the sparse and in
the dense settings. If ψ is a first order formula with k free variables and G
is a (finite) graph, then the Stone pairing 〈ψ,G〉 is the probability that a
uniformly chosen k-tuple of vertices of G satisfies ψ. A sequence (Gn)n∈N of
graphs is first order convergent if the limit lim

n→∞
〈ψ,Gn〉 exists for every first

order formula ψ.
It is not hard to show that every first order convergent sequence of dense

graphs is convergent in the sense defined in Section 3 and every first order
convergent sequence of graphs with bounded maximum degree is Benjamini-
Schramm convergent. Neither of the opposite implications is true. We
present an argument in the case of Benjamini-Schramm convergence. Let
(Gn)n∈N be a sequence of graphs such that Gn is the union of n copies of
K2, and let (G′

n)n∈N be a sequence of graphs such that G′
n = Gn if n is even

and G′
n = Gn∪K1 if n is odd. The sequence (G′

n)n∈N is Benjamini-Schramm
convergent but not first order convergent: if ψ is a first order formula that
is true if and only if a graph contains an isolated vertex, then the values
〈ψ,G′

n〉 alternate between zero and one. This example also shows that first
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order convergence is not preserved by constant size modifications of graphs in
the sequence: the sequence (Gn)n∈N is first order convergent unlike (G′

n)n∈N.
Some first order convergent sequence graphs can be represented by an

analytic object called amodeling but not every first order convergent sequence
of graphs has such a representation [76, 77]; an interesting example of a
sequence of a first order convergent sequence of graphs with no modeling
is the sequence of Erdős-Rényi random graphs Gn,1/2 that has no modeling
with probability one. In general, a sequence of dense graphs converging
to a graphon W has a modeling if and only if the graphon W is random-
free [76, 77], i.e., W (x, y) ∈ {0, 1} for almost every (x, y) ∈ [0, 1]2. A nice
conjecture of Nešetřil and Ossona de Mendez [76, 77] asserted the following:
if G is a nowhere-dense class of graphs (see [75] for the definition and further
exposition), then any first order convergent sequence of graphs from G can
be represented by a modeling. Another conjecture of Nešetřil and Ossona
de Mendez [79] asserted that every residual first order convergent sequence
of graphs has a limit modeling; a sequence (Gn)n∈N of graphs is residual if
for every d ∈ N and ε > 0, there exists n0 such that the number of vertices
at distance at most d from any vertex in Gn, n ≥ n0, is at most ε|Gn|.
Both conjectures were proven in [78], however, their stronger forms asserting
that every first order convergent sequence of graphs from a nowhere-dense
class of graphs G has a limit modeling obeying a property called the finitary
mass transport principle (see [77] for the definition of this property) and that
every residual first order convergent sequence of graphs has a limit modeling
obeying the finitary mass transport principle remain open and present very
interesting problems.
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