Towards True Random Number Generation
in Mobile Environments

Jan Bouda, Jan Krhovjak, Vashek Matyas, and Petr Svenda

Faculty of Informatics, Masaryk University
Botanicka 68a, 602 00 Brno, Czech Republic

August 4, 2009

Abstract

In our paper, we analyze possibilities to generate true random data
in mobile devices such as mobile phones or pocket computers. We
show how to extract arguably true random data with a probability
distribution € = 27% close to the uniform distribution in the trace
distance. To postprocess the random data acquired from the camera
we use a randomness extractor based on the Carter-Wegman universaly
families of hashing functions. We generate the data at the bit rate
approximatively 36 bits per second — we used such a low bit rate only
to allow statistical testing at a reasonable level of confidence.

Keywords: min-entropy, random number generator, randomness extractor

1 Introduction

A good generator of random numbers for cryptographic purposes must guar-
antee good statistical properties and unpredictability of its output. The
whole generation process is not a trivial task and it must utilize nondeter-
ministic sources of randomness together with high-quality digital postpro-
cessing. Without physical randomness the output and all derived crypto-
graphic key material could be (easily) predictable. Digital postprocessing
by randomness extractors or pseudorandom number generators is necessary
to improve statistical properties of generated data and to offer protection
against limited malicious manipulation of the source of randomness.

Many documented flaws in implementations of random or pseudorandom
number generators exist — e.g., in an early version of Netscape SSL [GW96],

OpenSSL FIPS Object Module [0S07], Java 2 ME [KMCO07], or Sun’s MIDP
Reference Implementation of SSL [SMHO05]. They have a critical impact to
the security of many common services. For example, a recently published
flaw (resulting in predictability of the generator) in the Debian OpenSSL
caused that SSH keys, SSL certificates, DNSSEC keys, OpenVPN keys, and
DH/DSA session keys generated in the past two years should be considered
compromised [DSO08].

In our paper, we study options for true random number generation in
mobile devices that contain no special purpose hardware designed especially
for this task. We examine and describe randomness sources available to the
application programmer in current mobile phones and other mobile devices,
e.g., the Nokia N73 with the Symbian OS that we used for our tests. The
main criteria for true random number generation in our setting are provable
security against active adversaries and sufficient bit rate of the source.

The paper is structured in the following way: In Section 2 we discuss pos-
sible sources of randomness we can use and in Section 3 we describe how to
process the acquired (biased) random data to obtain (almost) uniformly dis-
tributed randomness. In Section 4 we review randomness extractors, choose
extractors suitable for our purposes and describe one particular extractor
used in our tests. The tests performed to verify quality of randomness that
we input to the extractor and obtain from the extractor are described in
Section 5. Finally, in Section 6 we discuss possible ways to improve the bit
rate and computational efficiency of the extractor.

2 Sources of Randomness

We performed several practical experiments on two Nokia N73 smartphones
(with the Symbian OS) and two similar PDA phones E-Ten X500 and E-Ten
M700 (with the Windows Mobile OS) [KSMO07]. The goal of our experiments
was to identify (and assess the quality of) sources of randomness in these
mobile devices and to estimate the amount of randomness (min-entropy) in
these sources. We used two identical Nokia N73 devices since we wanted to
verify the correctness of our results or to detect unexpected behavior of the
smartphone — in a case when one device suffers, e.g., by some manufacturing
defect.

Due to the API restrictions (especially in the Symbian OS), we were
forced to drop sources of randomness like the battery level, signal strength
or GPS position as measurements over these sources do not provide output
(at the API level) with a sufficient precision (e.g., battery and signal values

are available in the form of an integer between 0 and 10) or frequency (e.g.,
external GPS provides only one measurement per second). On the contrary,
microphone and digital camera perform a high-rate sampling of physical
sources, yielding high volumes of data. Since we can never guarantee the
quality of a physical source, our analysis is concentrated on the microphone
and the camera noise that arises, e.g., in the CCD/CMOS chip or the A/D
converter, and is always present in the output data.

Unfortunately, digitalized microphone input is slightly correlated, and
captured camera frames contain, due to low-level postprocessing and opti-
cal sensor technology (such as row-dependent readouts), several systematic
defects. These defects result in a decrease of the entropy of probability
distribution supplied by these sources. Moreover, all external sources of
randomness can be influenced (gamma rays, temperature, etc.) and protec-
tion against such attacks requires advanced defence techniques. Changes of
temperature have an impact to the noise level that slightly influences the
probability distribution, but we have not discovered any regularities that
could make the output more easily predictable. On the contrary, direct il-
lumination of CCD/CMOS chip can result in generation of highly biased
values — overexposed pixels yield always the value 255. Detailed discussion
of these issues can be found in [KSMO7].

Digital camera provides higher data rate than the microphone and this
implies also a higher entropy (and min-entropy) yield in the same time
period. We used “view finding” (resolution 180 x 240, a standard function
of Nokia N73 smartphone) rather then a full-size image to get the raw image
data without almost any postprocessing. Such raw data were captured at
temperatures of 8, 20 and 45 degrees Celsius to observe the influence of
environment temperature on the camera noise arising from chip. Unless
explicitly mentioned all results in this paper refer to data obtained from the
Nokia N73 digital camera at 8 degrees Celsius — i.e., data with the smallest
amount of noise (and min-entropy).

In order to use our sources of randomness for cryptographical purposes,
we need to obtain a sequence of random bits distributed according to the
uniform distribution. The problem to solve is that our device not only
outputs (in general) a biased distribution, but this distribution in not known
in advance since it might be influenced by an adversary. To postprocess our
data and to get an output with some provable guarantees of the probability
distribution we have to use some randomness extractor.

3 Processing Randomness

The straightforward way to construct the postprocessing software would be
to estimate the probability distribution of camera output first (180 - 240 -
8-3 = 1036800 ~ 22° sample points), or at least the min-entropy of the
distribution, and then design a suitable randomness extractor. The obvious
obstacle to this method is the size of sample space that prevents reasonable
statistical testing (the number of samples would be practically unreachable).

We will limit the amount of data used from each frame to 4 bits only to
allow statistical testing. In order to use more information from each frame at
least to increase expected min-entropy we would not take 4 raw bits directly
obtained from the camera, but rather as a function of a number of bits.

To extract random bits from a CCD/CMOS chip we adopted the follow-
ing general approach (see Figure 1):

1. Acquire a picture (frame) from a CCD/CMOS chip of the camera
(when the lens is closed).

2. Apply a function f (see below) that distills few (in our case four)
random bits from the input frame.

3. Repeat step 1. and 2. until a sufficiently long output sequence is
accumulated. Then input this sequence to the randomness extractor
to obtain the final random sequence.

The role of function f is to preprocess the random data in the way
that regardless of the (limited) actions of the adversary the probability dis-
tribution of sequences of outputs of function f has with high probability
min-entropy sufficient for successful randomness extraction (for chosen ex-
tractor). The main problem when designing function f is the limited knowl-
edge of specification of the CCD/CMOS chip and the postprocessing done
by the camera. Moreover, these details change with both model and pro-
ducer of the mobile device. We use the function f to separate the extractor
from these technical assumptions.

Following the aforementioned motivation we designed the function f
to be an XOR (parity) of least significant bits (LSBs) of selected (colors
of) pixels of the CCD/CMOS chip. The choice of LSBs has the obvious
motivation that this bit is hard to predict and to flip this bit a very accurate
(physical) attack is needed!.

!As a further improvement we later discuss XORing all bits of particular (colors of)
pixel instead of LSBs only.

statistical

frames tests
[1]
i

(1] _

— 1

e 0]

o X o]

% t]

f 1 r [

1] a 10}

L1 c 1]

t [of

o 10]

r L1

0

E A
=

Figure 1: Scheme of the Data Postprocessing.

We make one important assumption in our analysis — that bits obtained
from different frames are independent. To assure this, we cyclically change
pixels used as inputs for the function f. Also, we limit the sampling fre-
quency to 12 frames per second.

Let us concentrate on the noise arising from the CCD/CMOS chip in the
Nokia N73 smartphone. The generator we considered takes 12 pictures per
second from the view finding (resolution 180x 240 function of the cell phone),
while the lens of the camera is shut and therefore the influence of the output
by external lights is minimized. Randomness contained in pictures comes
mainly from the heat inducing electrical charge in cells of the CCD/CMOS
chip. As we mentioned before, we use a function f that extracts 4 bits
from each picture. We proceed with sampling sufficient number of 4-bit
sequences to estimate the probability distribution our source delivers with
reasonable confidence. We run the same tests in various external conditions
that may influence the source (cold, heat — 8, 20 and 45 degrees Celsius)
and obtain limitations on probability distributions an adversary can achieve.
More details on performed tests are presented in Section 5.

More precisely, we used 180 x 240 pixels from each frame. Function f
logically divides pixels in one frame to 300 squares of 12 x 12 pixels and uses

exactly one pixel from each square. These pixels are selected determinis-
tically in such a way that the neighbors are always from different row and
column. The main motivation is that we get a pixels from different locations
of CCD/CMOS chip and we mitigate possible dependencies of pixels from
successive frames.

Finally, we extract only four bits from these 15 x 20 squares/pixels.
Firstly, we apply XOR function to all pixels (and colors) in a column. Then
we transform the resulting 20 bytes (1 byte per column) into 4 bytes by
XORing together several different non-neighbor columns: (1,5,9,13,17),
(2,6,10,14,18), (3,7,11,15,19), and (4,8,12,16,20). At the end we apply
XOR also to all bits in each byte, or alternatively extract only the LSB
from each byte. The output is in both cases exactly four bits per frame — to
improve inter-frame pixel independence we took the resulting pixels in order
1,3, 2,4, respectively. For statistical properties of the output see Section 5.

Note that a successful attack scenario defeating such preprocessing tech-
nique would require an attacker capable of repeatedly flipping or predicting
all bits used for construction of all resulting four bits per frame. Aside from
aforementioned need of very accurate physical attack to CCD/CMOS chip,
flipping one particular bit in image captured from “view finding” will be
very tricky, since algorithms used in mobile devices for downgrading the
CCD/CMOS image resolution to image with a “view finding” resolution are
kept secret.

4 Randomness Extractor

In this section we review the theory of randomness extractors, choose ex-
tractors suitable for our purposes and describe one particular extractor used
in our implementation and corresponding tests.

Definition of Randomness Extractor

The randomness extractor is a function e : {0,1}" x {0,1}¢ — {0,1}™ that
takes n bit random (biased) input, d bit auxiliary uniformly distributed ran-
dom input and outputs m bit sequence that should be distributed according
to the (almost) uniform probability distribution (see below). The processed
data obtained from the camera are used as the first parameter, while the
second parameter requires true random uniformly distributed data. This
means that such data must be pre-generated, and it can be, e.g., stored
in the memory and refreshed via network after a fixed number of extrac-
tor iterations (meanwhile the output of the extractor is used). This is an

obvious drawback, but such an extractor allows us to process a wide range
of input probability distributions, namely any probability distribution with
sufficiently high (pre-chosen) amount of randomness.

Definition 4.1. The min-entropy of a probability distribution (p1, ..., pon)
is

Heo(p1,...,pen) = min —logp; = —log max p;. (1)
i=1,...,2" i=1,...,2™
Definition 4.2. Let X and Y be random variables defined on the same
sample space S with probability distributions px and py, respectively. We
say that X and Y are e-close in the trace (or L;) distance iff

%Z [px(a) = py (a)| = max |[P(X € A) = P(Y € A)| <e. (2)
a€eS -

Definition 4.3. The function
e:{0,1}" x {0,1}¢ — {0,1}™ (3)

is a (non-deterministic) (k,€) randomness extractor if for every input
distribution X on {0, 1}" with Hs(X) > k and uniform probability distri-
bution on {0, 1}¢ the probability distribution of the output is e-close in the
trace distance to the uniform probability distribution on m bit strings.

The motivation why to use the min-entropy in the randomness extractor
definition is straightforward — it is impossible to extract d + k random bits
using an extractor with d bit auxiliary input provided the min-entropy of
the input is k — 1 or less. On the other hand, this bound can be approached
asymptotically [Sha02].

The other possibility is to use a deterministic extractor e : {0,1}" —
{0,1}™ requiring no uniformly distributed input. Unfortunately, possibil-
ities of such a source are strongly restricted — it partitions all inputs into
fixed subsets, each of which is mapped to one fixed output bit sequence.
Therefore, this extractor gives unbiased output only as long as the proba-
bility of each such subset is unchanged. As an extreme example, given a
fixed randomness extractor with n-bit input and single bit output, there is
always a probability distribution on n-bit strings with min-entropy n — 1,
such that the output of the extractor on this distribution is deterministic,
i.e. the distribution (0,1) [Sha02].

It may be impossible to explicitly construct one suitable deterministic
extractor, however, non-deterministic extractor with random, but public

and fixed auxiliary input can do very well [BST03] in some situations. For
more details on randomness extractors see the survey paper [Sha(2].

Finally, in this paper we use extractors that guarantee uniform distri-
bution of concatenated extractor output and auxiliary input. Hence, the
useful almost-uniform output of such an extractor has d + m bits.

Definition 4.4. The function
e:{0,1}" x {0,1}% — {0,1}™ (4)

is a (k,€) strong randomness extractor if for every input distribution
X on {0,1}" with Hoo(X) > k and uniform probability distribution Y on
{0,1}? the joint probability distribution (Y, e(X, Y)) is e-close in the trace
distance to the uniform probability distribution on m + d bit strings.

Extractors Based on Carter-Wegman Universal Hashing

To fight a general adversary we decided to use a (non-deterministic) ran-
domness extractor, i.e., extractor requiring true randomness as an auxiliary
input. This allows us to concentrate only on the analysis of the min-entropy
of our randomness source. Due to a high min-entropy of our source (see
Section 5) we can choose freely from a wide variety of extractors.

First parameter of extractor we should consider is the length d of the
auxiliary random input. In our case this should be considered only in the
context of the randomness efficiency, i.e., we should compare the length of
the output sequence with the amount of randomness in the input, i.e., the
length of the output should be approaching d+ k. Possibly limiting factor of
the initial sequence can be memory of the mobile device, but essentially all
devices with a camera already have memory of size (at least) few megabytes
(few hundreds for contemporary mobile phones) and therefore we are not
limited by a reasonably large auxiliary input that has to be stored (we
consider approx. 1000 bits for our purposes).

Since the absolute value of the true random input is not limiting and
we have a high min-entropy, we can concentrate on the computational effi-
ciency of our extractor. Computing power of mobile devices is still limited
and intensive calculations increase battery exhaustion and thus the compu-
tational efficiency is of critical importance. The amount of true randomness
is limited, and, therefore, we would like to reuse it or use the output of
our extractor instead. A straightforward choice from this point of view are
extractors based on Carter-Wegman universal classes of hash functions.

Definition 4.5 ([CW79]). A class H = {h|h : {0,1}"" — {0,1}"} of hash
functions is universaly iff for every x,y € {0,1}" there are exactly |H|/2™
functions h such that h(x) = h(y).

Theorem 4.6 ([SZ99, I1Z89, IL89]). Let X be a random variable defined
on the sample space S = {0,1}" with probability distribution p having min-
entropy Huo(p) > k, H = {h|h : {0,1}" — {0,1}*72¢} be a universaly
class of hash functions. Let x €r {0,1}" be randomly chosen from {0,1}"
according to p and h be randomly and uniformly chosen from H. Then the
distribution of (h,h(x)) is 27¢ close to the uniform distribution in the trace
distance, i.e. application of a function randomly chosen from H is a k,27°
strong randomness extractor.

As follows from the previous theorem, with each application of the ex-
tractor we loose 2e bits in contrast to the theoretic achievable rate. Note
that this is fixed and independent of n, k and |H| and, therefore, by using
longer input sequence (with higher min-entropy) we may approach the the-
oretic bound arbitrarily. However, this may (depending on the particular
hash function used) increase the computational complexity. Also, if we use
a part of our output as the d auxiliary bits or we reuse original random-
ness, the quality of the output distribution decreases, but by a limited and
well-defined amount.

Theorem 4.7 ([SZ99]). Let X1, Xo,...,X; be independent random vari-
ables defined on the sample space S = {0,1}" with a common probabil-
ity distribution p having min-entropy Hoo(p) > k, H = {h|h : {0,1}" —
{0, 1}*=2¢} be a universaly class of hash functions. Let x; € {0,1}" be ran-
domly chosen from {0,1}" according to X; and h be randomly and uniformly
chosen from H. Then the distribution of (h,h(z1),...,h(x;)) is 127¢ close
to the uniform distribution in the trace distance, i.e. | repeated applications
of a fized function randomly chosen from H is a k,127° strong randomness
extractor.

Choosing Suitable Class of Hash Functions

A straightforward observation shows that any XOR universal class of func-
tions [Sho96] is universaly as well, and, therefore, we may use any of the
classes of hash functions designed for message authentication and heavily
optimized towards computational efficiency. One should be careful when
comparing computational efficiency, since in the case of message authen-
tication only one (secretly) chosen hash function is being computed and

therefore message authentication enables efficient precomputation we can
rely upon only when the hash function is fixed and reused.

In our tests we used the universals class of functions based on shift
registers proposed in [IZ89]:

Let r = rire...rn, © = x122... 2y, z,7 € {0,1}". Let r - x denote the
scalar product of r and z, i.e., r -z = 1 if the parity of XOR(r,z) is odd
and is equal to 0 otherwise. Let r) denotes the left bit rotation of r by I
positions, i.e., r) = r41T142 .. - TpT172 ... 7. We define the m-convolution
of r on x as the bit string r(z)y, =7-z,...,rM .z, ..., rm=D . g

Let p be a prime such that 2 is a primitive root modulo p, let n = p — 1.
Let Cpym = {hy|r € {0,1}P}, where h, : {0,1}" — {0,1}"™ and h,(y) =
r(1 o y)m with o denoting the concatenation of bit strings. The class of
functions C, ,, is universaly [I1Z89].

Implementation of this class is efficient and straightforward — all neces-
sary calculations are scalar product (i.e., bitwise XOR and mod 2 addition)
and bit string rotation.

It is important to set suitable parameters for our application. As a final
output of the extractor we would like to obtain a random sequence that is
at least € = 2754 close to the uniform distribution in the trace distance,
however, we would like to reuse the initial randomness (from the Nokia N73
digital camera) a number of times. For purposes of our testing we use less
than 22° repetitions (what suffices for more than 100 days of extracting),
however, even doubling the exponent to 24° implies only a loss of extra 40
bits per extraction.

Observing Theorem 4.7 we set parameters e = 84 and p = 839 (for ef-
ficiency reasons sufficiently large suitable prime number) what gives m =
k—2e = |loga14-838/4 — 168] = 629, since we expect that the min-entropy
of our source is at least logy 14 and we have 838/4 four-bit samples (see
Section 5). Thus, from each 838 bits of input we extract 629 bits of out-
put (compare to the theoretic optimal value 797 bits) giving the bit rate
approximatively 36 bits of key per second.

5 Analysis of Acquired Random Data

To verify the input of the extractor and its min-entropy we ran a number of
statistical tests on outputs of the function f. To obtain acceptable quality
of the tests on an achievable number of samples (we used 1.5 mil. sample
frames) we output only 4 bits from each frame (16 different values). We
always tested the output for data captured at 8, 20 and 45 degrees Celsius.

10

First battery of tests concentrates mainly on the statistical stability of
the output distribution — i.e., that the output data have all time (even in
different external conditions) almost the same distribution (not necessar-
ily uniform). We applied Pearson’s (x?) goodness of fit test on several se-
quences and subsequences. As the expected distribution we take the relative
frequency of 4-bit values from the whole sequence generated from all 1.5 mil.
sample frames — in our case given by values: 0.0630, 0.0608, 0.0674, 0.0629,
0.0607, 0.0697, 0.0639, 0.0607, 0.0642, 0.0606, 0.0573, 0.0580, 0.0642, 0.0627,
0.0612, 0.0625. As the observed distribution we use the relative frequency of
the 4-bit values from various subsequences — in our case, e.g., given by values:
0.0642, 0.0642, 0.0706, 0.0645, 0.0545, 0.0691, 0.0621, 0.0594, 0.0624, 0.0624,
0.0561, 0.0542, 0.0624, 0.0585, 0.0606, 0.0645. The resulting p-value (in this
particular case 0.22) at the significance level a = 0.01 clearly confirms our
hypotheses that the sequences are at 99% from the same probability distri-
bution.

Consulting the relative frequency we obtained (at the normal tempera-
ture of 20 degrees Celsius) we see that the min-entropy of tested distribution
is approx. 3.984, what is almost the maximum of 4. As a further evidence
of high entropy of our source we calculated the minimum of the Pearson’s
Y2 test of our estimated distribution over all distributions with min-entropy
at most logy 14. Recall that we designed the extractor the way it works for
any distribution with min-entropy at least log, 14. We calculated

. 2
(X (,q)
with p being our estimated distribution. The outcome is y? = 338.9947,
p-value is 2.0167 x 10753, what strongly rejects such a hypothesis.

As a part of our testing we considered other functions f as well. While
it is easy to see that XORing an extra random bit to a given random bit
can only decrease possible bias (or preserve it when the bit is deterministic),
it would be nice to use as few input bits as possible. The reasons for such
an optimization is not only the computational efficiency, but allocation of
resources as well. As already mentioned, in our testing we used only a 4
bit output, but it might be useful to use just a few input bits to design
extractors with higher bit rate, where independence of input data is argued
in the terms of hardware. Our analysis showed that green color behaves
in general more deterministically than red and blue color. Also, XORing
a few pixels together already helps significantly to obtain higher entropy
probability distribution. When comparing function f as described in Section
3, it has only a negligible (improving) impact if we XOR all bits from the

11

pixel color channel instead of using only LSBs. Therefore, a suitable function
f should XOR together bits from several pixel distributed over the frame
and use data from all color channels. On the other hand, it is sufficient to
use LSBs only.

We also verified the design and our implementation of the randomness
extractor (described above) by several statistical tests of the output. In
this case we applied the well-known NIST statistical test suite to 40 MB
output. All sequences passed 15 out of 16 statistical tests (frequency test,
runs test, etc.). We tested division to 100 subsequences at the confidence
level & = 0.01. Passing the test means that a large fraction of subsequences
passed particular sub-tests and also that the resulting p-values have uniform
distribution. The Chi-square (x?) goodness of fit test is used to test the
uniformity as well, but the confidence level is more strict in this case (o =
0.001). The only one exception was “the serial test” that failed due to the
small fraction of passing subsequences — their fraction 0.9500 was lower than
(for 100 subsequences) the expected 0.960150.

6 Conclusion And Future Work

In our paper we describe a true random number generator delivering a bit
string distributed according to a probability distribution very close to the
uniform probability distribution. The initial randomness is acquired partly
as an initial true random bit string and partly as a processed output of a
built-in camera. In the previous analysis we used only a negligible portion
of randomness contained in each frame acquired from the camera. This was
only to allow for a reasonable statistical testing of data, while in practice
much larger amount of data can be obtained from each frame. This would
increase the bit rate significantly.

Another limitation is the sampling rate of 12 frames per second that
can be increased provided independence between data produced from con-
secutive frames is guaranteed, e.g., through a hardware and postprocessing
analysis.

Another area to explore is to select an optimal randomness extractor
from computational complexity point of view, while preserving other re-
quired properties — near-optimal length of the extracted bit string and good
behavior of the extractor when true random data are replaced by almost
random data (or the same true random data are used many times). Fu-
ture research will also concentrate on implementation of various randomness
extractors within the mobile environment and comparison of their perfor-

12

mance.

It is of an independent interest to investigate physical abilities of the
adversary to influence the output of the CCD/CMOS chip at both precise
and wide-area scale, as well as hardware and camera postprocessing based
dependence between individual pixels within a single frame and between
consecutive frames.

Acknowledgments: We acknowledge the support of the research project
of Czech Science Foundation No. 102/06/0711 and the research project
MSM0021622419. Jan Bouda also acknowledges the support of the project
GACR201/06/P338 of the Czech Science Foundation. Authors thank Ludék
Smolik for stimulating discussions and Filip Jurnecka for his help with the
extractor implementation.

References

[BST03] B. Barak, R. Shaltiel and E. Tromer. True random number gen-
erators secure in a changing environment. Cryptographic Hardware and
Embedded Systems (CHES), 2003.

[CWT9] J. L. Carter and M. N. Wegman. Universal hash functions. Journal
of Computer and System Sciences, 18:143-144, 1979.

[GWO96] I. Goldberg, D. Wagner. Randomness and the Netscape Browser.
Dr. Dobb’s Journal, Special issue on Encoding: Encryption, Compres-
sion, and Error Correction, 1996.

[IL89] R.Impagliazzo, L. A. Levin, and M. Luby. Pseudorandom generation
from one-way functions. In Proceeding of the 21st ACM Symposium on
Theory of Computing, 1989.

[IZ89] R. Impagliazzo and D. Zuckerman. How to recycle random bits. In
Proceedings of the 30th IEEE Symposium on Foundations of Computer
Science, pages 248-253, 1989.

[KMCO07] A. N. Klingsheim, V. Moen, K. J. Hole. Challenges in Secur-
ing Networked J2ME Applications. Computer, Vol. 40, pp. 24-30, 2007.
ISSN 0018-9162.

[KSMO07] J. Krhovjak, P. Svenda, V. Matyas. The Sources of Randomness
in Mobile Devices. In Proceeding of the 12th Nordic Workshop on Secure
IT Systems, pp. 73-84, Reykjavik University, 2007.

13

[OS07] G. Lowe. OpenSSL Security = Advisory - OpenSSL
FIPS Object Module Vulnerabilities, 2007. Available at:
http://www.openssl.org/news/secadv_20071129.txt.

[DS08] Luciano Bello. Debian Security = Advisory -~ OpenSSL
predictable random number generator, 2008. Available at:
http://www.debian.org/security /2008 /dsa-1571.

[Sha02] R. Shaltiel. Recent Developments in Explicit Constructions of Ex-
tractors. Bulletin of the EATCS, Vol. 77, pp. 67-95, 2002.

[Sho96] V. Shoup. On fast and provably secure message authentication
based on universal hashing. In Crypto ’96, LNCS 1109, 1996. Available
at: http://www.shoup.net/papers/macs.pdf.

[SMHO5] K. I. F. Simonsen, V. Moen, K. J. Hole. Attack on Sun’s MIDP
Reference Implementation of SSL. In Proceeding 10th Nordic Workshop
on Secure IT Systems, pp. 96-103, Tartu University, 2005.

[SZ99] A. Srinivasan and D. Zuckerman. Computing with very weak random
sources. SIAM Journal on Computing, 28(4):1433-1459, 1999.

14

