
Faculty of Informatics

Masaryk University

The link key security in wireless
sensor networks

Dissertation thesis

Petr Švenda

Brno, September 2008

I would like to dedicate this thesis to my beloved Linďa.

Acknowledgements

I like to express my very deep appreciation to my supervisor Vashek Matyáš for
his ubiquitous care and support for and far beyond the study matters. Besides
technical discussions, ideas, tireless proof reading and encouragement to pursue
a wide range of research topics, he was able to create and maintain a pleasant
atmosphere in our research group.

I am very graceful for suggestions, contributions and help from several other
people. To Dan Cvrček for his significant work on new types of key infection
protocols and forward onion encryption, which lead to the basic idea for group
supported protocol. To Martin Osovský for his work on the analytical evalua-
tion of performance for the group supported protocol. To Lukáš Sekanina for
his continuous discussions and help with both technical and theoretical aspects
of evolutionary algorithms used for the automatic generation of secrecy ampli-
fication protocols and attacker strategies. To Jirka Kůr for his part of work on
attack strategy generation. To Nicholas Svenda for help with grammar correc-
tions. And to my colleagues Honza Krhovják and Marek Kumpošt for our joint
progress in graduate life.

I also like to thank all anonymous reviewers for their valuable comments and ideas
which hopefully improved my research and presentation skills and highlighted
weaknesses and open questions.

I like to thank my family, especially my parents Petr and Zdenka Svendovi for
their persistent support all over my studies. And finally, I am very thankful to
my wife Linďa and daughter Zuzanka for all the overtime hours spent in the lab
which they tolerated.

Abstract

This dissertation thesis targets the area of wireless sensor networks (WSNs),
in particular their security of link key establishment. We focus on how link
keys can be established in memory and computation restricted environment of
WSNs, how link security behaves under a selected attack, and what methods
can be used to strengthen their resilience against compromise. We based our
work on the assumption that partial compromise in the WSNs is inevitable and
network architecture should be prepared to cope with related security issues.
We work with two basic link key establishment concepts based on symmetric
cryptography – memory efficient probabilistic pre-distributions [21, 11, 10] and
lightweight key exchange without pre-distributed secrets [3, 29, 16]. Both key
distribution concepts behave differently when the network is attacked. We study
resulting compromised patterns and propose two separate mechanisms based on
support from neighbouring nodes for improving the network resiliency – one for
the probabilistic pre-distribution and second for the Key Infection.

The first mechanism uses group support for authenticated key exchange to sub-
stantially increase the resilience of an underlying probabilistic key pre-distribution
scheme against the threat of node capturing. The resiliency of probabilistic pre-
distribution schemes generally increases if more keys can be put into key ring on
every single node, but such an increase is limited by the node storage capacity.
The proposed protocol creates a large virtual key ring in an efficient and secure
way from the key rings of separate nodes. The proposed protocol itself is resilient
against partial compromise inside a group of neighbours.

The second proposed mechanism improves the fraction of secure links after com-
promise of some links due to attacker eavesdropping when key exchange be-
tween neighbours is made in plaintext (Key Infection approach). Our proposed
mechanism from the family of secrecy amplification protocols exploits the non-
uniformity of link compromise patterns in Key Infection and provides a signifi-
cantly better fraction of secure links than previously published protocols, espe-
cially for denser networks. We additionally provide detailed evaluation of existing
secrecy amplification protocols with respect to network density, repeated itera-
tions, composition of protocols and different quantities of attacker eavesdropping
nodes on our network simulator – previous works dedicated little attention to
these aspects.

We later realized that the secrecy amplification protocols can also be used to im-
prove the fraction of secure links and strengthen node capture resilience for prob-
abilistic pre-distribution. It works even better here than for the Key Infection
approach for which the secrecy amplification protocols were originally proposed
for. A network with half of its links compromised can be made reasonable secure

with less than 10% of compromised links when the secrecy amplification proto-
cols are applied. However, some combinations of secrecy amplification protocols
that worked for Key Infection do not work for probabilistic pre-distribution (do
not increase number of secure links) and thus only impose unnecessary communi-
cation overhead. Instead of analyzing each separate compromise pattern arising
from the combination of a particular key distribution method and attacker strat-
egy, we proposed an automated approach based on the combination of a protocol
generator and network simulator.

We utilize evolutionary algorithms (EA) [7] to facilitate guided search for well-
performing secrecy amplification protocol created as a series of elementary in-
structions. Every candidate protocol is evaluated on our network simulator for
a particular compromise pattern. The protocols with a better fraction of se-
cure links are used as templates (“parents”) for the next generation of candidate
protocols. Using this method, we were able to automatically re-invent all human-
designed secrecy amplification protocols proposed so far and find a new protocol
that outperforms them. With respect to classical human-made protocols, an in-
crease in number of secure links was obtained by the efficient combination of the
simpler protocols and an unconventional interleaving of elementary instructions
that enable protocol execution even when one of the participants is out of reach
of the radio transmission.

The practical disadvantage of secrecy amplification protocols is the number of
necessary messages resulting in high communication overhead during the link
key establishment. We propose an alternative construction which exhibits only
linear (instead of exponential) increase of necessary messages when the number of
neighbours in communication range (network density) is growing. As a message
transmission is a battery expensive operation, this more efficient protocol can
significantly save this resource. Designing secrecy amplification protocol in such
scenario is more difficult as more parties are involved and the relative positions
of the nodes must be taken into account as well. Again, we used described an
automatic protocol search to find a protocol for a message restricted scenario
with comparable performance to protocols with original assumptions.

Finally, we explore the dark side and propose a new concept for automatic search
for attack strategies with demonstrative applications to link key security for prob-
abilistic pre-distribution and Key Infection approaches. The similar framework
as for protocols generation was used and candidate attacker strategy is combined
from elementary operations and evaluated on network simulator or in real system.
Attacker strategies that increase the number of compromised links with respect
to several deterministic algorithms or random case were found. Our framework
can be used to improve the success of an attacker with the ability to perform
selective actions and even to provide novel and unconventional attacks.

5

Table of Contents

1 Introduction 1

1.1 Target of interest . 2

1.1.1 Target scenarios for this thesis . 3

1.1.2 Node-compromise attacker model . 5

1.1.3 Cryptographic issues in network bootstrapping and main results . . . 6

1.2 Developed network simulator . 8

1.2.1 Simulator architecture . 9

1.2.2 Network deployment . 10

1.2.3 Support for secrecy amplification protocols 10

1.2.4 Support for probabilistic pre-distribution 11

1.3 Structure of the thesis . 11

2 Authenticated key exchange with probabilistic pre-distribution 13

2.1 Related work . 13

2.1.1 Random key pre-distribution . 14

2.1.2 Pairwise key pre-distribution . 15

2.1.3 Limited neighbour knowledge schemes 16

2.1.4 Seed-based pre-distribution . 18

2.1.5 Selective node capture attack . 18

2.1.6 Hypercube pre-distribution . 20

2.2 Group supported key exchange . 20

2.2.1 Authenticated key exchange with group support 22

2.2.2 Probabilistic authentication . 24

2.2.3 Probabilistic authentication with majority decision 26

2.2.4 Evaluation of the communication and computation overhead 26

2.3 Group support with EG scheme . 27

2.3.1 Evaluation of node capture resilience improvements 27

2.3.2 Options and settings . 28

2.3.3 Group enlargement . 30

2.4 Group support with multi-space polynomial scheme 31

2.4.1 Evaluation of node capture resilience improvements 33

i

TABLE OF CONTENTS

2.4.2 Impact of polynomial security threshold 33

2.4.3 Impact of minimal shared keys threshold 35

2.4.4 Comparison with hypercube scheme 35

2.5 Possible attacks and defenses . 37

2.5.1 Passive attacker . 37

2.5.2 Active attacker . 38

2.6 Summary of the protocol . 39

3 Secrecy amplification 40

3.1 Related work . 41

3.1.1 Plaintext key exchange – whispering 42

3.1.2 Basics of secrecy amplification protocols 43

3.1.3 The mutual whispering protocol . 44

3.1.4 The Push protocol . 44

3.1.5 The Commodity protocol . 45

3.1.6 The Pull protocol . 45

3.2 Analysis of secrecy amplification protocols 46

3.2.1 Network settings and simulation setup 47

3.2.2 Discussion of simulation results . 48

3.2.3 Transmission overhead . 51

3.2.4 Compromise success for eavesdropping nodes 52

3.3 Key Infection analysis conclusions . 53

3.4 Compromise patterns of key distribution . 54

3.4.1 Random compromise pattern . 55

3.4.2 Key Infection compromise pattern . 55

3.5 Generation of secrecy amplification protocols 56

3.5.1 Composition from simple secure protocols 56

3.5.2 Evolutionary algorithms . 57

3.5.3 Primitive instructions set . 57

3.6 Generation of node-oriented protocols . 58

3.6.1 Overview of the method . 59

3.6.2 Parameters of experiments . 59

3.6.3 Results for node-oriented protocols 60

3.7 Generation of group-oriented protocols . 62

3.7.1 Overview of the method . 62

3.7.2 Results for group-oriented protocols 65

3.7.3 Methods for analysis of evolved protocols 66

3.7.4 Functional analysis of evolved group-oriented protocol 68

3.8 Parameters used for LGP . 69

3.9 Automatic protocol generation conclusions 70

ii

TABLE OF CONTENTS

4 Evolution of attacker strategies 71

4.1 Related work . 71

4.2 Automatic design of attacks . 72

4.2.1 General concept . 73

4.2.2 Strategy description . 74

4.2.3 Fitness function construction . 74

4.3 Evolution of attack strategies . 75

4.3.1 Re-combination of the existing attacks 75

4.3.2 Improvement (optimization) of known attack strategy 76

4.3.3 Finding novel attack strategies . 76

4.3.4 Promising areas . 76

4.4 Applications . 77

4.4.1 Optimal eavesdropping pattern . 77

4.4.2 Selective node capture . 79

4.4.3 Incomplete fitness function specifications 81

4.5 Conclusions for attack strategies . 82

5 Concluding remarks 83

5.1 Future research opportunities . 86

Bibliography 89

iii

Chapter 1

Introduction

Advance in miniaturization of electronics opens the opportunity to build devices that are
small in scale, can run autonomously on battery and can communicate on short distances
via wireless radio. These devices can be used to form a new class of applications, Wireless
Sensor Networks (WSNs). WSNs consist of a mesh of a several powerful devices (denoted
as base stations, sinks or cluster controllers) and a high number (103 − 106) of a low-cost
devices (denoted as nodes or motes), which are constrained in processing power, memory
and energy. These nodes are typically equipped with an environment sensor (e.g., heat,
pressure, light, movement). Events recorded by the sensor nodes are locally collected and
then forwarded using multi-hop paths to a base station (BS) for further processing.

Wireless networks are widely used today and they will become even more widespread with
the increasing number of personal digital devices that people are going to be using in the
near future. Sensor networks form just a small fraction of future applications, but they
abstract some of the new concepts in distributed computing.

WSNs are considered for and deployed in a multitude of different scenarios such as emergency
response information, energy management, medical and wildlife monitoring or battlefield
management. Resource-constrained nodes render new challenges for suitable routing, key
distribution, and communication protocols. Still, the notion of sensor networks is used in
several different contexts. There are projects targeting the development of very small and
cheap sensors (e.g., [2]) as well as research in middleware architectures [62] and routing
protocols (AODV [13], DSR [17], TORA, etc.) for self-organising networks – to name a few.

No common hardware architecture for WSN is postulated and will depend on the target
usage scenario. Currently available hardware platforms for sensor nodes range from Mica
Mote2 [1] or TMote Sky equipped with 8/16-bit processor with less than 10 MHz clock
frequency down to Smart Dust motes [2] with their total size around 1mm3 and extremely
limited computational power. No tamper resistance of the node hardware is usually assumed.

Security often is an important factor of WSN deployment, yet the applicability of some
security approaches is often limited. Terminal sensor nodes can have no or little physical
protection and should therefore be assumed as untrusted. Also, network topology knowledge
is limited or not known in advance. Due to limited battery power, communication traffic

1

1.1 Target of interest

should be kept as low as possible and most operations should be done locally, not involving
the more powerful and (possibly) trusted base station.

In this thesis, we will focus only on a small subset of security issues, namely robust link
key establishment between neighbouring nodes within a radio communication range. We
focus on schemes with low memory requirements and without the involvement of the trusted
base-stations, resilient against partial compromise of the network due to eavesdropping or
node capture. We also inspect the opposite side, designing attacker strategies to increase
attacker success in the compromise of the network.

The main contribution of this thesis is as follows. A protocol design for authenticated
key exchange with improved resilience against the threat of node capturing over existing
probabilistic pre-distribution schemes presented in Chapter 2. A detailed analysis of the
performance of existing secrecy amplification protocols for the Key Infection key establish-
ment approach, with an additional protocol with a better fraction of secured links than the
existing ones is presented in Chapter 3 (Section 3.1). Our method for automatic design
of secrecy amplification protocols for an ordinary compromise pattern based on evolution-
ary algorithms is presented in Chapter 3 (Section 3.5). An automatic attacker strategy
generation framework for attacks against secrecy amplification protocols and probabilistic
pre-distribution are presented in Chapter 4.

Parts of this thesis originated in our research previously published in paper [16] (the Pull
amplification protocol), papers [60, 58] (group supported protocol with Eschenauer and
Gligor pre-distribution), chapter in book [59] (group supported protocol combined with
multiple key spaces predistribution by Du et al.), paper [57] and chapter in book [50] (basic
framework for automatic protocol generation). The rationale behind the assumption of the
availability of truly random number generators (TRNGs) with a sufficient speed for secrecy
amplification is based on our work on TRNGs in restricted mobile environments [32] and
[31].

1.1 Target of interest

Secure link communication is the building block for large part of the security functions main-
tained by the network. Data encryption is vital for preventing the attacker from obtaining
knowledge about actual value of sensed data and can also help to protect privacy of the
sensed environment. The aggregation of the data from separate sensors needs to be authen-
ticated; otherwise an attacker can inject his own bogus information. Routing algorithms
need to utilize the authentication of packets and neighbours to detect and drop malicious
messages and thus prevent network energy depletion and route messages only over trustwor-
thy nodes. On top of these common goals, secure and authenticated communication between
neighbours can be used to build more complex protocols designed to maintain reliable sensing
information even in a partially compromised network. The generally restricted environment
of WSNs is a challenge for the design such protocols.

2

1.1 Target of interest

1.1.1 Target scenarios for this thesis

Early stage of the wireless sensor networks design with sparse real-world implementations
naturally results in wide range of the assumptions in theoretical works about network ar-
chitecture (static, dynamic, possibility of redeployments, degree of possible disconnection),
topology (completely decentralized, with clusters, various tree-like structures), size (from
tens of nodes up to hundreds of thousands of nodes) and expected lifetime (short time and
task specific networks vs. long term ubiquitous networks embedded in the infrastructure).
Various assumptions are made about the properties of sensor nodes, namely their mobil-
ity (fixed, slowly moving, frequent and fast change), available memory, computation power
(symmetric cryptography only, regular use of asymmetric cryptography), energy restrictions
(power grid, replaceable/non-replaceable batteries) or availability of special secure hard-
ware (no protection, secure storage, trusted execution environment). Different assumptions
are made also about network operation mode (continuous, seasonal, event-driven), how are
queries issued and propagated (all nodes report in certain intervals, on demand reading) and
how are data from sensor nodes transported back to base stations (direct communication,
data aggregation). Finally, attacker model ranges from fully fledged adversary with capabil-
ity to monitor all links and selectively compromise nodes to more restricted attacker with
limited resources, presence and priory knowledge about attacked network.

Here, we will define assumptions about network and nodes that will be used in this thesis.

Network architecture – We assume mostly static network with large number of nodes
(103 − 106) deployed over large area without the possibility for a continuous physical
surveillance of the deployed nodes. Redeployments are possible for group supported
protocol in Chapter 2 and secrecy amplification protocols applied with probabilistic
pre-distribution (Section 3.5), but not for Key Infection approach. We studied networks
with densities (number of neighbours in reach of radio transmission) from very sparse
(e.g., two nodes on average) up to very dense (forty nodes on average) networks.

Network topology – We assume network topology that requires link keys between direct
neighbours (e.g., for link encryption, data aggregation...), leaving more advanced topol-
ogy issues related to routing and data transmission unspecified. Although is possible
in principle to use proposed protocols to establish also peer to peer (p2p) keys with
distant nodes, we focus on link key establishment and do not explicitly discuss p2p
keys as additional assumptions about network topology and routing algorithms are
then needed.

Network lifetime – We focus on networks with long expected lifetime where most decisions
should be done locally and the message transmissions should be as low as possible. A
higher communication load is expected for the initial phase after the deployment or
during the redeployments, when new link keys are established. Section 3.7 specifically
targets message overhead of secrecy amplification protocol to improve overall network
lifetime.

Base stations – Base stations are not addressed much in our work as we target link keys
between direct neighbours without involvement of base station itself. We assume that

3

1.1 Target of interest

only few base stations are presented in the network and high majority of the ordi-
nary sensor nodes cannot use advantage provided by possible trusted and powerful
positioned closely to base station.

Degree of centralism – We focus on networks where security related decisions during the
key establishment should be done without a direct involvement of a base station and
the nodes are not assumed to communicate with base station(s) later on regular basis
(e.g., for later verification of passed key establishment process). A base station may
eventually take part in the process (e.g., during the redeployment), but is not assumed
to communicate directly with each separate node or act as mediator between nodes.

Nodes mobility – We target scenarios for which make sense to establish link keys. These
links do not necessarily remain static during whole network lifetime. The protocol de-
scribed in Chapter 2 assumes an existence of link keys with direct neighbours, therefore
high mobility of nodes is not desirable here or link keys must be re-established when
necessary. On the other side, nodes mobility provides better opportunity for selection
of parameters of the network than for case of fixed immobile nodes. Relatively static
set of neighbours should remain present at least during execution of secrecy amplifi-
cation protocols. Provided simulations in Chapter 3 assume that nodes do not change
their position during the protocol.

Communication medium – We target nodes with wireless communication with assump-
tion of non-directional antenna with controllable transmission power for Key Infection
approach. An ideal propagation of the signal is assumed in the simulations. The com-
munication medium and antenna properties are not relevant for the part of the work
focused on probabilistic pre-distribution.

Computation power – We target nodes capable to transparently use symmetric key cryp-
tography, but not the asymmetric cryptography. Even when encryption/verification
with asymmetric cryptography keys might be possible on hardware in principle (e.g.,
verification of signature in two seconds on Mica2 motes [53]), protocols proposed in
this thesis generally require processing of high number but small messages. Usage of
asymmetric cryptography then significantly increases the total time required to final-
ize link key establishment. Still, secrecy amplification protocols can be used atop of a
basic link key exchange facilitated by an asymmetric cryptography.

Memory limitations – Our work targets devices with limited memory. Protocol described
in Chapter 2 requires memory in order of kilobytes, secrecy amplification protocols from
Chapter 3 requires storage for values exchanged only between direct neighbours, totally
less than kilobyte for a reasonably dense network.

Energy source – We assume that nodes energy is limited and therefore nodes should not
communicate too often and most of the decisions should be made locally. Energy lim-
itation is additional reason why symmetric cryptography is preferred over asymmetric
in this thesis as detection of corrupted message with integrity protection based on
symmetric cryptography is much more efficient.

Tamper resistant hardware – We do not assume existence of any secure hardware on
the sensor node side as such protection increases cost significantly, especially for large

4

1.1 Target of interest

scale networks we are interested in. All secrets from captured nodes are assumed to be
compromised. The automatic search for selective eavesdropping particulary exploits
the possibility for a key extraction.

Pre-distributed secrets – We work with the pre-distributed secrets in form of probabilis-
tic pre-distribution in Chapter 2 and with part of secrecy amplification protocols. No
pre-distributed secrets are assumed when Key Infection approach is used. Secrecy am-
plification protocols alone do not require any pre-distributed secrets, only availability
of a suitable (pseudo-)random generator is required.

Routing algorithm – We assume existence of suitable routing algorithm to propagate
message in closed geographical area, usually inside group of direct neighbours and we
abstract from algorithms specifics in our work. If multiple paths for delivery of parts
of fresh key during secrecy amplification are used, mechanism for packet confirmation
should exist. Otherwise composed key will be corrupted if one or more parts lost in
transmission.

1.1.2 Node-compromise attacker model

The common attacker model in the network security area is an extension of the classic
Needham-Schroeder model [42] called the node-compromise model [21, 10, 19, 20]. Original
model assumes that an intruder can interpose a computer on all communication paths, and
thus can alter or copy parts of messages, replay messages, or emit false material. Extended
model is described by the following additional assumptions:

A1: The key pre-distribution site is trusted. Before deployment, nodes can be pre-
loaded with secrets in a secure environment. Part of our work aims to omit this phase
completely as it is cheaper to produce identical nodes (even at the memory level).

A2: The attacker is able to capture a fraction of deployed nodes. No physical con-
trol over deployed nodes is assumed. The attacker is able to physically gather nodes
either randomly or selectively based on additional information about the nodes role
and/or carried secrets.

A3: The attacker is able to extract all keys from a captured node. No tamper re-
sistance of nodes is assumed. This lowers the production cost and enables the produc-
tion of a high number of nodes, but calls for novel approaches in security protocols.

The attacker model is in some cases (Key Infection [3]) weakened by the following assump-
tion:

A4: For a short interval the attacker is able to monitor only a fraction of a links.
This assumption is valid only for a certain period of time after deployment and then we
have to consider a stronger attacker with the ability to eavesdrop all communication.
The attacker with a limited number of eavesdropping devices can eavesdrop only a

5

1.1 Target of interest

fraction of links and the rational reason behind this assumption is based on specifics
of WSNs:
a) Locality of eavesdropping – the low communication range of nodes allows for a
frequent channel reuse within the network and detection of extremely strong signals, so
it is not possible for an attacker to place only one eavesdropping device with a highly
sensitive and strong antenna.
b) Low attacker presence during deployment – a low threat in most scenarios
during first few seconds before the attacker realizes what target area is in use. If the
attacker nodes are already present in a given amount in the target location, we can
deploy a network with density and node range such that the the ratio between legal
nodes and the attacker’s eavesdropping devices is such that a secure network can be
formed.

Note that the attacker model for WSNs is stronger than the original Needham-Schroeder
one, because nodes are not assumed to be tamper resistant and the attacker is able to capture
them and extract all carried sensitive information.

1.1.3 Cryptographic issues in network bootstrapping and main
results

Security protocols for WSNs in our scenarios deal with very large networks of very simple
nodes. Such networks are presumed to be deployed in large batches followed by a self-
organizing phase. The latter is automatically and autonomously executed after a physical
deployment of sensor nodes.

The deployment of a sensor network can be split into several phases. The following list is ad-
justed to discern important processes of key pre-distribution, distribution and key exchange
protocols. Not all steps need to be executed for different key establishment approaches. The
main phases are as follows:

1. Pre-deployment initialization – performed in a trusted environment. Keys can be pre-
distributed during this phase.

2. Physical nodes deployment – random spreading (performed manually, from plane, . . .)
of sensors over a target area in one throw or in several smaller batches.

3. Neighbour discovery – nodes are trying to find their direct neighbours (nodes that can
be directly reached with radio) and to establish communication channels.

4. Neighbour authentication – authentication of neighbours with pre-shared secrets, via
trusted base station, etc.

5. Key setup – key discovery or key exchange between direct neighbours.

6. Key update – periodic update of initial keys based on events like secrecy amplification,
join to cluster, node revocation or new nodes redeployment.

6

1.1 Target of interest

Figure 1.1: Network lifetime with highlighted phases relevant for the key establishment.
Periods of attacker eavesdropping capability are depicted for the Key Infection model.

7. Establishment of point-to-point keys – the final goal is to transmit data securely from
sensors to one of a few base stations. Point-to-point keys are pairwise keys between
sensors and base stations (or distant sensors).

8. Message exchange – the production phase of the network.

The main issues in the area of key link establishment for WSNs can be summarized as follows.
We will discuss selected issues in more details in the respective chapters.

Master key scheme. One of the simplest solutions for key establishment is to use one
network-wide shared key. This approach has minimal storage requirements; unfortu-
nately the compromise of even a single node in the network enables the decryption of
all traffic. The master key scheme has no resilience against node capture. As recog-
nised in [10], this approach is suitable only for a static network with tamper resistant
nodes. An additional work extended master key scheme with an assumption of secure
erase after certain time period [63] and limit impact of master key compromise [18].

Full pairwise key scheme. A contrast to the master key scheme, where a unique pairwise
key exists between any two nodes. As shown in [19], this scheme has perfect resilience
against node capture. However, this approach is not scalable as each node needs to
maintain n− 1 secrets, where n is the total number of nodes in the network.

Asymmetric cryptography. The usage of PKIs for WSNs is often assumed as unaccept-
ably expensive in terms of special hardware, energy consumption and processing power
[46, 21, 3]. The usage of asymmetric cryptography can lead to energy exhaustion at-
tacks by forcing the node to frequently perform expensive signature verification or cre-
ation [4]. Energy efficient architecture based on elliptic curves is proposed in [61, 53]
with signature verification in order of small seconds. The maintenance and verification
of a fresh revocation list and attacks like the collusion attack [40] remain a concern.

7

1.2 Developed network simulator

Base station as a trusted third party. Centralised approaches like the SPINS architec-
ture [46] use the BS as a trusted mediator when establishing a pairwise key between
two nodes. Each node initially shares a unique key with the base station. This ap-
proach is scalable and memory efficient, but has a high communication overhead as
each key agreement needs to contact the BS, causing non-uniform energy consumption
inside the network [44].

Probabilistic pre-distribution. Various variants of random pre-distribution were pro-
posed to ensure that neighbours will share a common key only with a certain proba-
bility, but still high enough to keep the whole network connected [21, 11, 10]. During
the pre-deployment initialisation, keys for each node are randomly chosen and assigned
from a large key pool without replacement. After deployment, nodes search in their
key rings for shared key(s) and use it/them as a link key, if such key(s) exist. Variants
based on threshold secret sharing provide better resilience against the node capture
[19, 34].

Deployment knowledge pre-distribution. The efficiency of probabilistic predistribution
can be improved if certain knowledge about the final node position or likely neighbours
is available in advance. Ring keys selection processes based on node physical distribu-
tion allocation are proposed in [20, 9, 35]. The nodes that have a higher probability
to be neighbours have keys assigned in a such way to have higher probability to share
a common key.

Key infection approach. An unconventional approach that requires no predistribution is
proposed in [3]. The weakened attacker with limited ability to eavesdrop is assumed for
a short period after deployment. Initial exchange key exchange between neighbours is
performed in plaintext and then the number of compromised keys is further decreased
by secrecy amplification techniques [3, 29, 16].

Impact of Sybil and collusion attack. Powerful attacks against known key predistribu-
tion protocols are presented in [43, 40]. In the Sybil attack, the attacker is able to insert
many new bogus nodes equipped with secrets extracted from the captured nodes. In
the collusion attack, compromised nodes are sharing their secrets to highly increase
the probability of establishing a link key with an uncompromised node. This attack
shows that the global usage of secrets in a distributed environment with no or little
physical control poses a serious threat, which is hard to protect against.

1.2 Developed network simulator

I have developed network simulation software which was extensively used for simulation
results presented in this thesis. Development of the new simulator instead of using an
existing one was motivated by two main reasons:

No suitable simulator was available for simulation of large scale networks when
we started our work as we aimed for simulations of up to hundreds thousands nodes.

8

1.2 Developed network simulator

The simulation of large networks requires significant speed and memory optimization
that are hard achieve for a general purpose simulator. Our purpose-built simulator
provides the level of abstraction suitable for a particular tasks, lowering computation
and memory requirements.

Simulation speed is a critical factor for most of our experiments, especially for the us-
age in automatic protocol generation with evolutionary algorithms (see Section 3.5)
where up to hundreds of thousands full network simulations must be performed in
a reasonable time. With our purpose-built simulator, we have been able to focus on
and simulate only relevant operations, obtaining significant performance improvements
over a general purpose simulator.

The development of a new simulator has some drawbacks as well. Besides significant time
being invested in the design and implementation, the new simulator makes the comparison
with/of results with other research more difficult. We were aware of this fact and provided
analytical results (group supported key exchange, Section 2.2) to complement simulation
results. Secrecy amplification protocols found by automatic generation approach can be
readily implemented and performance results can be compared in another simulators. We
also made source codes of our simulator publicly available1.

The capabilities of our simulator will be discussed in the following sections.

1.2.1 Simulator architecture

Our simulator has been developed for Microsoft Windows 2K/XP/Vista operating systems in
C++, currently having almost forty thousand lines of code. The simulator can be compiled
both for 32-bit and 64-bit Intel/AMD architectures, with the 64-bit version providing some
performance advantage.

A pseudo-random generator based on the MD5 hash function is used to provide pseudo-
random data where required, starting from a specified seed. Once the initial seed is fixed,
the simulator steps are fully deterministic, except for random operations used internally by
evolutionary algorithms where determinism is undesirable. Truly random data is taken from
the QRBG service 2 or from data extracted by our approach described in [31]. Simulations
are repeatable if the seed is preserved.

The parameters of a simulation can be set either from the GUI or can be provided from
a configuration file. Once a simulation is started, all configuration parameters are saved
together with the used random seed, making an exact repetition of a particular simulation
possible.

The simulator can be run with all settings given from the command line. Support for
execution on either local or remote machines with centralized management is implemented.
Speedup of extensive simulations with naturally parallel operations can be distributed over

1http://www.fi.muni.cz/∼xsvenda/s3.html
2http://random.irb.hr/

9

1.2 Developed network simulator

several machines with real-time reporting to the central management application (e.g., each
deployment is simulated on a separate machine).

Support for batch sequential execution of several simulations is also implemented. The start
of a particular simulation can be delayed until the previous simulations finish. The selected
characteristics of network deployment can be automatically iterated over a specified range
with fixed steps, providing separate simulations (e.g., increasing network density within a
given range with a defined increase step).

Detailed data produced during simulation is written into files with format suitable for later
processing with the Matlab software. Several Matlab scripts were created for further pro-
cessing, data visualization and graph plotting.

1.2.2 Network deployment

The deployment of nodes is done in a specified two-dimensional rectangle area, every node
having a position in the x and y axes with float number precision. Nodes can be deployed
either randomly or according to a freely specifiable pattern. Every node has a definable
transmission range with connection to nodes in range established during neighbour discovery.
Eavesdropping nodes can be deployed similarly to legal nodes.

Multiple deployments can be performed at the same time. Subsequent operations are per-
formed over all deployments with some simulation results averaged. The averaging of results
over multiple deployments decreases the dependence of simulation statistics on the partic-
ular placement of nodes. This property is of a special importance for automatic protocol
generation, where over-learning on a particular deployment is undesirable.

1.2.3 Support for secrecy amplification protocols

The deployment of the nodes can be followed by establishment of link keys between neigh-
bours in transmission range with several supported key exchange mechanisms (maximum
screaming, whispering, random and probabilistic pre-distribution). Links are marked either
secure or compromised based on the attacker model and actual distribution of eavesdrop-
ping nodes (Key Infection) or node capture (probabilistic pre-distribution). Such mesh of
links with different secrecy state (secure/compromised) forms a starting point for secrecy
amplification protocols. These protocols are either directly implemented in the code (used
for performance comparison in Section 3.1) or can be specified in a metalanguage from script
(slower but more flexible option) as a sequence of elementary instructions (see Section 3.5.3).

Metalanguage-based execution of amplification protocols is used for automatic protocol gen-
eration as described in Section 3.5. The simulator contains a built-in protocol generator
based on evolutionary algorithms (The GALib package3 was used for the implementation).
Generated protocols are executed in the deployed networks and evaluated with a fraction of

3http://lancet.mit.edu/ga/

10

1.3 Structure of the thesis

secure links used as an indicator of protocol quality. See Section 3.5 for more details about
the whole process. Interrupted protocol generation can be restarted from a temporal state
stored in files generated during simulation.

1.2.4 Support for probabilistic pre-distribution

Support for probabilistic key pre-distribution is implemented with evaluation of the number
of secure links after a compromise of specified number of randomly or selectively captured
nodes. The basic schemes described in [11] and [21] are implemented. The simulator is
optimized for fast queries with respect to the a subset of shared keys and the evaluation of
the compromise impact of node capture. Simulations from this part were used as additional
verification of analytical results proposed in Chapter 2.

Support for the automatic generation of node capture attacks is implemented (see Chapter
4 for details). The subset of nodes selected either randomly or selectively is marked as com-
promised, keys are extracted and the compromise impact on the network links is evaluated.
The implementation of evolutionary algorithms based on the GALib package is used.

1.3 Structure of the thesis

The text of this thesis is structured into four main parts. The introduction, outline of my
research focus and a high-level description of the developed simulator are provided in this
first chapter.

The second chapter presents several key pre-distribution schemes for WSNs and discusses
their properties, namely the resilience against the node capture attack. We then focus on
extension protocols that are able to improve the security for the price of additional commu-
nication. The protocol described in Section 2.2 uses a combination of group support from
neighbour nodes and probabilistic pre-distribution to provide authenticated key exchange,
and here we introduce also the concept of probabilistic authentication. The group of neigh-
bours creates a large virtual keyring and thus boosts resiliency against the scenario where
each node has only its own (limited) keyring available. Analytical and simulation results are
provided, together with a detailed comparison with node-capture resilience of other existing
schemes.

The third chapter is devoted to secrecy amplification protocols. Analysis with simulation re-
sults of existing secrecy amplification protocols and a new protocol proposed by us is provided
in Section 3.1. Section 3.5 extends secrecy amplification to a partially compromised network
resulting from capture of nodes with keys distributed by probabilistic pre-distribution. A
flexible framework for automatic generation of secrecy amplification protocols for an ordi-
nary compromise pattern is described with results presented for two specific patterns arising
from Key Infection and probabilistic pre-distribution key establishment. A combination of
evolutionary algorithms and network simulator is used to generate and test candidate am-
plification protocols. A different execution model for amplification protocols is introduced

11

1.3 Structure of the thesis

with linear instead of exponential increase of message overhead with increasing network den-
sity. An automatic approach is then used to generate a well-performing protocol for the new
execution model with a fraction of secured links comparable to older (message expensive)
protocols.

The fourth chapter then describes a framework for the automatic search for attacker strate-
gies, again based on the combination of evolutionary algorithms for the construction of
candidate attacks and the network simulator for evaluation of its success. The proposed
framework is used to generate deployment patterns for eavesdropping nodes to maximize
fraction of compromised links for the Key Infection key establishment and selective node
capture strategy to increase the fraction of compromised links for probabilistic key pre-
distribution.

The overall conclusion with an outline for future work is presented in the final chapter.

12

Chapter 2

Authenticated key exchange with
probabilistic pre-distribution

In a static WSN, nodes are assumed to have a fixed position and a relatively static set
of neighbours. New nodes are only introduced during the redeployment, to replenish the
nodes with exhausted batteries. Authentication and link key exchange are performed with
direct neighbours only, and thus with a very small subset (typically 5-40 nodes) of the total
amount of nodes. However, neighbours of a particular node typically are not known before
the deployment. Pre-distribution of pairwise keys is thus not possible in this scenario due
to the potentially high number of neighbours and limited memory of a single node.

This chapter will provide a summary of related work in the area of probabilistic key pre-
distribution, approach suitable for the memory constrained nodes and propose extension
protocol executed atop given probabilistic pre-distribution method. Proposed protocol em-
ploy the support from the neighbouring nodes to create the large virtual key rings in efficient
and compromise tolerant way. We will analyze and simulate increase in node capture re-
silience when the proposed protocol is used.

The idea of group supported protocol with Eschenauer and Gligor pre-distribution was pub-
lished in paper [60] and extended in paper [58]. Combination of the protocol with multiple
key spaces predistribution by Du et al. was published as a chapter in book [59].

2.1 Related work

Most common key pre-distribution schemes expect that any two nodes can always establish
a link key if they appear as physical neighbours within their mutual transmission range.
This property can be weakened in such a way that two physical neighbours can establish the
link key only with a certain probability, which is still sufficient to keep the whole network
connected by secured links. A trade-off between the graph connectivity of link keys and the
memory required to store keys in a node is introduced. If the network detects that it is
disconnected, a range extension through higher radio power can be performed to increase
the number of physical neighbours (for the price of higher energy spending).

13

2.1 Related work

2.1.1 Random key pre-distribution

The idea of random key pre-distribution for WSNs is introduced for the first time by Es-
chenauer and Gligor [21] (referred to as EG scheme) and is based on a simple but elegant
idea. At first, a large key pool of random keys is generated. For every node, randomly
chosen keys from this pool are assigned to its (limited) key ring, yet these assigned keys are
not removed from the initial pool. Hence the next node can also get some of the previously
assigned keys. Due to the birthday paradox, probability of sharing at least one common
key between two neighbours is surprisingly high even for a small size of the key ring (e.g.,
100 keys). That makes this EG scheme suitable for memory-constrained sensor nodes. Re-
silience of known pre-distribution schemes against the threat is evaluated by Chan et al.
[10]. Attacker obtains some keys from the initial key pool by picking and reverse-engineering
captured nodes. These keys are then used to decrypt eavesdropped messages. The success
rate of decryptions depends on the number of compromised keys (nodes). We argue that
multiple occurrence of the same key on the multiple nodes used for authentication purposes
is not a real problem if we ensure that a new node comes from the same deploying authority
rather than actually care about the identity of the node itself (can be viewed as a variation
of group authentication).

Chan et al. [10] extends the EG schema by q-composite random key pre-distribution, requir-
ing at least q shared keys instead of one (referred to as q-EG). Link key is constructed using
hash function from at least q shared keys. The number of a required shared keys makes
it exponentially harder for an attacker to compromise the link key with a given subset of
already compromised keys, but also lowers the probability of establishing a link key. If the
node key ring size m is fixed, total size of key pool S must be reduced to preserve same key
establishment probability, and thus the attacker obtains a larger fraction of S from a single
node. A formula for optimum tradeoff is given. Impact of multi-path key reinforcement,
introduced in [3] together with q-EG is studied. The random pairwise scheme is also de-
scribed (see Section 2.1.2). The q-EG scheme [10] provides significantly better node-capture
resilience than basic EG [21] until some threshold is reached.

Pietro et al. [47] extends the EG scheme using pseudo-random generation of key indexes
rather than completely random (referred to as seed-based key deployment). The advantage is
that two neighbours can compute identification (not the key value) of their shared keys only
from their node identifications with no additional communication messages. A co-operative
version of the seed-based key deployment protocol is described, performing secrecy amplifi-
cation with a set of common neighbours of participants A and B. A chooses randomly the
set of B-neighbours (mediators Ci) and asks them for computation of HMAC(IDA, KCiB).
Resulting values from each mediator are XORed together with the original key value KAB

and used as the new key value. Node B can compute new key value only from the information
who were the mediators used, with no additional messages.

14

2.1 Related work

2.1.2 Pairwise key pre-distribution

Pairwise key pre-distribution scheme is a scheme where a given key is shared between two
nodes. In a basic pairwise scheme, each node shares a unique key with every other node in
the network (referred to as (n-1) pairwise scheme). This scheme is perfectly resilient against
the node capture1, but is poorly scalable and has high memory requirements. Note that
perfect resilience against the node capture does not mean that an attacker cannot obtain
a significant advantage by combining keys from the captured nodes (e.g., collusion attack
[40]).

Chan et al. in [10] propose a modification of the basic pairwise scheme (referred to as CPS
scheme). Based on the required probability p that two physical neighbours will share a key,
unique pairwise keys for X are generated, but only for m other randomly chosen nodes. In
a contrast to the EG scheme, node-to-node authentication can be performed. Total number
of nodes in a network is limited by n = m/p. Support for distributed revocation of a
compromised node is proposed. During the initialisation phase, each node Yi sharing key
with node X obtains also a secret voting information, which can be used against malfunction
node X when detected. The vote can be then broadcasted and node X marked by Yi as
revoked if the number of received votes exceeds a specific threshold value. Merkle hash tree is
used to decrease storage needs. A masking mechanism that allows only direct neighbours of
X to vote against X serves as a prevention to the revocation attack, where an attacker uses
captured votes against legal nodes. A valid vote key can be constructed after deployment
only if the masked key is combined (e.g., XORed) with some secret information carried by
X.

A key pre-distribution scheme (referred as Blom scheme) that allows any pair of nodes to
find a pairwise secret key is proposed by Blom [8]. Blom scheme requires substantially less
memory than (n-1) pairwise key scheme and still allows for computing pairwise keys between
each two nodes. However, Blom scheme is perfectly resilient only if not more than λ nodes
are compromised (λ-secure property). If only one global key space of Blom scheme is used, λ
must be unwieldy high and so does the required memory to resist against the node capture.
Scalability of such approach is then poor.

A solution based on multiple key spaces is proposed by Du et al. [19] (referred to as DDHV
scheme). Instead of one global key space a large key pool S of key spaces KSi is generated
and m randomly chosen key spaces KSi are assigned to each node, analogically as for the
EG scheme (see Section 2.1.1). The basic Blom scheme is used for each separate key space.
Whole approach can be viewed as a combination of the EG key pool scheme and single space
approaches like Blom’s one. Probability that two nodes can establish a pairwise key is equal
to the probability that they share at least one key space.

DDHV scheme provides a very good node capture resilience in comparison to EG and CPS
schemes until some threshold value of total number of compromised nodes is reached. Then
the whole network rapidly becomes completely insecure.

1No other keys are compromised but from the captured nodes.

15

2.1 Related work

Hwang and Kim [27] revisit the basic random pre-distribution EG scheme (2.1.1), CPS
scheme (2.1.2) and DDHV (2.1.2) using the giant graph component theory by Erdös and
Réney to show that even when the number of a node’s neighbours is small, most nodes in
the whole network stay connected. If the network connectivity requirements are weakened
only to some big graph component (e.g., 98% of nodes), substantial improvements of local
connectivity or lower memory requirements can be obtained. Results for various trade-offs
between connectivity, key ring size and security are presented [27]. Because of optimal
network capacity, average node degree between 5 and 8 is suggested. Local flooding and me-
diator support approaches are proposed to establish link keys between two yet unconnected
nodes.

The hypercube pre-distribution based on multiple key spaces of Blom’s polynomial is pro-
posed by Liu and Ning [34]. Prior to deployment, the nodes are arranged in a virtual
hypercube (so-called grid in two-dimensional case) and shared Blom’s polynomials are as-
signed to all nodes having same coordinates within a given dimension (same row or column
for grid case). This scheme is inspected in more details in sections 2.1.6 and 2.4.4 as it is
closely related to our work.

Summary of random pre-distribution schemes covering EG scheme, q-EG scheme, CPS
scheme and multi path key reinforcement can be found in [11].

Impact of node replication (Sybil) attack against EG, q-EG and Blom scheme is evaluated
by Fu et al. [24]. The work evaluates how much can an adversary gain after injecting certain
number of replicated nodes and which scheme is most resilient against the replication attack,
both through theoretical and experimental results. It is shown that success of the replication
attack grows with the network density.

A novel collusion attack against the pairwise key pre-distribution schemes is presented by
Moore [40]. Compromised nodes are sharing their secrets to increase probability that one of
them will be able to establish the link key with its neighbours. This attack differs from the
Sybil attack as node identities are not randomly generated, but instead are reused according
to the available pairwise keys. A distributed voting scheme can be undermined by a 5%
colluding minority since this minority is able to establish approximately one half of valid
communication channels.

The pairwise key schemes can provide node-to-node authentication, but support a lower
number of nodes in the network in comparison to the EG scheme. Combination of the ideas
from EG scheme and Blom scheme (DDHV scheme) provides better resilience against node
capture, until some threshold is reached (see Figure 2.6).

2.1.3 Limited neighbour knowledge schemes

Previous schemes presume that the probability that any two nodes will appear as physical
neighbours is equal for any two nodes (network is flat). Yet in many practical scenarios,
some probabilistic deployment knowledge about the node’s final grounding position can
be available a priori. An additional setup phase before random key pre-distribution is
introduced, exploiting this knowledge.

16

2.1 Related work

Two schemes that are using certain deployment knowledge are presented in [35]. The CPS
scheme is used (see Section 2.1.2), but pairwise keys are generated only for such nodes,
which have high probability to be physical neighbours after the deployment, based on some
probability density function of deployment error with respect to node’s expected position
(referred to as closest pairwise key scheme). An extended version using a pseudo-random
function (PRF) for pairwise key computation is introduced. During deployment, pairwise
key Kuv between nodes u and v is created as Kuv = PRFKv(idu), where Kv is the master
key for node v. The node u (called slave node) carries the value Kuv directly, whereas node
v (called master node) carries function PRF and its key value Kv. Thus node v is able to
compute Kuv after deployment for any (possibly later deployed) node u.

The second scheme uses threshold key distribution protocol based on bivariate polynomials.
Target deployment area is divided into sectors with a suitable size. Multiple key spaces are
used, each one for a group of neighbour sectors. Pairwise keys are generated only for the
nodes from close sectors inside a corresponding key space.

In [20] the target deployment area is divided into sectors, each corresponding to a group
of nodes, which are to be deployed from the same position. For each group, there is a key
pool constructed in such way that there are overlaps with key pools for neighbouring groups.
Only groups with direct neighbouring sectors share some amount of keys.

Similar approach that divides the original single group of all nodes to a network into smaller
subgroups is presented in [9]. Nodes that will share the same “mission task” and should be
able to communicate with each other are placed in the same subgroup.

A key management scheme using attack probabilities is presented in [12]. Nodes are divided
into different subgroups based on the expected attack probability. Groups with higher prob-
ability are equipped with more keys drawn from a larger key pool than nodes from a less
risky group. If such attack probabilities are known in advance, substantial improvements of
the node capture resilience can be obtained.

In [26] the assumption about a random node capture and resulting resilience of previously
proposed schemes against such capture is pointed out as too weak. A selective node capture
algorithm is presented and vulnerability of known schemes against such type of capture is
examined. Vulnerability of known schemes against node fabrication attack is pointed out.
Grid-group deployment scheme that should be more resistant to selective node capture and
node fabrication is proposed. The target area is divided into multiple squares areas (zones)
based on the expected nodes deployment pattern. A distinct key pool is generated for each
zone, using the DDHV scheme (see Section 2.1.2) with fixed value of τ = 2 (called I-Scheme).
No more than λ rows from one key space can be distributed among nodes, thus the attacker
can never reconstruct whole key space from captured nodes and cannot add new fabricated
nodes with keys of unused rows from the given key space. Additionally, each node obtains
a special pairwise key (eight in total) for a randomly chosen “bridge” node from each one
neighbour zone (called E-scheme) during pre-deployment phase. Nodes are then deployed
uniformly over the assigned zone. Key establishment inside the zone (I-scheme) follows the
original DDHV scheme. Missing pairwise keys can be established using neighbours (from
the current zone) or bridge node(s) using a multi-hop key establishment method.

17

2.1 Related work

All presented schemes use the same idea of dividing originally flat network into smaller
subparts based on the pre-deployment knowledge about the nodes that are more likely to
communicate (location, mission task) or require more or less resilience against the node
capture based on attack probability (if some parts of the network are likely to have more
compromised nodes). Degree of partitioning can substantially increase of connection proba-
bility, keeping node’s key ring at the same size. Alternatively, size of the initial key pool can
be increased keeping the connection probability same, resulting in an increased resilience
against the node capture.

2.1.4 Seed-based pre-distribution

Seed-based pre-distribution is an extension of a given pre-distribution scheme, introduced
by [47]. Rather than completely random, a pseudo-random generation is used to determine
key indexes of the keys that will be assigned to a given node. The advantage is that two
neighbours can compute identification (not the key value) of their shared keys only from their
node identifications with no additional communication messages. Suitable key assignment
rule for probabilistic pre-distribution can be constructed in the following way:

1. Generate an initial key pool with poolSize keys inside.

2. Generate a random identity IDx for a new node from large space (e.g., 16B).

3. Use IDx as the initial seed for a pseudo-random generator and generate the set of
pseudo-random values Ri, i ∈ {1, ..., ringSize}.

4. For each Ri calculate IDKi = Ri modulo poolSize.2

5. For each IDKi, assign the node IDx with the IDKi-th key from the initial key pool.

This process is directly usable for the EG pre-distribution scheme. With small changes, it
can be also used with others. The key thing here is the fact that keys carried by the node can
be computed by other locally, without any additional communication except for retrieving
the target node’s ID.

2.1.5 Selective node capture attack

The seed-based pre-distribution suffers from an important weakness with respect to the
attacker capable of performing selective node capture as described in [26]. As the identifi-
cation of all carried keys can be computed from a node’s ID alone, knowledge of a node’s
ID can be utilised by an attacker to selectively capture such nodes that maximise the num-
ber of compromised keys. To prevent this, the following defense can be used, inspired by
Merkle’s work on puzzles [38]. Existing nodes in the network do not use their original IDs

2Note that for equal probability of all possible values of IDKi, the greatest common divisor of maximum
value of Ri and poolSize should be equal to poolSize.

18

2.1 Related work

Notation Description
| concatenation operator
B identification of node that likes to authenticate to existing group
A identification of node that will authenticate node B
Ni identification of neighbours within communication range

IDij identification of keys shared between Ni and B
KIDij shared key with ID IDij

K ′
ij one-time onion key generated by Ni for shared key with ID IDij

RB random nonce generated by node B
Rij random nonce generated by node Ni for key Kij B
K ′

xy new link key shared between nodes x and y after secrecy amplification
H(.) application of cryptographical strong one-way hash function H

MAC(.) application of cryptographical strong message integrity function
EKxy

(.) symmetric encryption function using key Kxy

Table 2.1: Notation used for authenticated key exchange with group support. Function H
should be realized as HMAC construction [6] instead of simple hash function to prevent
extension attacks.

for communication, they use fresh randomly generated identifiers instead. The original ID
of a particular node as used for the seed-based pre-distribution is only known to the node’s
direct neighbours as follows from the proposed scheme below.

Key discovery between direct neighbours deployed during the first contact is not based on
the exchange of nodes’ IDs, but on a more communication expensive exchange of “puzzles”
created using carried keys. At first, both neighbouring nodes A and B generate separate
random challenges NA (node A) and NB (node B) and exchange them in plaintext. Node
A then computes set CA of “puzzles” CAi = MACKi

(H(0|NA|NB)) using all its keys. A
similar set CB is computed as CBi = MACKi

(H(1|NB|NA)) by the node B. The way how
the values NA and NB are combined serves as a protection against an active attacker trying
to obtain a valid MAC with the key Ki applied to a selected value. Note that the size of
sets CA and CB is equal to the node ring size. Both sets CA and CB are exchanged between
A and B. The node A then locally computes the set C ′

B in the same way CB is constructed,
but using its own keys and then checks C ′

B and CB for intersecting values. The keys used
by A to create intersecting values are the keys shared with the node B. A similar process
is used by the node B. The shared keys are used to establish a secure channel. Note that
an attacker does not obtain any information about the keys carried by any node during this
process. Original node’s ID is exchanged later only if a secure channel can be set up using
shared keys between neighbours. An attacker thus does not have any information about a
particular node’s ID until she captures the node itself, or one of its direct neighbours.

Note that there can be a significant communication overhead when puzzles are exchanged.
This can be reasonable as it has to be performed only once before the secure link is estab-
lished. Identity of a new node joining the group can be then broadcasted over secure links
only by one of the group members.

19

2.2 Group supported key exchange

2.1.6 Hypercube pre-distribution

The extension protocol for probabilistic polynomial pre-distribution called hypercube scheme
is presented in [34]. Before the deployment, the nodes are arranged into a layered hypercube-
like structure (grid in case of two-dimensions). The basic pool of key spaces is generated,
same as for the multi-space polynomial scheme [19]. Then nodes with the same index within a
given dimension (rows and columns in 2-dimensional case, shown on Figure 2.1) are assigned
with a polynomial from the same key space and thus are able to establish shared pairwise key
directly. Nodes are then deployed and perform ordinary neighbour discovery phase. If two
nodes A and B wish to establish a pairwise key, all indexes of nodes within all dimensions are
compared. If at least one index is shared then a key can be directly established. Otherwise
other nodes are asked for cooperation such that virtual path from A to B can be formed
(A,C1, C2, . . . Cn, B), where A is able to establish direct pairwise key with C1 (they have same
index in at least one dimension), Ci with Ci+1 and Cn with B. New pairwise key is then
generated on A and transported with re-encryptions over intermediate nodes Cj to node B.
The proposed scheme assumes that compromised nodes/links are known and thus the non-
compromised path can be selected. With the growing dimension of the hypercube, number
of such paths is significant. If at least one non-compromised path exists, secure pairwise key
can be established. Knowledge of compromise nodes/links is vital for the scheme – otherwise
all possible paths must be tried with related significant communication overhead to obtain
level of node capture resilience analyzed by authors of the scheme. Moreover, some matching
between virtual hypercube layout and physical layout of nodes after deployment should be
maintained. Otherwise nodes close on a virtual path can be in distant parts of the network
physically, connectable only by the multi-hop communication and key exchange then poses
a significant communication overhead.

The node capture resilience is significantly increased by the hypercube scheme as presented
on Figure 2.2. Comparison with our group supported scheme (will be described later) is
presented in Section 2.4.4.

2.2 Group supported key exchange

We aim to achieve secure authenticated key exchange between two nodes, where the first
node is integrated into the existing network, in particular knows IDs of its neighbours and
has established secure link keys with them. The main idea comes from the behavior of social
groups. When Alice from such a group wants to communicate with a new incomer Bob, then
she asks other members whether anybody knows him. The more members know him, the
higher confidence in the profile of the incomer. A reputation system also functions within the
group – a member that gives references too often can become suspicious, and those who give
good references for malicious persons become less trusted in the future (if the maliciousness
is detected, of course).

20

2.2 Group supported key exchange

Figure 2.1: Polynomial assignment in two-dimension hypercube (grid). Nodes in the same
row or column can establish key directly, otherwise with the help of neighbours in virtual
grid. Figure taken from [34].

Figure 2.2: Node capture resilience of hypercube scheme, ring size equal to 200 keys. Figure
taken from [34].

21

2.2 Group supported key exchange

Figure 2.3: Cohesion between key ring and key pool size. Particular settings of the network
are depicted in the solid boxes, resulting properties in the dashed boxes. If network settings
remain fixed, increase of the ring size increase the key sharing probability which in turn
increase the number of connectable neighbours, but also increase compromised fraction of
key pool when fixed number of nodes are captured thus decreasing overall node capture
resilience. Increase of pool size influence the node capture resilience in exactly opposite way.
Moderate increase of the key ring size allows to increase pool size highly, obtaining better
node capture resilience as a result.

2.2.1 Authenticated key exchange with group support

We adapt this concept to the environment of a wireless sensor network. The social group
is represented by neighbours within a given radio transmission range. The knowledge of an
unknown person is represented by pre-shared keys. There should be a very low probability
of an attacker to obtain a key value exchanged between two non-compromised nodes and
thus compromise further communication send over this link. Key exchange authentication is
implicit in such sense that an attacker should not be able (with a high probability) to invoke
key exchange between the malicious node and a non-compromised node. Only authorised
nodes should be able to do so.

In short, A asks her neighbours inside group around him to provide “onion” keys that can
also be generated by the newcomer B. The onion keys are generated from a random nonce
Rij, RB and keys pre-shared between A’s neighbours and B. All of these onion keys are used
together to secure the transport of the key KAB. The valid node B will be able to generate
all onion keys and then to recover KAB.

Note that the key exchange secured only by the basic EG scheme is a special case of group
supported protocol with the group size equal to one.

22

2.2 Group supported key exchange

The protocol consists of the following steps:

1. The node B generates a random nonce RB and sends message (“hello”,B,RB) to A.

2. The node A does for each neighbour node Ni, including itself, the following:

(a) Based on the seed based pre-distribution, A is able to decide without any com-
munication overhead whether Ni shares any key with B. Steps 2b to 2d are then
executed only if there are any shared keys.

(b) A sends ID of B and RB to Ni using a secure channel shared with Ni.

(c) Ni computes ID(s) {IDi1, IDi2, . . . , IDim} of keys shared between B and Ni.
Again, this can be done without any additional communication due to the seed-
based pre-distribution.

(d) For each shared key IDij, Ni generates a random nonce Rij and computes onion
key K ′

ij = H(KIDij
, Rij, RB). (K ′

ij, IDij, Rij) is sent back using the secure channel
between A and Ni.

3. If the number of distinct shared keys among all neighbours is less than the threshold
given as a preset global parameter by the network owner, A refuses to exchange the
key with B and quits.

4. A generates key KAB that she wishes to exchange securely with B.

5. A applies all onion keys K ′
ij over the KAB value in the onion encryption fashion,

EK ′ = EK′
11

(EK′
12

(. . . ((KAB) . . .)). The order of application of keys K ′
ij is given by the

order of respective IDij within B’s key ring and can be encoded as a bit mask bitMask
indicating which keys were used.3 This is done without any additional communication
and with a small message.

6. A sends to B message {M |MACKAB
(M)}, where M = {RB|{R11, . . . , Rij}|bitMask|EK ′}

with Rij sequenced by the order of usage given by bitMask.

7. B uses bitMask to determine which keys from its key ring were used for the generation
of onion keys. B then uses Rij and RB to generate onion keys as described in step
(2d) and removes onion encryption layers step by step. The recovered key KAB is then
used to check the integrity of the original message M .

8. B returns to A the value CR = MACKAB
(H(RB, R11|R12| . . . Rij)) as a confirmation

of a correctly and completely decrypted message M .

9. A verifies the correctness CR and then sets KAB as a node-to-node key for communi-
cation with node B.

3As only the keys from B’s ring can be used, the bit mask will have the size of ringSize bits. Due to the
seed-based pre-distribution, keys in B’s ring can be ordered by the sequence of the key identity generation,
e.g. the first value obtained from the pseudo-random generator corresponds to the first key and the first bit
in the bit mask. Value ‘1’ of the i-th bit of the mask signalizes that i-th key was used for onion encryption.

23

2.2 Group supported key exchange

2.2.2 Probabilistic authentication

This protocol can also be used as a building block for probabilistic entity authentication.
Probabilistic authentication means that a valid node can convince others with a high prob-
ability that it knows all keys related to its ID. A malicious node with a forged ID will fail
(with a high probability) to provide such a proof. We propose to use the term probabilistic
authentication for authentication with following properties:

1. Each entity is uniquely identifiable by its ID.

2. Each entity is linked to the keys with the identification publicly enumerable4 from its
entity ID.

3. A honest entity is able to convince another entity that she knows keys related to her
ID with some (high) probability. For practical purposes, this probability should be as
high as possible to enable authentication between as many other nodes as needed.

4. Colluding malicious entities can convince other entities that they know keys related to
an ID of a not-captured node only with a low probability.

This approach to authentication enables a tradeoff between security and computation/storage
requirements for each entity. As the potential number of neighbours in WSNs is high, the
memory of each node is severely limited and an attacker can capture nodes, this modification
allows us to obtain reasonable security in the WSN context.

No modification of the proposed protocol core is necessary for authentication purposes: if
the node B wants to authenticate itself to A, then it will do so by sending its ID, which
will initialize a key exchange as described above. Node A accepts authentication only if B
is able to respond with a valid CR in the 8th step.

However, special attention must be paid to the actual meaning of the authentication in
case of a group supported protocol. Firstly, as we assume that a part of the group can
be compromised, verification of B’s claims can be based on a testimony of compromised
neighbours. Secondly, node A has a special role in the protocol execution and can be
compromised as well. The neighbours should not rely on an announcement from node A
that node B was correctly authenticated to it. The special role of A can be eliminated if the
protocol is re-run against all members of the group with a different central node each time.
Yet this would introduce an additional communication overhead compared to the approach
where a single member of the group will announce the result of the authentication to others.
Note that the number of messages for a single protocol run is reasonably low due to the
seed-based pre-distribution.

4Only the key identification can be obtained from entity ID, not the key value itself.

24

2.2 Group supported key exchange

0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1

Fraction of compromised nodes in group

P
ro

b
ab

ili
ty

 o
f

at
ta

ck
er

 w
in

n
in

g

1 node [avg. 25.5 runs]
3 nodes [avg. 38.2 runs]
5 nodes [avg. 38.8 runs]
all nodes [39 runs]
0.5 node [avg. 12.8 runs]

Figure 2.4: Probability of an attacker winning in majority decision voting and number of
expected runs of the protocol w.r.t. number of nodes selected as central by each member of
a group (39 nodes per group).

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of keys

P
ro

b
ab

ili
ty

 o
f

g
ro

u
p

 k
ey

 s
h

ar
in

g

min. 1 shared key, 695190 pool size

min. 3 shared keys, 299170 pool size

min. 10 shared keys, 110189 pool size

Figure 2.5: The distribution of probability of group key sharing (group size 40 nodes, ring
size 200 keys, 90% constant probability of sharing at least required number of keys). Note
that the pool size decreases with a growing minimum of required shared keys.

25

2.2 Group supported key exchange

2.2.3 Probabilistic authentication with majority decision

The following tradeoff between security and communication overhead can be introduced:
The protocol is re-run k-times only with randomly selected central nodes and a majority
rule is applied in order to obtain a result for the whole group. The random selection resilient
against certain fraction of compromised nodes can be done as follows:

1. Every node broadcasts a set of p randomly selected IDs of its neighbours.

2. Each selected node performs the protocol as a central node with B and distributes the
result using an authenticated channel to each of the requesting nodes.

3. Each node then separately applies the majority rule over p responses from its set,
obtains the partial result Mi and then broadcasts it through an authenticated channel.

4. The majority rule is applied again over all partial results Mi by every node to obtain
the final result of the authentication.

Note that the requirement of randomly selecting the “central” nodes is critical, otherwise
an attacker can force a selection of compromised nodes only and will be certainly successful
when controlling at least dk/2e+ 1 nodes inside group. See Figure 2.4 for the probability of
the attacker’s success for different values of p and of the compromised fraction of a group.

2.2.4 Evaluation of the communication and computation overhead

The number of additional (to a basic key exchange between two nodes only) messages is
at most equal to 2 * number of applied onion keys. We require two additional messages
per single neighbour that shares at least one key with B. Most commonly, a neighbouring
node will share only one key with B (otherwise pool size can be set significantly larger for
particular settings). The threshold of minimum of required keys for exchange is given by
a global preset security parameter T . There can be key exchanges with more onion keys
applied. For a fixed pool size, more applied keys mean a lower probability that an attacker
will be able to decrypt a message, so more applied keys mean higher communication overhead
(more neighbours to be contacted), but also direct increase in the exchange security. Most
commonly, there will not be significantly more applied keys than the preset parameter T
(otherwise the pool size can be again set significantly larger). As a result, there will be
only about twice as many additional messages than the required preset threshold T for
the minimum number of required keys. Our experiments reveal this T is most commonly
expected to be between 1 to 5, and the communication overhead is then very reasonable.

The size of the messages exchanged between A and Ni in steps 2b and 2d is small, only the
message sent from A to B in step 6 is larger. This message carries information about used
keys and random nonces Ri. The information about used keys takes m bits as explained in
step 5, where m is the ring size. E.g., for a scenario with a 3-key treshold, 200 keys in the
ring and 16-byte identificators/nonces/keys, this message will be around 120 bytes5.

54 * 16B nonces + 25B used keys + 16B KAB + 16B MACKAB (M)

26

2.3 Group support with EG scheme

The computation overhead consists of additional encryptions/decryptions, hash function
computations and random number generation. There will be additional encryptions given
by the number of applied onion keys. The same holds for the number of decryptions and
random number generations.

We would like to stress that the overhead is independent of the group size (a larger group
allows for the setup of a higher threshold for minimum shared keys). If more than T keys are
shared between the group and B, then the overhead will increase (by a fraction of additional
shared keys) but the exchange will have a higher probability of being secure.

In the following paragraphs, we will examine success of group-supported protocols with two
schemes for probabilistic pre-distribution.

2.3 Group support with EG scheme

Our work has been motivated by poor node-capture resilience (NCR) of known PKPSs. We
evaluate NCR improvements obtained by the group support protocol with the EG scheme as
the underlaying PKPS as well as providing details of the calculation of relevant probabilities.
The results were experimentally verified by a series of simulations with 40000 nodes on our
simulator described in Section 1.2.

2.3.1 Evaluation of node capture resilience improvements

Lemma 1: Keys capture probability – EG scheme.
The probability that an attacker will know each key from k randomly chosen keys after
capturing c random nodes, where m is size of the node’s key ring and S is the key pool size:

PKC(k, c) =
(
1−

(
1− m

S

)c)k

Proof: The probability that a particular key will not appear in the key ring of any captured
node is equal to (1 − m

S
)c. The complement gives us the probability that a particular key

will be captured and this must hold for each of the k keys.

Lemma 2: Group key share probability.
The probability that a group G of n randomly chosen nodes will share exactly k keys with
another randomly chosen distinct node B:

PGKS(k, n) =

(
m

k

)
∗

(
1−

(
S −m

S

)n)k

∗
(

S −m

S

)n∗(m−k)

Proof: The probability that a particular key from B’s key ring is shared with group G
is equal to 1 - probability that this key is shared between B and no Gi node. Probability

27

2.3 Group support with EG scheme

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of captured nodes

P
ro

b
ab

ili
ty

 o
f

ke
y

ex
ch

an
g

e
co

m
p

ro
m

is
e

EG scheme, min. 1 key
group support, min. 1 key
group support, min. 3 keys
group support, min. 10 keys
DDHV scheme

Figure 2.6: Node capture resilience of the basic EG scheme and the variant with group
supported key exchange. Key ring size is fixed to 200 keys, group size to 40 nodes. The pool
size differs with minimum of required shared keys to maintain a constant probability 90%
(probNoShare) that the exchange will be possible.

that a particular key is not shared between B and Gi is
(S−1

m)
(S

m)
= S−m

S
. There are n such Gi

nodes, thus PkeyNotShared 1 = (S−m
S

)n. Then the probability that exactly k keys from the B
key ring are shared is equal to PkeyShared k =

(
m
k

)
(1− PkeyNotShared 1)

k ∗ (PkeyNotShared 1)
m−k,

where (1 − PkeyNotShared 1)
k stands for exactly k keys being shared while at the same time

the remaining (m− k) of keys in the key ring are not shared.
(

m
k

)
stands for the number of

positions where shared keys can be placed inside B’s key ring.

Lemma 3: Onion decryption probability.
The probability that an attacker will know all the keys shared between the node X (with a
random ID) and group G of n randomly selected non-compromised nodes after capturing c
randomly selected nodes. At least minK keys are used for onion encryption:

ringSize∑
i=minK

PKC(i, c) ∗ PGKS(i, n)

Proof: The probability that G will share exactly i keys with X is given by PGKS(i, n).
Probability that the attacker will know these i keys after capturing c nodes is given by
PKC(i, c). No more than ringSize keys can be shared.

2.3.2 Options and settings

Node capture resilience can be evaluated for particular parameters of a sensor network ac-
cording to the lemmas from 2.3.1. We assume that the maximum number of keys carried by

28

2.3 Group support with EG scheme

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of captured nodes

P
ro

b
ab

ili
ty

 o
f

ke
y

ex
ch

an
g

e
co

m
p

ro
m

is
e probNoShare=10%, 299296 pool size

probNoShare=50%, 595139 pool size
probNoShare=90%, 1444986 pool size

Figure 2.7: The impact of varying the probability of impossible key exchange to node capture
resilience for minimum required keys T = 3. The network parameters are same as for
Figure 2.6. The group enlarged to 160 nodes will decrease respective probNoShare values
to 0.0001% / 0.2% / 18.43%, keeping the pool size and node-capture resilience same.

a single node is fixed and given as a manufacturing parameter. More keys carried in a node
generally imply better resilience for any PKPS.

We choose to fix this parameter to 200 keys to enable a comparison with the multi-space
pairwise keys scheme [19] (DDHV scheme for short). DDHV scheme with 0.33 connection
probability is perfectly secure until around 400 nodes are captured. Then it quickly becomes
insecure, having more than 98% communication insecure when 700 nodes are captured.

As shown in Figure 2.6, our protocol with 40 neighbours and required minimum of 3 shared
keys results only in 0.25% compromised exchanges when 400 nodes are captured. When 700
nodes are captured, only around 1.3% exchanges are compromised. More than 3000 nodes
need to be captured to compromise half of the key exchanges. The relation between the
increasing number of required shared keys and the resilience is as follows: If the pool size
and ring sizes are fixed, then a higher value of minimum of required shared keys implies a
decrease in the probability of the group sharing enough keys with the new node. To increase
this probability, the pool size must be decreased. Smaller pool size implies a higher fraction
of keys captured by the attacker after a node compromise.

In case that even better resilience for a low number of captured nodes is required, minimum
of required shared keys can be increased. For example, when 10 keys are required, there
is only around 0.025% compromised exchanges for 400 captured nodes. However, there is
a tradeoff introduced: half of the compromised exchanges is reached faster (around 1700
captured nodes).

As we target static WSNs with immobile nodes (after the deployment), we choose to calculate
the appropriate pool size value such that there is probNoShare = 10% probability not to

29

2.3 Group support with EG scheme

1 minimum key required 3 minimum keys required
basic group enlarged group basic group enlarged group

10% 0.1% 10 % < 10−5 %
50 % 6.25 % 50 % 0.16 %
90 % 65.59 % 90 % 18.43 %

Table 2.2: Decrease of the probability of impossible key exchange probNoShare when the
nodes two hops away are also used. Basic group consists of 40 nodes, the enlarged group of
160 nodes (assumed to be reachable in two hops). Results valid for both EG and multi-space
polynomial underlaying pre-distribution schemes.

find the required amount of shared keys. In such cases, the protocol will abort in the 3rd
step. This situation can be solved by increasing the group size by involving neighbours two
hops away at the cost of additional communication (see Section 2.3.3 for details). Based
on the usage scenario, probNoShare can be set to a higher value, e.g. if a node can move
to another location or if a fraction of the nodes can be “sacrificed” for the sake of better
network resilience. This increases the pool size and thus consequently increases the node
capture resilience. An example of the impact of a minimum of 3 required keys is shown on
Figure 2.7.

A significant increase of NCR can be obtained when probNoShare = 90% is set. However,
this means that in the basic version of the protocol, only 10% of new nodes will be able to
join the group. This can be acceptable in the scenario with mobile nodes. Otherwise, group
enlargement (see Section 2.3.3) can be performed.

We would like to stress that our protocols do not provide defense against Sybil [43] or collu-
sion [40] attacks, where direct clones of the captured node are populated over the network.
Here we rely on some replication detection algorithm like [45]. The design of such a protocol
with high efficiency and reasonable communication overhead is still an open question.

2.3.3 Group enlargement

If a node is capable of remembering the IDs of nodes that are two hops away (direct neigh-
bours of its direct neighbour), then the size of the group will increase fourfold. Yet the
number of additional messages will increase only twofold due to the need for message rout-
ing (two hops instead of one). The total number of contacted nodes will remain the same
and – due to the seed-based pre-distribution – no messages are required to compute IDs
of nodes that will be contacted. The group enlargement can be employed in the following
scenarios:

• There are too few direct neighbours for creating a group capable of executing the
protocol with a required node capture resilience.

• Not enough keys are shared between the group and the incoming node B.

30

2.4 Group support with multi-space polynomial scheme

The Table 2.2 shows the impact of the group enlargement in case of 1, resp. 3 minimum
required keys with 40 nodes reachable in one hop. Note that the increase in probability of
possible key exchange is more significant with more minimum keys required.

Together with the results shown in Figure 2.7, one can set a larger key pool, obtain better
NCR and ask nodes two hops away in case of missing keys. E.g., when the basic group has
40 members and T = 3 minimum keys are needed, probability of possible key exchange can
be set to 50%. Then approximately a half of the requests will invoke the need for group
enlargement (approximately 160 nodes in the enlarged group) and only less than 0.2% of
valid nodes will be rejected in total.

Even after group enlargement, the communication overhead remains reasonable and propor-
tional to the required security given by the threshold T. Only nodes that are actually sharing
key with the incoming node B are contacted. An increase in the number of messages comes
only from the fact that nodes in the enlarged group are not reachable directly, but more
intermediate nodes must be involved in a multi-hop communication. For example, if the
group consists of the nodes up to 2-hop away, communication overhead will increase twice
with the energy consumption distributed regularly over nodes in the group. On the other
side, the storage overhead increases more significantly, as each node must remember the IDs
of nodes two hops away. Note, that the IDs of direct neighbours are most probably stored
for routing purposes anyway.

The tradeoff between communication and storage overhead can be introduced here: the
central node need not store all the IDs of the nodes up to two hops away, but rather can ask
his direct neighbours to provide a list of their neighbours at the expense of a few additional
messages and only when necessary for protocol run. However, the possibility of an attacker
injecting a fake ID through a compromised node must be considered.

2.4 Group support with multi-space polynomial scheme

Basic evaluations of group supported protocol properties were provided, with the EG scheme
as the underlaying pre-distribution scheme. Other pre-distribution schemes can be transpar-
ently used as well. Here we will discuss polynomial-based pre-distribution as introduced in
[19]. Instead of assigning direct keys as in the EG scheme, we select Blom’s key space from
the key spaces pool during the pre-deployment. Selection is again done according to seed-
based pre-distribution. For each selected space, Blom’s polynomials are generated. To keep
the ring size the same, there can be up to numberOfPolynomials = bm/cc polynomials,
where m is the node ring size and c is the degree of Blom’s polynomial. We choose to fix
c = t + 1, where t is Blom’s threshold security parameter to minimize the memory footprint
of one polynomial. The limitation is that when using this setting, only up to c nodes can
be assigned by different polynomial share from one polynomial space and this may limit the
total supported network size. However, as we will be using group support, the probability of
sharing key space between two nodes will be much lower than the probability in the original
multi-space polynomial scheme and thus the supported network size remains sufficient.

31

2.4 Group support with multi-space polynomial scheme

0 2000 4000 6000 8000 10000 12000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Node capture resilience, group authentication scheme

Number of captured nodes

F
ra

ct
io

n
of

 fa
ls

e
au

th
en

tic
at

io
n

PEGA, k = 3
poly t = 49, T = 1, probNoAuth=0.1
poly t = 49, T = 1, probNoAuth=0.2
poly t = 49, T = 1, probNoAuth=0.5
DDHV scheme

Figure 2.8: Node capture resilience of the group supported scheme with Blom’s treshold
secret sharing scheme as an underlaying pre-distribution. Group size 40 nodes. Ring size is
equal to 200 keys.

0 0.5 1 1.5 2

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Node capture resilience, group authentication scheme

Number of captured nodes

F
ra

ct
io

n
of

 fa
ls

e
au

th
en

tic
at

io
n

poly t = 49, group = 40, probNoAuth = 0.1
poly t = 19, group = 160, probNoAuth = 0.1
poly t = 49, group = 160, probNoAuth = 0.1
poly t = 49, group = 160, probNoAuth = 0.2

Figure 2.9: Node capture resilience of the group supported scheme with Blom’s treshold
secret sharing scheme as an underlaying pre-distribution. Group size 160 nodes. Ring size
is equal to 200 keys.

32

2.4 Group support with multi-space polynomial scheme

2.4.1 Evaluation of node capture resilience improvements

Lemma 4: Probability of i shares compromise.
Probability that an attacker will be able to compromise exactly i shares of particular poly-
nomial after capturing of c nodes, where S is the key pool size, m′ is number of polynomials
in one node’s key ring (m′ = m/d) and d is degree of polynomial:

PCS(i) =

(
c

i

)
∗

(
m′

S

)i

∗
(

1− m′

S

)c−i

Proof: A particular polynomial cannot be compromised until an attacker has compromised
at least (t+1) shares of this polynomial (proof given in [8]), where t is pre-specified threshold.
The probability that a given polynomial was chosen for a sensor node is m′

S
. To compromise

exactly i shares of this polynomial, the share from this polynomial must be captured exactly
i times from the captured nodes with share and not being present on remaining c− i nodes.
There is

(
c
i

)
ways in which the i compromised shares can be distributed among c captured

nodes.

Lemma 5: Probability of polynomial compromise.
The probability that an attacker will know all shares necessary to compromise every poly-
nomial from k randomly chosen polynomials after capturing c random nodes is given by:

PKP (t) =

(
1−

t∑
i=0

PCS(i)

)k

Proof: This sum gives the probability that an attacker will compromise less than or equal
to t shares from a particular polynomial. If the attacker compromises more than t shares,
then the particular polynomial is compromised and this must hold for every one of the k
polynomials.

2.4.2 Impact of polynomial security threshold

Impact of different degree of the polynomials is shown of Figure 2.10 (basic group with 40
neighbours) and Figure 2.11 (enlarged group with 160 neighbours). Again, the original ring
size is assumed to allow for up to 200 ordinary keys and the number of selected key spaces
and the number of stored polynomials on every node are set to fit this memory restriction
as numberOfPolynomials = b200/cc. Tested polynomial degrees were 5 (40 polynomials
per node), 10 (20), 20 (10), 40 (5), 50 (4) and 66 (3). Larger degrees of polynomial were not
tested as the resulting node capture resilience does not increase for our settings.

33

2.4 Group support with multi-space polynomial scheme

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Impact of security treshold, 40 nodes in group

Number of captured nodes

F
ra

ct
io

n
of

 fa
ls

e
au

th
en

tic
at

io
n

t = 4 (40 polynomials per node)
t = 9 (20 polynomials per node)
t = 19 (10 polynomials per node)

Figure 2.10: Impact of number of polynomial security threshold. Group size is 40 nodes.
Ring size is equal to 200 keys.

4000 6000 8000 10000 12000 14000 16000 18000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Impact of Blom’s polynomial security treshold

Number of captured nodes

F
ra

ct
io

n
of

 fa
ls

e
au

th
en

tic
at

io
n

t = 9 (20 polynomials/node)
t = 19 (10 polynomials/node)
t = 49 (4 polynomials/node)
t = 65 (3 polynomials/node)

Figure 2.11: Impact of number of polynomial security threshold. Group size is 160 nodes.
Ring size is equal to 200 keys.

34

2.4 Group support with multi-space polynomial scheme

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Impact of minimum required shared keys threshold

Number of captured nodes

F
ra

ct
io

n
of

 fa
ls

e
au

th
en

tic
at

io
n

t = 4, T = 1
t = 4, T = 3
t = 4, T = 5
t = 2, T = 1
t = 2, T = 3

Figure 2.12: Impact of number of minimum required keys during the group support protocol.
Group size is 40 nodes. Ring size is equal to 200 keys.

2.4.3 Impact of minimal shared keys threshold

Similarly to the group supported scheme with EG pre-distribution, threshold of minimal keys
can be required in step 3 of the protocol. As we are using multi-space polynomial scheme
now, the threshold of minimal shared key spaces is checked. The results are significantly
different from the EG scheme as shown on Figures 2.12 (basic group with 40 neighbours)
and Figure 2.13 (enlarged group with 160 neighbours). Increasing the threshold of minimal
required shared keys does not improve the node capture resilience. As the single polynomial
requires more memory to store than single key in EG scheme requires, there is a lower
number of key spaces in the key pool for polynomial scheme than the number of simple
keys in key pool in case of the EG scheme. An increased threshold of minimal required
shared keys (more than one) thus implies a significant decrease of the pool size to maintain
fixed probability that key exchange will be possible. The resulting node capture resilience
against an attacker randomly capturing the nodes is weakened. However, this threshold
increases the resiliency against an attacker who tries to find the part of the network where
he is able to introduce malicious node with forged ID. With increased threshold there is a
higher probability that the group will know at least one key connected to this forged ID, but
unknown to an attacker. The threshold thus should be set according to expected threats
to particular network. The analysis shows that a lower degree of polynomial is better for
higher number of minimal required shared keys (see Figure 2.12).

2.4.4 Comparison with hypercube scheme

Direct comparison between group supported and hypercube scheme [34] is not really possible,
as both schemes use different assumptions and resulting node capture resilience depends on
several input variables used for the analysis.

35

2.4 Group support with multi-space polynomial scheme

0 2000 4000 6000 8000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Node capture resilience, group authentication scheme

Number of captured nodes

F
ra

ct
io

n
of

 fa
ls

e
au

th
en

tic
at

io
n

t = 49, T = 1
t = 49, T = 3
t = 19, T = 1
t = 19, T = 3
t = 9, T = 1
t = 9, T = 3
t = 2, T = 3

Figure 2.13: Impact of number of minimum required keys during the group support protocol.
Group size is 160 nodes. Ring size is equal to 200 keys.

Group supported Hypercube based
Communication over-
head

Only messages to the direct radio
neighbours.

If no special deployment is used,
then nodes that have to be con-
tacted can be in any part of the
network.

Storage overhead Basic keys + ID of nodes inside
the group.

Basic keys only + compromise
status of links.

Knowledge of compro-
mised links

Not required. High communication overhead if
not known.

Deployment pattern Not required, group always
formed from the direct neigh-
bours.

If not, than high communication
overhead (distant nodes).

Usability with other
PKPS

Any, but node capture resilience
may vary. Differences only in
process of selection keys (seed-
based).

Analyzed for Bloom polynoms,
but can be adjusted. Node cap-
ture resilience may vary.

Selective node capture Threat as the node ID can be
used to enumerate carried keys.

Low threat, an attacker may tar-
get nodes on short paths.

Table 2.3: Comparison of the properties of group supported and hypercube-based predistri-
bution schemes.

36

2.5 Possible attacks and defenses

The hypercube scheme is more suitable for structured deployments with position of nodes
such that real length of paths (number of hops) during key establishment is reasonable small
to prevent unwanted communication overhead. Additionally, the actual compromise status
of links must be known as well, otherwise all possible paths between two nodes must be used
to establish a new pairwise key to obtain node capture resilience indicated in original paper.
Usage of all paths is possible, but results in a very high communication overhead. The
scheme has low storage overhead, as the ID of nodes necessary to form key establishment
path can be computed from ID of source and target node. However, the storage of status of
compromised links implies an additional overhead.

The group supported scheme is more suitable for scenarios with randomly deployed dense
networks. The group support is formed from neighbouring nodes only and thus does not
create a long communication paths. Due to seed-based pre-distribution, communication
overhead is low, but IDs of nodes within group must be stored on each node (storage already
used for routing purposes can be used to lower this overhead). Knowledge of link key
compromise status is not required and group supported scheme is tolerant to a partial group
compromise.

2.5 Possible attacks and defenses

Increased resilience does not come for free and the involvement of neighbours opens the
possibility for new attacks. The impact of, and defenses against such attacks are discussed,
with respect to passive and active attackers.

2.5.1 Passive attacker

A passive attacker can either randomly or selectively [26] compromise a fraction of nodes,
extract all their keys, and access the relayed communication, but the compromised nodes do
not misbehave in the protocol execution.

1. An attacker may try to selectively capture nodes based on the knowledge of their IDs
in order to obtain most keys for its forged node ID – as described in Section 2.1.5,
actual IDs of nodes distributed in the first round can be kept secret just between a
node and its direct neighbours, never transmitted over a non-encrypted channel.

2. An attacker will use a node with a random forged ID – based on previous analytical
results, a group of nodes will have a very high probability of sharing at least one key
that the attacker does not know and thus also a very high probability of detecting
cheating.

3. An attacker will try to generate a random forged ID, for which he knows most of the
keys (for feasibility evaluation – see Section 2.3.1, Lemma 2 – results for 200 keys in a
ring show that such attack is computationally infeasible even when the attacker knows
1/3 of the initial key pool.)

37

2.5 Possible attacks and defenses

4. An attacker will select such a position within the network so that neighbouring nodes
only know the keys known to the attacker – there are the following defenses:

(a) At least minAuthKeys are required to enable the key exchange. This security
parameter prohibits poorly secured exchanges.

(b) The use of a fresh random identifier instead of the original ID as described in
Section 2.1.5 for selective capture of nodes above to minimize attacker knowledge
about nodes in network.

5. An attacker will use node(s) with same ID(s) as the captured one(s) – known as the
Sybil attack. Our protocol offers no defense here, and we rely on other replication
detection mechanisms.

2.5.2 Active attacker

An active attacker can not only do all that the passive attacker can, e.g. extract secrets
from captured nodes, but also place them back in the field and actively control them during
the protocol execution.

1. An attacker will compromise one of A’s neighbours and supply an incorrect onion key
value when asked for keys causing rejection of a valid node B. After rejection of node
B, A can initiate the compromise detection phase: A gradually removes onion keys
from EK ′ to detect when B will be able to successfully decrypt KAB, detecting the
incorrect onion key supplier.

2. An attacker will compromise some node N and relay part of the protocol messages
for node X with a forged ID to neighbours of node N pretending that there is an
authentication process between N and X going on to obtain correct onion keys usable
elsewhere. Here the following policy can be introduced as a defense: Ni will not respond
to N until a ‘hello from X’ packet from the first step of the protocol is received. The
random nonce Rij generated by each node prevents creation of same onion key multiple
times.

3. An attacker may try to insert bogus messages impersonating some party participating
in the protocol. Integrity, confidentiality and freshness of all messages from step 2 are
protected by the pre-existing link secure channel. The message from step 6 is integrity-
protected by the key KAB. Integrity can be checked backwards after a successful
recovery of the key KAB. Note that a denial of service by a corruption of this message
is possible here (A and B will not be able to establish shared key). However, if an
attacker is able to modify the original transmission and to insert his modified message,
he can achieve the same goal only by garbling anyway. Integrity of the message in step
8 is protected with the key KAB, with implications same as for step 6.

38

2.6 Summary of the protocol

2.6 Summary of the protocol

We propose a novel idea for key exchange and entity authentication based on the random
pre-distribution scheme. Results of this enhancement of the EG pre-distribution scheme
[21] and polynomial scheme by [19] show that a substantial node capture resilience can be
obtained. Probabilistic key pre-distribution schemes generally exhibit the property that
the probability of key sharing rapidly increases with the number of keys in a node’s key
ring. Our group supported protocol exploits this behaviour to create large virtual key rings.
However, this improvement does not come for free. Firstly, some additional communication
is required. We have shown that substantial improvements in the node capture resiliency
can be obtained with a reasonable communication overhead that is proportional to the
minimum of required shared keys (security parameter) rather than the size of supporting
group. Secondly, a node relies on the security of previously established link keys with its
neighbours. This opens a possibility for additional attacks, which were discussed together
with possible countermeasures.

Combination of the group supported protocol with multi-space polynomial pre-distribution
provides a better node capture resiliency if the polynomial scheme can be efficiently computed
on the nodes. See [34] for discussion of efficient implementation.

39

Chapter 3

Secrecy amplification

The uncertainty about the identity of direct neighbours prior to the actual deployment
naturally results in such a property of the key distribution schemes that most of the nodes
in the network should be able to establish a shared key (either directly or with support
from other nodes). This alone is a serious challenge for memory- and battery-limited nodes.
At the same time, this property implies one of the main problems for maintaining a secure
network in presence of an adversary with the ability to compromise link keys (e.g., via node
capture or eavesdropping). If the extracted secrets can be commonly used in any part of
the network, various Sybil and replication attacks can be mounted (e.g., to join an existing
cluster with a captured node clone). Moreover, even when the compromised node is detected
and its keys are revoked, the revocation list must be maintained for the whole network (e.g.,
if the revocation list is maintained in a completely decentralized way then ultimately every
node must store a copy of the list). A common way and good practice to introduce localized
secrets is to not use pre-distributed keys for ordinary communication, but only to secure
the key exchange of fresh keys, which are locally generated only by nodes involved in the
exchange. If the usage of the pre-distributed keys is allowed only for a certain time (or
treated with more scrutiny later), such practice can limit the impact of the node capture
as the localized keys have no validity outside the area of their generation. An attacker is
forced to mount his attack only during a limited time interval and it is thus reasonable to
expect that the number of compromised nodes will be lower. When such localized secrets
are established with the support of other (potentially compromised) nodes, the secrecy of
the resulting key can be violated. To tackle this threat, secrecy amplification protocols were
proposed.

This chapter starts with discussion of the principles, properties and performance results of
several secrecy amplification protocols including those proposed by us for a partially com-
promised network resulting from plaintext key distribution known as Key Infection [3]. We
will provide detailed comparison is based on simulations resulting from an S3 simulator (see
Section 1.2 for description). Later we discuss the applicability of secrecy amplification pro-
tocols to different types of partially compromised networks resulting from a node capture in
probabilistic key pre-distribution. The differences between characteristics of compromise (so-
called compromise patterns) are described, and the impact of these differences on the success
of secrecy amplification protocols is examined. To cover additional compromise patterns, we

40

3.1 Related work

turn from manual design of the protocols and focus on an automatic generation of such
protocols. We are using a combination of evolutionary algorithms that generate candidate
solutions and a network simulator that evaluates them. Such an approach enables us to find
personalized protocols that work well for a particular key distribution method and against a
given attacker and his tactics, avoiding unnecessary messages and thus significantly reducing
the communication overhead and making secrecy amplification protocols more practical. An
automated approach helps us to find the new protocol with a better fraction of secured links
than all published. Finally, we propose a novel principle of secrecy amplification protocols
design. This design exhibits linear instead of exponential increase of protocol messages with
increasing network density. An automated approach was used to design new protocols with
a comparable fraction of secured links to the original (message expensive) approach.

Analysis of the Pull protocol is based on our paper [16], but is significantly rewritten to
incorporate information from additional experiments and to better fit with the remaining
chapter text. Initial results for automatic generation of secrecy amplification protocols were
published in [57] and is accepted for publication as a chapter in book [50].

3.1 Related work

Secrecy amplification protocols (also known as privacy amplification protocols) were in-
troduced by [3] for weaker attacker model together with the plaintext key exchange as a
lightweight key establishment method (so-called Key Infection) for wireless sensor networks.
This approach does not require any pre-distributed keys. Nodes are simply distributed over
the target deployment plane and perform discovery of neighbours by radio. Every node then
generates a separate random key for its each neighbour and sends it un-encrypted (as no
keys are pre-shared) over a radio link. This key is then used as a basic link key to encrypt
subsequent communication. This scheme has minimal memory requirements, requires no
pre-distribution operations in a trusted environment and every node can essentially estab-
lish a key with any other nodes. Perfect node capture resilience is achieved as any two nodes
share different keys. If no attacker with eavesdropping capability is present during such
plaintext key exchange then all keys will be secure. On the other side, if an attacker is able
to eavesdrop all plaintext exchanges then the scheme will be completely insecure as all keys
will be compromised. A modified attacker model based on the assumption that the attacker
has limited material/financial resources is used instead. Basic assumption is that not all
links are eavesdropped.

The first assumption of the model is the similarity of devices used as network nodes and
eavesdropping nodes, especially radio sensitivity. We will reason about this assumption a
bit: The higher sensitivity of the radio implies higher energy consumption and eavesdropping
nodes will require stronger battery sources implying an increased attack cost. Additionally,
the relatively small radio range of legal nodes enables frequent radio channel reuse. An
eavesdropping node with a highly sensitive antenna will receive signals from several parallel
transmissions on the same channel, rendering the received cumulated signal unreadable. The
assumption of similar radio sensitivity is therefore reasonable.

41

3.1 Related work

3.1.1 Plaintext key exchange – whispering

Communication between two neighbours might be performed with full radio transmission
power (we will call this transmission as maximal screaming mode). This mode of transmis-
sion is suboptimal both from energy-efficiency and security points of view. Current sensor
platforms allow us to control the transmission power to some degree to save on node battery,
and this feature can be used to facilitate plaintext key exchange which can be eavesdropped
only in a limited area.

We will use the term whispering for this message transmission mode between two nodes
that is performed with the minimal transmission power necessary to communicate. If the
sending node is using lower power than this minimal value, then the receiving node is not
able to receive messages successfully with its own antenna. The minimal power strength
can be obtained from the following process: node starts sending a hello message with the
minimal possible power. If no response is received within a defined time-frame, then power is
repeatedly increased by small steps until the particular neighbour can hear the transmission
and responds.

This minimal transmission power is used later to exchange the link key in plaintext. An
attacker will compromise a link key when he is able to record this key exchange transmission.
If the eavesdropping device has the same quality of receiver as legal nodes (antenna, signal
amplification) then the eavesdropping device must be positioned at equal or smaller distance
to the sending node from the receiving node to eavesdrop transmission (if signal propagation
is an ideal sphere). This assumption will be used for simulations of secrecy amplification
protocols.

As the plaintext key exchange takes place immediately after network deployment, the at-
tacker’s eavesdropping devices must be present from the very beginning, actually placed in
the deployment field before the deployment of the network. If the exact deployment field
is not known in advance, the attacker must cover larger areas by its eavesdropping nodes
than the owner of the network. The ratio between legal nodes and attacker’s eavesdropping
nodes will be then unbalanced toward a higher number of legal nodes. This forms the second
assumption of the model.

In real deployment, several hello messages should be sent with the same transmission power,
as wireless signal propagation might vary, transmission with minimum possible power is
desirable, and several lost messages during the key exchange (short messages themselves)
can be tolerated. Also, the key exchange can be actually in the hello message. If multiple
messages are used, then a different random key should be used for each message to limit the
time frame when a particular key value is in the air, possibly vulnerable to eavesdropping.
The receiving node will respond with a hash of the key from the received message to confirm
the exchange of the key.

In the Key Infection approach, a weakened attacker model is necessary for the first stage
(plaintext key exchange) and in some cases also during secrecy amplification. The attacker
then reverts to the mode where all transmissions are eavesdropped by an attacker. The
length of this interval, together with the resilience of the used exchange and subsequent
secrecy amplification, determines the cost for an attacker to successfully attack the network.

42

3.1 Related work

3.1.2 Basics of secrecy amplification protocols

A secrecy amplification protocol is an additional scheme executed by the nodes in the network
after the basic link key establishment, plaintext key exchange in case of the Key Infection.
Fresh new secrets are generated locally and distributed using existing links with associated
security state (secure/compromised). As a result, new link keys are constructed. These are
different from original pre-shared or exchanged secrets. Especially in WSNs, secrets usable
only locally should be preferred due to the possibility of various Sybil-like attacks. Moreover,
some links can be secured, even when the original link was compromised.

What is commonly unknown to the network nodes is the identity of links that are actually
compromised. Still, we can execute the amplification protocol as the second layer of defence,
even when the link between A and B is secure against the attacker (but we do not know
that). If we create a new link key as K ′

AB = H(KAB, K), where KAB is the original link key,
K is a fresh key exchanged during amplification protocol and H is a cryptographically strong
one-way function, we will obtain a secure link if either the original link is already secure or
K can be securely transported to both A and B over some existing path. Such process poses
a significant communication overhead as the number of such paths is significant, but may
also significantly improve the overall network security.

Eventually, more iterations of the amplification protocol can be performed. The security of
link keys can be further improved as links newly secured in the previous iteration can help
to secure a new link in the next iteration.

There is no difference between passive and active attackers for the secrecy amplification
protocol with respect to the number of secured links. An active attacker controlling a node
is equivalent to a passive one that has compromised all links to the node, thus intercepting all
passing messages. A denial-of-service attack can be mounted if intermediate nodes propagate
incorrect values, but will be detected after the construction of a new link key, because two
non-compromised nodes will not be able to establish a functional key. By gradually removing
the keys used in the construction, they can spot the node or path which contributed the
defective key and ignore it for later protocol runs. The inverse attack must be considered as
well as two compromised nodes may blame a legal node for providing an incorrect key. A
link jammed by an adversary is equivalent to a missing connection rendering path unusable
for secrecy amplification.

Secrecy amplification protocols can be categorized based on:

Number of distinct paths used to send parts of the final key – if more than one path is
used then the protocol performs so-called multi-path amplification. An attacker must
eavesdrop all paths to compromise the new key value. If two nodes A and B exchange
a new key directly in one piece, then only one path is used. Note that multiple virtual
paths can be constructed over one physical path [56].

Number of involved intermediate nodes per single path – basic key exchange between
A and B requires no intermediate node. If at least one intermediate node is used then
the protocol performs so-called multi-hop amplification. The path is compromised if
an attacker is able to eavesdrop at least one link on the path.

43

3.1 Related work

Notation Description
| concatenation operator

A,B identification of nodes for which link key is strengthened during secrecy amplification
Ci identification of intermediate node(s) used during secrecy amplification
NC identification of central node during group-oriented secrecy amplification protocols
NP identification of node with special role during group-oriented secrecy amplification protocols

Nd1 d2 distance relative identification of a node with distance d1 from NC and d2 from NP

kxy key exchanged in plaintext from node x to node y
Kxy pairwise key shared between nodes x and y
K ′

xy new pairwise key shared between nodes x and y after secrecy amplification
H(.) application of cryptographical strong one-way hash function H

EKxy (.) symmetric encryption function using key Kxy

Table 3.1: Notation used for secrecy amplification protocols. Function H should be realized
as HMAC construction [6] instead of simple hash function to prevent extension attacks.

3.1.3 The mutual whispering protocol

The simplest secrecy amplification protocol is based on a combination of keys exchanged
between two nodes. Mutual whispering secrecy amplification constructs the new key between
A and B simply as K ′

AB = H(kAB, kBA, KAB), where kAB is the key exchanged (whispered)
from A to B, kBA from B to A, and KAB is an already existing shared key for the link
between A and B if such key exists, otherwise only keys kAB and kBA are combined. This
protocol was not explicitly mentioned in [3], but was actually used for simulations there
(based on provided source code). Mutual whispering is a one-hop two-path protocol – no
intermediate node is used and keys from two paths are combined (from A to B and from B
to A – these paths overlap).

A → B : (A,B, kAB)

B → A : (B,A, kBA)
A,B compute K ′

AB = H(kAB|kBA|KAB)

Table 3.2: Message diagram for mutual whispering protocol.

3.1.4 The Push protocol

The multi-hop (two-hop) and multi-path (number of neighbours reachable from both A and
B) secrecy amplification protocol was described in [3]. Node A generates q different random
values (key parts) and sends each one along a different path over an intermediate node(s)
Ci to node B, encrypted with an existing link key(s). All values combined together with the
existing key shared between A and B are used to create the new key value. If at least one path
is not compromised, the resulting key will be secure. Simulations in [3] for attacker/legal
nodes ratio up to 5% are presented, showing that the plaintext key exchange followed by the
Push protocol is suitable within this attacker model.

44

3.1 Related work

Figure 3.1: Minimal transmission power used
during whispering between (green) nodes A
and B. Attacker’s node positioned inside the
inner circle (red node) is able to eavesdrop
the transmission between A and B whereas
node positioned outside (black node) is not.

Figure 3.2: Graphic representation of the
simplest version of Push and Pull amplifi-
cation protocols with only one intermediate
node C. Red dashed circle highlights the
node generating a fresh new random secret
N . Kxy is the existing directional key be-
tween nodes x and y.

A → Ci : EKACi
(A,B, Ni)

Ci → B : EKCiB
(A,B,Ni)

A,B compute K ′
AB = H(KAB|Ni)

Table 3.3: Message diagram for two-hop version of the Push protocol.

3.1.5 The Commodity protocol

A variant of initial key exchange mixed with the Push protocol (will be denoted as Com-
modity) without explicit secrecy amplification is presented in [29]. Node A sends the same
key ki to nodes B and Ci in plaintext using whispering. Then ki is used to secure distri-
bution of initial key material Eki

(A,B, Ki2) between (A,B), Eki
(Ci, A,Ki3) between (Ci, A)

and Eki
(Ci, B,Ki3) between (Ci, B). The final key shared between (A,B) is constructed as

KAB = H(Ki3, H(Ki2, ki)). Formal security proof of the proposed scheme is presented in
the paper. The fraction of secured links will be lower than for the Push protocol as the
transmission of initial exchange is performed with a higher transmission power (maximum
of transmissions required to reach both B and C from A) and therefore is more likely to
be compromised. We exclude the Commodity protocol from more detailed analysis, as it is
only a variant of the Push protocol, does not provide secrecy amplification as separate and
the fraction of secure links will be lower than for the Push protocol alone.

3.1.6 The Pull protocol

A variant of the Push protocol called Pull protocol is presented in our work [16]. The initial
key exchange is same as for the Push protocol, but node Ci generates fresh secrets which

45

3.2 Analysis of secrecy amplification protocols

A → B : (A,B, Ci, ki)

A → Ci : (A,B,Ci, ki)
A → B : Eki

(A,B, Ki2)
Ci → A : Eki

(Ci, A,Ki3)
Ci → B : Eki

(Ci, B, Ki3)
A,B compute KAB = H(Ki3, H(Ki2, ki))

Table 3.4: Message diagram for two-hop version of the Commodity protocol.

are used to improve the secrecy of the key shared between nodes A and B instead of node
A as in the Push protocol. The basic idea is that the area where eavesdropping nodes must
be positioned to successfully compromise the link key is smaller than for the Push protocol.
The resulting fraction of compromised keys is then lower as an attacker has a smaller chance
to place eavesdropping nodes properly.

Ci → A : EKCiA
(A,B, Ni)

Ci → B : EKCiB
(A,B,Ni)

A,B compute K ′
AB = H(KAB|Ni)

Table 3.5: Message diagram for two-hop version of the Pull protocol.

3.2 Analysis of secrecy amplification protocols

Previous work [3] and [29] dedicated little attention to the behaviour of proposed protocols
for different network densities, networks with a higher number of eavesdropping nodes or
repeated iterations of amplification. Simulations were performed only for small sizes of the
network. Work [29] provided no analysis of the fraction of secured links at all.

We focused on the development of an optimized simulator capable of simulating networks up
to hundreds thousands of nodes with variable deployment field size, network density, num-
ber of eavesdropping nodes and repetition of amplification process. The simulator aims to
simulate such networks in reasonable time to provide more detailed performance estimation,
used also for our Pull protocol. See Section 1.2 for simulator details.

The initial results of our simulator for the Push protocol had the same dynamics, but the
absolute numbers were different from the original results presented in [3] quite substantially
– up to 50-100% of the original results. We asked authors for their original simulator and
inspected the source code. We found that their implementation is correct, but they use a
mesh with very small resolution to position the nodes and the total number of nodes used
was also quite low. When we increased the implicit number of nodes in their simulator, the
results varied in tens of percent from the results presented in the original paper. The results
presented in this section come from our simulator.

46

3.2 Analysis of secrecy amplification protocols

0 5 10 15 20 25
0

1

2

3

4

5

6

%
 o

f c
om

pr
om

is
se

d
lin

k
ke

ys

Average number of neighbours
0 5 10 15 20 25

0

0.5

1

1.5

%
 o

f c
om

pr
om

is
se

d
lin

k
ke

ys

Average number of neighbours

0 5 10 15 20 25
0

0.5

1

1.5

%
 o

f c
om

pr
om

is
se

d
lin

k
ke

ys

Average number of neighbours
0 5 10 15 20 25

0

0.5

1

1.5

%
 o

f c
om

pr
om

is
se

d
lin

k
ke

ys

Average number of neighbours

Basic whisper
"Push" amplif basic whisper 1x
"Push" amplif basic whisper 2x
"Push" amplif basic whisper 3x
"Push" amplif basic whisper 4x
"Push" amplif basic whisper 5x

Mutual whisper
"Pull" amplif mutual whisper 1x
"Pull" amplif mutual whisper 2x
"Pull" amplif mutual whisper 3x
"Pull" amplif mutual whisper 4x
"Pull" amplif mutual whisper 5x

Basic whisper
"Pull" amplif basic whisper 1x
"Pull" amplif basic whisper 2x
"Pull" amplif basic whisper 3x
"Pull" amplif basic whisper 4x
"Pull" amplif basic whisper 5x

Mutual whisper
"Push" amplif mutual whisper 1x
"Push" amplif mutual whisper 2x
"Push" amplif mutual whisper 3x
"Push" amplif mutual whisper 4x
"Push" amplif mutual whisper 5x

Figure 3.3: Fractions of compromised link keys with 1% of eavesdropping nodes for multiple
iteration of the protocols. The Push protocol applied over basic whispering (upper left)
and over mutual whispering (upper right) is shown. The Pull protocol applied over basic
whispering (lower left) and over mutual whispering (lower right) is shown.

3.2.1 Network settings and simulation setup

Legal and attacker nodes are randomly distributed over a pre-defined area. The neighbour
discovery phase is performed for each legal node based on its transmission range. Attacker
nodes act just as passive communication eavesdroppers – they represent a passive adversary,
but they immediately share all information eavesdropped by any of them so that they can
instantly combine key values sent over different paths.

We used network sizes between 104 to 105 of legal nodes deployed over a square plane with
side equal to 25 distance units. Actual variation of average number of neighbours was
achieved by changing the transmission range for legal nodes (values between 0.1 and 0.5
were used).

47

3.2 Analysis of secrecy amplification protocols

0 5 10 15 20 25
0

20

40

60

80
%

 o
f c

om
pr

om
is

se
d

lin
k

ke
ys

Average number of neighbours
0 5 10 15 20 25

0

10

20

30

40

%
 o

f c
om

pr
om

is
se

d
lin

k
ke

ys

Average number of neighbours

0 5 10 15 20 25
0

20

40

60

80

%
 o

f c
om

pr
om

is
se

d
lin

k
ke

ys

Average number of neighbours
0 5 10 15 20 25

0

10

20

30

40

%
 o

f c
om

pr
om

is
se

d
lin

k
ke

ys

Average number of neighbours

Basic whisper
"Push" amplif basic whisper 1x
"Push" amplif basic whisper 2x
"Push" amplif basic whisper 3x
"Push" amplif basic whisper 4x
"Push" amplif basic whisper 5x

Mutual whisper
"Push" amplif mutual whisper 1x
"Push" amplif mutual whisper 2x
"Push" amplif mutual whisper 3x
"Push" amplif mutual whisper 4x
"Push" amplif mutual whisper 5x

Basic whisper
"Pull" amplif basic whisper 1x
"Pull" amplif basic whisper 2x
"Pull" amplif basic whisper 3x
"Pull" amplif basic whisper 4x
"Pull" amplif basic whisper 5x

Mutual whisper
"Pull" amplif mutual whisper 1x
"Pull" amplif mutual whisper 2x
"Pull" amplif mutual whisper 3x
"Pull" amplif mutual whisper 4x
"Pull" amplif mutual whisper 5x

Figure 3.4: Fractions of compromised link keys with 20% of eavesdropping nodes. Results
are presented for Push, Pull and mutual whispering protocols, executed after the initial
key exchange (basic whisper) or after the initial key exchange with the mutual whisper
amplification applied first. The Push protocol applied over basic whispering (upper left)
and over mutual whispering (upper right) is shown. The Pull protocol applied over basic
whispering (lower left) and over mutual whispering (lower right) is shown.

The simulations were performed with an increasing density of the networks and the resulting
graphs are averaged results from at least five distinct simulation runs (note that the high
number of nodes in the network and a large deployment plane provides reasonable indepen-
dence of simulation results from a particular placement of the nodes – therefore five to ten
simulations with different nodes layout are sufficient to provide a reasonable average).

3.2.2 Discussion of simulation results

The set of graphs presented in Figures 3.3, and 3.4provides simulation results for all inspected
protocols and some selected combinations. Dependency of the fraction of secured links on
network density and number of eavesdropping nodes are inspected. Performance of maximum
screaming and whispering alone is shown and serves as a baseline (number of secure links if
no secrecy amplification protocol is executed). The second set of results is generated from

48

3.2 Analysis of secrecy amplification protocols

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

Eavesdropping/legal nodes ratio

%
 o

f c
om

pr
om

is
ed

 li
nk

 k
ey

s

Maximal screaming
Basic whisper
Mutual whisper
"Push" amplif basic whisper
"Pull" amplif basic whisper
"Push" amplif mutual whisper
"Pull" amplif mutual whisper

Figure 3.5: Fraction of compromised keys with increasing fraction of eavesdropping nodes.
Network density for legal nodes is 8 neighbours on average.

execution of mutual whispering with both Push and Pull protocols over network. Finally, the
execution of Push and Pull protocols over network with already performed mutual whispering
is examined. Figures 3.5 and 3.2.2 show the behaviour of the protocols with the increasing
number of eavesdropping nodes for two network densities with eight and fifteen neighbours
respectively on average.

The first set of graphs (Figure 3.3) shows results from a network of 104 nodes with 1% of
eavesdropping nodes (i.e., there are 100 eavesdropping nodes).

The amplification results are naturally getting worse with an increasing number of eaves-
dropping nodes in the network as more links are compromised during the initial plaintext
key exchange. The second set of graphs (Figure 3.4) shows results for the same settings
(104 of legal nodes), but with a significantly increased number of eavesdropping nodes at
20% (i.e., there are 2000 eavesdropping nodes).

Based on simulation results for these two scenarios, following findings were observed:

Repetition of secrecy amplification iterations significantly increases the total number
of secure links, especially for the lower rates of eavesdropping nodes. The results
presented in [3] were done for only one iteration of the amplification protocol. As new
links are secured in the first iteration, following iterations have a better starting position
than the first one (more secure links). Simulations showed that the increase of secure
links can be very significant, decreasing the number of compromised links effectively
to zero for scenarios with a low attacker presence and a dense enough network (e.g.,
15 neighbours on average). Significant improvement by repetition is possible also for
a strong attacker presence (20%).

49

3.2 Analysis of secrecy amplification protocols

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

Eavesdropping/legal nodes ratio

%
 o

f c
om

pr
om

is
ed

 li
nk

 k
ey

s

Maximal screaming
Basic whisper
Mutual whisper
"Push" amplif basic whisper
"Pull" amplif basic whisper
"Push" amplif mutual whisper
"Pull" amplif mutual whisper

Figure 3.6: Fraction of compromised keys with increasing fraction of eavesdropping nodes.
Network density for legal nodes is 15.2 neighbours on average.

Reasonable number of repetitions within tested scenarios is between two and four as
additional repetitions do not provide significant increase. The Figures 3.3 and 3.4
show results for up to five iterations of amplification protocols, where only the last two
iterations provide a small improvement.

Success of amplification fluctuates with network density. The actual number of links
secured by the secrecy amplification protocol as well as the relative factor of improve-
ment (rate between number of secure links before and after amplification) depends
heavily on the network density and may fluctuates.

This behaviour is caused by interplay between two factors – a) amplification protocols
generally work better with a higher density of the network; b) the attacker will ini-
tially compromise a higher fraction of links in dense networks (regardless of the number
of eavesdropping nodes). The baseline number of compromised links after the plain-
text key exchange (no amplification applied yet) increases quickly with the increasing
density of network.

For very sparse networks (up to five nodes in transmission range on average), protocols
requiring intermediate nodes often do not find such intermediates between two original
nodes and only factor b) applies and so the fraction of compromised links is increasing.
With a moderate density of network, amplification protocols have enough intermediates
and factor a) is dominating over b), causing a decrease in compromised links. For
very dense networks (more than 20 neighbours on average), factor b) will eventually
overweight factor a) gain, if enough eavesdropping nodes are present. For a low attacker
presence (e.g. 1% of eavesdropping nodes), factor b) never overweight a). For scenarios
with a significant attacker presence (e.g., 20%), increasing network density after some
threshold does not help to decrease the fraction of compromised links. Such situation
is best seen in the graph of the Pull protocol with basic whispering on Figures 3.3 and
3.4.

50

3.2 Analysis of secrecy amplification protocols

The Pull protocol outperforms the Push protocol when whispering is used. One
iteration of the Pull protocol provides significantly more secure links than one iteration
of the Push protocol (factor of two for sparse networks up to factor of four for dense
networks). Multiple iterations work significantly better with the Pull protocol than
for the Push protocol, especially for 1% eavesdropping nodes. The threshold point of
network density where the number of compromised links starts to decrease is also lower
(around five for the Pull protocol and around eight for the Push protocol).

Combination of Mutual whispering with other amplification protocol might increase
the number of secured links. Combination of the Push protocol with mutual whisper-
ing provides exactly the same fraction of secured keys as the Pull protocol alone. The
reason comes from the geographical distribution of areas where eavesdropping nodes
must be positioned to successfully compromise the link key during amplification. In-
tersection of compromise areas (area where the attacker eavesdrops a key if positioned
inside) for mutual whispering and the Push protocol is exactly same as for the Pull
protocol alone. Consequently, amplification success is same as well. This behaviour
introduces the idea of efficient composition (stacking) of several secrecy amplification
protocols – we will discuss this issue later in Section 3.5.

Mutual whispering is better than Push/Pull protocols alone for sparse networks.
Mutual whispering requires no intermediate node and therefore is not impacted by the
possibility of unreachable intermediates, which might happen frequently for sparse net-
works. The combination of a protocol without intermediates (e.g., mutual whispering)
with a protocol that uses intermediates (e.g., the Pull protocol) should be generally
preferred.

3.2.3 Transmission overhead

The number of messages necessary to execute Push and Pull protocols is same. Also the
probability that new key K ′

AB can be established (not necessarily a secure key) using mediator
Ci remains the same as both protocols use at least one intermediate node. Intermediate node
Ci is unusable for amplification when no path from A to B over Ci exists. Specifically for
the two-hop version of Push and Pull protocols (one intermediate node), Ci cannot be used
if Ci is not neighbour of A and B at the same time. This situation can occur with the same
probability for both Push and Pull protocols as node identities for the Push protocol can be
viewed as permutation of the Pull protocol. Similar situation holds for multi-hop versions
of Push and Pull protocols.

Further improvement is possible for the two-hop Pull protocol if the eavesdropping node
density is assumed to remain same from the initial plaintext key exchange between neighbours
to the amplification phase as well. Messages exchanged during the amplification phase then
do not need to be encrypted, as each legal node transmits messages with exactly the same
strength as for the initial key exchange. Intermediate Ci can simply transmit the value Ni

using one transmission with strength equal to the stronger value used for A or B, preserving
the same compromise ratio. If the attacker is able to receive a stronger signal, the new key
will be compromised anyway as the attacker already has one of the underlying link key kCiA

51

3.2 Analysis of secrecy amplification protocols

0 50 100 150 200
0

10

20

30

40

50
Maximum screaming

Number of compromised link keys

N
um

be
r

of
 b

la
ck

 s
en

so
rs

0 50 100 150 200
0

10

20

30

40

50
Basic Whispering

Number of compromised link keys

N
um

be
r

of
 b

la
ck

 s
en

so
rs

0 50 100 150 200
0

50

100 Mutual Whispering

Number of compromised link keys

N
um

be
r

of
 b

la
ck

 s
en

so
rs

0 50 100 150 200
0

10

20

30

40

50 Pull Protocol − Basic Whispering

Number of compromised link keys
N

um
be

r
of

 b
la

ck
 s

en
so

rs

0 50 100 150 200
0

50

100

150 Push Protocol Basic Whispering

Number of compromised link keys

N
um

be
r

of
 b

la
ck

 s
en

so
rs

0 50 100 150 200
0

100

200

300 Push Protocol − Mutual Whispering

Number of compromised link keys

N
um

be
r

of
 b

la
ck

 s
en

so
rs

Figure 3.7: Distribution of eavesdropping node success rates.

or kCiB. One message exchange is thus spared, resulting in a 50% decrease in the number of
total messages in case of the two-hop Pull protocol. Note that this optimization cannot be
used for multi-hop version of the Pull protocol with more than one intermediate.

3.2.4 Compromise success for eavesdropping nodes

The set of graphs on Figure 3.7 shows the number of eavesdropping nodes, which were able
to compromise a particular number of link keys for different secrecy amplification protocols.
The results are generated from networks of 105 legal nodes with 1000 (1%) eavesdropping
nodes. Every variation of the protocols we have been studying is provided in a separate
graph.

The first graph covers the situation when keys are sent in clear with the maximum trans-
mission power. The success rate of compromised keys corresponds to a Poisson distribution.
Basic whispering shifts the mean value strongly towards a low number of compromised link
keys per eavesdropping node, but still almost all eavesdropping nodes are usually responsible
for the compromise of several link keys.

52

3.3 Key Infection analysis conclusions

Figure 3.8: Example of non-uniform distribution of the link key compromise for the Pull
protocol. Two-dimensional deployment plane is displayed with number of compromised link
keys as third axis. Red crosses show position of the eavesdropping nodes. Legal nodes are
not shown for the clarity reasons.

Secrecy amplification protocols have a notable impact. A large fraction of eavesdropping
nodes is not able to compromise a single key, and the number of really successful eaves-
dropping nodes (nodes responsible for compromise of a large number of link keys) is rapidly
decreasing with the value of compromised link keys. The last graph shows the amplification
protocol combined with mutual whispering (Push and Pull protocols have the same results
for such combination) where about 300 out of 1000 eavesdropping nodes are not able to
eavesdrop a single key. The uneven distribution of compromised links also indicates that
there might be large areas in the network without compromised link keys. Visualization
of eavesdropping nodes layout together with the number of compromised links on Figure
3.8 provide an example of such non-uniform compromise for the Pull protocol. Such non-
uniformity can be exploited to further increase the number of secure links and provides a
background for the inspection of different compromise patterns as we later discuss in Section
3.4.

3.3 Key Infection analysis conclusions

One of the goals of the work was to verify simulations from [3] and to provide detailed
information about protocols behaviour for the various network parameters. We believe that
the results we introduced confirm very good resistance of amplification protocols against a
local adversary. The presented results provided an insight in the published protocols and
introduced a new secrecy amplification protocol with better faction of secured links.

53

3.4 Compromise patterns of key distribution

The most important findings can be summarized as follows. The secrecy amplification gener-
ally works better with denser networks, but one cannot improve the ratio of secure keys with
density over certain threshold when a certain density and attacker nodes fraction thresh-
old was reached. Multiple iterations of secrecy amplification protocols provide a significant
increase in the fraction of secure links with about three repetitions being reasonable. The
combination of protocols is possible and a proper combination improves the number of se-
cured links. The combination of the Push protocol with mutual whispering provides same
results as the Pull protocol alone for network densities except for sparse networks. Sparse
networks should combine mutual whispering with multi-paths/hops protocols to prevent
situation with missing intermediate nodes.

Comparing Push, Push and Commodity protocols, Commodity requires the shortest period
of the weakened attacker model (transmission of only one key k), but k can be intercepted
from a larger distance than keys in Push and Pull protocols. An additional problem ex-
ploitable by an attacker is such that an intermediate node Ci knows the value of key between
A and B. The Push protocol results in a significantly lower number of compromised link keys
than the Pull protocol, especially for denser networks (more than 15 neighbour average).

Secrecy amplification protocols can make a network almost completely secure, when 1% of
eavesdropping nodes is assumed. Even when 20% of eavesdropping nodes are present and
each legal node has two eavesdropping nodes in transmission range on average, there are still
90% of link keys secure.

Secrecy amplification protocols were originally introduced for the Key Infection plaintext
key exchange, but can be used also for a partially compromised network resulting from a
node capture for the probabilistic pre-distribution and other partially compromised networks.
This idea is later described in Section 3.5.

3.4 Compromise patterns of key distribution

Different key distribution schemes behave differently when the network is under attack tar-
geted to disturb a link key security. The impact on link key security differs based on the
attack strategy used. In case of node capture, all links to captured node are compromised. If
some probabilistic pre-distribution scheme like [21, 10, 19] is used then some additional links
between non-compromised nodes become compromised as well. An eavesdropping of the
exchanged key in the Key Infection approach [3] does not compromises nodes directly, but
compromises links in reach of eavesdropper radio instead. The characteristics of a particular
compromise pattern may significantly influence the success rate of the secrecy amplifica-
tion executed later. We will focus on two types of network compromise patterns – Random
compromise pattern and highly correlated Key Infection pattern.

54

3.4 Compromise patterns of key distribution

3.4.1 Random compromise pattern

The first one is the Random compromise pattern, where the probability that a given link is
compromised is almost independent of other links. Especially, whether a link to a particular
node is compromised should be almost independent of a compromise of another links from
the same node. This compromise pattern may arise when a probabilistic pre-distribution
and later variations are used and an attacker extracts keys from several randomly captured
nodes.

Note that in the case of probabilistic pre-distribution, the compromise status of links from
same node is still slightly correlated – if one link is compromised, other links from the same
node may be established using same key(s) as the compromised one. This correlation quickly
decreases with the size of key ring on each node and e.g., for 200 keys in ring is negligable.
For links constructed from pre-distributed symmetric cryptography keys holds if the link
A → B is compromised, then also A ← B is compromised.

3.4.2 Key Infection compromise pattern

Compromised networks resulting from Key Infection key distribution [3] form the second
inspected pattern. Here, link keys are exchanged in plaintext and an attacker can compromise
them if the transmission can be recorded. The weakened attacker model assumes that an
attacker is not able to eavesdrop all transmissions, yet has a limited number of restricted
eavesdropping nodes in the field. The closer is the link transmission to the listening node
and the longer the distance between link peers, the higher the probability of a compromise.
Typically, if the eavesdropping node is close to the legal node, most of the links to the latter
can be compromised. Note that there can be a difference between the compromise status
of the link A → B and the link A ← B. This is another difference from the Random
compromise pattern.

The impact of Push, Pull, mutual whispering and new automatically derived protocols (as
described in Sections 3.6 and 3.7) for Random and Key Infect compromise patterns are
compared in Figure 3.12 and 3.13. The Pull protocol provides better results than the Push
protocol for the Key Infection pattern, but has no advantage in the Random pattern. Mutual
whispering improves security in the Key Infection pattern, but no improvement is visible for
the Random pattern. Combination of mutual whispering with the Push protocol gives the
same results as the Pull protocol alone in the Key Infection pattern. See Section 3.5.2 for
a more detailed comparison of the protocols and the impact of repeated runs of secrecy
amplification.

This short survey should demonstrate that amplification protocols may significantly increase
the fraction of secure links (e.g., from only 50% secure to more than 90% secure) and can
be combined together. But the impact of such composition is dependent on a particular
compromise pattern and is not necessarily beneficial. As each protocol requires a significant
number of messages, their inefficient combination should be avoided. Moreover, a change in
the compromise pattern may render existing secrecy amplification protocol inefficient. Then,
a time-consuming analysis and some design effort are needed to find a new protocol.

55

3.5 Generation of secrecy amplification protocols

3.5 Generation of secrecy amplification protocols

In this part, we propose a method that enables the secrecy amplification protocols to be
designed automatically (i.e., with a minimal effort from a human designer) for an arbitrary
compromise pattern. Evolutionary algorithm, and linear genetic programming (LGP) in
particular, is used to construct new protocols. Candidate protocols are evaluated using a
network simulator.

3.5.1 Composition from simple secure protocols

Designing new protocols is a time consuming process and present flaws may remain un-
detected for a long time. Various formal verification tools currently exist to verify the
correctness of a proposed protocol (see [37] for an exhaustive review). Automatic protocol
generation (APG) was proposed to automatically generate new protocols with desired prop-
erties using a brute-force space search; protocols’ correctness is then verified by formal tools
[52]. Unfortunately, there are still limits due to the rapid increase of possible configurations
of non-trivial protocols.

However, the formal verification approach can be avoided for APG if a new protocol can be
securely composed from simpler (secure) protocols. See [15] for an a good overview of possible
approaches to automatic protocol generation and protocol composition. Fortunately, this is
also the case of secrecy amplification protocols because they specify the way how fresh key
values are propagated and combined by the parties involved. Thus a secrecy amplification
protocol can be viewed as a composition of few simpler protocols. Namely, we need only a
protocol for secure message exchange between two nodes sharing a secret key and a secure
composition of two or more values.

This is an important difference to former approaches to APG. As the composition of selected
secure protocols will be also secure (see [15] for such protocols; note that a composition is not
secure in general), we can skip the formal verification of the composite all together. Instead,
we have to verify how many keys from freshly generated secrets will be compromised by an
attacker after a secrecy amplification protocol execution. An attacker is able to eavesdrop
the content of some secrecy amplification messages as he knows some of the keys used (a
partially compromised network is assumed due to possibility of an attacker to capture nodes
or eavesdrop fraction of a communication). This is a deterministic process – if we know
exactly which keys are known to the attacker – and thus can be simulated. Even if we know
only the expected fraction of compromised keys and the average pattern of compromised
links, we can perform a probabilistic evaluation. As the number of nodes and links in WSNs
is expected to be high, such average case will be a reasonable approximation of secure links
after secrecy amplification execution in a real network.

By substitution of a formal verification tool by a network simulator for a faster evaluation,
we additionally obtain a smoother indication how good a candidate protocol is. Instead of
binary indication “secure or flawed”, we will obtain the number of links additionally secured
by a particular protocol (in degenerated case, this can still be only “0% or 100%” links
secure). Hence we can use some kind of informed search instead of an exhaustive search.

56

3.5 Generation of secrecy amplification protocols

3.5.2 Evolutionary algorithms

Evolutionary algorithms (EAs) are stochastic search algorithms inspired by Darwin’s theory
of evolution. Instead of working with one solution at a time (as random search, hill climbing
and other search techniques), these algorithms operate with the population of candidate
solutions (candidate secrecy amplification protocol in our case). Every new population is
formed by genetically inspired operators such as crossover (part of protocol’s instruction
are taken from one parent, rest from another one) and mutation (change of instruction type
or one of its parameter(s)) and through a selection pressure, which guides the evolution
towards better areas of the search space. The EAs receive this guidance by evaluating every
candidate solution to define its fitness value. The fitness value (fraction of secure links here),
calculated by the fitness function (network simulator here), indicates how well the solution
fulfills the problem objective (improving network security here). In addition to the classical
optimization, EAs have been utilized to create engineering designs in the recent decade. For
example, computer programs, electronic circuits, antennas or optical systems are designed by
genetic programming [30]. In contrast to the conventional design, the evolutionary method
is based on the generate&test approach that modifies properties of the target design in order
to obtain the required behavior. The most promising outcome of this approach is that an
artificial evolution can produce innovative designs that lie outside the scope of conventional
methods. In this work, we will use linear genetic programming (LGP) to generate the
protocols. LGP represents a candidate program as a sequence of instructions [5].

3.5.3 Primitive instructions set

Each party (sensor node) in the protocol is modeled as a computing unit with a limited
number of memory slots, where all local information is stored. The memory slot can be
loaded with a) random value, b) encryption key and c) message. The set of primitive
instructions is defined in such a way that each of the instructions has one or two parameters
Nx indicating the node(s) that will execute a given instruction (e.g., local generation of a
random value will have only one node parameter; sending a message between nodes will have
two parameters) and up to three parameters Rx for the identification of used memory slots.
These instructions were selected with the aim to describe all published secrecy amplification
protocols and use only (cryptographic) operations available on real nodes. A candidate
secrecy amplification protocol is represented as a program composed of these instructions
and modeled as an array of bytes.

The instructions set is as follows:

• NOP – No operation is performed.

• RNG Na Ri – Generate a random value on node Na into slot Ri.

• CMB Na Ri Rj Rk – Combine values from slots Ri and Rj and store the results in slot
Rk. The combination function may vary on the application needs (e.g., a cryptographic
hash function such as SHA-1).

57

3.6 Generation of node-oriented protocols

• SND Na Nb Ri Rj – Send a value from node Na to Nb. The message is taken from
Na’s slot Ri and stored in Nb’s slot Rj.

• ENC Na Ri Rj Rk – Encrypt a value from slot Ri using the key from slot Rj and store
encrypted result in slot Rk.

• DEC Na Ri Rj Rk – Decrypt a value from slot Ri using the key from slot Rj and store
decrypted result in slot Rk.

Each instruction has an additional boolean switch, which can turn the operation off (to
equivalent of NOP), without changing the instruction itself. This allows the LGP to tem-
porarily disable or enable some instructions. Node identifications Na and Nb can be either
fixed (the index) in case of node-oriented protocols or distance-relative in a group-oriented
protocol. These variants are discussed later in Sections 3.6 and 3.7.

Using this set of primitive instructions, a simple plaintext key exchange can be written as
{RNG N1 R1; SND N1 N2 R1 R1;}1, the Push protocol as {RNG N1 R1; SND N1 N3 R1 R1;
SND N3 N2 R1 R1;}, the Pull protocol as {RNG N3 R1; SND N3 N1 R1 R1; SND N3 N2 R1

R1;} and a multi-hop version of Pull as {RNG N3 R1; SND N3 N1 R1 R1; SND N3 N4 R1

R1; SND N4 N2 R1 R1;}.
Note that the protocol space is extremely large. Even for small protocols with six instruc-
tions and four nodes (each with six memory slots only) there are more than 1021 possible
configurations2. Proper restrictions might limit the total space size, but such limitation
requires some knowledge about the target environment and relations between protocol and
compromise pattern. Our goal is to create the method which requires only description of
compromise pattern in form suitable to simulator, rest being done by proposed automated
method.

3.6 Generation of node-oriented protocols

In this part, we focus on the automatic generation of amplification protocols for a fixed
number of k parties, i.e. the same scenario as used in [3, 16]. Such protocol is executed
for all possible k-tuples of neighbours in the network. Note that the number of such k-
tuples can be high3, especially for dense networks (e.g. more than 10 direct neighbours) and
resulting communication overhead is then significant. However, this approach provides an
upper bound on the success rate of a given protocol as no k-tuple is omitted.

1New key is generated on node N1 into slot R1 and then send to node N2 and stored in its slot R1.
2(6× 4× 6× 6× 6)6
3E.g., (total nodes∗avg neigh)∗(avg neigh−1)∗msg per protocol execution for a three-party protocol,

where avg neigh is the average number of neighbours.

58

3.6 Generation of node-oriented protocols

Figure 3.9: Automatic protocol generation process with fitness evaluation. The new popula-
tion of genotypes is transcribed into candidate protocols. Using our network simulator and
a given partially compromised network (dotted links), the fitness value (fraction of secured
links) is calculated for each candidate protocol.

3.6.1 Overview of the method

Initially, we generated five protocols with 200 randomly selected primitive instructions.
These candidate protocols form the initial population for the LGP. Every protocol is then
simulated on our network simulator and the number of secured links serves as a fitness value.
Protocols with the best fitness value are selected to serve as parents for the next genera-
tion, which is created by applying crossover and mutation operators. New population is
thus consisting of better parts of the previous one. Protocols of the first generation are not
usually able to secure any additional link, but as evolution proceeds, there are more and
more secured links. The evolution can be stopped when a sufficiently good protocol is found
or the best fitness value has stagnated for some time.

We like to stress that usage of LGP is not the only possibility. Several other methods for
generation of candidate protocols for simulator evaluation might be used as well including the
brute-force search. We chose evolutionary algorithms as these have been already successfully
used in WSN (although for a different purpose like optimal node placement [22]), usually
exhibiting significantly faster convergence towards solution than brute-force search.

3.6.2 Parameters of experiments

The following reference setting of LGP and simulator was used: target plane was 3x3 units
large with 100 deployed legal nodes. Each node has 0.5 unit maximum transmission range,
which results in 8.2 legal neighbours on average. For Key Infection scenario, there was
10 attacker’s eavesdropping nodes. For Random compromise pattern, 50% of links were
randomly marked as compromised. Each party has 8 memory slots for storing intermediate
values and candidate protocol was limited by 200 elementary instructions. Simulations are
performed for three distinct network deployments, the average fraction of secured links is

59

3.6 Generation of node-oriented protocols

Figure 3.10: Evolved node-oriented 4-party secrecy amplification protocol. This is a pruned
version from a 200 instruction protocol, no other post-processing was applied. A circle
denotes RNG instruction, an arrow denotes SND instruction and a box a transmitted value.
Values shared between N1 and N2 are the same color and hatching.

used as the resulting fitness value. The number of nodes was intentionally kept low to make
the simulation as fast as possible. The functionality of the evolved protocol was later verified
on much larger network with 4000 legal nodes.

3.6.3 Results for node-oriented protocols

The best performing 4-party protocol discovered by LGP was produced within 4 days on a
3GHz processor in the 62786th generation. The protocol consists of the instructions shown
on Figure 3.10. This is a “pruned” version of the original 200-instructions long protocol
found by evolution. Importance of each instruction was tested4 by its temporal disabling
(pruning) – if the instruction is important, then the fitness decreases and the instruction is
preserved; otherwise it is discarded from the protocol. Typically, only 5-10% instructions
contribute to the fitness value (i.e., there is analogy to exons and junk DNA in the human
genome). Figure 3.11 shows a typical graph of fitness values for one particular run. The
experiment was repeated 30 times where 14 LGP runs provided protocols with the same
fitness as the best performing one (protocols differed only in the instruction order and used
memory slots, otherwise functionally identical) before the 100000th generation when the
evolution was stopped.

This protocol can be further post-processed. Only three memory slots are actually required
on each node instead of eight slots that were available to LGP.

All amplification protocols we were aware of at the beginning of our work were re-discovered
here by LGP. The simple key transfer between neighbours is encoded in steps {4,8}. The
Push protocol by [3] is encoded in steps {1,2,3}. The Pull protocol by [16] is encoded in
steps {0,6,9}. The multi-hop version [11] of the Pull protocol is encoded in steps {0,6,7,9}.
Moreover, the new protocol outperforms existing amplification protocols in fraction of secure
links, as shown in Figures 3.12 and 3.13.

4After the end of the LGP search as a post-processing, not impacting the evolution itself.

60

3.6 Generation of node-oriented protocols

0 2 4 6 8 10 12

x 10
4

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Evolution generation

F
ra

ct
io

n
of

 s
ec

ur
e

lin
ks

 (
fit

ne
ss

)

2

4

6

8

10

12

14

16

18

20

N
um

be
r

of
 e

ffe
ct

iv
e

pr
ot

oc
ol

 s
te

ps

Figure 3.11: Progress of the best fitness value and the number of effective instructions of
the best node-oriented protocol. Solid non-decreasing line shows fraction of secure links for
best performing protocol in each generation and dashed line show number of effective steps
for this protocol.

The evolved protocol also exhibits an interesting feature of “polymorphic” instruction. At
the first look, instruction 5 (RNG N4 R4) seems to be redundant as a newly generated
random value by node N4 stored in the slot R4 is immediately overwritten by the instruction
6 (SND N3 N4 R1 R4). However, in the case when node N3 is not a direct neighbour of
node N4, i.e. nodes N3 and N4 cannot directly communicate via a radio link, the message
in instruction 6 cannot be transmitted and R4 is not overwritten. The exact behavior of
the consequent instruction 7 will vary as R4 can be filled either with a newly generated
random value or the value received from node N3. Such kind of “polymorphic” instructions
enables the protocol execution even when only a limited number of nodes is reachable. It
would be hard for a human designer to propose such a protocol as dependency between the
instructions and neighbour layout is rather complex, especially for group-oriented protocols
(discussed later in Section 3.7).

Note that the automatic design of the node-oriented protocols with 5+ parties (nodes that
take part in single execution of the protocol, independent of the network size) was not possible
in the proposed framework because the number of simulated messages grows exponentially
with the number of parties involved. The simulator is not able to evaluate such protocols
fast enough to obtain a fitness value. Slow evaluation prevents the evolution to proceed
towards better solutions in a reasonable time.

An interesting result is that despite the fact that encryption (ENC) and decryption (DEC) is
included in the set of primitive instructions, none of them was used in the evolved protocols.
There can be multiple reasons for this: At first, useful usage of the ENC and DEC instruction
may exist, but the evolution was not able to find it. Secondly, more probable reason can
arise from the setting that we applied to speed up the evaluation of candidate protocols.
If the link already has some assigned key, this key is transparently used for encryption,
as it is obviously a useful thing to do (if the key is compromised we will obtain the same
result as sending message un-encrypted, but if the key is secure then message secrecy will
be protected). Series of LGP runs were performed for the case when the transparent link
encryption was not used. Evolution was significantly slower to achieve the same fraction of

61

3.7 Generation of group-oriented protocols

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fraction of initially secure links

F
ra

ct
io

n
of

 s
ec

ur
e

lin
ks

 a
fte

r
S

A
 p

ro
to

co
l

Random compromise pattern

No amplification;Mutual whisper
PULL 1x;PUSH 1x
EA nodes−oriented 1x
EA group−oriented 1x
EA group−oriented 2x

Figure 3.12: An increase in the number of secured links after secrecy amplification protocols
in the Random compromise pattern. The Push and Pull protocols give the same results;
mutual whispering does not improve security at all. Evolved group-oriented protocols will
be described in Section 3.7. As can be seen, strong majority of secure links (> 90%) can be
obtained even when the initial network had one half of compromised links.

secured links, but the link encryption using existing keys was essentially developed anyway
via the ENC and DEC instructions.

3.7 Generation of group-oriented protocols

As we have already mentioned, node-oriented protocols introduce a high communication
overhead – all k-tuples of neighbours must be executed by such protocols. Another issue
is an unknown number of direct neighbours and their exact placement. All neighbours can
theoretically participate in the protocol and help to improve the fraction of secure links, but
it is much harder to design an efficient protocol for ten nodes without unnecessary message
transmissions instead of three or four nodes. Due to the broadcast nature of the wireless
transmission, nodes’ geographic positions also influence the result of a secrecy amplification
protocol. And finally, due to the random placement of nodes in the sensor networks, the
number of direct neighbours may vary significantly; the protocol constructed for a fixed
number of parties can even fail with an insufficient number of participants.

3.7.1 Overview of the method

We present a different approach to the design of secrecy amplification protocols with respect
to established scenarios used in [3] and [16] (that are denoted as node-oriented protocols in
this work). Identification of the parties in the protocol is no more “absolute” (e.g., node
number 1, 2, 3), but it is given by the relative distance from other parties (we will use
the distance from two distinct nodes). It is assumed that each node knows the distance to
its direct neighbours. This distance can be approximated from the minimal transmission

62

3.7 Generation of group-oriented protocols

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fraction of initially secure links

F
ra

ct
io

n
of

 s
ec

ur
e

lin
ks

 a
fte

r
S

A
 p

ro
to

co
l

Key Infection compromise pattern

No amplification
Mutual whisper 1x
PUSH 1x
PULL 1x;Mutual whisper + PUSH 1x
EA nodes−oriented 1x
EA group−oriented 1x

Figure 3.13: Key Infection compromise pattern (8 legal neighbours in average). The Pull pro-
tocol provides better results than the Push protocol. The combination of mutual whispering
with the Push protocol gives the same results as the Pull protocol alone.

power needed to communicate with a given neighbour. If the protocol has to express the
fact that two nodes Ni and Nj are exchanging a message over the intermediate node Nk,
only relative distances of such node Nk from Ni and Nj are indicated in the protocol (e.g.,
N(0.3 0.7) is a node positioned 0.3 of the maximum transmission range from Ni and 0.7 from
Nj). In other words, LGP still operates the same instructions of the protocol as in the case
of node-oriented protocols, but additionally also with the distance values to identify the
involved nodes. Based on the actual distribution of the neighbours in the field, the node
closest to the indicated distance(s) is chosen as the node Nk. There is no need to re-execute
the protocol for all k-tuples as the protocol can utilize all neighbours in a single execution
and thus significantly reduce the communication overhead. The relative position of nodes
can be expressed as well. The variation in an actual number of direct neighbours poses no
problem here – the protocol parties will always be found (but their actual positions may be
slightly different from relative distances indicated in the protocol).

The evaluation process of a group protocol is more complex than for the node-oriented
protocols, but the number of totally exchanged messages is significantly lower. Note that
the spared messages come from the change of the secrecy amplification evaluation rules, not
the LGP itself. The role of LGP is to find a protocol, which will operate in the restricted
scenario with much less messages (with respect to node-oriented protocols, where all k-
tuples are executed) and which will still be able to perform comparably to the node-oriented
protocols in terms of the number of secure links.

The evaluation is based on the following rules:

1. Every node in the network is separately and independently processed once, in the role
of a central node NC for each amplification iteration. Only direct neighbours of NC

(group) are involved in the protocol execution.

2. A separate protocol execution is performed once for each direct neighbour (node in
the radio transmission range), this neighbour will have a special role in this execution

63

3.7 Generation of group-oriented protocols

4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

300

350

400

450

500
Total number of messages required by amplification protocol

Average number of neighbours

T
ot

al
 m

es
sa

ge
s

pe
r

si
ng

le
 n

od
e

3−party protocol (2 msg/execution)
4−party protocol (3 msg/execution)
group−oriented protocol (10 msg/execution)

Figure 3.14: Total number of messages per single node required to perform a 3-party, 4-party
node-oriented and group-oriented secrecy amplification protocol. Even when group-oriented
protocol utilizes significantly more messages per single execution, total number of messages
is smaller.

and will be denoted as NP (e.g., if there are 10 direct neighbours around NC , then
there will be only 10 protocol executions with the same central node NC , each one
with a different NP instead of

(
10
k

)
for node-oriented). This is a key difference from

node-oriented protocols, and cuts the communication overhead considerably.

3. The memory slots of the neighbours involved (for the same NC) are not cleared between
the protocol executions. This enables the evolution to find a protocol that propagates
values (keys) among a group of neighbours.

4. The node NP provides a list of distances from all its neighbours (as the minimal
transmission power needed to communicate with a given neighbour) to node NC . Based
on the actual deployment of nodes in the group, parties of the protocol are replaced by
real identification of the nodes which are positioned as close as possible to the relative
identification given by NC and NP in the protocol.

5. When the next node is executed as a central node NC , the memory slots of all direct
neighbours are cleared (memory values cannot propagate between executions with a
different central node NC) as such process requires non-trivial synchronization in real
network.

Figure 3.14 compares the number of necessary messages for the three/four-party node-
oriented protocol and the group-oriented protocol constructed using the above described
process.

For the purpose of evolution speedup, we introduced the automatic actions that do not have
to be evolved as they are obviously beneficial:

• Each message transmission (SND instruction) is transparently encrypted with an ex-
isting link key (which can be either secure or compromised by eavesdropping) even
when not stated explicitly in the protocol.

64

3.7 Generation of group-oriented protocols

• The shared values later used for the creation of new link keys are automatically found
in memory slots of NC and its neighbours Nx at the end of each execution for a fixed
node NC . Again, this speeds up the search. In the actual execution of the protocol, this
can be achieved efficiently using Bloom filters [8] without a transmission of the values
or, even better, by the post-processing of an evolved protocol (re-order of memory slots
and additional CMB instructions).

As for node-oriented protocols, more iterations (amplification repeats) can be executed. For
the purpose of evaluation, the results within one iteration are independent and may influence
only the next iteration, not the current one (links secured during an actual iteration will not
help to secure other links during the same iteration – the ordering of the actions of nodes
in the simulator thus does not impact the results). At the end of each iteration, the link
security status is evaluated and updated. Evaluation process is thus not dependent on the
processing nodes order inside the simulator.

3.7.2 Results for group-oriented protocols

Well performing group-oriented protocols with the fraction of secure links comparable to
node-oriented protocols are usually evolved in 105 generations (see Figures 3.12 and 3.13 for
the performance of evolved group-oriented protocols). Example of such evolved protocol is
presented in Figure 3.15. Such a protocol has typically 10-15 important instructions and
uses neighbours from 5-7 geographically different areas. The SND instruction is the most
common one, forming 60-80% of instructions of discovered protocols. There is not only one
“best” protocol – instead, most LGP runs provide some useful amplification protocols which
differ in their instruction order.

In contrast to node-oriented protocols, instructions of the evolved protocols are more difficult
to understand as the parties are not directly specified any more. Various techniques such as
real-time visualization of message transmission, analysis of memory store/load sequences or
visualization of probable areas of relatively identified parties (see Figure 3.18) can be used
to recognize actual purpose and importance of the instructions.

Again, interesting and rather unexpected “tricks” were introduced by evolution. Firstly,
two SND instructions in an example protocol shown in Figure 3.15 may appear useless (no
value is available in the memory slot 6 for the first run of the protocol), but as the protocol
is executed repeatedly for all nodes within a group, this value can actually be present in
memory slot 6 from a previous execution as a result of the instruction 7 or 10 in example
protocol. Evolution was able to include such “overlapping executions” in the protocol even
when not explicitly designed to, while this might be difficult for a human designer.

Surprisingly, the most important intermediate node (node that is responsible for the majority
of newly secured links between nodes NC a NP) is not positioned in the center between these
two nodes (i.e. in area A in Figure 3.18 a)) which would reflect the assumption that shorter
links have a smaller probability to be compromised in Key Infection pattern. Instead, the
most probable position for that intermediate node is area C shown in Figure 3.18 a). Note
that position of area C (and so intermediate node) depends on the distance between nodes

65

3.7 Generation of group-oriented protocols

Figure 3.15: Example group oriented secrecy amplification protocol found by the evolution.
Selected node-relative identification of involved parties are displayed as the geographically
most probable areas, where such nodes will be positioned. Function shown at the bottom is
used to select best fitting node based on its position with respectd to NC and NP . Np1 is
distance from NC and Np2 is distance from NP specified in a protocol.

NC and NP . When these two nodes are close to each other then C is “behind” node NC

(Figure 3.18 a)). As the nodes move away from each other, area C moves around NC to
the position shown in Figure 3.18 b)). When both nodes are very close to the maximum
transmission range then C is located in one third of the distance between NC and NP , closer
to NC (Figure 3.18 c)).

3.7.3 Methods for analysis of evolved protocols

Various techniques such as real-time visualization of message transmission, analysis of mem-
ory store/load sequences or visualization of probable areas of relatively identified parties (see
Figure 3.18) can be used to recognize actual purpose and importance of the instructions.

Real-time visualization of message transmission – Elementary protocol functionality
can be obtained by observing the visual representation of the protocol execution with a
set of nodes with fixed positions. One limitation of this approach is that only execution
for a given distribution of nodes is obtained and the behaviour of instructions for
different nodes distribution can be overlooked.

Instructions cross-dependency using pruning-like process – The fitness reduction ef-
fect can be studied to identify groups of instructions with cross-dependent fitness val-
ues. As the protocol has already been pruned, removing any single instruction I means
a fitness decrease. An additional pruning process over the reduced protocol (without
I) gives us the difference in the fitness gain for each of the remaining instruction (some
instructions may be completely removed if they have no function without I). The

66

3.7 Generation of group-oriented protocols

0 0.7 1.4 2.1 2.8 3.5

x 10
5

0.55

0.63

0.71

0.79

0.87

0.95

Evolution generation

F
ra

ct
io

n
of

 s
ec

ur
e

lin
ks

 (
fit

ne
ss

)

0 0.5 1 1.5 2 2.5 3 3.5

5

10

15

20

25

E
ffe

ct
iv

e
pr

ot
oc

ol
 s

te
ps

Figure 3.16: Progress of increase in fitness value and number of effective instructions of
group-oriented protocol evolution. Solid non-decreasing line shows fraction of secure links
for best performing protocol in each generation and dashed line show number of effective
steps for this protocol.

higher the decrease in the fitness gain by a particular instruction J , the stronger the
dependency of J on removed I.

Analysis of memory store/load sequences – As described previously, each party has a
limited number of memory slots that are used to store intermediate values. A chain
of memory slots connected by the edges representing a particular instruction can be
established for graph-like visualization of the process (see Figure 3.17 for example).
More precisely, if there is instruction I that reads from memory slot Mi and writes to
memory slot Mj, we can connect vertices Mi and Mj in the graph by an edge labeled
by I. Resulting graph can be then analyzed to obtain the indication of paths where
the values propagates during the protocol execution.

Probable areas for parties identified by the relative distance – The visualization of
the areas, where nodes referenced in the protocol will be positioned with high probabil-
ity is an important source of information how a given protocol works. Note that these
areas are not static for all nodes NP , but differ significantly with the distance between
the central node NC and its special partner for protocol NP . A change of the position
and the shape of areas with distance between NC and NP also reveals the information
how the fresh key values are propagated in the group. Using this technique, we can
derive (see Figure 3.18) that instruction 3 sends a value stored by the instruction 9 in
the previous run of the protocol when the position of NP is around 0.6 of the maximum
transmission range of NC and in the layout area B. The reason is that in this distance
the layout area B overlaps with the position of node NP and these two parties of the
protocol are most probably mapped to the same physical node.

Note that removal of a single instruction I can not only decrease decrease the overall fitness
value, but it can also increase the contribution to fitness value of other instruction(s) J .
There are two reasons for this behavior: 1) Instruction I was really harming the fitness gain
from instruction J , but the caused harm is lower than the fitness gain and thus I remains

67

3.7 Generation of group-oriented protocols

8

2

5

3

RNG

11
INS 2

6INS 10

1INS 8

12INS 5
INS 7

INS 0

INS 1

INS 4
INS 6

7

INS 9

INS 11 INS 3

Figure 3.17: Memory chain for example group-oriented protocol from Figure 3.15. Circles
constitute memory registers with labeled edges standing for instruction responsible with
register manipulation. The memory registers used for the final link key construction are
Double-circled.

in the pruned protocol. 2) Instruction J is able to compensate (at least partially) the loss
caused by I’s removal and it is able to secure some links originally secured by the instruction
I. Analysis of separate instructions shows that the second case is much more common.
Evolved protocol thus exhibits “defense in depth” property, i.e. when some instructions
cannot be executed (due to missing, unreachable or compromised party), other instructions
are able to (partially) compensate for the decrease in the number of secured links. Similar
behavior was also observed for the evolved node-oriented protocol. In this task, evolutionary
design provides not only the required functionality, but also robust solutions.

3.7.4 Functional analysis of evolved group-oriented protocol

Using the instruction cross-dependency technique, we can conclude that the group of in-
structions {2,5 and 7} is responsible for most of the secured links. A new random value is
generated in the node NP and sent to the node Nx positioned in the middle between NP and
NC . Node Nx then re-sends this value to the node NC . This group of instructions is responsi-
ble for securing 80-95% of all secured links (depending on the average number of neighbours
and the number of attacker’s eavesdropping nodes / compromised links). When instructions
{2,5 and 7} are removed from the protocol, the fraction of secured links decreases by about
20-40%, with the rest of links being secured by the other group of instructions {0,1,10 and
11} which secures part of the links originally secured by the removed instructions.

The fraction of secure links remains almost stable when more amplification iterations are
executed with these two groups ({2,5,7} and {0,1,10,11}) of instructions kept separated.
But when both groups of instructions are used together (original protocol), improvement by
more iterations of the amplification protocol is possible. A 5-10% increase in the number of
secured links can be expected when the number of iterations is increased from 2 to 5. Note
that obtaining even small improvements here is difficult, because we are very close to the
theoretical maximum of secure links for a given number of eavesdropping nodes/compromised
links.

First two SND instructions may appear useless (no value is available in memory slot 6 for
the first run of the protocol), but as the protocol is executed repeatedly for all nodes within

68

3.8 Parameters used for LGP

Figure 3.18: Layout of areas for potential parties when the distance between the central
node NC and node NP is a) 0.1 of the maximum transmission range, b) 0.6 range and c) the
maximum transmission range.

a group, this value can actually be present in memory slot 6 from a previous execution as
a result of the instruction 7 or 10. Again, evolution is able to include such “overlapping
executions” in the protocol, while this might be difficult for a human designer.

Surprisingly, the most important intermediate node is not positioned in the middle between
two nodes (area A) trying to establish it keys. Instead, most probable position for that
intermediate node is area C shown on Figure 3.18. Note that the area C is differently
positioned based on the distance between nodes NC and NP . When these two nodes are
close to each other then C is “behind” the node NC (Figure 3.18, part a)). As the nodes
move away from each other, the area C moves around NC to the position shown on Figure
3.18, part b). When both nodes are very close to the maximum transmission range then C
is in one third of the distance between NC and NP , closer to NC (Figure 3.18, part c)).

3.8 Parameters used for LGP

This section summarizes used parameters and setting for linear genetic programming used
to generate candidate protocols.

Based on random sampling test, the fitness landscape5 for node-oriented protocols seems to
be highly non-linear with only few significant fitness values in the search space. A small pop-
ulation with a rapid mutation is suitable for solving such problems (similarly to evolution of
digital circuits using Cartesian Genetic Programming (CGP) [39]). The population size was
fixed to 5 individuals. The mutation operator is applied with the 10% probability. Similarly
to the CGP, crossover is not used (series of experiments did not shown improvements in
evolution convergence when crossover was used).

5The fitness values for each possible instance in the search space. Note that we cannot compute whole
landscape in a reasonable time – if we can, then there is no need for any EA – we can obtain a fitness
maximum directly.

69

3.9 Automatic protocol generation conclusions

The fitness landscape for the group-oriented protocols seems to be smoother than for node-
oriented protocols. We utilized 20 individuals in the population and a single point crossover
operator applied with the probability 70%. Crossover points allowed at the level of instruc-
tions only. Mutation with a 5% rate was used. Fitness evaluation was significantly faster (as
significantly less messages had to be simulated) than for the node-oriented candidate proto-
cols. Therefore, significantly more generations could be used. Steady state replacement rule
(GASteadyStateGA in GALib) for the worst 1/3 of actual population is used to maintain
population size for both types of the protocols.

3.9 Automatic protocol generation conclusions

We examined the area of automatic design of secrecy amplification protocols and their rela-
tion to the underlying key distribution protocol in wireless sensor networks. Some secrecy
amplification protocols may work well for the networks with randomly compromised links
(e.g., resulting from node capture for probabilistic pre-distribution), but may give a sub-
optimal performance when applied to more correlated compromise patterns arising from
distribution approaches such as Key Infection. Moreover, some steps of the secrecy ampli-
fication protocol may be pointless for a given compromise pattern as they do not improve
secrecy of any link – and thus impose only an unnecessary message overhead.

We have described a more flexible approach based on the fact that the effectiveness of secrecy
amplification protocols can be automatically evaluated using a network simulator. Linear
genetic programming was used to search for new protocols. We were able to rediscover all
published protocols for secrecy amplification we are aware of, and to find a new protocol that
outperforms existing. The new protocol operates with four parties, but is able to operate
even when only three parties are available. A single iteration of the secrecy amplification
protocol can increase secure links from 60% to more than 95% for the Random and 88% for
the Key Infection compromise pattern.

A significant disadvantage of existing secrecy amplification protocols is their high commu-
nication overhead because the number of required messages grows exponentially with the
number of direct neighbours. By moving from node-oriented protocols to group-oriented
protocols and using evolutionary design approach, we were able to find protocols with the
fraction of secured links comparable to node-oriented protocols, but with only a linear (in-
stead of exponential) increase of required messages with respect to the increasing number of
neighbours. This is especially important for dense networks with more than 10 neighbours.

70

Chapter 4

Evolution of attacker strategies

The fundamental asymmetry between the attacker’s and defender’s position is that an at-
tacker needs to find only one successful attack option where the defender should take care of
all possibilities. This asymmetry is similar to the relation between a guided search without
processing the entire search space and an exhaustive space search. We based our work on
the assumption that guided search for new attacks is generally possible – at least on the
same level as searching for defenses against an attacker. While we speak of search for attack
strategies, this approach has clear benefits for defenders as well – discovery and study of new
attacks should help the defender to build a better protection.

The advantage of automatic search provides us with the possibility to reliably examine all
configurations within a constrained search space as formal verification does (see [37] for an
exhaustive review). And so instead of using brute force search, we can search through even
larger spaces using some form of guided or even random search – yet with an open question
of assurance that a relevant configuration was not missed.

4.1 Related work

So far, automated constructions of attacks were proposed mainly for construction of test-
ing beds for Intrusion Detection Systems (IDSs) or optimization of parameters for known
attacks. Automated construction of attack graphs is proposed in [51] using symbolic model
checking algorithms with example application to network security, where potential violation
of safety property is constructed from four atomic attacks. And all possible attack vectors
are constructed.

In [36], virtual network is used to capture whole network traffic with traces of known attacks
from vulnerability databases. This traffic logs can be later used to test particular IDS. In
principle, recombination of several attacks can be run in parallel to produce more obscured
network traffic and more successful attacks (against a particular IDS) can be found.

71

4.2 Automatic design of attacks

Automatic generation and analysis of attacks against IDS systems is proposed in [48]. Formal
transition rules are specified to transform the attack footprint from one known to a particular
IDS to one that bypasses the detection. Soundness property of rules ensures that only valid
attacks are derived; therefore method allow easy evaluation whether the attack was detected
or not. Several significant bugs were found in the well known Snort IDS using this method.

Formal derivation method capable of generating polymorphic blending attacks that use en-
cryption to hide the attack code is proposed in [23]. IDSs are modeled as finite state automata
and problem of finding suitable encryption key that would not trigger IDS detection in an
incoming packet is shown to be NP-complete. A hill climbing heuristic method is used to
search through a potentially large space of possible encryption keys for near optimal solution.

Simulation with discrete event system specification (DEVS) is used to automatically gen-
erate attacks by recombination from several groups of shell commands in [33]. All possible
combinations of the commands valid within given constraints are generated via DEVS and
attacks are obtained as a paths between initial and compromised state.

It was an earlier work on evolutionary design of secrecy amplification protocols with a suspi-
ciously high fraction of secured links (typically 100%) that lead us to a deeper inspection of
the protocol with such a high performance. Here we discovered either our program mistake
or incomplete specification of the evaluation function that was exploited by the evolutionary
algorithms. Repetition of this behaviour then lead us farther to the idea of using evolution-
ary algorithms to search not only for defenses (like the secrecy amplification protocol) but
also as a tool searching for new attacks (mistakes in code or incomplete specification). See
Chapter 3 for details on automatic protocols design, examples of discovered protocols, their
performance comparison and used settings of evolutionary algorithms.

4.2 Automatic design of attacks

We propose to use an automatic attack strategy generator together with simulated or real
execution environment to generate and test large amount of candidate attacks. Additionally,
we propose to use evolutionary algorithms (EAs) instead of brute-force or random search
over the space of the possible attacks.

Automatization of the whole process and close binding to the real execution environment
offer the possibility to find out low-level attacks aware of the system context rather than
their high-level abstraction only.

Note that – due to their nature – EAs are more suitable to find the attacks rather than to
prove that none exists as an attacker needs to find only one attack vector (analogy to a guided
search) whereas the defender must count with all possible attacks (analogy to exhaustive
search).

72

4.2 Automatic design of attacks

4.2.1 General concept

We have developed a general concept for automatic design of attacks. It consists of the
following sequence of actions:

1. The candidate strategies are generated from elementary rules using specified mecha-
nisms like:

• Educated guess – field expert selects combinations of elementary rules that might
work.

• Exhaustive search – all possible combinations of elementary rules are sequently
examined and evaluated. Inefficient for large search spaces.

• Random search – combination of elementary rules is selected at random. No
information about quality of previous selection is used during following one.

• Guided search – actual combination of the rules is improved according to some
rating function able to compare between quality of previous and newly generated
candidate strategy. We will use the evolutionary algorithms for this task.

2. Candidate strategy is translated from the metalanguage used for generating into the
domain language which can be interpreted by a simulator or real system.

3. Candidate strategy is executed inside simulated or real environment.

4. Impact of the attack is measured by a fitness function (see Section 4.2.3 for a further
discussion).

5. The whole process is repeated until a sufficiently good strategy is found or the search
is stopped.

Details are as follows. Prior to actual generation we have to inspect the system and to define
basic methods how an attacker may influence the system (create/modify/discard messages,
capture nodes, predict bits, etc.) and what constitutes a successful attack. Subsequently we
decompose each basic method into a set of elementary rules and identify its parameters (e.g.,
modification of x-th byte in the message, delay a message certain time x, capture a particular
node, ...). These elementary rules serve as basic building blocks of new attack strategies.
The more detailed the level of basic methods is, the wider the possibility to express attacks,
but at the price of a slower progress when searching for an attack as the search space is also
larger. Having these blocks, we can start generating the strategies.

Note that described concept cannot provide a proof that the system is secure (under some
assumptions) as formal verification or provable security does. In the worst case, we might
still end up with only repeated random guesses of the possible attack strategies. However,
practical experience with the usage of EAs proved to be usually much more efficient than
random search. Combination with an accurate simulator (e.g., network simulator) or even
real system (e.g., real network) allows us to work with a better representation of the target
system than with an abstract model used for formal verification.

73

4.2 Automatic design of attacks

Figure 4.1: Automatic attack generation process with success evaluation. A new attack
strategy is generated in a metalanguage from elementary rules created for a specific environ-
ment. Based on the used evaluation context, strategy is transcribed from the metalanguage
into actions in the target environment. Statistics about attack are obtained and evaluated
using a fitness function to provide guidance for the next generation of attacks.

In this work, we use mainly linear genetic programming (LGP) to generate the attack strate-
gies where LGP represents a candidate strategy as a sequence of instructions (steps) [5] and
classical version genetic algorithms to optimize free variables of the attack strategy. The
additional discussion about usage of EAs in area of security for automatic generation of
secrecy amplification protocols can be found in Section 3.5.

4.2.2 Strategy description

Attack strategy produced by the generator is typically described using some proprietary
abstract language (metalanguage). The form of this language is determined by the generating
mechanism and its properties (in case of EAs it has to provide simple and efficient ways
for evolution and its operations). This language not have to be suitable for evaluation
environment. Hence the generated strategy has to be translated into into domain language,
which can be executed by the simulator or real execution environment. Note that the
existence of translation step also supports use of simulators or generators, so the existing
systems can be used for both generating and execution. The same as for simulator holds for
real systems. Here the need for translation is even more obvious.

4.2.3 Fitness function construction

The tricky part and key to successful usage of EAs is specification of the proper fitness
function. Fitness function must fulfill the following conditions:

Capture the progress towards the optimum – the fitness value of candidate solutions

74

4.3 Evolution of attack strategies

within relevant properties must capture the relationship between actual quality of
candidate solution and intended goal we would like to achieve. E.g., if we like to identify
100 nodes to compromise to capture most keys, replacing one node by another within
this set will probably change the amount of captures keys only a little. Some problems
have straightforward metrics usable as the fitness function like the proportion of secret
and compromised messages, average time to delivery message, fraction of compromised
secrets or fraction of system resources available to legitimate users (DoS attack). But
others may be more difficult to tackle – e.g., when we try to generate exploit for buggy
code, how can we measure progress towards a successful attack? Still, some indirect
metrics might exists like number of instructions executed above processing of the legal
request.

Sufficient granularity – if the fitness function outputs only two values like “0% keys com-
promised” and “100% keys compromised”, there is no potential for evolution to grad-
ually increase the quality of the solution. Either the solution for 100% compromised
keys is directly found by a chance or the solution is no closer to optimum than any
other 0% solution. Smoother the function is usually the better.

Fast to compute – evaluation of a single candidate solution must be fast enough to eval-
uate 102 to 106 or more candidates in reasonable time. The exact time constraint
depends heavily on the solved problem, but evaluation of one candidate should typ-
ically be completed in the order of seconds or less. The faster the evaluation is, the
higher is the fraction of examined search space and the better is the chance to find a
satisfactory solution.

4.3 Evolution of attack strategies

The described concept does not need to generate complete attack strategies starting from
very basic rules. In the simplest case, new attack strategies are generated only as a recombi-
nation of already existing generic elementary attacks (e.g, replay a message, change the IP
address in a packet header, capture a node). EAs are searching only for a sequence of such
elementary attacks that together lead successful attack. If we give more freedom to EAs
by increasing the granularity of rules, which means we decompose the generic attacks into
more elementary rules (e.g., modification of X-th bit of message regardless of the structure
of message), we get more possibilities. Results range from improvements of existing attacks
by optimization of their parameters up to finding completely novel attacks. Note that the
transition between recombination-only and novel attacks is not discrete as it depends on the
granularity of the elementary attacks we are using, and the level of freedom we allow is often
relative to the solved problem.

4.3.1 Re-combination of the existing attacks

Generic attacks are written as a sequence of elementary rules and EAs create combination
only at a generic attack level, not on the rules level. Pre-specified generic attacks also serve

75

4.3 Evolution of attack strategies

as an significant evolution speed-up as it is not necessary for evolution to develop known
attacks from scratch. Example generic attacks can be replay, reflection or interleave message
attacks, forged IP addresses in a packet header, forged ARP packets, captured packets in
a promiscuous mode or claim fake identity. Generic attacks alone may or may not be a
successful attack strategy alone. E.g., if the target of an attacker is DoS for a selected
computer, then a forged ARP packet alone is often sufficient. In the case of data traffic
exposure, it must be combined with a subsequent packet capture of the redirected traffic.

4.3.2 Improvement (optimization) of known attack strategy

In this case, a particular attacker’s strategy is known in advance (e.g., capture and extract
keys from some nodes and use them to compromise communication), we are only optimizing
parameters of the strategy (e.g., which particular nodes should be captured). This is the
most common usage of EAs in other domains – as a tool for parameter optimization.

This approach is suitable when we know some parameterizable tradeoff based attack and
we like to obtain better attacker success than with existing parameters. Alternatively, basic
principle of attack is known but actual parameters must be set according to (complex)
relations of actual environment (e.g., particular network deployment and type of applied
secrecy amplification protocol).

4.3.3 Finding novel attack strategies

If we focus on the granularity of elementary rules, we can extend the re-combination approach
to find novel attacks mechanism. If we do not restrict ourselves only to known attacks and
their parameters, but introduce more general rules describing what else might an attacker be
able to observe and manipulate inside the system, EAs might be able to evolve a completely
novel attack. However, as the additional rules also increase the search space, the evolution
progress will often be slower than in previous cases and with an uncertain outcome. But
the ability of EAs to come up with unique solutions is beyond human capabilities as was
demonstrated in the area of hardware circuits [54] and may lead to novel attack strategies
difficult to be conceived by a human expert.

4.3.4 Promising areas

Not all areas have the same potential for automatic search within the described concept.
Systems with straightforward and accurate fitness functions (like the fraction of compromised
messages) are generally more suitable. EAs typically works well within systems with complex
relations depending on multiple input variables, where the fitness landscape1 is not discrete
but contains local minimums and maximums with gradual transition. In case of attack
strategies, it is important to have a gradual decrease in security after an attack instead of

1Virtual hyper plane of fitness values for all possible points inside search space.

76

4.4 Applications

Figure 4.2: Overview of eavesdropping pattern generation.

only “0% or 100% compromised”. In discrete cases, EAs are just as effective as random search
(might be still useful under some circumstances). Particularly suitable are the environments
with already existing partial compromise due to security/resources tradeoff that can be
unbalanced by a better attack strategy like is the case of wireless sensor networks.

We expect that recombination and optimization of known attacks will provide the most
useful results. But different “way of thinking” of EAs may lead to unexpected and surprising
discoveries of novel attacks. Here, the success rate will be highly dependent on the proper
choice of the elementary rules used to build up the attack strategy.

4.4 Applications

Our inspiration for this work came from research on automatic protocol design in Section 3.5
and we applied the described concept to search for attacks in the domain of wireless sensor
networks. But the concept is not limited to WSNs and can be used for other applications
as well if suitable evaluation function can be constructed for particular environment and
settings.

4.4.1 Optimal eavesdropping pattern

Lightweight key distribution presented in [3] requires no pre-distributed keys as link keys
are exchanged directly in plaintext between neighbours “in situ” with secrecy amplification
protocol executed afterwards. Weakened attacker with limited ability to eavesdrop in the
network is assumed, where attacker’s eavesdropping nodes are on equivalent technical level
(radio sensitivity) to legitimate nodes of the network owner, but present only in a fraction
amount (results for 1-5% ratio for which a reasonably secure network can be set were origi-

77

4.4 Applications

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

Figure 4.3: Deployment 4-nodes pattern for
eavesdropping nodes found by an evolution.
Nine neighbouring cells are displayed to show
the pattern tying.

6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

Average number of neighbours

F
ra

ct
io

n
of

 c
om

pr
om

is
ed

 li
nk

s

random
square grid
evolved 4−nodes pattern
evolved single pattern

Figure 4.4: Comparison between eavesdrop-
ping nodes placement, grid-like pattern and
evolved patterns with and without infor-
mation about position of legitimate nodes.
Eavesdropping to legal nodes ratio = 20%.

nally presented, and then improved up to 20% in [16]). The attacker’s success is influenced
by the placement of eavesdropping nodes. Original results presented in [3, 16] were based
on an assumption that eavesdropping and legitimate nodes are both deployed in a random
fashion. However, placing nodes in specific pattern may consistently provide better results
than for the random case. We can increase the number of secured links when evolving the
pattern for legitimate nodes or increase the number of eavesdropped links when evolving the
pattern for eavesdropping nodes.

We performed automatic search of an attacker that can precisely deploy its nodes (e.g., man-
ually) using our new concept. Our network simulator (see Section 1.2) was used, and can-
didate attack strategies were used to encode the eavesdropping deployment pattern. Square
deployment field was assumed for simplicity, divided into k2 equivalent cells, where k is the
number of cells per axis. The same deployment pattern was used for every cell. The deploy-
ment patterns can have different number of nodes within. Having n eavesdropping nodes
in total, the pattern for single cell will have p = n/k2 nodes. A single genome is used for
encoding positions (x and y axis) of p nodes within one cell. A pattern with more nodes can
be thus created either by increasing the total number of nodes and keeping the same number
of cells, or by decreasing the number of cells and keeping number of nodes stable.

Fitness function is based on our simulation result as a fraction of compromised link keys
after executing a plaintext key exchange and fixed amplification protocol (we used the Pull
protocol as best performing yet simple amplification protocol with low message overhead).
When evolving the pattern for eavesdropping nodes, a higher fraction of compromised links
implies a better fitness for a given genome.

Two possible scenarios were examined. In the first scenario, actual deployment of legitimate
nodes is random and not known to the attacker in advance. One of the well performing
patterns for this scenario with group of four nodes is on Figure 4.3. The comparison of the

78

4.4 Applications

evolved pattern with näıve grid-like distribution shows only a slightly better result for the
evolved pattern. This suggests that the amount of the eavesdropping nodes up to 30% of
legitimate nodes is not sufficient to form any significantly more successful pattern capable to
counter the effects of the secrecy amplification. Instead, eavesdropping pattern is trying to
uniformly cover whole area to maximize the probability that an eavesdropping node will be
the closest neighbour of some legitimate node and thus eavesdropping all links to it (secrecy
amplification will fail in such layout). Impact of the regular eavesdropping pattern increases
with an increasing number of non-attacker neighbours. This behavior is caused by the fact
that longer some links are the more likely are they to be compromised in Key Infection
approach.

In the second scenario, the attacker knows the distribution of legitimate nodes in advance
and can place eavesdropping nodes according to this knowledge. Such scenario fits situations
when secrecy amplification is used together with probabilistic key pre-distribution like [21,
11, 10] in later stages of the network lifetime and when the attacker knows a fraction of the
used key pool. A simple experiment with a single pattern for the whole (fixed) deployment of
white nodes shows that significantly better results can be obtained (with respect to unknown
deployment). A highly successful pattern of eavesdropping nodes is evolved not only to cover
an area as large as possible, but also to joint effort of eavesdropping nodes to cancel an effect
of secrecy amplification based on local positions of legitimate nodes. Such attack would be
very successful in case when legitimate nodes do not start key exchange and amplification
right after their deployment, leaving attacker some time to obtain information about the
network topology and to distribute its limited number of eavesdropping nodes accordingly.

Fitness landscape seems to be much smoother than in case for evolution of protocols. More
over, only two variables (axis x and y) are used for each node and visualization of single
genom is much more understandable than for evolution of secrecy amplification protocols.
Best results were obtained using higher number of genom in population (20 individuals),
mutation with rate 0.1 and single point cross-over operator used with crossing probability
50%. A crossing operator combines new offspring from k nodes of pattern defined by the
first parent and p− k nodes from the second parent.

4.4.2 Selective node capture

Pre-distribution of the keys is not an easy task in the context of WSNs due to limited mem-
ory, large set of potential neighbours, susceptibility to node capture and battery-expensive
communication. Novel pre-distribution schemes were proposed, including probabilistic pre-
distribution [21] and later variations [11, 10, 19, 34, 58] where a random subset of the initial
key pool is assigned to each node (without replacement). Two randomly selected nodes
can have surprisingly high probability to find at least one shared key, but an attacker can
also recover the original key pool by capturing only a fraction of the deployed nodes. Yet
the typical attacker strategy is not to capture as many keys as possible, but to compro-
mise enough data traffic with least possible effort. In contrast to the limited eavesdropping
model for the previous attack, the assumption here is that an attacker is able to monitor all
transmissions and capture few selected nodes as well. An optimization algorithm designed
only to maximize the number of captured keys (when identifications of keys carried by every

79

4.4 Applications

node are known to the attacker, like in the case of seed-based pre-distribution [47]) might
not be an optimal strategy as it is not taking the network topology into an account. Differ-
ent schemes have different node capture resilience and results presented in original papers
typically assume the random capture of nodes.

We used our concept to generate a selective node capture strategy that is significantly more
successful at the whole network level (selective node capture is an easy task if we want to
compromise only selected link(s)). For simplicity, we used original the probabilistic pre-
distribution by Eschenauer and Gligor [21] (will be denoted as EG or 1-EG) with initial pool
size 96359 keys and 19393 keys for later variation [11] of EG that requires at least 3 shared
keys to establish link key (denoted as 3-EG). The ring size with 200 keys is used to maintain
probability of connection equal to 33% as the most common settings used evaluations in
relevant existing papers [21, 11, 19]. The same method can be used for more complicated
schemes and we expect comparable results. EA population with 20 individuals was used,
with 5% mutation rate and 50% crossover rate. Every gene of individual encode one node
ID selected to capture with genom length equal to total nodes to capture.

We compare four different results from 1) random node capture, 2) capture based on deter-
ministic algorithm maximizing number of extracted keys with high occurrence inside network,
3) capture based on deterministic algorithm maximizing number of keys most commonly used
to form link inside network and 4) nodes selected to capture by EA using proposed concept.
For simulation purposes, network with 1200 nodes was used, with the attacker compromis-
ing fraction of them (from 30 to 150 nodes). The average density of the network was 9
neighbours within one’s node transmission range. Such number of neighbours yields to 3
directly connectable neighbours when predistribution settings 33% probability of sharing key
is used. Note that in order to find an optimal node capture using brute force just for 30
nodes requires

(
1200
30

) ∼= 6.2 ∗ 1059 enumerations.

Deterministic algorithm for case 2) and 3) is constructed as follows: During each itera-
tion, frequency of occurrence as a) number of nodes carrying a particular key in its keyring
(maximization of captured key set) or b) number of links secured with a particular key (max-
imization of compromised links) is computed for each key from the original key pool. More
common keys have one of the higher values of occurrence. If a key is already compromised
then its value is set to zero. Significance value for each node is computed as a sum of values
of occurrence for keys carried by this node. For a given iteration of an algorithm, the node
with a highest significance value being selected for capture. No node can be selected twice
(until all keys are captured) as its value decreases to zero in the next iteration due to the
zero value of occurrence assigned to keys compromised from its keyring.

The results for the random case are an average from ten random selections of nodes. To
allow for a fair comparison with automatic design, the result for random capture should be
taken as the best value obtained from a random selection of subsets of nodes for the same
time as was given to the evolution. We performed such evaluation and the results were only
around 10% better than the average from ten selections only and still lower than method
which maximize captured keys. Therefore we did not plot these results into figures for clarity
reasons.

Figure 4.5 shows results for basic version of EG scheme with different amounts of captured

80

4.4 Applications

40 60 80 100 120 140 160
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of captured nodes

F
ra

ct
io

n
of

 c
om

pr
om

is
ed

 li
nk

s
Selective node capture with PULL secrecy amplification, 1−EG

random capture
key set maximization capture
link set maximization capture
evolved capture

Figure 4.5: Attacker’s success for different se-
lective node capture techniques for EG pre-
distribution with initial pool size 96359 keys
and ring size 200 keys with the Pull secrecy
amplification protocol.

30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of captured nodes

F
ra

ct
io

n
of

 c
om

pr
om

is
ed

 li
nk

s

Selective node capture with PULL secrecy amplification, 3−EG

random capture
key set maximization capture
link set maximization capture
evolved capture

Figure 4.6: Attacker’s success for different se-
lective node capture techniques for EG pre-
distribution with at least 3 keys required for
link establishment with initial pool size 19393
keys and ring size 200 keys with the Pull se-
crecy amplification protocol.

nodes (50, 100, 150) and the Pull secrecy amplification protocol [16] executed at the top of the
established links after the key discovery phase. A significant improvement with the use of EA
can be seen over random capture and slightly better results than link capture maximization
algorithm as well. Maximization of captured key set is not an efficient strategy as it does
not take into the account actual distribution of nodes. Figure 4.6 shows results for the same
settings, but with the 3-EG instead of 1-EG. Here we present results for compromise of 30,
60 and 100 nodes as 3-EG scheme generally provides a better node capture resilience than
1-EG for a smaller number of compromised nodes (see [11] for detailed comparison) both
having approximately same resilience for 100 nodes (for random capture). Improvement of
EA over deterministic link maximization algorithm is more significant here (ranging from
30 to 60%) as the relation between captured keys and compromised links is more complex
here – if all keys used to establish a link key are not compromised together, this link remains
secure.

4.4.3 Incomplete fitness function specifications

We also encountered an interesting situation when the implicit assumptions were made
about the system, but these assumptions were not realized in our simulator. Except for the
search for a deployment pattern for the eavesdropping nodes, we also tried to automatically
develop a deployment pattern for legal nodes that maximize the number of secure links
when the particular secrecy amplification protocol is executed. The basic settings were
similar to search for an eavesdropping pattern, the vector of node’s positions was used
to encode a deployment pattern for legal network nodes. Evolutionary algorithms quickly
provided a very good solution – the deployment pattern with almost no compromised links
was found, regardless of the number of eavesdropping nodes. This successful pattern was

81

4.5 Conclusions for attack strategies

very simple – all nodes were positioned were close to each other almost in one single point,
rendering resulting links very short and therefore hard to compromise by eavesdropping.
Obviously, such solution does not fulfil the original target of a network owner to sense
uniformly deployment field (implicit assumption). An exploit of such incomplete specification
is the common problem when working with simulated environment and automatic search.
Provided results should be therefore rigorously verified, e.g., by human analysis and separate
simulation code.

4.5 Conclusions for attack strategies

We have proposed novel concept for automatic generation of attack strategies based on
combination of evolutionary algorithms and our network simulator. The main advantage of
the approach is possibility to test and find well working attacks in close to real or even real
usage.

The usability of proposed concept was verified on two attack vectors for wireless sensor
networks, but is not limited only to this area. Firstly, well performing pattern for the de-
ployment of eavesdropping nodes was developed as an attack against Key Infection plaintext
key distribution [3] having roughly twice as many compromised links than random deploy-
ment. Secondly, several variations of attacks based on selective node capture were examined.
Approximately 50-70% increase in the number of compromised links was obtained with re-
spect to random node capture (for the whole network) or 25-30% decrease in the number of
necessary nodes to capture lowering cost of attack. These two groups of attacks are examples
of automatic optimization of known attacks.

82

Chapter 5

Concluding remarks

In this thesis, we focused on the issues related to link key security in wireless sensor networks.
We examined both defender and attacker side and focused mainly on the automated methods
for generation of proper strategies as a way how to overcome the problem of wide range of
different assumptions currently made about these networks.

We first survey the probabilistic pre-distribution schemes suitable for use in the memory-and
energy-restricted environment of wireless sensor networks. We then focus on the aspect of
the resilience of key pre-distribution schemes against node capture, proposing an extension
protocol in Chapter 2. This protocol utilizes group support from direct neighbours to provide
authenticated key exchange with significantly better node capture resilience than that of an
underlying probabilistic pre-distribution scheme. A large virtual key ring is created from
neighbours’ keys and is maintained in an efficient way with a low communication overhead.
Node capture resilience for two probabilistic pre-distribution schemes (EG scheme [21] and
multi-space polynomial scheme [19]) is analyzed and simulated. Approximately up to 10000
captured nodes can be tolerated in dense networks with 40 neighbours and key ring memory
is able to store up to 200 keys when multi-space polynomial pre-distribution as an underlying
scheme is used. This work was published in article [60] as a version with the Eschenauer
and Gligor probabilistic pre-distribution and in [58] with analytical results. Combination of
the protocol with multiple key spaces pre-distribution by Du et al. was published as book
chapter in [59].

The third chapter deals with the issue of localized secrets as a preventive defence against the
Sybil-like attacks. Localized secrets are introduced by a secrecy amplification mechanism
that propagates new keys over the multiple paths involving network neighbours in a specified
way. Moreover, such protocols are able to secure links that were previously compromised by
an attacker.

In Section 3.1, we provided detailed simulations of published secrecy amplification protocols
and one protocol proposed by ourselves with respect to different network densities, different
number of eavesdropping nodes and combination of separate secrecy amplification protocols.
Our simulations provided several noteworthy results which can be used for planning of net-
works configuration. Secrecy amplification protocols generally work better for higher number

83

5. CONCLUDING REMARKS

of neighbours (denser networks) until significant presence (15-20%) of eavesdropping nodes
occur. Such density can be temporarily obtained by increasing radio transmission range just
for the time of secrecy amplification. Secrecy amplification protocols should be repeated
several times (around 2-4 times) as links secured in previous iteration help to secure new
links in the following iteration. Secrecy amplification protocols that require intermediate
nodes should be combined with protocols without intermediates if network is sparse by the
nature or average number of neighbours fluctuates as intermediates might be out of trans-
mission range of involved nodes. A proper composition provides significant improvement of
number of secured links. This work was published in [16], with background for assumption
of availability of reliable random number generator for secrecy amplification published in
[32] and [31].

The success rate of separate eavesdropping nodes is inspected with the conclusion of highly
non-uniform compromise pattern for Key Infection key distribution approach. With this re-
sult on mind, we extended the secrecy amplification protocols from Key Infection to the more
researched area of probabilistic pre-distribution in Section 3.5. The different key distribution
approaches result in the different compromise patterns when attacker captures some nodes
and extracts their secrets or eavesdrop communication. The performance (number of secured
links) of a particular amplification protocol may vary between such patterns. Human design
of an efficient protocol without unnecessary steps for a particular pattern is time consuming.
We proposed a framework for automatic generation of personalized amplification protocol
with effective-only steps. Evolutionary algorithms are used to generate candidate protocols
and our network simulator then provides metric of success in terms of secured links.

The approach was verified on two compromise patterns that arise from Key Infection ap-
proach and probabilistic key pre-distribution. For these patterns, all published protocols
we were aware of at the beginning of our work (described in Section 3.1) were rediscovered
and a new protocol that outperforms them was found. More than 90% of secure link can
be obtained after a single run of secrecy amplification protocol even in a network with half
of compromised links. We also demonstrated that secrecy amplification protocols are not
limited only to relative specific plaintext Key Infection approach distribution model [3]. Ac-
cording to our simulations, secrecy amplifications actually works even better with much more
researched probabilistic pre-distribution schemes [21, 19, 34] providing a higher increase in
the number of secured links.

The practical disadvantage of established design of secrecy amplification protocols (so called
node-oriented) is a significant communication overhead, especially for dense networks. In
Section 3.7, we propose a group-oriented design, where possibly all direct neighbours can be
included in a single protocol run. Only a very small fraction of messages is necessary to obtain
a comparable number of secured links with respect to the node-oriented design. Moreover, a
linear increase of necessary messages instead of exponential increase with increasing density
of the network is obtained. This makes our approach practically usable for networks where
energy-expensive transmissions should be avoided as far as possible. Automatic generation
framework was used to generate well performing protocol in the message restricted scenario.
The work on automatic generation of secrecy amplification protocols was published in article
[57] and as a chapter in book [50].

84

5. CONCLUDING REMARKS

We explore the possibility for automatic generation of attacks in the fourth chapter. The
idea is based on fundamental asymmetry between the attacker and the defender, where the
attacker needs to find only one attack path where the defender must secure all of them. A
brute-force search over the space of possible attack paths is then more suitable approach
for the defender. An attacker can make an informed search for possible attack without
inspecting all possibilities. The general concept uses some generator of candidate attacks
from elementary actions and execution environment to evaluate the impact of the candidate
attack. This concept cannot be used for any type of attacks – the existence of some metric
to evaluate attack success in a reasonable time is necessary. In our case, we used evolution-
ary algorithms as the candidate attacks generator and the network simulator to evaluate
them. We focused on two applications relevant in context of this thesis to provide proof of
applicability of proposed concept.

An optimal deployment pattern for eavesdropping nodes for Key Infection key distribution
with applied secrecy amplification was inspected first. The vector of position for eavesdrop-
ping nodes (deployment pattern) was generated by evolutionary algorithms and immediately
simulated. The deployment patterns with a significant improvement in the number of com-
promised links (attacker goal) with respect to random placement of eavesdropping nodes
were found. The biggest improvement was obtained when an attacker has a priori knowl-
edge about position of network nodes is known in advance, as one can expect.

The second inspected application was a search for the optimal selective node capture against
network with probabilistic key pre-distribution and with applied secrecy amplification pro-
tocol. The size of the network prohibits the brute-force examination of all possible subsets
even for small number of selectively captured nodes to find optimal solution. The vector with
fixed size provides identifications of the nodes that should be selective captured. Keys are
extracted from selected nodes and resulting number of compromised links in the network was
evaluated. We compared automatically found set of nodes with sets generated at random,
set by an algorithm that tries to maximize the number of unique keys captured from nodes
and by algorithm that greedily tries to maximize the number of compromised links per single
node. The keys maximization algorithm provides only moderate improvement with respect
to random capture, but the links maximization algorithm performs significantly better. The
automatically found set according to our concept provided a slightly better result than the
link maximization algorithm for probabilistic pre-distribution [21] with one key threshold re-
quired for link establishment (1−EG) and a significantly better result when applied to three
keys threshold (3 − EG,[10]). It is still possible that a better node capture algorithm can
be developed for each particular scenario, but our automated concept provides much faster
and flexible solution – if the pre-distribution and impact of node capture can be simulated
then automated search can be run with well-performing results usually found.

Significant work was done in the development of the fast network simulator used as the source
of simulation results for issues tackled in this thesis. We decided to develop new simulator
instead of using an existing one as the speed of simulation is critical for automated search
for new secrecy amplification protocols and attacker strategies where testing of hundreds of
thousands of candidate instances must be performed in a reasonable time period. Source
code of the simulator is publicly available, but we do not intend to provide a general purpose
simulator. Instead, we focus on high speed and possibility for distribution of computation

85

5.1 Future research opportunities

over a network of computers. Yet, some personalization of the simulator is possible without
changing its code – namely specification of network distribution pattern and specification
of arbitrary secrecy amplification protocol in metalanguage, provided in the form of an
interpreted script.

Our work was supported by research grants from Grant Agency of Czech Republic (In-
tegrated approach to education of PhD students in the area of parallel and distributed
systems, Cryptographic random and pseudo-random number generators), National Security
Authority (R&D Projects in Cryptography and Cryptanalysis) and European 6th framework
programme (NoE Future of Identity in the Information Society).

5.1 Future research opportunities

The problem we encountered with group-supported probabilistic protocol is the dependence
of the key establishment schemes on some node replication detection scheme. Such scheme
must work efficiently in highly decentralized networks but with low communication overhead.
Approaches described in or [43] or probabilistic detection described in [45] provide a partial
solution, but with communication overhead quickly increasing with the increasing network
size. A combination of replication detection with limitation of area where duplicated nodes
are of some use from the attackers point of view may provide solution. Such limitation can
be introduced based on the geographic limitation of valid node occurrence area (a node will
be rejected if try to connect in part of the network other than assigned geographic area)
or position in the network hierarchy (node is rejected outside assigned virtual cluster). A
key distribution technique with only locally usable keys like the Key Infection approach
[3] can be used as well, but possibility for redeployments and interconnection with existing
nodes is limited. We encourage studying efficient solutions based on probabilistic rather
than deterministic detection

The possibility for node authentication in the context of symmetric cryptography is usually
perceived as viable only if the key used for authentication is known to no other nodes be-
sides the authenticating and verifying node. Such assumption is common even in works that
explicitly deal with partially compromised networks and probabilistic protocols [3, 41]. The
notion of probabilistic authentication in the context of wireless sensor network was used in
[25] for message authentication and in [43, 58] for node authentication. We expect that the
difference between compromised and incorrectly authenticated node is negligible for many
scenarios. And if the network is able to properly function when partially compromised, it
should be possible to function when a limited number of malicious nodes are incorrectly au-
thenticated. Is it really necessary to authenticate separate nodes, especially when prevention
of the Sybil attack is such a hard task? We propose to study schemes, where the probability
of successful authentication decreases with increasing number of cloned nodes that use (part
of) particular authentication credentials. One of the possible direction might be usage of
anonymous money [14] where multiple spending of same “coin” leads to loss of anonymity.
Multiple exposures of the same authentication credentials (by Sybil or cloned nodes) then
reveal secret information usable to blacklist cloned node. The scheme should be adapted
to decentralized nature of sensor networks and should be based on the probabilistic rather

86

5.1 Future research opportunities

than deterministic detection with relaxation of the memory storage requirements necessary
to detect multiple credentials exposure at the same time.

We expect to see a wider application of secrecy amplification protocols as the next layer of
defence. Secrecy amplification protocols proved to increase overall network security substan-
tially, at least in both inspected compromise patterns. A highly insecure network with half of
its links compromised can be turned into a reasonably secure network with more than 90% of
links secure – node capture resilience for probabilistic schemes is then significantly improved.
Future analysis of new key distributions schemes should discuss not only the direct impact
on the network security when certain number nodes are captured, but also how many links
remain compromised after the application of secrecy amplification protocol. For example,
more advanced threshold cryptography probabilistic schemes like [19] gain less from secrecy
amplification than simpler schemes like [21], because networks with the threshold scheme
have very good resilience alone against node capture until critical number of nodes is cap-
tured. After this threshold network quickly become completely insecure with almost all links
compromised, situation where secrecy amplification protocols cannot operate successfully.

We see the potential of highly decentralized operations coordinated within group of neigh-
bours as a basic principle for governing for the distributed networks with lack of centralized
control, especially when an economic-based approach to network security is applied and part
of the network is assumed to be compromised. The way that separate nodes in the network
should cooperate (protocols) to accomplish certain tasks can be very simple or very compli-
cated, depending on various aspects like the degree of decentralization, available information
about the operating environment and especially solved problems. On one extreme, we can
see very simple rules of behaviour, with interaction only with direct neighbours in the case
of cellular automata [49], still resulting in very complex global behaviour. If properly de-
signed, such systems may provide significant resilience against intentional or random failure
and provide the overall robustness of the network. However, the communication overhead
to accomplish certain task is usually substantial with respect to centralized or hierarchical
systems. This becomes an issue, when applied to a scenario with energy-limited nodes.
The large-scale wireless sensor networks based on devices like smart dust [2] are step in
this direction – nodes are energy-limited but should work at least partially in a decentral-
ized fashion. Such nodes are still significantly more powerful than simple cells in case of
cellular automata. Yet efficient combination of possible node actions can be hard for a hu-
man designer. The automatic design and optimization of rules may provide a flexible way
of obtaining near-optimal parameters of network behaviour for a particular task, like the
combination of evolutionary algorithms with cellular automata [28].

A wide range of future research directions is possible for an attacker strategies generator
based on evolutionary algorithms. We developed a working framework and tested few initial
scenarios that confirmed the usability of the framework. In general, the application of the
approach to optimization problems provides usually usable results, but the real appeal is
in the automated search for novel attacks rather than improvement of existing attacks.
We preliminarily probed this option for attacks against geographic routing protocols. Two
types of results were obtained. Several already known attacks principles were rediscovered,
including base station impersonation, beacons forging, selective message forwarding and
dropping, and selective collisions on MAC layer and overloading of neighbours’ message

87

5.1 Future research opportunities

buffers. Economic tradeoffs based attacks, where only a very small fraction of malicious
nodes was able to affect majority of communication, were especially successful.

A combination of the attack generator (either random or based on informed search like
evolutionary algorithms) with a real system instead of the simulator is possible. The only
requirement on the real system is the existence of an accurate and relatively stable fitness
function with reasonable speed of evaluation. We see the potential in areas such as attacks
against routing in real network architectures, bypassing intrusion detection systems (already
researched [48, 23, 33]) or artificial manipulation of person characteristics (e.g., reputation
status) in massive social networks. The fundamental advantage of work with a real system
is the absence of the necessity for the abstraction of the system realized in a simulator and
the potential to work out the attacks both on the design and the implementation level.

Another appealing idea is a continuous evolution of an attacker strategy as a response to
the variability of the environment and applied defences in real systems. Such an approach is
commonly used for real-time evolution in embedded devices, e.g., software filters for recog-
nition of speed limit signs continuously adapted to actual weather conditions [55]. In fact,
this is the behaviour seen in gross granularity in the never-ending confrontation between
attackers and defenders like virus creators with antivirus companies. Instead of having a
fixed scenario and a well-performing attacker strategy for it, an attacker can run a continu-
ous search for new strategies and use the one that is performing best at a given time. Such
fine-grained approach can underpin even subtle changes in network topologies, fluctuation
in the network load or the improvement of defence strategies.

88

Bibliography

[1] Crossbow Technology, Inc. http://www.xbow.com/ [Last Access: 2008-08-31].

[2] Smart dust project website. http://robotics.eecs.berkeley.edu/∼pister/SmartDust/ [Last
Access: 2008-08-31].

[3] Ross Anderson, Haowen Chan, and Adrian Perrig. Key infection: Smart trust for smart
dust. In Proceedings of the Network Protocols (ICNP’04), 12th IEEE International
Conference, Washington, DC, USA, 2004.

[4] Tuomas Aura, Pekka Nikander, and Jussipekka Leiwo. Denial of service in sensor net-
works. IEEE Computer, Issue 10, pages 54–62, 2002.

[5] Wolfgang Banzhaf, Peter Nordin, Robert E. Keller, and Frank D. Francone. Genetic
Programming – An Introduction. Morgan Kaufmann Publishers, San Francisco, CA,
1998.

[6] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for message
authentication. pages 1–15. Springer-Verlag, 1996.

[7] Peter J. Bentley. Evolutionary Design by Computers. Morgan Kaufmann Publishers,
San Francisco, CA, 1999.

[8] Rolf Blom. An optimal class of symmetric key generation systems. EUROCRYPT ’84,
LNCS 209, pages 335–338, 1984.

[9] Shaobin Cai, Xiaozong Yang, and Jing Zhao. Mission-guided key management for ad
hoc sensor network. PWC 2004, LNCS 3260, page 230237, 2004.

[10] Haowen Chan, Adrian Perrig, and Dawn Song. Random key predistribution schemes for
sensor networks. In Proceedings of the 2003 IEEE Symposium on Security and Privacy
(SP’03), Washington, DC, USA, pages 197–214. IEEE Computer Society, 2003.

[11] Haowen Chan, Adrian Perrig, and Dawn Song. Key distribution techniques for sensor
networks. Kluwer Academic Publishers, Norwell, MA, USA, 2004. ISBN 1-4020-7883-8.

[12] Siu-Ping Chan, Radha Poovendran, and Ming-Ting Sun. A key management scheme in
distributed sensor networks using attack probabilities. GLOBECOM 2005, St. Louis,
USA, 2005.

89

BIBLIOGRAPHY

[13] Elizabeth M. Royer Charles E. Perkins. Ad hoc on-demand distance vector routing. In
Proceedings of the 2nd IEEE Workshop on Mobile Computing Systems and Applications,
pages 90–100, 1999.

[14] David Chaum, Amos Fiat, and Moni Naor. Untraceable electronic cash. In CRYPTO
’88: Proceedings on Advances in cryptology, pages 319–327, New York, NY, USA, 1990.
Springer-Verlag New York, Inc. ISBN 0-387-97196-3.

[15] Hyun-Jin Choi. Security protocol design by composition. In University of Cambridge,
technical report UCAM-CL-TR-657, GB, 2006.

[16] Dan Cvrček and Petr Švenda. Smart dust security - key infection revisited. Security
and Trust Management 2005, Italy, ENTCS, pages 10–23, 2005.

[17] Josh Broch David B. Johnson, David A. Maltz. Dsr: The dynamic source routing
protocol for multi-hop wireless ad hoc networks. In Charles E. Perkins, editor, Ad Hoc
Networking, pages 139–172. Addison-Wesley, 2001.

[18] Jing Deng, Carl Hartung, Richard Han, and Shivakant Mishra. A practical study of
transitory master key establishment for wireless sensor networks. In SECURECOMM
’05: Proceedings of the First International Conference on Security and Privacy for
Emerging Areas in Communications Networks, pages 289–302, Washington, DC, USA,
2005. IEEE Computer Society. ISBN 0-7695-2369-2.

[19] Wenliang Du, Jing Deng, Yunghsiang S. Han, and Pramod K. Varshney. A pairwise key
pre-distribution for wireless sensor networks. In Proceedings of the 10th ACM Conference
on Computer and Communications Security (CCS’03), Washington, DC, USA, pages
42–51, 2003.

[20] Wenliang Du, Jing Deng, Yunghsiang S. Han, and Pramod K. Varshney. A key man-
agement scheme for wireless sensor networks using deployment knowledge. IEEE IN-
FOCOM 2004, Hong Kong, 2004.

[21] Laurent Eschenauer and Virgil D. Gligor. A key-management scheme for distributed
sensor networks. In Proceedings of the 9th ACM Conference on Computer and Commu-
nications Security (CCS’02), Washington, DC, USA, pages 41–47, 2002.

[22] Konstantinos P. Ferentinos and Theodore A. Tsiligiridis. Adaptive design optimization
of wireless sensor networks using genetic algorithms. Computer Networks: The Inter-
national Journal of Computer and Telecommunications Networking, 51(4):1031–1051,
2007.

[23] Prahlad Fogla and Wenke Lee. Evading network anomaly detection systems: formal
reasoning and practical techniques. In CCS ’06: Proceedings of the 13th ACM conference
on Computer and communications security, pages 59–68, New York, NY, USA, 2006.
ACM. ISBN 1-59593-518-5.

[24] Huirong Fu, Satoshi Kawamura, Ming Zhang, and Liren Zhang. Replication attack on
random key pre-distribution schemes for wireless sensor networks. IEEE Information
Assurance Workshop, West Point, USA, 2005.

90

BIBLIOGRAPHY

[25] Ashish Gehani and Surendar Chandra. Past: Probabilistic authentication of sensor
timestamps. In ACSAC ’06: Proceedings of the 22nd Annual Computer Security Ap-
plications Conference on Annual Computer Security Applications Conference, pages
439–448, Washington, DC, USA, 2006. IEEE Computer Society. ISBN 0-7695-2716-7.

[26] Dijiang Huang, Manish Mehta, Deep Medhi, and Lein Harn. Location-aware key man-
agement scheme for wireless sensor networks. SASN’04, Washington, DC, USA, pages
29–42, 2004.

[27] Joengmin Hwang and Yongdae Kim. Revisiting random key pre-distribution schemes
for wireless sensor networks. In Proceedings of the ACM Workshop on Security of Ad
Hoc and Sensor Networks (SASN’04), Washington DC, USA, pages 43–52, 2004.

[28] Rajarshi Das James P. Crutchfeld, Melanie Mitchell. The evolutionary design of col-
lective computation in cellular automata. In Evolutionary Dynamics, Exploring the
Interplay of Selection, Neutrality, Accident, and Function. New York: Oxford Univer-
sity Press, 2002.

[29] Yong Ho Kim, Mu Hyun Kim, Dong Hoon Lee, and Changwook Kim. A key manage-
ment scheme for commodity sensor networks. ADHOC-NOW 2005, LNCS 3738, pages
113–126, 2005.

[30] J. R. Koza, F. H. Bennett III., D. Andre, and M. A. Keane. Genetic Programming III:
Darwinian Invention and Problem Solving. Morgan Kaufmann Publishers, San Fran-
cisco, CA, 1999.

[31] Jan Krhovják, Petr Švenda, and Vashek Matyáš. The sources of randomness in mobile
devices. In Proceeding of the 12th Nordic Workshop on Secure IT System, pages 73–84.
Reykjavik University, October 2007.

[32] Jan Krhovják, Petr Švenda, Vashek Matyáš, and Ludek Smoĺık. The sources of ran-
domness in smartphones with Symbian OS. In Security and Protection of Information
2007, pages 87–98. University of Defence, May 2007.

[33] Jong-Keun Lee, Min-Woo Lee, Jang-Se Lee, Sung-Do Chi, and Syng-Yup Ohn. Auto-
mated cyber-attack scenario generation using the symbolic simulation. In AIS 2004,
pages 380–389, 2004.

[34] Donggang Liu and Peng Ning. Establishing pairwise keys in distributed sensor networks.
In CCS ’03: Proceedings of the 10th ACM conference on Computer and communications
security, pages 52–61, New York, NY, USA, 2003. ACM Press. ISBN 1-58113-738-9.

[35] Donggang Liu and Peng Ning. Location-based pairwise key establishments for static
sensor networks. 1st ACM Workshop Security of Ad Hoc and Sensor Networks Fairfax,
Virginia, pages 72–82, 2003.

[36] Frederic Massicotte, Francois Gagnon, Yvan Labiche, Lionel Briand, and Mathieu Cou-
ture. Automatic evaluation of intrusion detection systems. In ACSAC ’06: Proceedings
of the 22nd Annual Computer Security Applications Conference on Annual Computer
Security Applications Conference, pages 361–370, Washington, DC, USA, 2006. IEEE
Computer Society. ISBN 0-7695-2716-7.

91

BIBLIOGRAPHY

[37] Catherine Meadows. Formal methods for cryptographic protocol analysis: emerging
issues and trends. In IEEE Journal on Selected Areas in Communications, Volume 21,
Issue 1, pages 44–54, 2003.

[38] Ralph C. Merkle. Secure communications over insecure channels. Communications of
the ACM, 21(4):294–299, 1978.

[39] Julian Miller and Peter Thomson. Cartesian Genetic Programming. In Proc. of the
3rd European Conference on Genetic Programming EuroGP2000, LNCS 1802, pages
121–132. Springer-Verlag, 2000.

[40] Tyler Moore. A collusion attack on pairwise key predistribution schemes for distributed
sensor networks. In Proceedings of the Fourth Annual IEEE International Conference on
Pervasive Computing and Communications Workshops (PERCOMW’06), Washington,
DC, USA, 2005.

[41] Tyler Moore. Cooperative attack and defense in distributed networks. In University of
Cambridge, Technical report UCAM-CL-TR-718. University fo Cambridge, 2008.

[42] Roger M. Needham and Michael D. Schroeder. Using encryption for authentication in
large networks of computers. Communications of the ACM, vol. 21, issue 12, pages
993–999, 1978.

[43] James Newsome, Elaine Shi, Dawn Song, and Adrian Perrig. The sybil attack in sensor
networks: Analysis & defenses. In Proceedings of the third international symposium on
Information processing in sensor networks (IPSN’04), Berkeley, California, USA, pages
259–268, 2004.

[44] Stephan Olariu and Ivan Stojmenovic̀. Design guidelines for maximizing lifetime and
avoiding energy holes in sensor networks with uniform distribution and uniform re-
porting. In Proceedings of the 25th IEEE Conference on Computer Communications
(INFOCOM’06), 2006.

[45] Bryan Parno, Adrian Perrig, and Virgil Gligor. Distributed detection of node replication
attacks in sensor networks. In Proceedings of the 2005 IEEE Symposium on Security
and Privacy (SP’05), Washington, DC, USA, pages 49–63, 2005. ISBN 0-7695-2339-0.

[46] Adrian Perrig, Robert Szewczyk, J.D. Tygar, Victor Wen, and David E. Culler. Spins:
Security protocols for sensor networks. Wireless Networks 8/2002, Kluwer Academic
Publishers, pages 521–534, 2002.

[47] Roberto Di Pietro, Luigi V. Mancini, and Alessandro Mei. Random key-assignment for
secure wireless sensor networks. 1st ACM Workshop Security of Ad Hoc and Sensor
Networks Fairfax, Virginia, pages 62–71, 2003.

[48] Shai Rubin, Somesh Jha, and Barton P. Miller. Automatic generation and analysis
of nids attacks. In ACSAC ’04: Proceedings of the 20th Annual Computer Security
Applications Conference, pages 28–38, Washington, DC, USA, 2004. IEEE Computer
Society. ISBN 0-7695-2252-1.

92

BIBLIOGRAPHY

[49] Joel L. Schiff. Cellular Automata: A Discrete View of the World. Wiley & Sons, Ltd,
2008. 0-470-16879-X.

[50] LukáŠ Sekanina, Zdeněk Vaš́ıček, Richard Ružička, Michal Bidlo, Jǐŕı Jaroš, and Petr
Švenda. Evolucni hardware – in final preparation. Academia, Praha, Czech Republic,
2009.

[51] Oleg Sheyner, Joshua Haines, Somesh Jha, Richard Lippmann, and Jeannette M. Wing.
Automated generation and analysis of attack graphs. In SP ’02: Proceedings of the 2002
IEEE Symposium on Security and Privacy, page 273, Washington, DC, USA, 2002.
IEEE Computer Society. ISBN 0-7695-1543-6.

[52] Dawn Xiaodong Song, Sergey Berezin, and Adrian Perrig. Athena: A novel approach to
efficient automatic security protocol analysis. Journal of Computer Security, 9(1/2):47–
74, 2001.

[53] Piotr Szczechowiak, Leonardo B. Oliveira, Michael Scott, Martin Collier, and Ricardo
Dahab. Nanoecc: Testing the limits of elliptic curve cryptography in sensor networks.
In LNCS 4913, pages 305–320, 2008.

[54] Adrian Thompson. Hardware Evolution: Automatic design of electronic circuits in re-
configurable hardware by artificial evolution. Distinguished dissertation series. Springer-
Verlag, 1998. ISBN 3-540-76253-1.

[55] Jim Torresen, W. Jorgen Bakke, and Luk Sekanina. Recognizing speed limit sign num-
bers by evolvable hardware. Lecture Notes in Computer Science, 2004(3242):682–691,
2004.

[56] Harald Vogt. Exploring message authentication in sensor networks. ESAS 2004, LNCS
3313, pages 19–30, 2005.

[57] Petr Švenda. Automatic construction of secrecy amplification protocols. 3th Workshop
Mathematical and engineering methods in computer science, MEMICS 2007, 2007.

[58] Petr Švenda and Václav Matyáš. Authenticated key exchange with group support for
wireless sensor networks. The 3rd Wireless and Sensor Network Security Workshop,
IEEE Computer Society Press. Los Alamitos, CA, pages 21–26, 2007. ISBN 1-4244-
1455-5.

[59] Petr Švenda and Václav Matyáš. From Problem to Solution: Wireless Sensor Networks
Security (chapter in book). Nova Science Publishers, New York, USA, 2008. ISBN
978-1-60456-458-0.

[60] Petr Švenda and Martin Osovský. A forward onion encryption scheme for wireless sensor
networks. MEMICS 2005, pages 38–44, 2005.

[61] Ronald Watro, Derrick Kong, Sue-fen Cuti, Charles Gardiner, Charles Lynn, and Peter
Kruus. TinyPK: Securing sensor networks with public key technology. In Proceed-
ings of the 2nd ACM workshop on Security of ad hoc and sensor networks (SASN’04),
Washington, DC, USA, pages 59–64, 2004.

93

BIBLIOGRAPHY

[62] Eiko Yoneki and Jean Bacon. A survey of wireless sensor network technologies: research
trends and middleware’s role. Technical Report, UCAM 646, Cambridge, 2005.

[63] Sencun Zhu, Sanjeev Setia, and Sushil Jajodia. Leap: efficient security mechanisms
for large-scale distributed sensor networks. In CCS ’03: Proceedings of the 10th ACM
conference on Computer and communications security, pages 62–72, New York, NY,
USA, 2003. ACM. ISBN 1-58113-738-9.

94

