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In this paper a novel tool BioDiVinE for parallel analysis of biological models is presented. The
tool allows analysis of biological models specified in terms of a set of chemical reactions. Chemical
reactions are transformed into a system of multi-affine differential equations. BioDiVinE employs
techniques for finite discrete abstraction of the continuous state space. At that level, parallel analysis
algorithms based on model checking are provided. In the paper, the key tool features are described
and their application is demonstrated by means of a case study.

1 Introduction

The central interest of systems biology is investigation of the response of the organism to environmental
events (extra-cellular or intra-cellular signals). Even in procaryotic organisms, a single environment
event causes a response induced by the interaction of several interwoven modules with complex dynamic
behaviour, acting on rapidly different time scales. In higher organisms, these modules form large and
complex interaction networks. For instance, a human cell contains in the order of 10,000 substances
which are involved in 15,000 different types of reactions. This gives rise to a giant interaction network
with complex positive and negative regulatory feedback loops.

In order to deal with the complexity of living systems, experimental methods have to be supplemented
with mathematical modelling and computer-supported analysis. One of the most critical limitations in
applying current approaches to modelling and analysis is their pure scalability. Large models require
powerful computational methods, the hardware infrastructure is available (clusters, GRID, multi-core
computers), but the parallel (distributed) algorithms for model analysis are still under development.

In this paper we present the tool BioDiVinE for parallel analysis of biological models. BioDiVinE
considers the model in terms of chemical equations. The main features of the tool are the following:

o user interface for specification of models in terms of chemical equations
o formal representation of the model by means of multi-affine ODEs

e setting initial conditions and parameters of the kinetics
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2 BioDiVinE

e setting parameters of the discrete abstraction
e graphical simulation of the discretized state space
e model checking analysis.

As an abstraction method, BioDiVinE adapts the rectangular abstraction approach of multi-affine
ODEs mathematically introduced in [7]] and algorithmically tackled in [17, 5] by means of a parallel
on-the-fly state space generator. The character of abstraction provided by this discretization technique is
conservative with respect to the most dynamic properties that are of interest. However, there is the natural
effect of adding false-positive behaviour, in particular, the abstracted state space includes trajectories
which are not legal in the original continuous model.

The structure of the paper is the following. Section [2] gives a brief overview of the underlying
abstraction technique and the model checking approach. Section [3] presents in step-by-step fashion the
key features of current version of BioDiVinE. Section ] provides a case study of employing BioDiVinE
for analysis of a biological pathway responsible for ammonium transport in bacteria Escherichia Coli.

1.1 Related Work

In our previous work [3] we have dealt with parallel model checking analysis of piece-wise affine ODE
models [14]. The method allows fully qualitative analysis, since the piece-wise affine approximation of
the state space does not require numerical enumeration of the equations. Therefore that approach, in
contrast to the presented one, is primarily devoted for models with unknown kinetic parameters. The
price for this feature is higher time complexity of the state space generation. In particular, time appears
there more critical than space while causing the parallel algorithms not to scale well.

In the current version of BioDiVinE all the kinetic parameters are required to be numerically speci-
fied. In such a situation there is an alternative possibility to do LTL model checking directly on numerical
simulations [[18} 8]. However, in the case of unknown initial conditions there appears the need to provide
large-scale parameter scans resulting in huge number of simulations. On the contrary, the analysis con-
ducted with BioDiVinE can be naturally generalised to arbitrary intervals of initial conditions by means
of rectangular abstraction.

Rectangular abstraction of dynamic systems has been employed in [[17] for reachability analysis. The
method has been supported by experiments performed on a sequential implementation in Matlab. The
provided experiments have showed that for models with 10 variables the reachability analysis ran out
of memory after 2 hours of computation. This gave us the motivation to employ parallel algorithms.
Moreover, we generalise the analysis method to full LTL model checking.

There is another work that employs rectangular abstraction for dynamic systems [6]]. The framework
is suitable for deterministic modelling of genetic regulatory networks. The rectangular abstraction relies
on replacing S-shaped regulatory functions with piece-wise linear ramp functions. The partitioning of
the state space is determined by parameters of the ramp functions. In contrast to that work, we consider
directly general multi-affine systems with arbitrarily defined abstraction partitions.

2 Background

2.1 Modelling Approach

The most widely used approach to modelling a system of biochemical reactions is the continuous ap-
proach of ordinary differential equations (ODEs). We consider a special class of ODE systems in the
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form x = f(x) where x = (x1,...,x,) is a vector of variables and f = (fi,..., fu) : R" — R" is a vector of
multiaffine functions. A multiaffine function is a polynomial in the variables xy, ..., x, where the degree of
any variable is at most 1. Variables x; represent continuous concentrations of species. Multiaffine ODEs
can express reactions in which the stoichiometry coefficients of all reactants are at most 1. The system
of ODEs can be constructed directly from the stoichiometric matrix of the biochemical system [12].
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Figure 1: Example of a multi-affine system

Multi-affine system is achieved from the system of biochemical reactions by employing the law of
mass action. In Figure[I|there is an example of a simple biochemical system represented mathematically
as a multi-affine system. If all the reactions are of the first-order, in particular, the number of reactants
in each reaction is at most one, then the system falls into a specific subclass of dynamic systems — the
resulting ODE system is affine. An example of an affine system is given in Figure 2]
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Figure 2: Example of an affine system

2.2 Abstraction Procedure

The rectangular abstraction method employed in BioDiVinE relies on results of de Jong, Gouzé [[15]]
and Belta, Habets [7]. Each variable is assigned a set of specific (arbitrarily defined) points, so-called
thresholds, expressing concentration levels of special interest. This set contains two specific thresholds
— the maximal and the minimal concentration level. Existence of these two thresholds comes from the
biophysical fact that in any living organism each biochemical species cannot unboundedly increase its
concentration. The intermediate thresholds then define a partition of the (bounded) continuous state
space. The individual regions of the partition are called rectangles. An example of a partition is given in
Figure 3]

The partition of the system gives us directly the finite discrete abstraction of the dynamic system.
In particular, BioDiVinE implements a (discrete) state space generator that constructs a finite automa-
ton representing the rectangular abstraction of the system dynamics. Since the states of the automaton
are made directly by the rectangles, the automaton is called rectangular abstraction transition system
(RATS). The algorithm for the state space generator of RATS has been presented in [2]. The idea be-
hind this algorithm is based on the results [[15| [7]. The main point is that for each rectangle the exit
faces are determined. The intuition is depicted in Figure ] There is a transition from a rectangle to its
neighbouring rectangle only if in the vector field considered in the shared face there is at least one vector
whose particular component agrees with the direction of the transition. The important result is that in a
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Figure 3: Example of a rectangular partition of a two-dimensional system
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Figure 4: Intuition behind the construction of the rectangular abstraction transition system

multi-affine system it suffices to consider only the vector field in the vertices of the face. In Figure 4| the
exit faces of the central rectangle are emphasised by bold lines. In Figure [5 there is depicted the rect-
angular abstraction transition system constructed for the affine system from Figure |3} It is known that
the rectangular abstraction is an overapproximation with respect to trajectories of the original dynamic
system.

There is one specific issue when considering the time progress of the abstracted trajectories. If
there exists a point in a rectangle from which there is no trajectory diverging out through some exit
face, then there is a self-transition defined for the rectangle. In particular, this situation signifies an
equilibrium inside the rectangle. Such a rectangle is called non-transient. For affine systems there is
known a sufficient and necessary condition that characterises non-transient rectangles by the vector field
in the vertices of the rectangle. However, for the case of multi-affine system, only the necessary condition
is known. Hence, for multi-affine systems BioDiVinE can treat as non-transient some states which are
not necessarily non-transient.

2.3 Model Checking

In the field of formal verification of software and hardware systems, model checking refers to the problem
of automatically testing whether a simplified model of a system (a finite state automaton) meets a given
specification. Specification is stated by means of a temporal logic formulae. In the setting of RATS,
model checking can be used in two basic ways:

1. to automatically detect presence of particular dynamics phenomena in the system
2. to verify correctness of the model (i.e., checking whether some undesired property is exactly
avoided)

In the case of dynamic systems we use Linear Temporal Logic (LTL) (see [[10] for details on LTL
syntax and semantics interpreted on automata). LTL can be also directly interpreted on trajectories
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Figure 6: A counterexample contradicting the property of reaching B > 3 in finite time

of dynamic systems (see e.g. [13]] for definition of the semantics). Given a dynamic system S with a
particular initial state we can then say that S satisfies a formula ¢, written S |= ¢, only if the trajectory
starting at the initial state satisfies ¢. In the context of automata, LTL logic is interpreted universally
provided that a formula ¢ is satisfied by the automaton A, written A |= @, only if each execution of the
automaton starting from any initial state satisfies ¢. The following theorem characterises the relation
between validity of ¢ in the rectangular abstraction automaton and in the original dynamic system.

Theorem 2.1 Consider a dynamic system S and the associated RATS A. If A |= ¢ then S |= ¢.

The theorem states that when model checking of a particular property on a RATS returns true, we are
sure that the property is satisfied in the original dynamic system. However, when the result is negative,
the counterexample returned does not necessarily reflect any trajectory in the original system.

The system in Figure |5 satisfies a formula FG(B < 3) expressing the temporal property stating that
despite the choice of the initial state the system eventually stabilises at states where concentration of B
is kept below 3. Now let us consider a formula F(B > 3) expressing the property that despite the initial
settings, the concentration of B will eventually exceed the concentration level 3. In this case the model
checking returns one of the counterexamples as emphasised in Figure[6|stating that if initially A < 5 and
B < 3 then B is not increased while staying indefinitely long in the shaded state.
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Figure 7: BioDiVinE Toolset Architecture

File

BIOCHEMIGAL MODEL | KINETIC PARAMETERS | MATHEMATICAL MODEL |

Reaction name  Chemical equation Rate law

" A->B4C mass action decomplexation

same (unique klen Description (text) | 2e (variable/consta
1A Variable
2B Variable
qe | Variable
l

|
2 _ B0 mass action conversion
3

3 C->B mass action conversion

Figure 8: A biochemical model specified in BioDiVinE GUI

3 BioDiVinE Tool

BioDiVinE employs aggregate power of network-interconnected workstations (nodes) to analyse large-
scale state transition systems whose exploration is beyond capabilities of sequential tools. System prop-
erties can be specified either directly in Linear Temporal Logic (LTL) or alternatively as processes de-
scribing undesired behaviour of systems under consideration (negative claim automata). From the algo-
rithmic point of view, the tool implements a variety of novel parallel algorithms [9, [1] for cycle detection
(LTL model checking). By these algorithms, the entire state space is uniformly split into partitions and
every partition is distributed to a particular computing node. Each node is responsible for generating the
respective state-space partition on-the-fly while storing visited states into the local memory.

The state space generator constructs the rectangular abstraction transition system for a given multi-
affine system. The scheme of the tool architecture is provided in Figure[7} Library-level components are
responsible for constructing, managing and distributing the state space. They form the core of the tool.
The tool provides two graphical user interface components SpecAff — allowing editing of biological
models in terms of chemical reactions, and SimAff — allowing visualisation of the simulation results.

The input (biochemical) model is given by the following data:

e list of chemical species,
e list of partitioning thresholds given for each species,

e list of chemical reactions.
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VARS:A,B,C
EQ:dA = (-0.1)*A
EQ:dB = 0.1%A + (-1)%B + 1%C

EQ:dC 0.1*%A + 1xB + (-1)*C
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INIT:  4:6, 0:2, 2:4

Figure 9: A multi-affine ODE model and its state space generated by BioDiVinE

Figure 10: Visualisation of the state space in the BioDiVinE GUI, states are projected onto the BC
concentration plane

The biochemical model together with the tested property and initial conditions are then automatically
translated into a multi-affine system of ODEs forming the mathematical model that can be analysed by
BioDiVinE algorithms. The mathematical model consists of the following data:

e list of variables,
list of (multi-affine) ODEs,

e list of partitioning thresholds given for each species,

o list of initial rectangular subspaces (the union of these subspaces forms the initial condition),
e Biichi automaton representing an LTL property (this data is not needed for simulation).

An example of a simple three-species model representing three biochemical reactions A — B+ C,
B = C is showed in Figure 8| The first reaction is performed at rate 0.1 s—'. The second two reversible
reactions are at rate 1 s~!. The respective mathematical model is showed in Figure @ on the left in
the textual .bio format. For each variable there is specified the equation as well as the list of real
values representing individual threshold positions. The initial condition is defined in this particular case
by a single rectangular subspace: A € (4,6),B € (0,2), and C € (2,4). The state space generated for
this setting is depicted in Figure [0 on the right. Figure [I0] demonstrates visualisation features of the
BioDiVinE GUI.

For model checking analysis, BioDiVinE relies on the parallel LTL model checking algorithms of
the underlying DiVinE library [4]. A given LTL formula is translated into a Biichi automaton which
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Figure 11: A visualisation of the state-spaces in BC projection with uniform (left) and automatic (right)
gradual threshold refinement, manually augmented by numeric simulation trace from COPASI [[11]]

VARS:A,B,C process LTL_propertyl { process LTL_property2 {
state ql, qg2; state ql, q2;
EQ:dA = (-0.1)%A init qi; init qi;
EQ:dB = 0.1#%A + (-1)%B + 1xC :;::;Zt 92; :ﬁzzzt 923
EQ:dC = 0.1%h + (1)4B + (-1)*C ql -> g2 { guard B>4 && B<4.5 ql -> g2 { guard B>4 && B<4.5
TRES:A: 0. 4. 6. 10 && C>3 && C<3.5; 1, && C>5.5 && C<6; 1},
TRES:B: o: 2: 10 al > qt 1}, qt > ql {3,
TRES:C: 0, 2, 4, 10 a2 > q2 {}; 92 -> a2 i}
e } }
INIT 4:6, 0:2, 2:4 system sync property LTL_propertyil; system sync property LTL_property2;

Figure 12: A multi-affine model extended with a never claim automaton for property 1 and property 2

represents its negation. That way the automaton represents the never claim property. The automa-
ton is automatically generated for an LTL formula and merged with the mathematical model by the
divine.combine utility. An example of a model extended with a never claim property is showed in
Figure [12] In particular, the first automaton LTL_property1 specified in terms of the DiVinE language
represents a never claim for the safety LTL formula G—(B > 4AB <4.5NC >3 AC < 3.5) expressing
that concentrations of species B and C will never enter the specified rectangular region. The unreacha-
bility of a slightly different region is defined by the automaton for property 2. The results of the model-
checking procedure are showed in Figure [I3] Property 1 has been proved false by finding a run of the
system visiting the specified region (states of run given as list), while property 2 has been proved true by
extensively searching all the system runs and not finding any one that would cross the region specified in
property 2.

The choice of threshold values for each variable affects greatly the shape and size of the generated
state-space. The refinement of a given partitioning — the addition of more thresholds to a set of former
thresholds — may result in the unreachability of a part of a region reachable before.

Since manual refinement of thresholds by adding numeric values can be tedious or unintuitive, two
more advanced methods are available in BioDiVinE. The first method divides a given interval uniformly
into subintervals of a given size, while the second method tries a more sophisticated automatic technique
of dividing regions according to signs of the concentration derivatives inside these regions [[17]. The
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--- Accepting cycle --- --- No accepting cycle ---
[pre-initiall states: 33
[4(1),0(0),2(1)-PP:0] transitions: 81
[4(1),2(1),2(1)-PP:0] iterations: 1
[4(1),2(1),3(2)-PP:0] size of a state: 16
[4(1),4(2),3(2)-PP:1] size of appendix: 12
[0(0),4(2),3(2)-PP:1] cross transitions: O
Cycle all memory 56.5 MB

[0(0),2(1),3(2)-PP:1] time: 0.115177 s
[0¢0),2(1),2(1)-PP:1]

0: local states: 33

0: local memory: 56.5

Figure 13: Results of model-checking for property 1 (left), property 2 (middle), visualisation of reachable
(green) and unreachable (red) regions

Time on particular number of cluster processor cores (s)
k States Trans 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72
5 3-10F | 85-10° || 154 49 27 18 14 1 1 1 L L 1 1L L L 1L L L 1L L
relative | speedup 1 3.14 57 856 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1
10 9-10° 3.2-100 T T T 161 119 107 85 72 63 55 53 46 44 40 38 38 L L 1
relative | speedup T T T 1 1.35 1.5 1.89 224 256 293 3.04 35 3.66 4.03 424 424 € 1 1
15 1.6-10° | 6.5-10° T T T T T T T T 222 204 177 156 146 129 122 117 110 98 93
relative | speedup T T T T T T T T 1 1.09 125 142 152 172 182 1.9 202 227 239
20 || 3.2-10° | 1.4-107 T T T T T T T T T T T T T T T T 202 180 173
relative | speedup T T T T T T T T T T T T T T T T 1 .12 1.17

Figure 14: Scaling of model checking algorithms on a homogeneous cluster

state-spaces resulting from the gradual application of both threshold refinement approaches are depicted
in Figure It is important to mention that the overall size of the state-space depends exponentially on
the number of thresholds for all species. However, in some cases the actual reachable subspace of the
whole state-space may be only polynomial in the number of thresholds.

For any multi-affine model extended with a never claim automaton as showed in Figure [I2] the
parallel model checking algorithms can be directly called.

We have performed several experiments [2] in order to show scaling of the algorithms when dis-
tributed on several cluster nodes. Figures [I4] and [T5] show scaling of model checking conducted on a
simple model of a reaction network representing a catalytic reaction scaled for different numbers of
intermediate products.

4 Case Study: Ammonium Transport in E. Coli

In this section we present a case study conducted using the current version of BioDiVinE. Since the
rectangular abstraction method of multi-affine systems implemented in BioDiVinE is a relatively new
result of applied control theory, its application is still in the stage of experimentation. In fact, we are
still unaware of any case studies that apply this method to real biological models. In this case study
we focus on demonstrating the usability of rectangular abstraction to analysis of biological models.
To this end, we consider a simple biological model that specifies ammonium transport from external
environment into the cells of Escherichia Coli. This simplified model is based on a published model
of the E. Coli ammonium assimilation system [19] which was developed under the EC-MOAN project
(http://www.ec-moan.org). The metabolic reactions and regulatory reactions in the original model
were removed.
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Figure 15: Scaling of model checking algorithms on a homogeneous cluster, X-axis shows number of
cluster nodes, Y-axis gives speedup relative to system size and number of nodes

4.1 Model Description

E. coli can express membrane bound transport proteins for the transportion of small molecules from
the environment into the cytoplasm at certain conditions. At normal ammonium concentration, the free
diffusion of ammonia can provide enough flux for the growth requirement of nitrogen. When ammo-
nium concentration is very low, E. coli cells express AmtB (an ammonia transporter) to complement the
deficient diffusion process. Three molecules of Am¢B (trimer) form a channel for the transportation of
ammonium/ammonia. Protein structure analysis revealed that AmtB binds NH4™ at the entrance gate of
the channel, deprotonates it and conducts NHj3 into the cytoplasm as illustrated in Figure [16] (left) [16]].
At the periplasmic side of the channel there is a wider vestibule site capable of recruiting NH, I cations.
The recruited cations are passed through the hydrophobic channel where the pKa of NH," was shifted
from 9.25 to below 6, thereby shifting the equilibrium toward the production of NH3. NHj is finally
released at the cytoplasmic gate and converted to NH; because intracellular pH (7.5) is far below the
pKa of NHI .

In addition to the above mentioned AmtB mediated transport, the bidirectional free diffusion of the
uncharged ammonia through the membrane is also included in the simplified model. The intracellular
NH4+ is then metabolised by Glutamine Synthetase (GS). The whole model is depicted in Figure
(right). The external ammonium is represented in the uncharged and charged forms denoted NHzex and
NH4+ ex. Analogously, the internal ammonium forms are denoted NH3in and NH4+ in. The biochemical
model that combines AmtB transport with NH3 diffusion is given in Table[I] The kinetic parameters are
based on the values in the original model.

By employing the law of mass action kinetics the reaction network is transformed into the set of
multi-affine ODEs as listed in Table Since we are especially interested in how the concentrations
of internal ammonium change with respect to the external ammonium concentrations, we employ the
following simplifications:

e We do not consider the dynamics of the external ammonium forms, thus we take NHzex and
NH, ex as constants (the input parameters for the analysis).
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Figure 16: E. Coli ammonium transport mechanism and the respective pathway

AmtB + NHyex 2% AnuB - NH, ky=5-108,ky = 5-103
AmtB: NHy % AmtB : NH; + H,, ks = 50
AmtB : NHy ™ AmtB + NHsin ks = 50
NHayin 2 ks = 80
NHsin + Hy, 5 NH,in ke =1-10'5 k7 = 5.62-10°
NHzex &5 NHyin ks = ko = 1.4-10°

Table 1: Biochemical model of ammonium transport

o We assume constant intracellular pH (7.5) and extracellular pH (7.0), thus H,, and H;, are calcu-
lated to be 3-10~% and 10~7. Based on the extracellular pH and the total ammonium/ammonia
concentration, concentrations of NHzex and NH, I ex can be calculated.

Without the loss of correctness, we simplify the notation of the cation NH, 4+ as NHy.

4.2 Model Analysis

From the essence of biophysical laws, it is clear that the maximal reachable concentration level accu-
mulated in the internal ammonium forms directly depends on the ammonium sources available in the
environment. However, it is not directly clear what particular maximal level of internal ammonium is
achievable at given amount of external ammonium (distributed into the two forms). In the analysis we
have focused on just this phenomenon. More precisely, the problem to solve has been to analyse how

dAmiB — _k\-AmtB-NHyex+ky-AmtB : NHy +ky- AmtB : NH;
AAmBNH; — k3 - AmtB : NHy — ks - AmtB : NH;
w =ky-AmtB-NHyex —ky - AmtB : NHy — k3 - AmtB : NHy
NI — ko . AmtB : NHs — k7 - NHsin + ke - NHain

dNZ4in = ks - NHyin+ k7 - NHzin - H;, — ke - NHyin

Table 2: Mathematical model of ammonium transport
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Partition | AmtB AmtB:NH3; AmtB:NH,; NHizin NHuin
(1) 7 3 3 6 4
(2) 7 9 3 8 26

Table 3: Numbers of thresholds in partitions (1) and (2)

the setting of the model parameters NHzex and NH I ex affects the maximal concentration level of NH3in
and NH," in reachable from given initial conditions.

During discussions with biologists we have found out that there is currently not available any in
vitro measurement of the AmtB-concentration (and also the concentrations of dimers AmtB : NH3 and
AmtB : NHy). Hence there has appeared the need to analyse the model with uncertain initial conditions.
Such a setting fits the current features of BioDiVinE, especially the rectangular abstraction that naturally
abstracts away the exact concentration values up to the intervals between certain concentration levels.

4.2.1 Maximal reachable levels of internal ammonium forms

At first, we have considered the (abstracted) initial condition to be set to the following intervals between
concentration values:

AmtB € (0,1-107°), AmtB:NHs € (0,1-107%), AmtB:NH, € (0,1-107°),
NHzine (1-17%1.1-107%), NHin€ (2-1075,2.1-107°)

Note that the upper bounds as well as the initial intervals of internal ammonium forms have been set
with respect to the available data obtained from the literature.

We have considered two rectangular partitions. The partition (1) has been set basically according
to the initial conditions. The partition (2) has been obtained by running one iteration of the automatic
threshold refinement procedure to partition (1). Numbers of thresholds per each variable are given in
Table 3

We have conducted several model checking experiments in order to determine the maximal reachable
concentration levels of NHiin and NHI in. In particular, we have searched for the lowest a satisfying
the property G(NHiin < o) and the lowest 8 satisfying G(NHgin < ). The property Gp requires
that all paths available in the rectangular abstraction from the states specified by the initial condition
must satisfy the given proposition p at every state. Note that if the model checking method finds the
property Gp false in the model, it also returns a counterexample for that. The counterexample satisfies
the negation of the checked formula, which is in this case F—p. Interpreting this observation intuitively
for the given formulae, we use model checking to find a path on which the species NHjin (resp. NHyin)
exceeds the level o (resp. ).

We did not want to get precise values of o, 3, but we rather wanted to get their good approximation.
At the starting point, we substituted for o (resp. ) the upper initial bounds of the respective variables.
Then we found the requested values by iteratively increasing and decreasing o (resp. 3). The obtained
results are summarised in Table (4l

The results have shown that NH5in does not exceed its initial level no matter how the external am-
monium is distributed between NHzex and NH, I ex. The upper bound concentration considered for both
NHjex and NH4% ex has been set to 1- 10~ which goes with the typical level of concentration of the gas
in the environment.

In the case of NH4in we have found that the upper bound to maximal reachable level is in the in-
terval B € (5.3-107%,5.4-10~*). Since the counterexample achieved can be a spurious one due to the
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Partition (1) Partition (2)

o G(NHsin < @) | # states | Time (# nodes) || G(NHsin < o) | # states | Time (# nodes)
1.1-10°° true 1081 0.36s (1) true 1.5-10° 195 (18)

B G(NHyin < B) | #states | Time (# nodes) || G(NHsin < 8) | #states | Time (# nodes)
1-1073 true 2161 0.45s (1) true 1.6-10° 25 (18)
5-107* false 4753 1.95s (1) false 2.7-10° 35(18)
6-107* true 2161 0.43s (1) true 1.5-10° 1.8s(18)
54.107* true 1441 0.27 s (1) true 2.1-10° 4.25(18)
53.107* false 3421 1.2s(1) false 2.7-10° 2.25(18)

Table 4: Experiments on detecting maximal reachable levels of internal ammonium forms

Partition (1) Partition (2)
NHjex [0} # states | Time (# nodes) [0} # states | Time (# nodes)
19.5-10°% | true 901 0.22s (1) true | 1.4-10° 1.95 (36)
19.6-10~* | false | 1261 0.6 (1) false | 3.4-10° 5.9 5 (36)

Table 5: Experiments on detecting NHzex levels affecting maximal reachable NHsin

overapproximating abstraction, the exact maximal reachable value may be lower. To this end we have
conducted several numerical simulations which give us the argument that our estimation of f3 is plausible.

4.2.2 Dependence of stable internal ammonium on changes in external conditions

In the second experiment, we have focused on determining how much external ammonium have to be
increased in particular form in order to stimulate N H3in to exceed the considered initial level. The setting
of partitions and initial conditions has been considered the same as in the previous experiments.

First, we have varied the constant amount of NHzex to find at which level of NHzex the maximal
reachable level of NHsin is affected. More precisely, we have observed for which setting of NHiex
the property ¢ = G(NHzin < 1.1-107%) is true and for which it is not. The relevant experiments are
summarised in Table We have found out that if NHzex is set to 19.6-10~* or higher level then
NHsin increases above the upper initial bound 1.1-107%. The counterexamples returned again agree
with numerical simulations.

Finally, we have varied the amount of NH,"ex in order to find at which level of NH, ex the maximal
reachable level of NHzin is affected. The results presented in Table [f] give us the conclusion that despite
the level of NH4+ ex (checked up to 10'?), the maximal level reached by NHsin remains the same. In
particular, NH3in does not exceed the initial bounds.

Partition (1)
NHjex ¢ | #states | Time (# nodes)
1 true 901 0.25s (1)
1-10'2 | true | 901 0.25s (1)

Table 6: Experiments on detecting NH, I ex levels affecting maximal reachable NHiin
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4.2.3 Performance

All the experiments have been performed on a homogeneous cluster allowing computation on up-to 22
nodes each equipped with 16GB of RAM and a quad-core processor Intel Xeon 2GHz. The model we
have dealt with contained 5 dynamic variables and 2 constants. With partition (1) the generated state
space had maximally 4753 states and with partition (2) maximally 3.4 - 10°. When trying to run one
more step of automatic partition refinement, the number of thresholds exceeded the memory reserved for
storing of the mathematical model. Note that the model has to be stored in the memory of each node.
Only the state space is distributed over the cluster.

5 Conclusion

In this paper, we have presented the current version of BioDiVinE tool which implements rectangular
abstraction of continuous models of biochemical reaction systems. The tool provides the framework for
specification and analysis of biochemical systems. The supported analysis technique is based on the
model checking method. Linear temporal logic is used for encoding of the properties to be observed on
abstracted systems.

The tool provides parallel model checking algorithms that allow fast response times of the analysis.
We have provided a case study on which the key features of the tool are demonstrated. The case study
has showed that the tool can be used for quickly getting the approximation of maximal reachable con-
centration levels of individual species in the model. In general, we have analysed the model with respect
to the set of safety properties which are technically tackled by construction of the state space reachable
from the given initial states. We have found out that the main advantage of the rectangular abstraction is
the possibility to analyse the system with uncertain initial conditions.

The current drawback of the abstraction method is strong overapproximation of non-transient states
in multi-affine systems. In consequence, analysis of liveness kind of properties (e.g., oscillations, insta-
bility) is infeasible because of large amount of spurious counterexamples that come from false identifica-
tion of non-transient states. However, this is not the case for affine systems on which liveness properties
can be checked without these problems. Since the analysed systems are typically non-affine, we can still
employ the liveness checking on their linearised approximations. However, by the linearisation process
the precision of the analysis is significantly reduced. Improving the tool in these aspects requires further
research.

In general, we leave for future work the development of methods for identification of spurious paths.
We think that one of the promising directions in using the discrete abstractions for analysis of biologi-
cal models is employing the model-checking-based analysis for extensive exploration of properties. In
particular, instead of returning only one path, the model checker should provide a set of paths. In this
directions we aim to continue the research.
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