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ABSTRACT
Estimation is useful in situations where an exact answer is
not as important as a quick answer that is good enough. A
web-based adaptive system for practicing estimates is cur-
rently being developed. We propose a simple model for es-
timating student’s latent skill of estimation. This model
combines a continuous measure of correctness and response-
times. The advantage of the model is its simple update
method which makes it directly applicable in the developed
adaptive system.

1. INTRODUCTION
Estimation is a very useful skill to possess. Particularly in
situations where an exact answer is not as important as be-
ing able to quickly come up with an answer that is good
enough (e.g., total amount on a bill in a restaurant, number
of people in a room, total of the coins in a wallet, num-
ber of cans of paint needed for painting a room, converting
between metric and imperial units). It was shown that es-
timation ability correlates with the ability to solve compu-
tational problems [2, 9, 8]. Because estimation is so useful,
we have decided to develop a computerized adaptive system
that will let its users practice estimating by solving various
tasks.

The adaptive system will include exercises for practicing nu-
merical estimation (results of basic arithmetic operations,
converting between imperial and metric units, converting
between temperature units, currencies and exchange rates)
and visual estimation (counting the number of objects in a
scene).

In order to provide adaptive behavior of the system, we need
a way of inferring student’s ability of estimation. In our
setting, the binary-valued correctness-based modeling ap-
proach is not suitable. We do not expect the users to input
exact responses, we expect them to input their best esti-
mates. So our model should work with some measure of the
quality of an answer. Another important point is the speed-

accuracy tradeoff. Figure 1A shows a hypothetical tradeoff
curve for one user with fixed ability. User can answer a task
very quickly but it will probably be a very rough estimate.
Or he/she can decide to spend more time on the task and re-
spond with a more precise answer. Therefore, response-time
should be a vital part of our model.

The system should be able to detect prior skill (i.e., how
good the user was at estimation before he started using the
system) which can be deduced from the first interactions of
the user with the system. The goal of the developed system
is to enable the user to get better at estimating. Therefore,
the proposed model should also take into account user’s im-
provement (or learning) over time. Figure 1B illustrates
answers of several users on one task as red dots. Ideally, the
system will help its users to learn to perform near the green
mark, to be fast and accurate.
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Figure 1: A) hypothetical speed-accuracy tradeoff
curve, B) goal of the system

The value of the system will also be in the data that will be
collected. It can be used to answer some interesting research
questions. Does the speed-accuracy tradeoff curve have the
same shape for converting between EUR and USD as for
estimating the number of displayed objects? How do the
learning curves look? Can estimation tasks in one area be
learned more quickly than in another area? How close to
the perfect mark can users push their performance? What is
the influence of a countdown timer on user’s performance?
What is the appropriate level of challenge that motivates
the users? The last question was addressed in [3], where the
authors were trying to validate the Inverted-U Hypothesis
(i.e., we most enjoy challenges that are neither too easy,
neither too hard) on data collected from online estimation
game called Battleship Numberline. They found out that the



easier the game was, the longer users played the game.

2. MODELS
In this section, we present a few existing models for combin-
ing correctness and response-times in Item Response The-
ory (IRT) and a model for tracking learning currently used
in our other adaptive practice system. We then propose a
simple model that could be used in the system for practic-
ing estimates. The described models use a logistic function
σ(z) = (1 + e−z)−1. Users of the system (or students) are
indexed by j. The items (or tasks, problems, questions) that
the users solve are indexed by i.

2.1 Models from IRT
A typical example of an approach to the modeling of both
correctness and response-times in Item Response Theory is
from van der Linden [10]. The approach uses two models,
one for correctness (binary) and the other one for response-
times (distributed lognormally). The probability of success
of a student j on item i can expressed by the 3PL model:

pij = ci + (1 − ci) · σ(ai(θj − bi))

where parameter θj is the skill of student j and ai, bi, ci are
the discrimination, difficulty and pseudo-guessing parame-
ters for the item i. The logarithm of a response-time tij can
be predicted by:

ˆln tij = βi − τj (1)

where βi represents the amount of labor required to solve
item i and τj the speed of student j. The disadvantage
of this model is that it does not model the speed-accuracy
tradeoff explicitly.

An example of a model that directly combines binary cor-
rectness with response-time is Roskam’s model [7]:

pij = σ(θj + ln tij − bi)

Here, an increase in item difficulty (or decrease in student’s
ability) can be always compensated by spending more time
on a problem. This tradeoff is called an increasing condi-
tional accuracy function.

2.2 Model for factual knowledge
Here, we present a model that is currently used in a popular
adaptive system for practicing geographical facts [4]. This
model consists of two parts, one (Elo) estimates the prior
knowledge of a student and the second one (PFAE) models
student learning. A big advantage of this model is that
it uses fast online methods of parameter estimation which
makes it suitable for use in an interactive adaptive practice
system.

The prior knowledge of a student is modeled by the Rasch
(1PL) model. The probability that a student j answers item
i correctly is modeled by the likelihood pij = σ(θj−bi). The
parameters are estimated using Elo rating system [1]. Elo
was originally developed for rating chess players, but the
process of student answering an item can be interpreted as
a ”match” between the student and the item. After each
”match”, the parameters are updated as follows:

θj := θj + U(nj) · (correct − pij)
bi := bi + U(ni) · (pij − correct)

where U(n) is the uncertainty function U(n) = α
1+βn

and n
is the number of updates of the parameter and α and β are
metaparameters. The variable correct takes value 1 if the
student has answered correctly and value 0 otherwise. This
model is used for predicting– and trained on–first responses.

After the first interaction of a student j with item i has
been observed, we can set student’s skill in that particular
item to θij = θj − bi. An extended version of Performance
Factors Analysis [5] called PFAE is used to model learning
and predicting the following interactions of the student with
the item. Likelihood of a correct answer is pij = σ(θij). The
update to student’s knowledge of item θij after observation
is:

θij :=

{
θij + γ · (1 − pij) if the answer was correct

θij + δ · pij if the answer was incorrect

where γ and δ are metaparemeters. The reason for two dif-
ferent metaparameters is that the student learns also during
an incorrect response.

2.3 Proposed model for estimates
Here, we propose a model that can be used in the adap-
tive practice system for estimates. The model combines
Roskam’s model and the update scheme from Elo and PFAE.

A simple extension of the correctness-based modeling to the
setting of practicing estimates is to use a measure of cor-
rectness, or a score – a rational number ranging from 0 to
1. The way of scoring of an answer could be based on the
domain being practiced by the user. For example, for the
scenario where the user is estimating the number of objects
in a scene, the exact answer would get a score of 1, deviating
by one object a score of 0.8, etc.

The model assumes the same parameters and relationship
as Roskam’s model, but instead of expressing a probability
of a correct answer it specifies the expected score:

ŝij = σ(θj + ln tij − bi)

Figure 2 shows how the score changes as a function of time
for different values of user’s skill θj (with fixed bi = 0). It
nicely demonstrates the speed-accuracy tradeoff.
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Figure 2: Score function for different values of skill

After observing score sij that user j obtained for answering
item i and response-time tij , we can update model’s beliefs



in the parameters:

θj :=

{
θj + γ · (sij − ŝij) if sij ≥ ŝij

θj + δ · (ŝij − sij) if sij < ŝij
bi := bi + U(ni) · (ŝij − sij)

Note, that the model uses a single parameter θj for the stu-
dent. This is different from the approach taken in PFAE,
where the student has a parameter for each item θij . While
that approach is suitable for modeling the knowledge of facts
– where it is reasonable to assume that the knowledge of one
fact is independent of the knowledge of another – it is not
suitable here. Student’s ability to convert 2 miles to kilome-
ters is surely dependent on his ability to convert 3 miles to
kilometers.

We propose using separate model for each concept (e.g., es-
timating the number of objects, conversion lb to kg, conver-
sion EUR to USD). It is true that student’s ability to esti-
mate items corresponding to one concept tells us something
about his ability to estimate the other concepts. However,
if the user does not know the conversion rate from EUR to
USD then being able to estimate well the other concepts will
not help him.

The model can be easily extended by adding a discrimination
parameter a or a guessing parameter c (similarly to the IRT
model): ŝij = c+ (1− c) ·σ(a(θj + ln tij − bi)). These added
parameters could be either metaparameters of the model or
parameters of the item i. The guessing parameter may be
useful for the scenario where the user has to select a value
on a numberline.

As we mentioned earlier, this model suffers from the issue
that increasing the time spent on an item increases the ex-
pected score. This may hold true for the instance where the
user knows the underlying concept (e.g., the conversion rate
from EUR to USD) but it does not hold when he does not
know it. But the model uses the logarithm of response-time
and the time a student is willing to spend on an item is
limited. Therefore, the model should have reasonable be-
havior for the time interval of interest, as is demonstrated
in Figure 2 by the curve corresponding to θj = −5.

3. DISCUSSION
The model works with the response-time as a parameter.
Therefore, it cannot be used for predicting response-times
directly. A model similar to (1) can be used for that. Pre-
dicted time and score can be used for item selection (i.e.,
which item to offer the user next). This can be done by
setting a target score and recommending an item with pre-
dicted score close to the target.

Does the model perform better than a simple 1PL model
that does not use response-times at all? Does it make sense
to add more parameters to the model? How does the model
fare against more complicated models? To be able to an-
swer these questions, we need to somehow evaluate the per-
formance of the model. The choice of metric is interesting
because a model can predict both score and response-time.
When considering only the predicted score, a standard met-
ric like RMSE can be used [6]. When we have a measure of

performance, we can explore if the model is well-calibrated
with respect to response-times or if the model works simi-
larly well for all the domains (concepts).

Other question that we could ask is how well does the speed-
accuracy tradeoff curve that the model assumes correspond
to reality.
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We thank Radek Pelánek (for guidance and useful sugges-
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