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Abstract. Precise monitoring of network traffic can help a lot of netkappli-
cations to improve their functionality. By network monitay, applications can
obtain a better conception concerning flows and packetseondtwork. In conse-
guence, execution of network applications can be realisee mffectively with
such knowledge. To satisfy needs of high-speed network toamg, we have
developed a hardware accelerated netflow probe FlowMonhaddects data
about the network traffic and provides them to the applicat&yer. FlowMon
hardware design contains memories configured in a hierasttigh is similar
to common computer architectures. In order to find the optanafiguration of
such a memory hierarchy in FlowMon, we have analysed infiomabout tem-
poral and spacial localisation of packets in real netwoalfit. Especially, we
developed a simulation model of the cache memory, whichnifleyed appro-
priately, can speed up the netflow processing in FlowMon.

In this report we present our results regarding simulatiothe cache memory.
These results make a crucial framework which helps harddesggners to justify
the FlowMon design.

1 Introduction

1.1 FlowMon

FlowMon [2] processes and works with data in termfi@fvs A flow is a set of packets
each having the same properties (e.g., IP addresses). Vihekl&n receives a packet,
it has to update the respective monitoring information ré¢or the relevant flow. If the
received packet belongs to a flow that is not monitored yagsgtto create a new record
for the respective new flow. Owing to this functionality, Wiglon has to manipulate its
internal memory very frequently. The faster the manipolatvith the memory is, the
more detailed monitoring FlowMon can provide.

Hardware designers of the Liberouter team [1] have decadplement FlowMon
in the environment of memories organised in a hierarchy wisisimilar to that we can
find in present computers [3]. Especially, the most speéitarmemory in such a hier-
archy is the cache memory. Cache memory is a very expensee pf hardware, thus
itis important to know its required capacity which is suffict for the required speed-up
of the design. Information about the currently monitored/ican be managed in such
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a cache memory accelerating the relevant memory operatfahe flow of a currently
received packet is already present in the cache, we sayithatgt. Otherwise, if the
flow of the packet is not managed in the cache, we say themaissaTo verify potential
choices of hardware designers to employ a cache of a patisize, we have simulated
the required functionality of the cache on a real networKitrand we have analysed
the respective number of hits and misses. In general, wedstablished a framework
for analyses of the FlowMon'’s possible speed-up for giveasbf the cache memory.

1.2 Flow

In our model theflow consists of packets, which have the sakag Each packet sent
through the network has a source and a destination IP adainelss source and a des-
tination port, from which it«keyis generated. As the main aim of our simulation is to
analyse potential usage of cache memory inside the Flowhsigd, we do not em-
ploy traditional time-based analysis of network traffic lug rather consider a metric
based on inter-packet distance. In particular, we considenumber of foreign pack-
ets which can be received until the key of a particular floneimoved from the cache.
The resulting measuring technique is based on the notiontef-packet gaps. ap
between the packet and the packeB, both considered related to the same flow (both
having the keX), is defined as the number of those packets having a key elifféom

K which have been received betwetandB.

The main reason for not including timing information of patkeception is inde-
pendence of cache usage on throughput of the line. What isanesal with respect to
the cache usage analysis is the distance of two immediaiityfing packets related
to the same flow. Such information is not affected as much fynty aspects as by
structure of the flow. Therefore our analysis employs ipi@rket gaps.

1.3 Input and output of the simulation and analyses

As the input for the simulation and analyses we have takerm ahdt contained head-
ers of packets from a real traffic sample obtained by FlowMomf10Gb CESNET
backbone mirrored to 1Gb line. The header information weeshmecessed during the
analyses contains the following items:

— for each key (hashed representation of a particular flow):
e number of packets with the same key
e average gap between packets of the key
e minimum and maximum gap between packets of the key
e standard deviation from sizes of the gaps of the key
¢ histogram of the gaps of the key
— for all packets of all flows:
e maximum and minimum gap
e average, weighted average and standard deviation fronvénages of the keys
¢ histogram of all averages, maximums and minimums of the keys
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From histograms created for all packets we have generagpthgmwhich emphasise the
most crucial statistical information.

Finally, concerning the simulation of the FlowMon cache meynwe have anal-
ysed number of hits and misses with respect to differensz¢he cache.

We have processed inputs and established outputs by usrsgtipts described in
Figure 1.

filter.pl I[m

(information about each flow )
Simulation

hitmiss.pl

hits to misses ratio

processingkeys.pl

(packet headers in text format ) Analysis

average.pl

(average, maximal and minimal gaps)

Various types
of graphs

packet headers
in binary format

Fig. 1. Scheme of scripts for netmix simulation and analyses

For explanation of the scripts, see the following sections.

2 Analyses

The file that we have processed has the binary UHN format anthics headers of
packets. As we needed to work with this information and weantbaut that a program
for transforming a binary UHN file to a text file already exjstse decided to use it.
After using this program we got the file with headers in tekfaem. We have imple-
mented scripts which manipulate the data in this textuah&dir We have chosen perl
for encoding of this scripts because it has a good implentientaf regular expressions
and it provides dynamic structures, i.e., an array of unknsize. We have created few
perl scripts which search in the input text, analyses tha datl generates files with
statistics results. These scripts cooperate by inter@cimyg them by pipes.
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2.1 Keys

First script that we implementedfis| t er. pl . This script is looking for the destination
and the source IP address and the destination and the sautcé packets in the input
file. Then it creates keys of the packets from this infornmatieor example, the keys
from the addresses in IPv4 looks like0. 0. 1: 0, 0. 0. 0. 0: 2, where0. 0. 0. 1 is the
source IP addres8,s the source por@. 0. 0. 0 is the destination IP address ahis the
destination port. Each key, created in this way, is managedsingle line of the fil&k
which is sent to the standard output. More particularhg time represents a respective
key of the currently processed packet. We needed to work twéHist of keys more
times, thus we decided to create it once at the beginning.

Filter.pl is capable of working with IPv4 as well as with IPv6 addres3d®e
script can be simply modified for looking for the IPs and thetpof packets in the
input file that is in different format.

2.2 Flow Statistics

Another script igor ocessi ngkeys. pl . This script processes the outpufof ter. pl .
Each of the lines ofk containing the key of a particular packet is numbered by a
unique number. This number represents the order of the imgppacket. Main part of
the script manages two associative hash arfayendA,.

Each item of the first array’q) consists of the flow’s key and the number of the last
flow’s packet. When the key is read from the input, the sciiiygtaks whether the array
A; contains this key. If it does so, the inter-packet gap is tedifrom the number of the
currently processed packet and the previously processdep@aved in the arrady).
Hence, in this way we get the gap between two last packetedfdtv. After that, the
number of the last packet, that was already saved, is raplacaumber of processed
packet. Otherwise the new item Af is created with the key of the processed packet
and its number.

Each item of the second arra&yl) consists of the flow's key, as #y, and of a list.
Lists in Az contain inter-packet gaps, counted for the packets of the e mentioned
in the previous paragraph. In fact, if there is too many fgmgpackets between two
packets of one particular flow, the flow is deleted from theheadn our analyses we
do not delete this flow from the arrady, but if the gap is too long, we set it to zero
(maximal length of the gap is set by the respective scripdmpater).

From the values saved in the arr@y, characteristics of the each single flow are
counted. We are interested in the number of packets in the fromimal, maximal,
and average inter-packet gaps, and standard deviationtfrergaps of the flow. For
each flow a histogram of inter-packet gaps is constructeis.imformation along with
information about the number of all processed packets amddimber of all non-zero
gaps is sent to the standard output. To a specific file, the oémieich can be provided
as a parameter of the script, we can save information abl@eps — i.e., the respective
histogram, the number of zero gaps bigger than allowed maxinaverage standard
deviation, and again the number of all non-zero gaps. If thput file name is not
provided, all this information is also sent to the standargpat.
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2.3 Statistics of Network Traffic

Concerning the network traffic analysis, we focus on the éata which a potential
speed-up caused by increasing the cache memory can be @mylg compute such a
speed-up from cumulative amount of gaps measured w.lit size. Enumeration of the
speed-up is achieved by employing the Amdahl’s Law [4]. Teeagal Amdahl's Law
puts the upper limit on the theoretic speed-up of a parategssing computation with
respect to acceleration achieved due to increasing nunfilpeocessors. A variation of
Amdabhl’s Law can be written in terms of the ratio of cycle ctaurequired to complete
data fetch operations from memory and cache. In our sitnatie speed-up introduced
by the cache depends on the amount of small inter-packet Ghpssmaller are the
gaps — the higher is the speed-up. Precisely, assuming tha cumulative amount of
gaps w.r.t. their size ansithe expected speed-up, we adapt the Amdahl’s equation in
the following way:

s< ——— 1

S heg 1)
where the constant.2 is taken w.r.t. the caching mechanism used in FlowMon. This
equation is implemented in the script to compute the spgetbueach line of the
particular histogram.

Technically, there is a lot of records containing inforroatabout the flows obtained
by thepr ocessi ng. pl script, especially, the output is too long for direct anayEhus,
the data can be further processed by another scripterage. pl . This script browses
the output opr ocessi ngkeys. pl and reads the information such as the average, max-
imum, minimum gap of the flows, etc.

The main part of the script is responsible for generatiorhode histograms (his-
togram of average, histogram of maximum, and histogram efrttinimum gaps).
During browsing the output of thpr ocessi ngkeys. pl three arrays are created by
average. pl , and the information regarding the averages, maximums anighnums,
is consequently added there. Finally, the script genefdgtsgrams from the values
saved in the arrays. Each histogram has five columns eachasirgghthe following
meaning:

from —value, from which the gaps are bigger

to —value, from which the gaps are smaller or equal

amount —amount of the gaps, whose size is between the respectives/aifrom and
to

cumulative — value containing the information of how many gaps havelsizer than
the respective value &b

speed-up — potential speed up of the system, counted according tortidadl’s law (1)
for the respective value @umulative

Besides the above-mentioned histograawsy age. pl also counts and returns dif-
ferent information about the flows. In particular, it alsduras average and weighted
average from the average, maximum and minimum gaps of tHgsaaflows. It in-
cludes also standard deviation computed from averagesrandvieighted averages.



6 Miroslava Kramarekova, Daniel Jakubik, Mar#adnik, and Davidafranek

For counting of the weighted average it is important to knbe weight of the aver-
age of each flow. In particular, when the number of all proeegsmackets i#\ and the

number of the packets of a particular flowNs the weightW is W = N/A. Finally, at

the end of the output stream, information about the avemrag&mum and minimum
number of the packets for each particular flow is returned.

3 Results of the Analyses

We have performed four different analyses, each of whicktisis for a different value
of the maximal allowed gap between two packets of a partidida. The maximal
allowed gap characterises the limit of time of keeping the fltformation in the cache.
We have subsequently analysed the traffic with setting thama allowed gap to the
following values — 100000, 200000, 300000 and 20000000aBge of the observation
that no gap in the analysis has reached the size greater artec20 000 000, we can
interpret some results for this value as if there were naéirfiair the gap size. However,
some of the results could not be interpreted without comata® of the gap size limit.
We have chosen the above mentioned maximal gap numbersatoligista uniform
overview of the cache usage while not keeping the resultifayination overburdened.
To give arough presumption of how the inter-packet gap nunislyelated with inactive
timeout in netflow, we have realised in our experiments tB0P0 gaps agree with cca
1 second long inactive timeout. As the reasons for removiftgnakey from the cache
can be in general independent of time, e.g., insufficienheapace or hash collisions,
maximal allowed gap is more relevant measure for our sinmrlgiurposes than exact
netflow timeout.

3.1 Results independent of the limit of the gap

The input file has contained 14210876 packet headers. Allavhthave been processed
during analyses. These packets have generated 157318&difkeys. For the setting
of our analyses the average number of the packets with the kaynpackets related to
the same flow) is 9, the maximal number is 58567 and the miniadber is 1.

3.2 Differences in results caused by different maximal allwved gaps

There are differences between, e.g., the sizes of averageofhe flows. With respect
to state limitations we do not mention information aboutla73 132 flows, but we
present average of averages and other symmetrisatiotsresgarding the flows. The
results differ with different maximal allowed gaps.

Overall gaps From the scrippr ocessi ngkeys. pl we get two outputs. The first one
contains information about each single flow, second oneafiomt histogram of all gaps
and the summarising information regarding all gaps. Inipaldr, these results abstract
from information about the relation of the gap to the pattcfiow. The summarising
information is the following:
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Zero gaps, which are bigger than the allowed maximum-number of all gaps, whose
size is bigger than the allowed maximum, so their size isseeto ("Zero gaps”
in Table 1)

Average standard deviation — average from standard deviations of all flows

Number of all non-zero gaps— gaps, which are not first gaps (first gaps have still zero
size) or bigger than the allowed maximum ("Non-zero gapsTable 1)

For the real values see the table:

100 000| 200 000| 300 000|20 000 00
Zero gaps 653286 | 454332 | 365983 0
Average standard deviation 7497.16|12459.7517408.91 172625.94
Non-zero gaps 119844581218341212271761 12637744

Table 1. Summary information regarding all gaps

Average gapsWe have counted the average inter-packet gap for each fleen, flom
these averages, we have counted its average, standartateweeighted average and
weighted standard deviation. All these statistical dagesammarised in Table 2.

100 000 | 200 000 | 300 000 |20 000 00
average from averages 4697.135 | 7205.769| 9546.225/135910.321
standard deviation from averages 1013901.36625063.04936029.837908411.376
weighted average 16207.764 | 8535.365|10403.703 58982.495
standard deviation from weighted averages| 10.047 0.055 0.060 0.181
maximum average 199996 199996 | 299980 | 14090749

Table 2. Table of averages taken from statistic information of flows

Next we have created a histogram containing all the valuesemted above. We
have constructed graphs from the histograms establishelifferent maximal allowed
gaps. The graph in Figure 2 is a cut graph of the cumulativeusutnaf gaps, the size of
which has been smaller then the value of the itein histogram (column “cumulative”
in the histogram). The graph in Figure 3 is a cut graph of spgedf the system for
different setting of the average gap. E.qg., the speed-ufhévalue 2000 is counted as
the average gap of the saved flows in the cache (which is 20@@siparticular case).

Maximum and minimum gaps For each flow we also found the maximum and min-
imum inter-packet gap. Again, we have constructed a hiatogf all these maximum
and minimum gaps. In consequence, we have counted the avanagthe weighted
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Fig. 2. Cumulative histogram of gaps

average of the maximum and minimum gaps. Finally, we havadanaximal maxi-
mum gap and maximal minimum gap. It is worth noting that maatimaximum gap
and minimum gap cannot be bigger than maximum allowed gahécorresponding
analysis.

100 000 | 200 000 | 300 000 |20 000 004
maximum gaps averages 9412.004{15563.97721589.499252499.558
maximum gaps weighted averages 44751.03465662.28882708.748379858.459
maximal maximum gap 100000 | 200000 | 299999 | 14128346
minimum gaps averages 2561.761| 3754.443 4823.760 87308.533
minimum gaps weighted averages 916.812 | 1274.784| 1583.018 21086.952
maximal minimum gap 99996 | 1999960 299980 | 14090749

Table 3. Table of maximum and minimum gaps
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Fig. 3. Speed up

4 Run of the Simulation

4.1 Hits and Misses

The aim of FlowMon designers has been to implement in thevienel part a hierar-
chy of memories (cache and DRAM) in order to speed up the wattk thve processed
data. Our scriphi t ni ss. pl simulates the work of the cache memory. The first ver-
sion of this simulation script has been developed as a verglsiprogram. There has
been defined an associative hash array with a constant sitzeabdéments — a natural
representation of the cache memory. The size of this arteydapacity of the cache
memory) can be set by the script parameter. The script réadge from the standard
input step by step (this script has been developed in sucly ghait fits the pipe-style
linking with the scriptfilter. pl). After loading of the key, script checks if the key
is already saved in the array. The reason why this script bas kbieveloped was to
find out how big the cache should be in order to find the optimahiper of cache hits.
There are two global variables in the scriptii+t andni ss. If the currently processed
key is found in the arrayi t is increased, otherwisei ss is increased provided that
the key is added to the cache. If the cache is full, the firsievalf the array is deleted
additionally before adding the key to the cache. After sasfid running of the script
the resulting values of these two variables are printeddstandard output.

During experiments with the above mentioned script we haumd out that the
script needs to employ a more sophisticated method of cggtion of the array. Espe-
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cially, when the script was started with a reasonably higapater value (the length of
the cache), its computation has been too slow. Such a highdimmplexity was caused
by frequent reorganisation of the hash structure to whiehvllues were being saved.
To overcome this problem, we have created a large array ofgsi(containing 999983
items) in which each pointer refers to a smaller array. Asteshe array of pointers is
realised by a hash function. The respective sub-arraysracegsed sequentially.

5 Results of the Simulation

We have made a simple model of the cache and we have simutatRdction. The
model is represented by the script ni ss. pl .

5.1 Hits and misses

We have run the scrigtitmiss.plfor different parameter values representing different
setting of the cache capacity. In other words, this meaffsrdiit numbers of the flows
that can be stored in the cache in the same time. Table 4 sthewgsults obtained
for particular settings of the cache capacity. The righstremlumn represents ratio
of number of hits with respect to number of all packets. Ttsults are visualised by
graphs in Figure 4 and Figure 5.

Table of the hits and the misses
hits misses | ratio

100 857700 |1335317¢ 6,04%
200 866652 (13344224 6,10%
500 5328302| 8882574(37,49%
1000 6474444| 7736432|45,56%
2000 7873891 6336985|55,41%
5000 9729892| 4480984(68,47%
10 000 10803954 3406922|76,03%
15000 11265142 2945734(79,27%
20 000 11524476 2686400(81,10%

Table 4.Table of the hits and the misses

6 Conclusion

6.1 Summary of the Results

Although we have based our analyses on just one sampled mefiaw, the obtained
results show that potential investment in a higher-capaeaithe memory does not bring
the expected overall speed-up of the FlowMon system. Howexreat capacity of the
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Fig. 4. Results of the FlowMon cache simulation
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Fig. 5. Distribution of different cache sizes

cache memory should be exactly used in FlowMon will be moearcfrom more ex-
periments obtained from various samples of real networkdlavis remains for future

work.

6.2 Future Work

In future, we plan to change the scripts in order to enabliectidn of some more in-
formation which currently seems to be needed. However, iouisato develop a robust
conception about the network traffic. In order to realis¢ Weneed to analyse more in-
put data, i.e., various high-rated samples of real netwaffd). We currently encounter
problems with catching such detailed netflow data. Espgcising tcpdump for get-
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ting some new inputs currently does not allow us to catchdighbyte traffic. E.qg.,
when we run tcpdump with parameterspdunp i ethl -s 40 -w traffic. dunp
we encountered /3 of all packets lost. It is obvious, that it is impossible tomtor
the traffic with current software tools. This deficiency itsmlls for a hardware ac-
celeration of the netflow monitoring process. We believe FlawMon with its HW
acceleration will be able to satisfy the needs as our firseexpents show. Any way,
analyses of such incomplete inputs like those presentddsréport can be also very
useful for making a statistical picture about real netwoalfic.
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