
FlowMon Cache Simulation and Analysis of
Inter-Packet Gaps

Miroslava Kramáreková1, Daniel Jakubı́k1, Martin Žádnı́k2, and DavidŠafránek1

1 Faculty of Informatics, Masaryk University Brno, Czech Republic,
{mirka, deny, dawe}@liberouter.org

2 Faculty of Information Technology, Brno University of Technology, Czech Republic,
xzadni00@stud.fit.vutbr.cz

Abstract. Precise monitoring of network traffic can help a lot of network appli-
cations to improve their functionality. By network monitoring, applications can
obtain a better conception concerning flows and packets on the network. In conse-
quence, execution of network applications can be realised more effectively with
such knowledge. To satisfy needs of high-speed network monitoring, we have
developed a hardware accelerated netflow probe FlowMon which collects data
about the network traffic and provides them to the application layer. FlowMon
hardware design contains memories configured in a hierarchywhich is similar
to common computer architectures. In order to find the optimal configuration of
such a memory hierarchy in FlowMon, we have analysed information about tem-
poral and spacial localisation of packets in real network traffic. Especially, we
developed a simulation model of the cache memory, which, if employed appro-
priately, can speed up the netflow processing in FlowMon.
In this report we present our results regarding simulation of the cache memory.
These results make a crucial framework which helps hardwaredesigners to justify
the FlowMon design.

1 Introduction

1.1 FlowMon

FlowMon [2] processes and works with data in terms offlows. A flow is a set of packets
each having the same properties (e.g., IP addresses). When FlowMon receives a packet,
it has to update the respective monitoring information record for the relevant flow. If the
received packet belongs to a flow that is not monitored yet, ithas to create a new record
for the respective new flow. Owing to this functionality, FlowMon has to manipulate its
internal memory very frequently. The faster the manipulation with the memory is, the
more detailed monitoring FlowMon can provide.

Hardware designers of the Liberouter team [1] have decided to implement FlowMon
in the environment of memories organised in a hierarchy which is similar to that we can
find in present computers [3]. Especially, the most speed-critical memory in such a hier-
archy is the cache memory. Cache memory is a very expensive piece of hardware, thus
it is important to know its required capacity which is sufficient for the required speed-up
of the design. Information about the currently monitored flows can be managed in such



2 Miroslava Kramáreková, Daniel Jakubı́k, MartinŽádnı́k, and DaviďSafránek

a cache memory accelerating the relevant memory operations. If the flow of a currently
received packet is already present in the cache, we say thereis ahit. Otherwise, if the
flow of the packet is not managed in the cache, we say there is amiss. To verify potential
choices of hardware designers to employ a cache of a particular size, we have simulated
the required functionality of the cache on a real network traffic and we have analysed
the respective number of hits and misses. In general, we haveestablished a framework
for analyses of the FlowMon’s possible speed-up for given sizes of the cache memory.

1.2 Flow

In our model theflow consists of packets, which have the samekey. Each packet sent
through the network has a source and a destination IP addressand a source and a des-
tination port, from which itskeyis generated. As the main aim of our simulation is to
analyse potential usage of cache memory inside the FlowMon design, we do not em-
ploy traditional time-based analysis of network traffic butwe rather consider a metric
based on inter-packet distance. In particular, we considerthe number of foreign pack-
ets which can be received until the key of a particular flow is removed from the cache.
The resulting measuring technique is based on the notion of inter-packet gaps. Agap
between the packetA and the packetB, both considered related to the same flow (both
having the keyK), is defined as the number of those packets having a key different from
K which have been received betweenA andB.

The main reason for not including timing information of packet reception is inde-
pendence of cache usage on throughput of the line. What is most crucial with respect to
the cache usage analysis is the distance of two immediately following packets related
to the same flow. Such information is not affected as much by timing aspects as by
structure of the flow. Therefore our analysis employs inter-packet gaps.

1.3 Input and output of the simulation and analyses

As the input for the simulation and analyses we have taken a file that contained head-
ers of packets from a real traffic sample obtained by FlowMon from 10Gb CESNET
backbone mirrored to 1Gb line. The header information we have processed during the
analyses contains the following items:

– for each key (hashed representation of a particular flow):
• number of packets with the same key
• average gap between packets of the key
• minimum and maximum gap between packets of the key
• standard deviation from sizes of the gaps of the key
• histogram of the gaps of the key

– for all packets of all flows:
• maximum and minimum gap
• average, weighted average and standard deviation from the averages of the keys
• histogram of all averages, maximums and minimums of the keys



FlowMon Cache Simulation and Analysis of Inter-Packet Gaps 3

From histograms created for all packets we have generated graphs which emphasise the
most crucial statistical information.

Finally, concerning the simulation of the FlowMon cache memory, we have anal-
ysed number of hits and misses with respect to different sizes of the cache.

We have processed inputs and established outputs by using the scripts described in
Figure 1.

Fig. 1.Scheme of scripts for netmix simulation and analyses

For explanation of the scripts, see the following sections.

2 Analyses

The file that we have processed has the binary UHN format and contains headers of
packets. As we needed to work with this information and we found out that a program
for transforming a binary UHN file to a text file already exists, we decided to use it.
After using this program we got the file with headers in textual form. We have imple-
mented scripts which manipulate the data in this textual format. We have chosen perl
for encoding of this scripts because it has a good implementation of regular expressions
and it provides dynamic structures, i.e., an array of unknown size. We have created few
perl scripts which search in the input text, analyses the data and generates files with
statistics results. These scripts cooperate by inter-connecting them by pipes.



4 Miroslava Kramáreková, Daniel Jakubı́k, MartinŽádnı́k, and DaviďSafránek

2.1 Keys

First script that we implemented isfilter.pl. This script is looking for the destination
and the source IP address and the destination and the source port of packets in the input
file. Then it creates keys of the packets from this information. For example, the keys
from the addresses in IPv4 looks like0.0.0.1:0,0.0.0.0:2, where0.0.0.1 is the
source IP address,0 is the source port,0.0.0.0 is the destination IP address and2 is the
destination port. Each key, created in this way, is managed as a single line of the fileFk
which is sent to the standard output. More particularly, this line represents a respective
key of the currently processed packet. We needed to work withthe list of keys more
times, thus we decided to create it once at the beginning.

Filter.pl is capable of working with IPv4 as well as with IPv6 addresses. The
script can be simply modified for looking for the IPs and the ports of packets in the
input file that is in different format.

2.2 Flow Statistics

Another script isprocessingkeys.pl. This script processes the output offilter.pl.
Each of the lines ofFk containing the key of a particular packet is numbered by a
unique number. This number represents the order of the incoming packet. Main part of
the script manages two associative hash arraysA1 andA2.

Each item of the first array (A1) consists of the flow’s key and the number of the last
flow’s packet. When the key is read from the input, the script checks whether the array
A1 contains this key. If it does so, the inter-packet gap is counted from the number of the
currently processed packet and the previously processed packet (saved in the arrayA1).
Hence, in this way we get the gap between two last packets of the flow. After that, the
number of the last packet, that was already saved, is replaced by number of processed
packet. Otherwise the new item ofA1 is created with the key of the processed packet
and its number.

Each item of the second array (A2) consists of the flow’s key, as inA1, and of a list.
Lists in A2 contain inter-packet gaps, counted for the packets of the flow, as mentioned
in the previous paragraph. In fact, if there is too many foreign packets between two
packets of one particular flow, the flow is deleted from the cache. In our analyses we
do not delete this flow from the arrayA2, but if the gap is too long, we set it to zero
(maximal length of the gap is set by the respective script parameter).

From the values saved in the arrayA2, characteristics of the each single flow are
counted. We are interested in the number of packets in the flow, minimal, maximal,
and average inter-packet gaps, and standard deviation fromthe gaps of the flow. For
each flow a histogram of inter-packet gaps is constructed. This information along with
information about the number of all processed packets and the number of all non-zero
gaps is sent to the standard output. To a specific file, the nameof which can be provided
as a parameter of the script, we can save information about all gaps — i.e., the respective
histogram, the number of zero gaps bigger than allowed maximum, average standard
deviation, and again the number of all non-zero gaps. If the output file name is not
provided, all this information is also sent to the standard output.



FlowMon Cache Simulation and Analysis of Inter-Packet Gaps 5

2.3 Statistics of Network Traffic

Concerning the network traffic analysis, we focus on the datafrom which a potential
speed-up caused by increasing the cache memory can be computed. We compute such a
speed-up from cumulative amount of gaps measured w.r.t. their size. Enumeration of the
speed-up is achieved by employing the Amdahl’s Law [4]. The general Amdahl’s Law
puts the upper limit on the theoretic speed-up of a parallel processing computation with
respect to acceleration achieved due to increasing number of processors. A variation of
Amdahl’s Law can be written in terms of the ratio of cycle counts required to complete
data fetch operations from memory and cache. In our situation, the speed-up introduced
by the cache depends on the amount of small inter-packet gaps. The smaller are the
gaps – the higher is the speed-up. Precisely, assuming thatf is a cumulative amount of
gaps w.r.t. their size ands the expected speed-up, we adapt the Amdahl’s equation in
the following way:

s≤
1

(1− f )+ f
2.5

(1)

where the constant 2.5 is taken w.r.t. the caching mechanism used in FlowMon. This
equation is implemented in the script to compute the speed-up for each line of the
particular histogram.

Technically, there is a lot of records containing information about the flows obtained
by theprocessing.pl script, especially, the output is too long for direct analysis. Thus,
the data can be further processed by another script —average.pl. This script browses
the output ofprocessingkeys.pl and reads the information such as the average, max-
imum, minimum gap of the flows, etc.

The main part of the script is responsible for generation of three histograms (his-
togram of average, histogram of maximum, and histogram of the minimum gaps).
During browsing the output of theprocessingkeys.pl three arrays are created by
average.pl, and the information regarding the averages, maximums and minimums,
is consequently added there. Finally, the script generateshistograms from the values
saved in the arrays. Each histogram has five columns each one having the following
meaning:

from – value, from which the gaps are bigger
to – value, from which the gaps are smaller or equal
amount – amount of the gaps, whose size is between the respective values offrom and

to
cumulative – value containing the information of how many gaps have sizelower than

the respective value ofto
speed-up – potential speed up of the system, counted according to the Amdahl’s law (1)

for the respective value ofcumulative

Besides the above-mentioned histograms,average.pl also counts and returns dif-
ferent information about the flows. In particular, it also returns average and weighted
average from the average, maximum and minimum gaps of the analysed flows. It in-
cludes also standard deviation computed from averages and from weighted averages.



6 Miroslava Kramáreková, Daniel Jakubı́k, MartinŽádnı́k, and DaviďSafránek

For counting of the weighted average it is important to know the weight of the aver-
age of each flow. In particular, when the number of all processed packets isA and the
number of the packets of a particular flow isN, the weightW is W = N/A. Finally, at
the end of the output stream, information about the average,maximum and minimum
number of the packets for each particular flow is returned.

3 Results of the Analyses

We have performed four different analyses, each of which is set up for a different value
of the maximal allowed gap between two packets of a particular flow. The maximal
allowed gap characterises the limit of time of keeping the flow information in the cache.
We have subsequently analysed the traffic with setting the maximal allowed gap to the
following values — 100000, 200000, 300000 and 20000000. Because of the observation
that no gap in the analysis has reached the size greater or equal to 20 000 000, we can
interpret some results for this value as if there were no limits for the gap size. However,
some of the results could not be interpreted without consideration of the gap size limit.
We have chosen the above mentioned maximal gap numbers to establish a uniform
overview of the cache usage while not keeping the resulting information overburdened.
To give a rough presumption of how the inter-packet gap number is related with inactive
timeout in netflow, we have realised in our experiments that 200000 gaps agree with cca
1 second long inactive timeout. As the reasons for removing aflow key from the cache
can be in general independent of time, e.g., insufficient cache space or hash collisions,
maximal allowed gap is more relevant measure for our simulation purposes than exact
netflow timeout.

3.1 Results independent of the limit of the gap

The input file has contained 14210876 packet headers. All of them have been processed
during analyses. These packets have generated 1573132 different keys. For the setting
of our analyses the average number of the packets with the same key (packets related to
the same flow) is 9, the maximal number is 58567 and the minimalnumber is 1.

3.2 Differences in results caused by different maximal allowed gaps

There are differences between, e.g., the sizes of average gaps of the flows. With respect
to state limitations we do not mention information about all1 573 132 flows, but we
present average of averages and other symmetrisation results regarding the flows. The
results differ with different maximal allowed gaps.

Overall gaps From the scriptprocessingkeys.pl we get two outputs. The first one
contains information about each single flow, second one contains a histogram of all gaps
and the summarising information regarding all gaps. In particular, these results abstract
from information about the relation of the gap to the particular flow. The summarising
information is the following:



FlowMon Cache Simulation and Analysis of Inter-Packet Gaps 7

Zero gaps, which are bigger than the allowed maximum– number of all gaps, whose
size is bigger than the allowed maximum, so their size is set to zero (”Zero gaps”
in Table 1)

Average standard deviation – average from standard deviations of all flows
Number of all non-zero gaps – gaps, which are not first gaps (first gaps have still zero

size) or bigger than the allowed maximum (”Non-zero gaps” inTable 1)

For the real values see the table:

100 000 200 000 300 000 20 000 000
Zero gaps 653286 454332 365983 0
Average standard deviation 7497.16 12459.75 17408.91 172625.94
Non-zero gaps 119844581218341212271761 12637744

Table 1.Summary information regarding all gaps

Average gapsWe have counted the average inter-packet gap for each flow. Then, from
these averages, we have counted its average, standard deviation, weighted average and
weighted standard deviation. All these statistical data are summarised in Table 2.

100 000 200 000 300 000 20 000 000
average from averages 4697.135 7205.769 9546.225 135910.321
standard deviation from averages 1013901.36625063.04936029.837908411.376
weighted average 16207.764 8535.365 10403.703 58982.495
standard deviation from weighted averages 10.047 0.055 0.060 0.181
maximum average 199996 199996 299980 14090749

Table 2.Table of averages taken from statistic information of flows

Next we have created a histogram containing all the values presented above. We
have constructed graphs from the histograms established for different maximal allowed
gaps. The graph in Figure 2 is a cut graph of the cumulative amount of gaps, the size of
which has been smaller then the value of the itemto in histogram (column “cumulative”
in the histogram). The graph in Figure 3 is a cut graph of speed-up of the system for
different setting of the average gap. E.g., the speed-up forthe value 2000 is counted as
the average gap of the saved flows in the cache (which is 2000 inthis particular case).

Maximum and minimum gaps For each flow we also found the maximum and min-
imum inter-packet gap. Again, we have constructed a histogram of all these maximum
and minimum gaps. In consequence, we have counted the average and the weighted



8 Miroslava Kramáreková, Daniel Jakubı́k, MartinŽádnı́k, and DaviďSafránek

Fig. 2. Cumulative histogram of gaps

average of the maximum and minimum gaps. Finally, we have found maximal maxi-
mum gap and maximal minimum gap. It is worth noting that maximal maximum gap
and minimum gap cannot be bigger than maximum allowed gap forthe corresponding
analysis.

100 000 200 000 300 000 20 000 000
maximum gaps averages 9412.004 15563.97721589.499252499.558
maximum gaps weighted averages 44751.03465662.28882708.748379858.459
maximal maximum gap 100000 200000 299999 14128346
minimum gaps averages 2561.761 3754.443 4823.760 87308.533
minimum gaps weighted averages 916.812 1274.784 1583.018 21086.952
maximal minimum gap 99996 1999960 299980 14090749

Table 3.Table of maximum and minimum gaps



FlowMon Cache Simulation and Analysis of Inter-Packet Gaps 9

Fig. 3.Speed up

4 Run of the Simulation

4.1 Hits and Misses

The aim of FlowMon designers has been to implement in the hardware part a hierar-
chy of memories (cache and DRAM) in order to speed up the work with the processed
data. Our scripthitmiss.pl simulates the work of the cache memory. The first ver-
sion of this simulation script has been developed as a very simple program. There has
been defined an associative hash array with a constant size ofits elements — a natural
representation of the cache memory. The size of this array (the capacity of the cache
memory) can be set by the script parameter. The script reads the line from the standard
input step by step (this script has been developed in such a way that it fits the pipe-style
linking with the scriptfilter.pl). After loading of the key, script checks if the key
is already saved in the array. The reason why this script has been developed was to
find out how big the cache should be in order to find the optimal number of cache hits.
There are two global variables in the script –hit andmiss. If the currently processed
key is found in the array,hit is increased, otherwise,miss is increased provided that
the key is added to the cache. If the cache is full, the first value of the array is deleted
additionally before adding the key to the cache. After successful running of the script
the resulting values of these two variables are printed to the standard output.

During experiments with the above mentioned script we have found out that the
script needs to employ a more sophisticated method of organisation of the array. Espe-



10 Miroslava Kramáreková, Daniel Jakubı́k, MartinŽádnı́k, and DaviďSafránek

cially, when the script was started with a reasonably high parameter value (the length of
the cache), its computation has been too slow. Such a high time complexity was caused
by frequent reorganisation of the hash structure to which the values were being saved.
To overcome this problem, we have created a large array of pointers (containing 999983
items) in which each pointer refers to a smaller array. Access to the array of pointers is
realised by a hash function. The respective sub-arrays are processed sequentially.

5 Results of the Simulation

We have made a simple model of the cache and we have simulated its function. The
model is represented by the scripthitmiss.pl.

5.1 Hits and misses

We have run the scripthitmiss.plfor different parameter values representing different
setting of the cache capacity. In other words, this means different numbers of the flows
that can be stored in the cache in the same time. Table 4 shows the results obtained
for particular settings of the cache capacity. The right-most column represents ratio
of number of hits with respect to number of all packets. The results are visualised by
graphs in Figure 4 and Figure 5.

Table of the hits and the misses
hits misses ratio

100 857700 13353176 6,04%
200 866652 13344224 6,10%
500 5328302 8882574 37,49%
1000 6474444 7736432 45,56%
2000 7873891 6336985 55,41%
5000 9729892 4480984 68,47%
10 000 10803954 3406922 76,03%
15 000 11265142 2945734 79,27%
20 000 11524476 2686400 81,10%

Table 4.Table of the hits and the misses

6 Conclusion

6.1 Summary of the Results

Although we have based our analyses on just one sampled network flow, the obtained
results show that potential investment in a higher-capacity cache memory does not bring
the expected overall speed-up of the FlowMon system. However, what capacity of the



FlowMon Cache Simulation and Analysis of Inter-Packet Gaps 11

Fig. 4.Results of the FlowMon cache simulation

Fig. 5. Distribution of different cache sizes

cache memory should be exactly used in FlowMon will be more clear from more ex-
periments obtained from various samples of real network flows. This remains for future
work.

6.2 Future Work

In future, we plan to change the scripts in order to enable collection of some more in-
formation which currently seems to be needed. However, our aim is to develop a robust
conception about the network traffic. In order to realise that we need to analyse more in-
put data, i.e., various high-rated samples of real network traffic). We currently encounter
problems with catching such detailed netflow data. Especially, using tcpdump for get-



12 Miroslava Kramáreková, Daniel Jakubı́k, MartinŽádnı́k, and DaviďSafránek

ting some new inputs currently does not allow us to catch fullgigabyte traffic. E.g.,
when we run tcpdump with parameterstcpdump i eth1 -s 40 -w traffic.dump
we encountered 2/3 of all packets lost. It is obvious, that it is impossible to monitor
the traffic with current software tools. This deficiency itself calls for a hardware ac-
celeration of the netflow monitoring process. We believe that FlowMon with its HW
acceleration will be able to satisfy the needs as our first experiments show. Any way,
analyses of such incomplete inputs like those presented in this report can be also very
useful for making a statistical picture about real network traffic.

References

1. Liberouter Project. Description of COMBO cards. http://www.liberouter.org/hardware.php
2. Žádnı́k, M. Overview of NetFlow Monitoring Adapter. CESNET Technical Report 8/2004.
3. Žádnı́k, M. NetFlow probe firmware design. http://www.liberouter.org/netflow/design.php
4. Amdahl, G. Validity of the single-processor approach to achieving large-scale computational

capabilities. In Proceedings of AFIPS Conference, volume 30, page 483, AFIPS Press, 1967.


