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Let A be a nonzero n by k real matrix, and b be a nonzero real n-vector. Consider estimating x from
the linear approximation problem

Ax ≈ b , (1)

where the uninteresting case is for clarity of exposition excluded by the natural assumption b 6⊥ R(A), that
is AT b 6= 0. Here we do not primarily deal with A square nonsingular and solving linear algebraic equations.
We allow A rectangular of an arbitrary nonzero rank, and assume that the data A, b contain redundant
and/or irrelevant information, and are possibly also corrupted by noise.

In a sequence of papers [1, 2, 3] it was proposed to orthogonally transform the the original data b, A into
the form

P T

[

b AQ
]

=

[

b1 A11 0

0 0 A22

]

, (2)

where P−1 = P T , Q−1 = QT , b1 = β1e1, and A11 is a lower bidiagonal matrix with nonzero bidiagonal

elements. The matrix A11 is either square, when (1) is compatible, or rectangular, when (1) is incompatible.
The matrix A22, and the corresponding block row and column in (2), can be nonexistent. The original
problem is in this way decomposed into the approximation problem

A11x1 ≈ b1 , (3)

and the remaining part A22x2 ≈ 0. It was proposed to find x1 from (3), set x2 = 0, and substitute for the
solution of (1)

x ≡ Q

[

x1

0

]

. (4)

The (partial) upper bidiagonalization of [b, A] described above has remarkable properties. First, the
lower bidiagonal matrix A11 with nonzero bidiagonal elements has full column rank and its singular values
are simple. Consequently, any zero singular values or repeats that A has must appear in A22. Second,
A11 has minimal dimensions, and A22 has maximal dimensions, over all orthogonal transformations giving
the block structure in (2), without any additional assumptions on the structure of A11 and b1. Finally, all
components of b1 = β1e1 in the left singular vector subspaces of A11 (that is, the first elements of all left
singular vectors of A11) are nonzero. Proofs can be found in [3]. In this contribution we outline alternative
proofs based on the relationship between the Golub-Kahan bidiagonalization and the symmetric Lanczos
tridiagonalization.

1



In the approach represented by (1)–(4), the data b, A are fundamentally decomposed. The necessary and
sufficient information for solving the problem (1) is given by b1, A11. All irrelevant and repeated information
is filtered out to A22. The problem (3) is therefore called a core problem within (1).

In our contribution we will review the theory, mention recent applications of the core problem formula-
tion, and outline the status of investigation of several open questions. We will concentrate on explanation
of ideas, and avoid technical details. The lecture is intended for a general audience.
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