Faculty of Informatics, Masaryk University

Entrance Examination Mathematics

1 Sets, relations, functions

1. Consider a function F of the type $\mathbb{Z} \rightarrow \mathbb{Z}$ defined by $F(n)=n^{2}$. The function F
(a) is surjective but not injective
(b) is neither surjective, nor injective \checkmark
(c) is injective but not surjective
(d) is bijective
(e) is both injective and surjective
2. Let $S=\{a, b\}, T=\{b, c\}$ a $U=\{a, c\}$.

Which of the following sets is equal to $(R \times S) \cap(S \times U)$?
(a) $\{(b, c)\} \checkmark$
(b) $\{(b, c),(a, b)\}$
(c) $\{(b, c),(a, b),(a, c)\}$
(d) \emptyset
(e) $\{(b, b),(c, c),(a, a)\}$
3. Which of the following sets is equal to $(A \backslash B) \backslash C$?
(a) $A \backslash(B \backslash C)$
(b) $A \backslash(B \cap C)$
(c) $A \backslash(B \cup C)$
(d) $(A \cup B) \backslash C$
(e) $(A \cap B) \backslash C$
(Here $X \backslash Y$ denotes the difference of the sets X and Y, i.e. the set of all elements of X that do not belong to Y.)
4. The relation $\{(a, a)\}$ on the set $\{a, b, c\}$ is not
(a) symmetric
(b) transitive
(c) antisymmetric
(d) reflexive \checkmark
(e) non-empty
5. Let A be a set of size $n \in \mathbb{N}$. What is the size of the set $\mathcal{P}(\mathcal{P}(A))$?
(Here $\mathcal{P}(A)$ denotes the power set of A, i.e. the set of all subsets of A.)
(a) $2^{2 n}$
(b) n^{2}
(c) $2^{n^{2}}$
(d) $2^{2^{n}} \checkmark$
(e) $2^{2^{n}+2^{n}}$

2 Logic

6. Let us consider the following statement: For every $x>0$ we have that $P(x)$ holds. Which of the following statements is obtained by negating the statement above?
(a) For every $x \leq 0$ we have that $P(x)$ holds.
(b) For every $x \leq 0$ we have that $P(x)$ does not hold.
(c) There exists $x \leq 0$ such that $P(x)$ holds.
(d) There exists $x>0$ such that $P(x)$ does not hold. \checkmark
(e) There exists $x>0$ such that $P(x)$ holds.
7. Let us assume that all variables are interpreted as natural numbers (with zero). For which given values of the variable x is the following formula true?

$$
\exists y \exists z((x=y+z) \wedge y \neq 0 \wedge z \neq 0 \wedge y \neq z)
$$

(a) 0
(b) 1
(c) 2
(d) $3 \checkmark$
(e) for no value from the set $\{0,1,2,3\}$
8. Which of the following formulae is not in the conjunctive normal form (CNF)?
(a) $A \wedge B \wedge C$
(b) $A \vee B \vee C$
(c) $(A \vee B) \wedge C$
(d) $\neg(A \wedge B \wedge C) \checkmark$
(e) $\neg A \vee \neg B \vee \neg C$
9. Which of the following formulae is a tautology?
(A formula is a tautology if it is true for all valuations of the variables.)
(a) $A \Leftrightarrow C$
(b) $(A \wedge B) \Leftrightarrow(C \wedge B)$
(c) $(A \wedge B) \Leftrightarrow(C \vee B)$
(d) $(A \wedge \neg A) \Leftrightarrow(C \wedge \neg C) \checkmark$
(e) $(A \wedge \neg A) \Leftrightarrow(C \vee \neg C)$
10. Let us assume that all variables are interpreted as integers, the symbol f is interpreted as the function which assigns to each number n the value $2 n$, and the symbol c is interpreted as the constant 99 . Which of the following formulae is true under these assumptions?
(a) $\forall x(f(x)=c)$
(b) $\forall x \quad(x=f(c))$
(c) $\forall x \quad(x \neq f(c))$
(d) $\exists x(f(x)=c)$
(e) $\exists x(x=f(c)) \checkmark$

3 Mathematical analysis

11. Which of the following functions is odd? (A function f is odd if for every $x \in \mathbb{R}$ we have that $f(-x)=-f(x)$.)
(a) $|x|$
(b) $\sin (x)$
(c) x^{2}
(d) e^{x}
(e) $1-x$
12. Consider the function $f(x)=e^{x}$. Which of the following statements is false? (The symbol \mathbb{R} denotes the set of all real numbers.)
(a) The domain of f is the set \mathbb{R}.
(b) $f^{\prime}(x)=f(x)$ for every $x \in \mathbb{R}$
(c) The function f is continuous on \mathbb{R}.
(d) The image of f is the set \mathbb{R}. \checkmark
(e) $f(0)=1$
(f^{\prime} denotes the derivative of function f.)
13. Consider the sequence of real numbers $\left(a_{n}\right)_{n=0}^{\infty}$ defined as follows:

$$
a_{n}= \begin{cases}\frac{1}{2^{n}} & \text { if } n \text { is even } \\ -\frac{1}{2^{n}} & \text { otherwise }\end{cases}
$$

What is the value of the limit $\lim _{n \rightarrow \infty} a_{n}$?
(a) -1
(b) $0 \checkmark$
(c) 1
(d) $+\infty$
(e) The limit does not exist.
14. Which of the following functions is the derivative of $x \cdot e^{3 x}$?
(a) 1
(b) $e^{3 x}$
(c) $1+3 e^{3 x}$
(d) $3 \cdot\left(1+e^{3 x}\right)$
(e) $e^{3 x} \cdot(1+3 x) \checkmark$
15. Which of the following numbers is equal to $\int_{1}^{2} 3 x^{2} d x$?
(a) 1
(b) 3
(c) $7 \checkmark$
(d) 9
(e) 21

4 Graphs and graph algorithms

16. Consider the following weighted directed graph:

For every pair of vertices z, z^{\prime} denote by $\delta\left(z, z^{\prime}\right)$ the length (i.e. the sum of edge weights) of the shortest path from the vertex z to the vertex z^{\prime}. Which of the following equalities is true?
(a) $\delta(s, s)=1$
(b) $\delta(s, u)=3$
(c) $\delta(s, v)=0$
(d) $\delta(s, x)=4$
(e) $\delta(s, y)=3 \checkmark$
17. The diameter of an undirected graph $G=(V, E)$ is the number $\max _{u, v \in V} d(u, v)$, where $d(u, v)$ denotes the length (i.e. the number of edges) of the shortest path from a vertex u to a vertex v. What is the diameter of the following graph?

(a) 1
(b) $2 \checkmark$
(c) 3
(d) 4
(e) ∞
18. Consider the following directed graph:

Which of the following sequences may represent an order in which the breadth-first search algorithm discovers new vertices starting from a ? (We do not assume any implicit ordering of vertices. Thus, the order in which the breadth-first search algorithm discovers new vertices may not be unique.)
(a) a, b, d, e, c, f
(b) a, c, f, b, d, e
(c) a, b, e, d, c, f
(d) $a, b, d, c, e, f \checkmark$
(e) a, d, e, f, b, c
19. In general, how many edges does a tree with n vertices have? (In the following, $\lfloor x\rfloor$ denotes the largest integer not greater than x.)
(a) $\left\lfloor\log _{2}(n)\right\rfloor$
(b) $n-1 \checkmark$
(c) $\left\lfloor n \cdot \log _{2}(n)\right\rfloor$
(d) $\frac{n \cdot(n-1)}{2}$
(e) n^{2}
20. For which of the following problems no polynomial time algorithm is known?
(a) Given a weighted graph G, find the shortest paths between all pairs of its vertices.
(b) Given a directed graph G and two of its vertices u and v, decide whether v is reachable from u.
(c) Given an undirected graph G, decide whether G contains a path that visits each vertex exactly once.
(d) Given an undirected graph G, decide whether G is connected.
(e) Given a weighted undirected graph G, find the minimum spanning tree of G.

5 Linear algebra

21. Which of the following mappings from \mathbb{R} to \mathbb{R} is not linear?
(A mapping f is linear if it satisfies $f(x+y)=f(x)+f(y)$ and $f(c \cdot x)=c \cdot f(x)$ for every x, y, c.)
(a) $f(x)=0$
(b) $f(x)=2 x$
(c) $f(x)=2 x+3 x$
(d) $f(x)=2 x-3 x$
(e) $f(x)=2 x \cdot 3 x \checkmark$
22. $\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right) \cdot\binom{1}{2}=$
(a) $\left(\begin{array}{ll}7 & 10\end{array}\right)$
(b) $\left(\begin{array}{ll}1 & 2 \\ 6 & 8\end{array}\right)$
(c) $\left(\begin{array}{ll}1 & 4 \\ 3 & 8\end{array}\right)$
(d) $\binom{5}{11} \checkmark$
(e) $\binom{3}{14}$
23. Consider the following system of linear equations over \mathbb{R} :

$$
\begin{array}{r}
x+y=5 \\
x+2 y=6 \\
2 x+y=8
\end{array}
$$

Which of the following is true?
(a) The only solution is $x=3, y=2$.
(b) The only solution is $x=4, y=1$.
(c) There is only one solution (but it is neither $x=3, y=2$, nor $x=4, y=1$).
(d) There are multiple solutions.
(e) There is no solution. \checkmark
24. What is the dimension of the linear span of the set of vectors $\{(1,1,0),(0,0,1),(1,1,1)\}$? (The linear span of a set of vectors is the space of all linear combinations of these vectors.)
(a) 0
(b) 1
(c) $2 \checkmark$
(d) 3
(e) ∞
25. Which of the following matrices determines the linear mapping A from \mathbb{R}^{2} to \mathbb{R}^{2} which flips the plane horizontally (as indicated in the figure below)?

(a) $\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)$
(b) $\left(\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right) \checkmark$
(c) $\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$
(d) $\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right)$
(e) $\left(\begin{array}{rr}-1 & -1 \\ 1 & 1\end{array}\right)$
(Every matrix M defines a linear mapping A by $A(\vec{v})=M \vec{v}$.)

