
Computational Analysis of Large-Scale Multi-Affine ODE Models

J. Barnat, L. Brim, I. Černá, S. Dražan, J. Fabriková, and D. Šafránek
Faculty of Informatics

Masaryk University
Brno, Czech Republic

Email: safranek@fi.muni.cz

Abstract—A biological system as considered in systems
biology is understood in the form of a network of interactions
among individual biochemical species. Complexity of these
networks is inherently enormous, even for simple (e.g., pro-
caryotic) organisms. When modeling and analyzing dynamics
of these networks, i.e., exploring how the species evolve in
time, we have to fight even another level of complexity – the
enormous state space. In this paper we deal with a class of
biological models that can be described in terms of multi-affine
dynamic systems. First, we present a prototype tool for parallel
(distributed) analysis of multi-affine systems discretized into
rectangles that adapts the approach of Belta et.al. [1], [2].
Secondly, we propose heuristics that significantly increase
applicability of the approach to large biological models. Effects
of different settings of the heuristics is firstly compared on a
set of experiments performed on small models. Subsequently,
experiments on large models are provided as well.

Keywords-biological networks; parallel model checking; dy-
namic systems; rectangular abstraction

I. INTRODUCTION

The complexity of molecular mechanisms underlying the
dynamics of living organisms is enormous. The main reason
is not only the number of different biochemical species
participating in huge number of biochemical reactions,
but especially the implicit parallelism – the symphony in
which the reactions compose and collaborate to drive the
organism’s physiology. Integrative study of these complex
compositions is the main challenge of systems biology.

The central interest of systems biology is investigation
of the response of the organism to environmental events
(extra-cellular or intra-cellular signals). Even in procaryotic
organisms, a single environment event causes a response
induced by the interaction of several interwoven modules
with complex dynamic behavior, acting on rapidly different
time scales. In higher organisms, these modules form large
and complex interaction networks. For instance, a human
cell contains in the order of 10,000 substances which are
involved in 15,000 different types of reactions. This gives
rise to a giant interaction network with complex positive and
negative regulatory feedback loops.

The most widely-used modeling frameworks for the anal-
ysis of the dynamics of biological systems are based on the
deterministic continuous approach of ordinary differential
equations [3] (ODE). The reduction of continuous models

to discrete automata by a sequence of reductions, approx-
imations, and abstractions allows formal methods for the
automated analysis of temporal properties to be applied [2],
[4]–[7]. When dealing with large models from systems
biology, standard discrete state-space exploration techniques
do not provide acceptable response times for answering
user queries and high-performance parallel algorithms are
required. Owing to dynamical dependencies among state
variables, the state-space explosion problem arises during
reduction to discrete automata. In general, there are two
reasons for the state explosion – number of state variables
and density of the discretization mesh. In fact, even relatively
small ODE models containing tens of state variables lead to
large automata having millions of states. In other words,
models that represent dynamics of even smaller parts of
complex biological networks usually appear to computer
science as large-scale models.

In this paper we present a prototype tool for parallel
analysis of biological models based on mass action kinetics.
In particular, the tool adapts the rectangular abstraction
approach of multi-affine ODEs mathematically introduced
in [1] and algorithmically tackled in [2], [5]. We contribute
to the domain by means of a scalable algorithm. In par-
ticular, our contribution is three-fold. First, we introduce a
parallel on-the-fly state space generator for the rectangu-
lar abstraction. Second, we propose several heuristics for
reducing the extent of approximation by guiding the state
generator to avoid spurious simulations. Third, we show by
means of experiments how parallelization fights the state
space explosion. To the best of our knowledge, this is the
first attempt to employ parallel techniques for analysis of
rectangular abstractions of general multiaffine systems.

A. Related Work

Rectangular abstraction of multiaffine systems has been
employed in [2] for reachability analysis. The result has
been supported by experiments performed on a sequential
implementation in Matlab. The provided experiments have
showed that for models with 10 variables the reachability
analysis ran out of memory after 2 hours of computation.
This gave us the motivation to employ parallel algorithms.
Moreover, we generalize the analysis method to general LTL
model checking.

It is also worth noting that our abstraction slightly differs
from the approach stated in [2]. In particular, we assume the
abstracted states to be closed rectangles. We do not distin-
guish boundary regions (i.e., facets and their boundaries) as
individual states which in turn gives us exponentially smaller
state space while still preserving almost all trajectories. Such
an approach to rectangular abstraction has been previously
introduced in [8] in the context of piece-wise multiaffine
systems. It is worth pointing out that this approach does not
provide full overapproximation, but overapproximation up
to the set of continuous trajectories of measure zero w.r.t.
the entire solution space.

In our previous work [9] we have dealt with parallel model
checking analysis of piece-wise affine ODE models [10].
The method allows fully qualitative analysis, since in the
piece-wise affine approximation generating of the state space
does not require to numerically enumerate the equations.
Therefore that approach, in contrast to this one, is primarily
devoted for models with unknown kinetic parameters. The
price for this feature is higher time complexity of the state
space generation. In particular, time appears there more
critical than space while causing the parallel algorithms not
to scale well. In the setting of this paper, the employed
abstraction method relies on numerical evaluation of ODEs
at intersection points of the partition mesh. In particular,
the continuous function is evaluated many times in order to
compute the transitions. This is the main reason why the
enumerative method is inevitable.

We assume all the kinetic parameters to be numerically
specified. In such a situation there is an alternative possibility
to do LTL model checking directly on numerical simula-
tions [6], [11]. However, in the case of unknown initial
conditions there appears the need to provide large-scale
parameter scans resulting in huge number of simulations.
On the contrary, the analysis can be naturally generalized
to arbitrary intervals of initial conditions by means of
rectangular abstraction.

II. PRELIMINARIES

A. Biochemical models as multi-affine systems

We can model a system of biochemical reactions in terms
of an ODE system. We consider a special class of ODE
systems in the form ẋ = f(x) where x = (x1, . . . , xn) is
a vector of variables and f = (f1, ..., fn) : Rn → Rn is
a vector of multiaffine functions. A multiaffine function is
a polynomial in the variables x1, ..., xn where the degree
of any variable is at most 1. Variables xi represent concen-
trations of species. Multiaffine ODEs can express reactions
in which the stoichiometry coefficients of all reactants are
at most 1. ODEs can be constructed directly from the
stoichiometric matrix of the biochemical system [12]. An
example of a multi-affine system is given in Figure 1.

A + B
k→ C

dA
dt = −k ·A ·B
dB
dt = −k ·A ·B
dC
dt = k ·A ·B

Figure 1. Example of a multi-affine system

B. Rectangular abstraction of multi-affine systems

Let us consider a bounded part of the phase space of the
ODE system ẋ = f(x) given by an n-dimensional rectangle∏n

i=1[mini,maxi] ⊂ Rn. The ODE model, denoted M,
is given by an ODE system, a set of thresholds θi

j ∈ R
satisfying mini = θi

1 < θi
2 < . . . < θi

ζi
= maxi for

each variable xi, and a set of initial regions. The number of
tresholds specified for the variable xi is denoted ζi, ζi ≥ 2.

Let us denote Ω the set
∏n

i=1{1, . . . , ζi−1}. Each multi-
index α ∈ Ω uniquely labels a rectangle in the phase space
of M. For each α ∈ Ω we use several ways of realization of
α in Rn. The function Re(α) assigns a closed rectangular
subset of Rn (a rectangle) to α, Re(α)df=

∏n
i=1

[
θi

αi
, θi

αi+1

]
.

The notation ReV(α) then denotes the set of vertices
of Re(α), ReV(α)df=

∏n
i=1{θi

αi
, θi

αi+1}. Finally, Rev(α)
denotes a unique point in Rn that represents Re(α),
Rev(α)df=(θ1

α1
, . . . , θn

αn
).

The set of initial regions of M, denoted Inset(M),
is defined as a finite set of k n-dimensional rectangles
[γj
⊥, γj

>] ⊂ Rn such that (γj
⊥, γj

>) ∈ Ω × Ω for each j,
1 ≤ j ≤ k.

Note that every pair α, β ∈ Ω such that ∃1 ≤ j ≤ n. βj =
αj ± 1 and ∀1 ≤ i ≤ n, i 6= j. βi = αi satisfies the equality
||α−β|| = 1 where ||x|| denotes the Euclid norm of x ∈ Rn.
For such α, β we say that Re(α) and Re(β) are neighboring
rectangles. Neighboring rectangles satisfy Re(α)∩Re(β) 6=
∅. The intersection of their realization is a hyperrectangular
facet of dimension (n−1). Let us remind that the inequality
||α−β|| ≤ 1 means either α = β or α, β are just neighboring
rectangles.

Let α, β ∈ Ω be such that ||α − β|| = 1 with 1 ≤
i ≤ n, j ∈ {−1, 1} satisfying βi = αi + j. We denote
of (α, i, j) the outgoing facet of α along xi in direction j,
of (α, i, j)df=Re(α) ∩ Re(β). The notation of V(α, i, j) then
denotes the set of vertices of the respective outgoing facet,
of V(α, i, j)df=ReV(α) ∩ReV(β).

Rectangle Re(α) is called transient if for every solution
of ẋ(t) = f(x) satisfying x(t0) ∈ Re(α) for some t0 ∈ R
there exists t1 > t0 such that x(t1) /∈ Re(α).

C. Rectangular abstraction transition system

The rectangular abstraction transition system (RATS)
corresponding to an ODE model M is a triple (Q, T, I)
where Q ⊆ Ω is the set of states, I ⊆ Q is the set of initial
states, I

df={α ∈ Q | ∃(γj
⊥, γj

>) ∈ Inset(M) : ∀1 ≤ i ≤

n. γj
⊥i

≤ αi < γj
>i
}, and T ⊆ Q × Q is the transition

relation.
The relation T contains only those pairs 〈α, β〉 for which

||α− β|| ≤ 1 and either of the following conditions holds:
1) ||α − β|| = 1 with 1 ≤ i ≤ n, j ∈ {−1, 1} such that

βi = αi+j and there exists v ∈ of V(α, i, j) satisfying
fi(v) · j > 0.

2) ||α − β|| = 0 and ~0 ∈ hull{f(v) | v ∈ ReV(α)}
where hull denotes the convex hull of the given set.

We will often denote the fact 〈α, β〉 ∈ T as α → β.
Moreover, we use the notation α →i,j β to denote 〈α, β〉 ∈
T such that βi = αi + j.

Condition (1) states that there is a transition from α to β if
there exists at least one vertex v of the facet Re(α)∩Re(β)
such that the sign of the respective component of the vector
field agrees at v with the direction of the transition. Note
that multiaffinity guarantees that vector field of any facet
is a linear combination of the vector fields at its vertices.
Therefore we consider just vertices of the outgoing facet.

Condition (2) implies inclusion of the self-loop 〈α, α〉 ∈
T to reflect the possibility of non-transiency of Re(α) if
there exists a fixed point in Re(α). Convex hull, understood
as the minimal convex set containing the vectors at the
rectangle vertices, is used to obtain all possible linear
combinations of the vector field in the rectangle. This is
achieved by taking just the rectangle vertices as the base.

It is known that RATS represents an overapproximation
with respect to trajectories of the original ODE model. For
model checking of RATS we use Linear Temporal Logic
(LTL). Note that LTL can be also directly interpreted on
trajectories of ODE models [6], [11]. Given an ODE model
M we can say thatM satisfies a formula ϕ, writtenM |= ϕ,
only if all trajectories starting at the initial region satisfy
ϕ. In the context of RATS, a formula ϕ is satisfied by
RATS(M), written RATS(M) |= ϕ, only if each execution
starting from any initial state satisfies ϕ. The following
theorem characterizes the relation between validity of ϕ in
the RATS and in the original ODE model.

Theorem 1: Consider an ODE model M and the respec-
tive RATS(M). If RATS(M) |= ϕ then M |= ϕ.

III. A TOOL FOR RATS ANALYSIS

In this section we describe a prototype implementation of
the tool for analysis of rectangular abstraction transition sys-
tems. It is based on DiVinE [13] (Distributed Verification
Environment), a parallel distributed-memory enumerative
model-checking tool.
DiVinE employs aggregate power of network-

interconnected workstations (nodes) to analyze large-scale
state transition systems whose exploration is beyond
capabilities of sequential tools. System properties can
be specified either directly in LTL or alternatively as
processes describing undesired behavior of systems
under consideration (negative claim automata). From the

Cluster
Mutli−Core

Reachability
Analyzer

User

Library

NetworkStorage
State

Generator

Tool

Tool
Services

...Analyzer
LTL MC Simulator

Extension
RATS

Visualizer
SimAff

�
�
�

�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

����
����
����
����

���� �������������� ���������������� ������������

Figure 2. Tool Architecture

algorithmic point of view, the tool implements a variety of
parallel algorithms [14], [15] for cycle detection. By these
algorithms, the entire state space is uniformly split into
partitions and every partition is distributed to a particular
computing node. Each node is responsible for generating
the respective state-space partition on-the-fly while storing
visited states into the local memory.

To adapt DiVinE algorithms for analysis of biologi-
cal models, we have developed a prototype extension of
DiVinE by introducing a new state-space generator. The
new state generator constructs the RATS for a given multi-
affine ODE model. The tool architecture is showed in
Figure 2. Library-level components are responsible for con-
structing, managing and distributing the state space. They
form the core of the tool, and with the only exception of
state generator, they are taken directly from the DiVinE
library. Services of the library are used by the application
components allowing simulation as well as model-checking
analysis of the reachable state space. The tool provides a
graphical interface component SimAff allowing visualization
of the simulation results.

The input model is specified by the following data:
• list of variables,
• list of (multi-affine) ODEs,
• list of partitioning thresholds given for each variable,
• list of initial rectangular subspaces (the union of these

subspaces forms the initial condition),
• Büchi automaton representing an LTL property (this

data is not needed for simulation).
An example of a simple three-variable model representing
a single biochemical reaction A + B → C performed with
rate 0.5 M−1s−1 is showed in Figure 3 on the left. For each
variable there is specified the equation as well as the list of
real values representing individual threshold positions. The
initial condition is defined in this particular case by a single

rectangular subspace stating A ∈ 〈6, 10〉, B ∈ 〈4, 6〉, and
C ∈ 〈0.0001, 2〉. As a consequence, the initial interval set
is a singleton, Inset = {〈〈6, 4, 0.0001〉, 〈10, 6, 2〉〉}.

A. State Space Generator

The state-space generator enumerates RATS on-the-fly
starting in every initial state and therefore the state-space
graph is encoded implicitly by a function that for a given
state returns all its successor states. This function is the heart
of the state generator. The set of initial states is given directly
by all states satisfying the initial condition.

Problem 1: Let M be a multi-affine model with n vari-
ables and Inset(M) the initial condition. We want to
construct the transition system RATS(M) ≡ 〈Q,T, I〉
representing the dynamics of M.

The procedure for computing the successor states for a
state q ∈ Q is the following:

procedure getSuccessorStates(q ≡ 〈l1, ..., ln〉 ∈ Q)
1: init Succs := ∅ {initialize the set of successor states}
2: for i ∈ {1, ..., n} do
3: if decideSelfLoop(q) then
4: Succs := Succs ∪ {q} {add selfloop to q}
5: end if
6: if li + 1 < ζi then {if not at maximal level}
7: init q′ := q
8: init F := of V (q, i, 1)
9: while q′ = q and F 6= ∅ do

10: choose v ∈ F
11: if fi(v) > 0 then
12: q′i := li + 1
13: Succs := Succs ∪ {q′} {transition increasing xi}
14: break
15: end if
16: F := F \ {v}
17: end while
18: end if
19: if li − 1 > 0 then {if not at minimal level}
20: init q′ := q
21: init F := of V (q, i,−1)
22: while q′ = q and F 6= ∅ do
23: choose v ∈ F
24: if fi(v) < 0 then
25: q′i := li − 1
26: Succs := Succs ∪ {q′} {transition decreasing xi}
27: break
28: end if
29: F := F \ {v}
30: end while
31: end if
32: end for
33: return Succs

The algorithm implements the abstraction introduced in
Section II. However, there is one point that requires special
discussion, in particular, the construction of selfloops on
line 3. As it has been stated in Section II, selfloops are
needed to ensure that trajectories converging to some fixed
point are reflected by the abstraction procedure. A necessary
condition for transiency of a rectangle requires computation
of its convex hull. The complexity of optimal algorithm [16]
for convex hull of 2n points in Rn is O(2nbn/2c). Executing
of such a procedure would greatly increase the time com-
plexity of state space generator. Since reachability and safety

analysis do not rely on transiency, the guarding condition at
line 3 can be relaxed to True, thus introducing selfloops
to all states. For temporal safety and liveness analysis we
compromise the decision by the following procedure:

procedure decideSelfLoop(q ∈ Q)
1: for i ∈ {1, ..., n} do
2: init Fu := of V (q, i, 1)
3: init Fl := of V (q, i,−1)
4: init pou := 0, neu := 0, pol := 0, nel := 0
5: while Fu ∪ Fl 6= ∅ do
6: choose vu ∈ Fu and vl ∈ Fl

7: if fi(vu) > 0 then
8: pou := pou + 1
9: else if f(vu) < 0 then

10: neu := neu + 1
11: end if
12: if fi(vl) > 0 then
13: pol := pol + 1
14: else if fi(vl) < 0 then
15: nel := nel + 1
16: end if
17: Fu := Fu \ {vu}, Fl := Fl \ {vl}
18: end while
19: if (pou·pol > 0∧neu+nel = 0)∨(neu·nel > 0∧pou+pol = 0)

then
20: return False
21: end if
22: end for
23: return True

The intuition behind this procedure relies on the fact that
as soon as we detect a variable for which all vertices of
both outgoing facets Fu, Fl share the same derivation sign,
we are sure that the state is transient. In all other cases we
include the possibility of non-transiency by imposing the
selfloop. More precisely, we test for a stronger necessary
condition of transiency of α ∈ Q: If there exists i such that
fi(v) > 0 for all vertices v of Re(α) or fi(v) < 0 for all
vertices v of Re(α) then α is transient.

It is worth noting that the algorithm never exceeds
the minimal and maximal threshold levels of all variables
(the interest box). To guarantee the overapproximation, the
interest box must satisfy the sanity check requiring that
derivations of all variables of the system evaluated in the
vertices of the interest box must point inside the box [1].
If this is not true, the user is given a warning providing
the information stating in which facet of the interest box
the sanity is violated. However, as the effect of this “path
cutting” is localized, for practical simulations it is still
sensible to deal also with models that do not satisfy sanity.
Moreover, it is often quite intricate to find a representative
interest box that satisfies sanity.

In Figure 3 (on the right) there is an example of RATS
generated from the model on the left. Each state α ∈ Q
is displayed in the format Rev(α)1(α1), ..., Rev(α)n(αn).
In the implementation we use multiindices starting from 0
(0 ∼ min).

The procedure getSuccessorStates() has the worst-case
time complexity O(n2n) of generating successors for a given
state in an n-dimensional system. The crucial point comes

VARS:A,B,C

EQ:dA = (-0.5)*A*B
EQ:dB = (-0.5)*A*B
EQ:dC = 0.5*A*B

TRES:A: 0.0001, 6, 10
TRES:B: 0.0001, 4, 6
TRES:C: 0.0001, 2, 4, 6

INIT: 6:10, 4:6, 0.0001:2

Figure 3. Input model example and resulting RATS representing overapproximation of its dynamics

at lines 9 and 22 where the while loop traverses all vertices
of the respective facet. Similar situation occurs at line 5 of
the procedure decideSelfLoop().

In the implementation of getSuccessorStates() we use the
following observation. Let us fix the state q ∈ Q. For any
outgoing facet F = of V(q, i, j), j ∈ {−1, 1}, we can
define the relation Ri ⊆ F × F such that 〈v, v′〉 ∈ Ri ⇔
fi(v) = fi(v′). Additionally, we consider the set of indices
Di

df={k | vk 6= v′k, 〈v, v′〉 ∈ Ri}. Intuitively, Di identifies
those components of v ∈ F on which the value of fi(v)
depends. Note that Di is equivalent to the set of indices of all
variables that appear in the right-hand side of the equation
for dxi

dt . Now to find all different values of fi on F , we
have to check only the subset of F which consists of unique
representatives of the equivalence classes given by Ri. That
way we achieve O(n2d) where d is the maximal number
of different variables appearing in right-hand side of each
equation, 0 ≤ d ≤ n. It is sensible to note that in biological
models d is usually small since the typical chemical species
interact with a restricted subset of other species.

When the condition at line 3 is relaxed to True, the com-
putation does not necessarily need to traverse representatives
of all equivalence classes of facet vertices. Both while loops
are escaped as soon as the condition at line 11 (resp. 24)
is satisfied. However, this is not true for the while loop
of procedure decideSelfLoop() where representatives of all
equivalence classes of vertices must be considered.

B. Abstraction Tuning

When considering the reachable state spaces generated
by the algorithms of Section III-A, they typically include
many trajectories that are not present in the original ODE
model (we speak about spurious trajectories). We employ
two different approaches to treat this problem.

1) Threshold Refinement: The first approach is conser-
vative (in terms of Theorem 1) and decreases the level
of overapproximation while increasing the state space. We
employ the iterative algorithm of threshold refinement as
defined in [2]. In a single iteration the algorithm searches
for points in the state space where nullclines intersect the

threshold lines. In particular, on every line Ci = {v ∈
Rn | ∀j 6= i, 1 ≤ j ≤ n, ∃1 ≤ u ≤ ζj . vj = θj

u}, i ≤ n,
there is identified a point w ∈ C where f(w) = 0. If such
a point exists and moreover lies in the range of the interest
box, a new threshold is added to variable xi. Each effective
refinement step decreases the level of overapproximation of
the reachable set while increasing the number of rectangles.
By iterating the refinement we can either reach a fixed
point (the most precise grid), we can underflow the limit
of floating point precision (thresholds are placed too near
to each other), or we can get stuck in an infinite loop (the
most precise grid cannot be reached). We refer the number
of refinement iterations as the refinement depth.

2) Transition-reducing Approximations: The second ap-
proach is not conservative and it provides systematic re-
duction of the number of successor states by considering
only the most significant ones. The method relies on reduc-
tion of the number of transitions (and therefore reduction
of the reachable state spaces can be also observed). The
quantitative measure by which we decide which transitions
have to be excluded is the transition magnitude. Transition
magnitude characterizes the average concentration increase
in particular variable measured on the respective outgoing
facet. The approach is motivated by the physical behavior
of biochemical reactions running on different time-scales,
in particular, fast reactions cause “immediate” transition of
reaction energy among species while slower reactions appear
to this time-scale as steady [17].

Therefore it is necessary not to loose fast transitions,
but slow transitions can be, to some extent, abstracted out,
while leaving simulations still fruitful. An advantage is a
significant reduction of overapproximation of the reachable
set, a disadvantage is the loss of conservativeness of the
simulation. In particular, the slow transitions are overcharged
by the fast ones causing the trajectories that rely on some
slow transitions to be abstracted out.

For a state α ∈ Q the magnitude of the transition
along variable xi is determined by the magnitude function

D

A

23

1

C

B

Figure 4. Magnitude function on a rectangle in 2D

g(α, i, j) where j ∈ {−1, 1} denotes the transition direction:

g(α, i, j) = avgv∈of V(α,i,j)(max{0, j · fi(v)}))

where avg denotes the arithmetic mean.
The function is computed as the upper bound of the ab-

solute average rate fi(x) taken over the respective outgoing
facet. The motivation for using the mean is the need to
approximately characterize the tendency of flow through the
outgoing facet. In Figure 4 there is showed an example
of magnitude function computation for a 2 × 2 rectangle.
At each vertex there is the vector field with the relevant
projection vectors depicted. If we fix the horizontal axis
for x1 and the vertical axis for x2 then the dimension
(1) belongs to g(α, 2, 1), (2) to g(α, 1, 1), and (3) to
g(α, 1,−1). The transition magnitude for the side DC is
zero because the vector field at both vertices points towards
the inside of the rectangle.

Let us denote χα = max{g(α, i, j) | 0 < i ≤ n, j ∈
{−1, 1}} the maximal transition magnitude evolving from
the source state α. Criterion for enabling the transition α

i,j→ β

is then based on the function hs(α, β, σ) where σ ∈ R is
the significance coefficient, 0 < σ ≤ 1:

hs(α, β, σ) =

{
1 if α

i,j→ β and g(α, i, j) ≥ σ · χα,

0 otherwise.

Generating successors by the decision procedure de-
scribed above requires inevitably traversing through all
vertices of every outgoing facet in order to compute the
transition magnitudes. This must be done at the beginning of
getSuccessorStates() in the way similar to decideSelfLoop().
Thus, we achieve the time complexity O(n2d) with n the
model dimension and d as introduced in Section III-A. To
comment on the space used, to smaller σ corresponds a
smaller reachable state space while increasing the risk that
we loose some behavior of the original continuous system.
In Figure 5 there are depicted state spaces for the model
consisting of two reactions A

k1→ B and C
k2→ D where

k1 = 1 and k2 = 0.1, i.e., the former reaction is running on
a faster time-scale than the latter. Thresholds of all the vari-
ables are set uniformly to 0.0001, 3, 7, 10. In Figure 5(a), the

vertical axis stands for A whereas the horizontal axis stands
for C. Figure 5(b) shows dependency of A (vertical) on
D (horizontal). The example demonstrates that the larger σ
the smaller the state space. When compared with numerical
simulations, both reduced state spaces credibly approximate
the most of trajectories up to the segments colored in red.

However, there can be examples where some significant
behavior is lost by the approximation. This can happen
only when during a sequence of transitions imposed by
fast changes at a particular variable, there occurs also a
significant event in slow variables. In such a situation, the
interesting “slow behavior” can be lost. To overcome this
issue we employ the heuristics strategy that allows also the
slow transitions to occur, while quantifying the occurrence
by a probability distribution based on the magnitude of
transitions outgoing from the given source state. Criterion
of the heuristics is given by the function hp(α, β, σ) which
gives probability of enabling the transition α

i,j→ β:

hp(α, β, σ) =

{
1, if α

i,j→ β and g(α, i, j) ≥ σ · χα,
g(α,i,j)

χα
, otherwise.

Using this heuristics, the fast (significant) transitions are
always enabled whereas the slow ones are randomly chosen
w.r.t. their magnitude. Note that the employed distribution
depends only on local reaction rates. To make the distri-
bution more predicative, we relativize the probability of
enabling a particular transition against the maximal distance
it has to pass through, in particular, the distance between
the two adjacent thresholds bounding the source state on
the variable affected by the transition. For transition α

i,j→ β

affecting xi we denote this distance ∆xi, ∆xi = |θi
βi
−θi

αi
|.

Criterion for the relativizing heuristics is given by the
function hr(α, β, σ):

hr(α, β, σ) =

{
1, if α

i,j→ β and g(α, i, j) ≥ σ · χα,
g(α,i,j)
m·∆xi

, otherwise.

where m = max{ g(α,i,j)
∆xi

| 0 < i ≤ n, j ∈ {−1, 1}} denotes
the maximal relativized rate.

Both heuristics hp and hr result in nondeterministic
behavior of the state space generator. To implement this
randomness correctly in the distributed environment we use
a hash function that returns a unique number reflecting the
particular distribution. That way for each particular state it
is guaranteed that the decision will be the same regardless
on which machine the procedure is executed.

We stress that with heuristics based methods the time
complexity for state space construction is the same as the
deterministic method corresponding to hs. On the other
hand, space complexity is different. For the given σ, the
size of the reachable state space of hp and hr fits between
hs (the smallest variant) and the full version of the algorithm
that gives the largest reachable state spaces.

(a)

full state space σ = 0.3 σ = 0.75 σ = 0.9

(b)

full state space σ = 0.3 σ = 0.5 σ = 0.75

Figure 5. Simulation graphs showing reachable state spaces achieved for different settings of σ

C. Properties Analyzable on RATS

In the similar way like in [6]–[8], [11], we use LTL
formulas with atomic propositions interpreted as constraints
over real numbers to encode properties analyzed on RATS.
In particular, we use propositions in the form xi � θi

j

where � ∈ {≤,≥}. The proposition is satisfied in a state
α ∈ Q only if all points of Re(α) satisfy the constraint
stated by the proposition. In such a setting it holds that
¬(xi ≤ θi

j) = xi ≥ θi
j and vice-versa. Since the rectangles

are closed sets, we cannot naturally interpret constraints
expressing the relations <,>,=, 6=.

In the context of RATS, we usually use LTL model
checking not universally to decide whether a particular
property is satisfied by all paths, but rather existentially to
find a path that satisfies the given property. E.g., one can
explore the model in Figure 5 to check whether from the
given initial condition it is possible to reach a state in which
A ≤ 3. For a single path, such a property can be expressed
F(A ≤ 3). We refer such a formula as the observer. When
we model check a negation of the observer, the formula
G(A ≥ 3), the returned counterexample (if exists) gives us
a path satisfying the observer.

The most elementary properties express safety properties,
an example of which is, in fact, G(A ≥ 3), stating that
a state where the concentration of A is below 3 is not
reachable from the given initial condition. Safety properties
allow us to observe paths on which particular concentration
levels are reached. Properties of this kind are not affected
by the presence or absence of selfloops on particular states.

Another class of properties expresses conditional safety.
An example of an observer for conditional safety is (A ≥
3)U(B ≤ 5) expressing the property that until B falls below
5 the concentration of A keeps above the threshold level 3. In
contrast to the previous properties, conditional safety proper-
ties provide run-time monitors which can express causality
of particular events. Again in this case, the presence of a

selfloop cannot violate verification of the observer. However,
when interpreting the conditional safety observer formula
universally, a selfloop can violate its validity.

Finally there remains a class of liveness properties, e.g.,
FG(A ≤ 1), expressing the observation that A stabilizes
within a certain level. Since liveness properties naturally
require unbounded monotonic time progress, they strongly
rely on the presence of selfloops at non-transient states.

IV. COMPARISON OF THE HEURISTICS

For the comparison of proposed heuristics we chose a
small well known model of the Michaelis-Menten enzyme
complex reaction. The model is based on the chemical
equation S + E
k1

k2
ES →k3 P + E where E denotes

the catalyzing enzyme, S the substrate, P the product, and
ES the intermediate product in which the reaction energy
accumulates.

The reaction rates where set to k1 = k3 = 1.0, k2 = 0.01.
Initial conditions where chosen as S = 50, E = 100, ES =
P = 0. By numeric simulation using the COPASI tool [18]
the area of interest was estimated to be E ∈ 〈0.01, 108〉,
S ∈ 〈0.01, 64〉, P ∈ 〈0.01, 72〉, ES ∈ 〈0.01, 16〉.

This area was partitioned into 4x4x4x3 intervals along the
E, S, ES and P dimensions and further refined to partitions
of 8x8x8x6 and 16x16x16x12 intervals.

With this partitioning the initial region was set to E ∈
〈88, 96〉, S ∈ 〈32, 48〉, ES ∈ 〈0.01, 4〉, P ∈ 〈0.01, 12〉.

To evaluate the quality of each of the heuristics, two
RATSs where generated as reference, a minimal and a
maximal one. The minimal transition system Rmin =
(Qmin, Tmin, Imin) was obtained manually (without using
the state space generator) by numerically computing a
dense set of 74 trajectories starting from the initial region
with the COPASI tool and constructing a RATS from
the data-points. The maximal transition system Rmax =
(Qmax, Tmax, Imax) was obtained directly from our state
space generator by applying the algorithm without any

Figure 6. Exponential growth of states and transitions

abstraction tuning. Each of the heuristics hs, hp, and hr

was then used to construct a RATS Rh = (Qh, Th, Ih) that
was afterwords compared in terms of state and transition
numbers. The minimal RATS Rmin was used to compute the
overaproximated and common sets of states and transitions
as Qo = Qh −Qmin, To = Th − Tmin, Qc = Qh ∩Qmin,
Tc = Th ∩ Tmin. The maximal RATS Rmax was then used
to scale down the numbers into percentages.

To study the influence of refinement depth and parameter
choice, these steps were repeated for each of the partition
variants with values of σ ∈ {0.1, 0.2, . . . , 0.9}, for hs, and
σ ∈ {0.3, 0.6, 0.8, 0.9, 0.93, 0.96, 0.98, 0.99}, for hp and hr.

Experiment results are presented in Figures 6 to 9.
Figure 6 shows how numbers of states and transitions of
Rmin and Rmax keep on growing exponentially with further
refining of the state space. In Figure 7 the scalable use of
hs is shown for parametric reduction of the overall state
space, horizontal axis shows values of σ, vertical axis is
the relativized number of states and transitions (relatively to
Rmax). Figure 8 further extends the results of Figure 7 by
showing that with the growing amount of reduced states,
the portion of underapproximated states (parts of Rmin

not included into the reduced Rh) keeps growing. The last
Figure 9 shows results for hp. As we can see this heuristics
is less scalable and more conservative, the numbers of
underapproximated states and transitions for this heuristics
are around single percentage points (not shown in graphs)
while for hs these can reach to tens of percents.

V. EXPERIMENTS ON MODEL CHECKING

We have conducted several experiments on larger biologi-
cal models to get the intuition to which extent the paralleliza-
tion can provide a significant speed-up. Using our prototype
tool we have performed analysis of an enzyme reaction
modeled in terms of mass action kinetics to demonstrate
how the computation scales with respect to the number of
chemical substances in different settings of heuristics and
threshold refinement depth. Moreover, we have performed
an experiment on a real biological model (an ammonium
assimilation module of E. Coli developed under the FP6
project EC-MOAN (http://www.ec-moan.org). The

Figure 7. hs - common and overapproximated states

Figure 8. hs - underapproximated states

module consists of 42 chemical substances involved in
56 reactions. All experiments have been performed on a
homogeneous cluster allowing computation on up-to 22
nodes each equipped with 16GB of RAM and a quad-core
processor Intel Xeon 2GHz.

A. Enzyme Kinetics Model

Let us recall the Michaelis-Menten model introduced in
Section IV. The model can be refined by adding arbitrary
number of intermediate products in the following way:

S + E
 ES1
 ES2
 · · ·
 ESk → P + E

When S and E are initially set to sufficiently high con-
centration levels (in our case S = 50 and E = 100)

Figure 9. hp - common and overapproximated states

Method employed
Refin. full hs, σ = 0.5 hp, σ = 0.8 hr , σ = 0.8
depth States Trans Result States Trans Result States Trans Result States Trans Result

0 179 668 spurious 124 338 spurious 175 540 spurious 176 554 spurious
1 1587 6534 spurious 468 1208 spurious 1451 4666 spurious 1546 5153 realistic
2 9.8 · 105 3.7 · 106 spurious 2.3 · 105 6.6 · 105 spurious 9.7 · 105 3.3 · 106 realistic 9.5 · 105 3.4 · 106 realistic

Table I
ENZYME OBSERVATION FOR DIFFERENT THRESHOLD REFINEMENT DEPTHS

Time on particular number of cluster processor cores (s)
k States Trans 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 Result
5 3 · 104 8.5 · 104 15.4 4.9 2.7 1.8 1.4 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ found

10 9 · 105 3.2 · 106 > > > 161 119 107 85 72 63 55 53 46 44 40 38 38 ⊥ ⊥ ⊥ found
15 1.6 · 106 6.5 · 106 > > > > > > > > 222 204 177 156 146 129 122 117 110 98 93 found
20 3.2 · 106 1.4 · 107 > > > > > > > > > > > > > > > > 202 180 173 found

Table II
ENZYME OBSERVATION SCALED FOR DIFFERENT NUMBERS OF INTERMEDIATES (USING HEURISTICS hs, σ = 0.5)

while all the other substances are put to zero, then E
and S are consumed by increasing concentration of the
intermediates causing P to grow. Finally, when the whole
S is consumed, E stabilizes back at the initial level. The
behavior observed in the dynamics of E can be expressed
by formula ϕ1 = E > 95 ∧ (E > 95U(E =< 95 ∧
(E <= 95UE > 95))). In the experiments, we have
taken ϕ1 as the observer. Note that since ϕ1 is an observer
for a temporal safety formula, observation of ϕ1 is not
distorted by the overapproximation of transiency. However,
we may still observe a spurious behavior satisfying ϕ1.
Reduction of spurious paths can be realized by refining
the threshold mesh. In Table I there are shown results for
the single-intermediate model, different refinement depths,
and different settings of heuristics. Refinement depth 1 had
around 10 thresholds per variable whereas refinement depth
2 had around 20 thresholds per variable. The experiments
have been performed on one processor. Note that numbers
of states and transitions reflect the size of product automata
(property automaton × model automaton). Identification of
spurious paths has been realized by approximate comparison
against numerical simulations. The experiments show that
the effectiveness of both randomized heuristics is quite
small. To this end, it can be useful to globally decrease the
probability of slow reactions by multiplying it by a constant
λ ∈ (0, 1]. We employed this approach in experiments
provided in Table III.

Table II shows how the computation scales when dis-
tributed on a cluster (all experiments taken with heuristics
hs, σ = 0.5, and refinement depth 1). k denotes the number
of intermediates. ⊥ denotes the computations which did not
provide better times, > stands for computations that took
longer than 300s or ran out of memory. The largest feasibly
analyzable model consisted of 23 variables. Computational
limits of the full algorithm and both randomized heuristics
are captured in Table III (experiments performed on 72
cluster cores, refinement depth set to 1).

σ States Trans Mem Time (s) Result

0.75 6 · 104 4.6 · 105 13 GB 2.3 found
0.5 6.2 · 105 4.2 · 106 18 GB 9 found
0.3 1.2 · 107 1.3 · 108 198 GB 175 found

Table IV
E.COLI MODEL EXPERIMENTS PERFORMED WITH DIFFERENT SETTINGS

OF THE HEURISTICS hs

B. E. Coli Ammonium Assimulation Model

In the E.coli ammonium assimilation model we have
employed the liveness property FGϕ to observe whether a
certain species stabilize at the particular concentration level.
The threshold mesh was set to five thresholds per most of the
species so that the initial region and the required property
could be interpreted on the model. Table IV shows the best
computation times we have achieved by using the heuristics
hs. We were unable to run the full algorithm, since the
cluster memory has been exceeded. It is important to note
that the path which has been found by the model checker
can be a spurious behavior not present in the original system.
To this end, it must be further analyzed. Here we face the
main bottleneck of the model checking approach employed
on rectangular abstractions. Because of the complexity of
the model we cannot provide a suitable comparison of the
returned paths against numerical simulations – as the number
of the simulations required for this aim grows exponentially
with the model dimension. Since we deal with a liveness
property, the result has to be also analyzed on the existence
of false-positive selfloops. In general, we leave for future
work the development of methods which can help us to
identify realistic paths among spurious ones.

VI. CONCLUSION

In this paper we have presented a prototype implementa-
tion of a tool for parallel LTL model checking of multiaffine
ODE models of biological networks. We have introduced
several heuristics that reduce the numbers of transitions and
states needed for the analysis. The heuristics are based on
the idea of considering only most significant transitions
when generating successors of a given state. We have
provided a set of experiments on which the effectiveness

Method employed
k full hp, σ = 0.8, λ = 0.5 hr , σ = 0.9, λ = 0.5

States Trans Time States Trans Time States Trans Time
5 2.1 · 106 1.5 · 107 15.7 9 · 105 3.9 · 106 10.2 8.1 · 105 3.6 · 106 10.3

10 > > > 7 · 108 1.5 · 108 16163 6.2 · 108 1.1 · 108 14507

Table III
COMPUTATIONAL LIMITS OF ENZYME OBSERVATION EXPERIMENTS WITH HEURISTICS hp, hr

of the individual heuristics is compared against numerical
simulations of the model. The most important result is the
fact that in all experiments every heuristics has provided a
scalable technique for reduction of the size of the reachable
state space. Since the heuristics underapproximate the state
spaces of the original continuous systems, we have also
provided an analysis that gives us the information to which
extent the underapproximation takes effect. In general, the
probabilistic heuristics hp, hr have appeared to give very
closed approximations. The heuristics hs provides a power-
ful technique for reduction of the state space at the cost of
more extensive underapproximations.

To show how the algorithms scale in parallel environment,
we have showed several model checking experiments on
large models. The results showed that when requiring a fast
response on a common cluster, we are able to analyze up-to
20-variable models with around 10 thresholds per variable.
When considering models with less thresholds per variable,
we can satisfactorily analyze even larger models.

ACKNOWLEDGMENT

This work has been supported by the FP6 project
No. NEST-043235 (EC -MOAN), by the Academy of Sci-
ences of CR grant No. 1ET408050503, and by Czech
Science Foundation grant No. 201/09/P497.

REFERENCES

[1] C. Belta and L. Habets, “Controlling a class of nonlinear
systems on rectangles,” IEEE Transactions on Automatic
Control, vol. 51, no. 11, pp. 1749–1759, 2006.

[2] M. Kloetzer and C. Belta, “Reachability analysis of multi-
affine systems,” Transactions of the Institute of Measurement
and Control, 2008, in press.

[3] T. Mestl, E. Plahte, and S.W.Omholt, “A mathematical frame-
work for describing and analysing gene regulatory networks,”
Journal of Theoretical Biology, vol. 176, no. 2, pp. 291–300,
1995.

[4] G. Batt, D. Ropers, H. de Jong, J. Geiselmann, R. Mateescu,
M. Page, and D. Schneider, “Validation of qualitative models
of genetic regulatory networks by model checking: analysis
of the nutritional stress response in e. coli,” in Conference on
Intelligent Systems for Molecular Biology, 2005, pp. 19–28.

[5] G. Batt, C. Belta, and R. Weiss, “Model checking liveness
properties of genetic regulatory networks,” in TACAS 2007,
ser. LNCS, vol. 4424. Springer, 2007, pp. 323–338.

[6] R. Donaldson and D. Gilbert, “A model checking approach
to the parameter estimation of biochemical pathways,” in
Computational Methods in Systems Biology CMSB 2008, ser.
LNBI, vol. 5307. Springer, 2008, pp. 269–287.

[7] J. Barnat, L. Brim, I. Černá, S. Dražan, and D. Šafránek,
“Parallel Model Checking Large-Scale Genetic Regulatory
Networks with DiVinE,” in Proc. of From Biology to Con-
currency and Back, ser. ENTCS, vol. 194, no. 3. Elsevier,
2007, pp. 35–50.

[8] G. Batt, C. Belta, and R. Weiss, “Model checking genetic
regulatory networks with parameter uncertainty,” in Workshop
on Hybrid Systems: Computation and Control, ser. LNCS,
vol. 4416. Springer, 2007, pp. 61–75.

[9] J. Barnat, L. Brim, I. Černá, S. Dražan, J. Fabriková, and
D. Šafránek, “On Algorithmic Analysis of Transcriptional
Regulation by LTL Model Checking,” Theoretical Computer
Science, vol. 410, pp. 3128–3148, 2009.

[10] H. de Jong, J. Geiselmann, C. Hernandez, and M. Page,
“Genetic network analyzer: qualitative simulation of genetic
regulatory networks,” Bioinformatics, vol. 19, no. 3, pp. 336–
344, 2003.

[11] A. Rizk, G. Batt, F. Fages, and S. Soliman, “On a continuous
degree of satisfaction of temporal logic formulae with ap-
plications to systems biology,” in Computational Methods in
Systems Biology CMSB 2008, ser. LNBI, vol. 5307. Springer,
2008, pp. 251–268.

[12] M. Feinberg, “Chemical reaction network structure and the
stability of complex isothermal reactors i. the deficiency
zero and the deficiency one theorems,” Chemical Engineering
Science, vol. 42, pp. 2229–2268, 1987.

[13] J. Barnat, L. Brim, I. Černá, P. Moravec, P. Ročkai, and
P. Šimeček, “DiVinE – A Tool for Distributed Verification
(Tool Paper),” in Computer Aided Verification, ser. LNCS,
vol. 4144/2006. Springer, 2006, pp. 278–281.

[14] I. Černá and R. Pelánek, “Distributed explicit fair cycle
detection (set based approach),” in Model Checking Software.
10th International SPIN Workshop, ser. LNCS, vol. 2648.
Springer, 2003, pp. 49 – 73.

[15] J. Barnat, L. Brim, and J. Chaloupka, “From Distributed
Memory Cycle Detection to Parallel LTL Model Checking,”
Electronic Notes in Theoretical Computer Science, vol. 133,
no. 1, pp. 21–39, May 2005.

[16] B. Chazelle, “An optimal convex hull algorithm and new
results on cuttings,” Symposium on Foundations of Computer
Science, vol. 0, pp. 29–38, 1991.

[17] R. Vallabhajosyula and H. Sauro, “Complexity reduction
of biochemical networks,” in WSC ’06: Proceedings of the
38th conference on Winter simulation. Winter Simulation
Conference, 2006, pp. 1690–1697.

[18] S. H. et.al., “Copasi – a complex pathway simulator,” Bioin-
formatics, no. 22, pp. 3067–74, 2006.

