
M A C E K 1.0.2
.

“MAtroids Computed Efficiently” Kit
Macek version 1.0.2, manual version 0.999.

10 February 2003

Petr Hliněný

(Developed with help of Geoff Whittle, Victoria University, and the Marsden Fund of New Zealand.)

Copyright c© 2001,2002,2003 Petr Hliněný.

This program is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but without any warranty ;
without even the implied warranty of merchantability or fitness for a particular purpose.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
MA 02111-1307 USA.

i

Table of Contents

1 Overview of Macek . 1
1.1 Using Macek . 1
1.2 About Version 1.0 . 1

2 Quick-Start. 3
2.1 Installation of Macek . 3
2.2 Run the Program . 3
2.3 Matrices and Frames . 4
2.4 Examples of Use . 6

3 The Macek Program . 7
3.1 Command-line Arguments . 7
3.2 Frame Input . 7
3.3 Program Output . 8
3.4 Error Reporting . 8
3.5 Program Environment . 9
3.6 Partial Fields . 9

4 Frames – Data Handling 11
4.1 General Input Syntax . 11
4.2 Matrices and their Entries . 12
4.3 Matroid Representations . 14
4.4 Subframes . 15
4.5 Addressing the Frame-tree . 15
4.6 Macro Substitutions . 18

5 Frame Options . 21
5.1 Inheritance of Option Values . 21
5.2 Naming the Frames . 21
5.3 Options for Substitutions . 22
5.4 Adding and Erasing Options . 22
5.5 Options for Generating Extensions. 22
5.6 Other Options . 23

ii Macek manual

6 Frame Commands . 25
6.1 Command Overview . 25
6.2 Printing Commands . 26
6.3 Writing to Files . 26
6.4 Reading Frames . 27
6.5 Manipulating Frames and Matrices . 27
6.6 Structural Matroid Functions . 28
6.7 Generating Extensions . 30
6.8 Working in Different Partial Fields . 33
6.9 Command-Flow Control . 33
6.10 Command-output Filtering . 34
6.11 Procedures – Collecting Commands . 34

7 Practical Macek Computations 37
7.1 R10 as a Splitter for Regular . 37
7.2 Extending F7 in Binary . 37
7.3 Extending K5 in Binary . 38
7.4 Ternary vs. Regular extensions . 38
7.5 Extending F7 in Quaternary . 38
7.6 Examining Near-Regular Extensions . 39
7.7 Extending Whirls . 39
7.8 Branch-Width 3 . 39
7.9 Binary Excluded Minors for Branch-Width 3 40
7.10 Ternary Excluded Minors for Near-Regular 42

8 Remarks . 45
8.1 Program Reliability . 45
8.2 Troubleshooting . 45
8.3 Adding Functions to Macek . 46
8.4 Acknowledgements . 46

Index . 47

Chapter 1: Overview of Macek 1

1 Overview of Macek

The Macek Project has been developed primarily for math researchers in matroid theory.
(If you do not know what matroid theory is, then the package is likely not for you.) This
project is intended both to help with usual tiresome matroid routines, and to allow for long
exhaustive computations over matroid classes. We suggest potential users to read the book
[J.G. Oxley, Matroid Theory, Oxford University Press 1992,1997]. The project web page
with recent updates can be found at http://www.mcs.vuw.ac.nz/research/macek/.

So far, the project deals with matroids represented by matrices over finite fields and
partial fields. Many common matroids are distributed with the program, and new ones
may be easily entered. There are various tools for handling matroids, their matrices, and
sets of matroids. One may pivot matrices, delete or contract matroid elements, and generate
3-connected extensions for matroid representations. Structural tests for minors, equivalence,
connectivity, branch-width, etc, are also provided in the project. You may read about the
theoretical background of the Macek Project in [P. Hlineny, Practical Computations with
Representable Matroids, manuscript 2002].

However, there are certain limitations to the computing power of Macek — following from
the fact that only represented matroids are handled in the program, and from theoretical
problems with inequivalent matroid representations over larger fields, etc. So be careful and
read the documentation thoroughly.

More functions are planned for the future. . .

1.1 Using Macek

The Macek package can be used on (almost) any computer platform with the GNU
C compiler, relevant C libraries and development environment, and the basic set of GNU
utilities. All these required programs are free for anybody – see http://www.gnu.org.
More about supported platforms is in Section 2.1 [Installing], page 3. (No support for M$
Windows is provided; however, there are no major design reasons why the program would
not compile and work there after few adjustments.)

When considering the Macek program, do not expect anything like a graphical user-
interface. The program provides only a rich command-line (non-interactive) interface, with
some basic internal scripting capabilities. (Given the nature of the program, and also that
of matroids, a graphical interface would not be much use anyway.) So forget your mouse and
use the keyboard! For more complicated batch-computations, you should call the Macek
program within a suitable external scripting language, like a unix shell.

Many of the computations in Macek are exponential, even in their nature, and so they
may take quite long time. However, usually matroids on up to about 20 elements can
be handled in reasonable computing time on a usual modern PC computer. The memory
requirements of the program also grow exponentially for certain computations, but this
should not cause serious problems in modern computers with 64MB or more.

1.2 About Version 1.0

The Macek project started during 2001, and the first stable public release was version
0.8 in March 2002. The minor version 0.8.2 is the last one in that branch. The following

http://www.mcs.vuw.ac.nz/research/macek/
http://www.gnu.org

2 Macek manual

development branch 0.9.x have brought many updates and speed-ups to the program, and
have resulted in a new stable branch 1.0 in August 2002.

The main improvements in version 1.0 are these:
More information about matroid properties, now also including connectivity. Sec-
tion 6.2 [Printing], page 26.
Cleaner and faster algorithms are now used for various structural functions, mainly for
minor and equivalence testing. Section 6.6 [Structural], page 28.
Better organized canonical check in extension generating, which makes extensions of
large matrices much faster. Section 6.7 [Generating], page 30.
Some limited program-flow capabilities for internal scripting in Macek. Section 6.9
[Com-Flow], page 33.
Confusing atomic matrix-entry expressions like a − 1 in ‘-a-1’ are no longer scanned
from the input. That means, ‘-a-1’ is read really as −a−1 = −(a+1). Unfortunately,
this may cause some problems when reading matrices written by an earlier version of
Macek over partial fields like NREG or GMEAN . Section 4.2 [Matrix-Entry], page 12.

Chapter 2: Quick-Start 3

2 Quick-Start

This chapter contains installation instructions for the Macek package, and a brief intro-
duction to using the program. It is intended for those who want quickly see the program in
action, without reading the long manual first. Consult also the file ‘doc/QUICKSTART’ for
up-to-date information. We provide examples demonstrating the basic parts and concepts
of the program. However, if you want to understand these examples (and the program
itself) in depth, then there is no other way than to read the whole manual. . .

2.1 Installation of Macek

We briefly describe how to install the Macek package on your computer. This descrip-
tion is prepared mainly for skilled computer users. If you have problems following these
instructions or obtaining the required GNU programs, better ask your computer specialist.
No knowledge of matroids is necessary to install the package.

The Macek package can be used on almost any computer platform with the GNU C
(gcc) compiler, relevant C libraries and development environment, and the basic set of
GNU utilities (at least gmake, flex). All these required programs are free for anybody –
get them from http://www.gnu.org or other mirrors. No C++ compiler/development is
necessary. In particular, Linux and other unix-clones, with GNU C development and GNU
utils installed, would work fine. The list of the current “officially” supported platforms can
be found in the file ‘doc/SUPPORTED’ of the Macek package.

First create a subdirectory ‘macek’, copy the package archive to it, and unpack the
archive with tar / gzip. To obtain a current documentation, read the files in the ‘doc’
subdirectory, or type ‘gmake info’ in the top directory. Then compile the program with
‘gmake compile’ in the top directory. You may also run ‘gmake all’ and ‘gmake xall’ in
the ‘src’ subdirectory, with the same effect. Keep in mind that you really have to use the
GNU version of make – gmake, not the ordinary version.

If the compilation is successful, then the resulting two executables ‘macek’ and
‘macek.nodebug’ appear in the ‘src’ subdirectory. You may also look at the file
‘src/Make.local’ which contain local modifications to the project makefiles. Various useful
things may be set/modified there, but these require detailed knowledge of your computing
platform. When you get into troubles, Section 8.2 [Troubleshooting], page 45 may help. . .

2.2 Run the Program

Run the macek executable from the ‘exe’ subdirectory of the package, where it is sym-
linked from. We also suggest to run the program on a terminal with at least 100 columns,
and better with 132 columns. Try first to call ‘macek -h’ to see a simple online help. Follow
the instructions to obtain more online help.

The presented Macek examples are called from the bash shell. However, similar shells
like zsh, ksh should work in the same way. If you want to use csh or others, you may need
to modify or escape active characters in the commands. (In particular, it looks like ‘!’ is
active in tcsh even when it is quoted. So if you do not find a way around such a syntactical
problem, use bash as your shell.) Notice that you need to have the current directory in the
shell search path, or you have to call the program as ./macek

http://www.gnu.org

4 Macek manual

The following call
bash$ macek -g-2 -pGF3 ’!print’ U24

produces an output similar to this sample:
567~ Printing output of the command "!print ((t)) ..[1]":
567~ Printing matrix of the frame [U24]: "the matroid U_2,4 uniform"

~ --
~ matrix 0x80fcb48 [U24], r=2, c=2, tr=0, ref=(nil)
~ ’-1’) ’-2’)
~
~ ’1’) 1 1
~ ’2’) 1 2
~ --

The option ‘-g-2’ suppresses usual debugging messages during program run. The option
‘-pGF3’ selects the finite field GF (3) for the computation. Then there is the program com-
mand !print followed by the command parameter – the matroid U24. (Note the quotas
around the command since ‘!’ is an active shell character.) The meaning of !print com-
mand is pretty obvious — it prints the matrix representing the matroid U24 over GF (3).
Numbers on the left of the output mean current time in seconds (modulo 1000), which may
be useful to see in longer computations.

Next, try to run
bash$ macek -g+1 -pGF3 ’!print’ U24

with the option ‘-g+1’ (or even higher values) instead of ‘-g-2’. In this way, you get some
debugging messages that show what the program does. For example, among other output
lines, you may see:

[emflexsu:frame_doinput_()89 ~926] Calling to scan a list of frames...
[emflexsu:frame_doinput_()99 ~926] Input frame - scanning "!print":
[emflexsu:frame_doinput_()99 ~926] Input frame - scanning "U24":
[emflex.l: frame_flex()520 ~926] Including from ’U24’ (->’U24’)

The prefix of each debugging line point to the source file, function and line that generated
the message, and then follows the message itself. The debugging messages are mainly for
those, who want to follow the program computation in the source files, and for catching
possible bugs in further development. If you do not want the messages at all, you may run
the macek.nodebug executable instead. However, note that the latter version also skips all
internal consistency checks in the program.

As the reader may have noticed, each command in Macek starts with the character
‘!’. However, for simple command-line use there are simplified shortcuts available. See
Section 6.11 [Procedures], page 34. The following are three easy examples.

bash$ macek -pGF3 print U24
bash$ macek -pGF3 minor F7- U24
bash$ macek -pGF3 prints F7-

2.3 Matrices and Frames

In order to use the Macek program, one needs to input the matrices representing ma-
troids. The program works with matrices in the standard reduced form, i.e. without the

Chapter 2: Quick-Start 5

leading unit matrix. Some common matroid representations are distributed with this pack-
age in the ‘exe/Matrices’ subdirectory. You may easily create your own matroid files in
a similar fashion, with space-separated entries, line by line. Each matrix line should start
with a space. Comment the files by lines starting with ‘# ’. Any bracketed math expression
may appear as a matrix entry.

It is also possible to give a matrix directly on the command line like these:

bash$ macek -pGF5 ’!print’ ’ 1 2; 3 2+2’
bash$ macek -pGF2 ’!print’ ’ 1 1; 0 0 1; 0 1 0 1’
bash$ macek -pGF4 ’!print’ ’ w w^2; w^3’
bash$ macek -pGF4 ’!print’ ’ w w^2; (w^3+w)*(w+1)’

Here ‘;’ replaces line-ends. Notice that, for example, inputting an entry ‘w’ in GF (3) or ‘2’
in GF (2) cause an error.

In fact, the basic input entity in the program is called a frame; See Chapter 4 [Frames],
page 11. One frame usually holds one matrix, but it may also hold frame- commands and
options; See Chapter 6 [Commands], page 25, See Chapter 5 [Options], page 21. All given
command-line arguments that do not start with ‘-’ are read as frames. These result in a
tree-structure of frames, with the first argument as the root.

The tree structure can be printed with a command:

bash$ macek -pGF4 ’!prtree’ U24 ’{ U25 U35 F7 }’
...
~820~ Printing the subtree of the frame 0x81552b8 [noname]:

~ (1.1)fr [noname] ""
~ (2.1)fr [U24] m2x2 "the matroid U_2,4 uniform"
~ (2.2)fr [noname-2] ""
~ (3.1)fr [U25] m2x3 "the matroid U_2,5 uniform"
~ (3.2)fr [U35] m3x2 "the matroid U_3,5 uniform"
~ (3.3)fr [F7] m3x4 "the matroid F_7 Fano"

~820~ ------------------------------------

The command !prtree (with no matrix) forms the root frame, the next two arguments
form its descendant frames, and the included matroids U25, U35, F7 form the descendants
of the second son of the root.

Another example is the command !move that manipulates the frames in the tree (moves,
copies, or deletes them). To understand this command better, you need to learn about
addressing command parameters Section 4.5 [Addressing], page 15. (Nodes of the tree are
addressed by bracketed expressions in the natural way; ‘T’ picks a node, ‘S’ picks all sons of
a node, the lower-case letters ‘t’,‘s’ also erase the picked nodes in some commands.) Run
the next examples, and see the action:

bash$ macek ’!prtree;!move ((t));!prtree’ W3 ’{ W4 R10 R12 }’
bash$ macek ’!prtree;!move (()(t));!prtree’ W3 ’{ W4 R10 R12 }’
bash$ macek ’!prtree;!move ((t)(()(t)));!prtree’ W3 ’{ W4 R10 R12 }’

bash$ macek ’!prtree;!move ((T)) >(()(t));!prtree’ W3 ’{ W4 R10 R12 }’
bash$ macek ’!prtree;!move ((T)) >((2)(t));!prtree’ W3 ’{ W4 R10 R12 }’
bash$ macek ’!prtree;!move ((t)) >(()(t));!prtree’ W3 ’{ W4 R10 R12 }’
bash$ macek ’!prtree;!move ((T)) >(((t)));!prtree’ W3 ’{ W4 R10 R12 }’

6 Macek manual

bash$ macek ’!move (()(S)) >(((s)));!prtree’ W3 ’{ W4 R10 R12 }’
bash$ macek ’!move (()(S)) >(((t(t(t)))));!prtree’ W3 ’{ W4 R10 R12 }’

2.4 Examples of Use

In this section, we show several more examples demonstrating the use of some Macek
commands. (Recall that you get an online overview of all commands with ‘macek -HHc’.)

One may easily pivot matrices like in the next example:
bash$ macek -pReg ’!print;!pivot 1 2;!print’ R10

Matroid elements are deleted or contracted in the following way:
bash$ macek -pReg ’!print;!delete -3;!print’ R10
bash$ macek -pReg ’!print;!delete 2;!print’ R10
bash$ macek -pReg ’!print;!contract 2;!print’ R10
bash$ macek -pReg ’!print;!contract -5;!print’ R10

Minor-testing (up to inequivalence of representations!) is demonstrated in the next com-
mands:

bash$ macek -pReg ’!minor’ R12 R10
bash$ macek -pReg ’!minor’ R12 grK33

Extensions or coextensions of represented matroids are generated as follows (all 3-connected,
matrix-equivalence factored-out):

bash$ macek -pBinary ’!extend c;!prtree’ W3
bash$ macek -pReg ’!extend c;!prtree’ W4
bash$ macek -pReg ’!extend r;!prtree’ R12
bash$ macek -pReg ’!extend b;!prtree’ R10

Some more involved chains of commands are demonstrated in the following examples:
bash$ macek -pReg ’!deleach;!prtree;!filt-minor;!prtree’ R12 grK33
bash$ macek -pReg ’!deleach;!prtree;!filx-minor;!prtree’ R12 grK33
bash$ macek -pdyadic ’!extend r;!prtree;!minor’ F7- ’F7-;!dual’

Chapter 3: The Macek Program 7

3 The Macek Program

First, read the installation instructions in See Section 2.1 [Installing], page 3. After in-
stalling the Macek program successfully, you find the executable(s) in the ‘src’ subdirectory
of the package. However, we suggest to run the executable from the ‘exe’ subdirectory of
the package, where it is symlinked from.

Since the Macek program has only command-line interface, we suggest to run it within
a suitable (comfortable) command-shell, like unix shells bash, zsh, new ksh or similar. If
you want to use csh-clones, you would probably have to adjust the provided examples. (In
particular, it looks like ‘!’ is active in tcsh even when it is quoted. So if you do not find
a way around such a syntactical problem, use bash as your shell.) Moreover, to get the
program output neatly organized, we suggest to use a terminal of 100 or more (up to 132)
characters wide.

The program has two executables — macek and macek.nodebug. Usually you would
run the first one. The second executable, macek.nodebug, is, however, faster since it skips
most of the internal consistency checks and all debugging messages. So it is suitable for
long computations when you are already sure that your script computes the right results
correctly.

3.1 Command-line Arguments

We list all command-line options of the Macek program (i.e. all recognized arguments
starting with ‘-’):

* -gN (or --debug=N) Adjust the debugging level in the program by N — how much
is printed during program run See Section 3.3 [Messages], page 8. (Not applicable to
macek.nodebug.)

* -h (or --help) Print a simple program help.

* -H[H][pfco] Print more help on specified topics (partial fields, frames, commands,
options), and even more with -HH. See Chapter 4 [Frames], page 11.

* -pF (or --pfield==F) Set the default partial field in the program to F . See Section 3.6
[P-Fields], page 9.

* -v (or --version) Print the program version.

3.2 Frame Input

All other command-line arguments of the Macek program (that do not start with ‘-’)
are read as frames; they form the program input. A frame is the basic data-entity in the
program. See Chapter 4 [Frames], page 11.

As explained later in details, the frames form a tree-structure in the program. The first
frame-arguments forms the root of the tree, and all others are its sons. Moreover, some
frames may include other subframes that are then stored as their sons, and so on. . .

When giving frames as arguments to the program, do not forget to quote them, as they
may contain spaces and active shell characters inside.

8 Macek manual

3.3 Program Output

There are two categories of messages printed from the Macek program — the regular
output, and the debugging messages. (Debugging messages are used to trace the program
execution, and to provide additional profiling information.)

Typical command output in the program looks like the following:
705~ Printing the subtree of the frame 0x80e9a38 [noname]:

~ (1.1)fr [noname] ""
~ (2.1)fr [U25] "the matroid U_2,5 uniform"
~ (3.1)fr [U25_r1] "mat #1 row co-exten to ’U25’"

For profiling purposes, each output line starts with the current time ~nnn~ in seconds
modulo 1000. Then the output itself follows.

Typical debugging message in the program looks like the following:
[gener.c:gener_extensions()368 ~520] >>extension #1 of [U25]: 1,w+1,w

The starting bracketed information contain the source file name, the function, and the line
of the message, and the current time in seconds modulo 1000. These information allow
to easily track the program computation in the program source. The next text message
then tells you what the program currently does. You may control the amount of printed
debugging messages with 〈undefined〉 [-g], page 〈undefined〉. No debugging messages are
printed from the macek.nodebug executable.

3.4 Error Reporting

If anything unusual or problematic happens in the Macek program, then an error message
is issued. Similarly as in debugging messages Section 3.3 [Messages], page 8, an error
message first tells you what function in what source file generated this message, and then
the text description follows. Fatal errors immediately terminate the program, while the
program run continues for other errors. (However, this may cause subsequent induced
errors.) Additionally, the programs prints a warning at the end when an error happened
during the computation.

A usual error message looks like the next example
*** ERROR (by emflexsup.c, in yyincl() 412) in "NOxxx" l.1: ***

Cannot open include file ’NOxxx’!
or

*** ERROR: (reported by frameop.c, in frame_getparamfr_r() l.706) ***
Missing requested subframe of 0x80ea5f8 in ’(t|’, depth 1.

Such messages usually tell you that there was something wrong with the program input or
commands. You have to correct the input to get your computation right. . .

Moreover, there is another more serious type of error messages, called program errors,
which start with ‘Program ERROR [bad:-(]: ’. These indicate that something very wrong
happened inside the program. Such a program error may happen after a usual error. If a
program error is issued for a correct program input, then it indicates a bug in the program.
Please report such incidents to the author at http://www.mcs.vuw.ac.nz/research/macek/.

Chapter 3: The Macek Program 9

To make the Macek program more reliable, there is number of internal checks imple-
mented at various places in macek. (These checks usually watch consistency of data struc-
tures, or provide alternative ways of computing the same results.) Uncovered inconsistencies
result in program errors. Learn more about them in the program sources. However, such
internal checks take time, and so they are often only randomized to make them faster. The
provided alternative fast executable macek.nodebug skips all these internal checks.

3.5 Program Environment

This section describes how the Macek program interacts with its computing environment;
including reading / writing files, search paths, using environment variables, etc. . .

The program input is taken from one input stream that starts with the command-
line argument, but then it may include input from arbitrary files. File names follow unix
conventions, and they are case-sensitive (of course, if supported by the system). A file
name may contain spaces and other strange characters, but then it must be quoted. Be
reasonable, and use “normal” file names, though.

If a file name starts with the slash ‘/’, then it is taken as an absolute path from the
filesystem root. Otherwise, the file is searched in the input search path, which may be
obtained by calling ‘macek -Hf’. See Section 3.1 [Command-line], page 7. Similarly, the
output search path (different!) is used when writing files.

When reading, the given file name is first tried without added extension, and then the
default extension is appended. When writing to a file, the default extension is automatically
appended unless the file already has an extension.

To avoid an accidental loss of computing data, the Macek program in some situa-
tions automatically saves the whole frame tree to the ‘/tmp/’ directory. If the pro-
gram computation is long (in about minutes), then the frame is saved to the file
‘/tmp/macek-out-NN.mck’. Similarly, if an error happens, then the current frame tree
is saved to ‘/tmp/macek-err-NN.mck’. A message is printed after such automatic save.

Handling environment variables will be added later......

3.6 Partial Fields

The Macek program can work with matrices over so called partial fields. A partial field
is an extension of a usual field which allows the sum to be a partial operation (i.e. not
all results are defined). A typical example are regular (also known as totally-unimodular)
matrices in which only the numbers −1, 0, 1 are used, and the sums 1 + 1 or −1 − 1 are
undefined. You do not need to know about partial fields to use this program, just consider
usual finite fields instead.

The program works only with finite partial fields, which means those in which the equa-
tion x = y + 1 has finitely many solutions. This includes all finite fields. To obtain the list
of all partial fields currently implemented in the Macek program, run ‘macek -HHp’. You
set the partial field for the program as with 〈undefined〉 [-p], page 〈undefined〉. If you want
to add more partial fields to the program, you have to update the program source and
recompile it. (See the file ‘src/pfield/pfdef-more.inc’.)

10 Macek manual

Each partial field in the program is represented by the generators of the multiplicative
subgroup. Specifically, each number is given by a sign (with values 0,-1,1), and a list
of integral exponents corresponding to the generators. Multiplication is implemented in
the obvious way. Addition is implemented via multiplication and a table of fundamental
elements — those x for which x−1 is defined. If some input expression (sum) is not defined
in the partial field, then an error is reported. Division by zero results in a zero value, but
no error is reported.

A matrix over a partial field is proper if all of its subdeterminants are defined. Then
also all subsequent matrix operations in the program will be defined. When reading input,
proper matrices are checked by a randomized test (unless this feature is switched off), and
possible errors are reported. One may also thoroughly test proper matrices with an explicit
command (which is quite slow), Section 6.6 [Structural], page 28. If it still happens that
an improper matrix gets into the program, then lots of arithmetic-error messages may be
reported during program execution.

One may also change between partial fields during program execution, and to translate
matrices from one partial field to another. The list of all supported partial field translations,
run ‘macek -HHp’. Read more in Section 6.8 [Diff-fields], page 33......

Remark. Partial fields naturally (implicitly) appear in matroid-representation theory,
like in totally-unimodular or dyadic matrices. They were formalized by Charles Semple
and Geoff Whittle in [Partial Fields and Matroid Representation, Advances in Applied
Mathematics 17 (1996), 184-208]. We follow their formalization here.

Chapter 4: Frames – Data Handling 11

4 Frames – Data Handling

As noted above, the basic data entity in the Macek program is called a frame. One frame
usually holds a matrix representation (only one), but it may also hold an arbitrary number
of frame- commands and options; Chapter 6 [Commands], page 25, Chapter 5 [Options],
page 21. Each frame can be identified by its name Section 5.2 [Naming], page 21.

One frame may also refer to several subframes, called its sons. In this way, frames in the
program form a rooted tree-structure; the frames are the nodes of the tree. (In general, the
structure of frames could form an arbitrary directed graph, but the program allows only
one rooted tree as the frame structure.)

4.1 General Input Syntax

Frames are given to the Macek program in a text format. The frame input is organized
by lines which may have several different meanings. A line starting with ‘#’ or ‘%’ is a
comment line, and it is ignored. A line starting with space(s) or ‘=’ is a matrix line — its
expressions define the entries of the matrix in this frame. For example, let the following be
the file ‘U24x’:

The uniform matroid U_2,4 represented over GF(3) or GF(5).
1 1
1 2

A line starting with ‘<’ or the keyword ‘include’ is an include line. Each subsequent
word on such a line gives a file-name to be included into the input stream. If the file-
names contain special characters, like a space, enclose them into quotas like ‘< "long file
name.mck"’. Note that include lines have nothing to do with subframes. We continue the
previous example with the file ‘U35x’, using an include:

The uniform matroid U_3,5 represented over GF(5).
< U24x

1 3

Lines starting options, commands, or subframes are described in details later. For now,
we just give a simple introduction. A command is given on a line starting with ‘!’ or the
keyword ‘command’. The next call shows the command for printing a matrix.

bash$ macek -pGF5 ’!print’ U25

An option is given on a line starting with ‘@’ or the keyword ‘option’. One useful basic
option tells the program to consider the previous entered matrix entries in the matrix-
transposed way. This example shows an easy way to obtain a file for the matroid U25 from
U35 (cf. the previous paragraph).

The uniform matroid U_2,5 represented over GF(5),
obtained by transposing U_3,5.
< U35x
@transpose

As already noted, input frames are given to the program as command-line arguments
Section 3.2 [Frame-arg], page 7. To make the life easier, there are several shortcuts used for
an input text taken from the command-line: Before reading the frame, all occurrences of
the character ‘;’ on the command-line are replaced by newlines, and all occurrences of ‘,’

12 Macek manual

are replaced by spaces. This does not apply to quoted strings inside the input. Moreover,
any resulting input line that starts with a digit is taken for a matrix line, and any line
starting with a letter or one of ‘./~’ is taken for an include line. In particular, an input
‘U24’ given as an argument to the program means to read the file ‘U24’ (the same as the
“full syntax” ‘< U24’).

Using these shortcuts, one may give the whole input matrix on a line. Moreover, one
may combine the matrix input with commands or options, and even with include lines (the
matrix is then a concatenation of all input matrix lines):

bash$ macek -pGF5 ’!print; 1 2; 3 4’
bash$ macek -pGF5 ’1,2;!print;3,4’
bash$ macek -pGF5 ’U24; 0 2; 3 4 ;!print’

In this context we remark that one cannot input a list of matroids like ‘ U24; U25; U35’
since this would result in concatenation of all three matrices. On the other hand, another
shortcut described later allows to simply input a list of matroids as subframes. Section 4.4
[Subframes], page 15.

bash$ macek -pGF5 ’!prtree;!print ((S))’ ’{U24 U25 U35}’

4.2 Matrices and their Entries

The program works with matrices representing matroids in the standard reduced form,
i.e. without the leading unit submatrix. In this way the rows of the matrix correspond to
the elements of a selected basis, and the columns to the remaining matroid elements. Before
reading on here, it is good to understand (partial) fields; See Section 3.6 [P-Fields], page 9.
We provide a more theoretical overview of matrix representations and their (in)equivalence
in the next section.

This part provides a detailed description of matrix entries in frames. In general, the
expressions on the n-th matrix line of the frame input give the entries of the n-th row of
the matrix. (Modulo possible use of the ‘@transpose’ option.) On one matrix line, the k-th
expression gives the entry in the k-th column. The total number of rows of the resulting
matrix is equal to the number of input matrix lines, and the total number of columns is
equal to the maximal number of expressions over all matrix lines. Entries that are not
directly given (like the rest of a short matrix line) are filled with zeros.

bash$ macek ’!print’ ’ 1 0 1; 0 0 0 0 1’
bash$ macek ’ 0;!print; 1 0 1; 1 0 0 0 1’
bash$ macek ’!print; 0; 1 0 1; 1 0 0 0 1;@transpose’
bash$ macek ’!print’ ’ 1 0 1 1;@transpose; 0 0 1 0 1’

An expression on the matrix line is a sequence of characters with no spaces. Spaces
separate one expression from another. The atomic expressions describe generators of the
partial field, and depend on its selection Section 3.6 [P-Fields], page 9. Moreover, one may
use a special symbol ‘o’ for zero. An expression is then built up from atomic expressions
using parentheses ‘()’ and symbols ‘+-’, ‘*/’, and ‘^’ for arithmetic operations in the natural
way.

It is best to illustrate matrix expressions by several examples. Keep in mind that not
all expressions are defined in partial fields, so they may result in an error message.

Chapter 4: Frames – Data Handling 13

bash$ macek -pGF4 ’!print’ ’ 1+w^2 w*(w+w^3) 1+w+w*w’
bash$ macek -pGF5 ’!print’ ’ 1+1+1 2^2+3^3+4^4’
bash$ macek -pNREG ’!print’ ’ (a^4-a^3)^2 ((a-1)^2+a-1)*(a^3-a^2)’

Notice that some atomic expressions may look similarly like arithmetic operations. A good
example is the generator a−1 of the near-regular partial field. In such a case we use brackets
‘[a-1]’ for the generator. (This is an important change from the pre-1.0 versions of Macek
which scanned ‘a-1’ as an atom, creating confusion in expressions like −a−1.) However, an
input like ‘(a-1)^2’ is still correct – this is evaluated as arithmetic subtraction and power.
If you are still confused, then use more parentheses.

Since we want to use one input file to represent the same matroid over different partial
fields, we need a way to replace “transcendental elements” in the general representation
matrix by specific field elements. We also need to ensure that the current partial field
has necessary algebraic properties to represent the matroid. See Section 5.3 [Substitution],
page 22.

There is an option ‘@replace’ that accomplishes the first task. It is used as
‘@replace X (a-1)’ to replace all further occurrences of the symbol ‘X’ on the matrix in-
put with the expression ‘(a-1)’. (We suggest to use parentheses to avoid confusion after
a replacement.) Similarly, an option like ‘@repl-PF X (a^2)’ replaces the symbol ‘X’ only
in one specific partial field PF. This pfield-specific replacement has priority. The symbol
replacement is fully recursive, and it may be used only in matrices. One may prevent a sym-
bol from a recursive replacement by prefixing it with the underscore ‘_’, which is otherwise
silently ignored on matrix lines.

Another option ‘@require’ checks necessary algebraic properties of the current partial
field. Use it as ‘@require a+1 [.01]’, where the version with one expression followed by a
dot checks whether the expression is defined over the current partial field, and the version
with the second parameter as ‘0’ or ‘1’ check whether the expression value is zero or nonzero.

As an example we show the Fano matroid with a requirement of characteristic 2.
@comment "the matroid F_7 Fano"
@require 1+1 0

1 1 1 0
1 1 0 1
1 0 1 1

Another example shows use of the symbolic replacement to give a representation of the
matroid U24 in various finite fields. (Notice that if −1 was substituted for X over GF (4),
then the second requirement would fail.)

@replace X -1
@repl-GF(4) X w
@require (X) 1
@require (X)-1 1

1 1
1 (X)

The next calls show the use of ‘_’ in preventing recursive replacements. (The first call
obviously results in an error.)

bash$ macek -pGF4 ’@replace w w+1;!print’ U24
bash$ macek -pGF4 ’@replace w _w+1;!print’ U24

14 Macek manual

Some common matroid representations are distributed with this package in the
‘exe/Matrices’ subdirectory. We do not list them here since more matroids are added
frequently. Look at the file listing of ‘exe/Matrices/ *’ to see all of them. Each dis-
tributed matroid file is commented. You may easily create your own matroid files in a
similar fashion. We suggest to enter new matroid representations (if possible) as highly
symmetric matrices – see the command ‘!selfmap’. A symmetric matrix may help some
algorithms to run faster.

If you create new matroid files that may be interesting and useful to others, please send
them to the author.

4.3 Matroid Representations

In general, a matroid representation is a matrix whose columns represent the matroid
elements, and usual linear dependency determines the dependent sets. However, it is better
to work with a representation in the so called standard reduced form, obtained as follows:
Choose a basis of the matroid and display it as a (maximal) unit submatrix. Then forget
possible remaining zero rows and the columns of the unit submatrix. Finally, the rows
of this standard-form matrix correspond to the elements of the selected basis, and the
columns correspond to the remaining matroid elements. In this manual, we simply say a
matrix instead of a “standard-form matrix”.

There is no way to give names to the matroid elements – matrix lines, but the lines
initially receive number labels as follows: The rows (elements of the selected basis) are
numbered from 1 to R, and the columns (remaining elements) are numbered from −1 to
−C. If a command later changes the matrix in a way that the lines move elsewhere, the
labels are moved along with them. (See, for example, in the commands !dual or !pivot.)

When giving a matrix over a partial field, it is important to ensure that the matrix is
proper — that means all subdeterminants are defined over this partial field Section 3.6 [P-
Fields], page 9. Only then it is guaranteed that no arithmetic error occurs during program
execution, and that the results are correct. See Section 6.6 [Structural], page 28.

Moreover, some commands in the program require connectivity of the given matroid
to compute the result correctly. Some commands even need the input matroid to be 3-
connected. In such cases you should enter only sufficiently connected matroids to avoid error
messages or, even worse, incorrect results. So read carefully the description of commands
below.

Another major problem with using the Macek program is caused by an existence of
inequivalent representations of matroids. Two matrices (with lines labeled by the matroid
elements) are called strongly equivalent if one can be transformed to the other one using
elementary matrix operations. Two matrices are, on the other hand, called unlabeled equiv-
alent if they are strongly equivalent up to an isomorphism of the underlying matroid. (In
other words, if they are strongly equivalent after forgetting the line labels.)

For example, the following two quaternary representations of the matroid U24 are not
strongly equivalent, but they are unlabeled equivalent:

1 1 1 1
1 w 1 w+1

Chapter 4: Frames – Data Handling 15

You have to thoroughly consider the problems with inequivalence of representations
when dealing with matroid minors, equivalence, or when generating matrix extensions. The
Macek program has, so far, no way to find out that two inequivalent matrices actually
represent the same matroid. (There are, however, no such problems at all when working
with binary or regular matroids only.) Read the next chapters for specific information. See
Section 6.6 [Structural], page 28, See Section 6.7 [Generating], page 30.

4.4 Subframes

A subframe starts with the keyword ‘SUBFRAME’ on a separate line, and ends with the
keyword ‘EOFRAME’. All input between these keywords is read into a new son of the current
frame. There may be arbitrarily many subframes given, and arbitrarily nested, forming
thus a rooted-tree structure. One may also use shortcuts ‘{’ and ‘}’ for start and an end of
a subframe.

If the shortcuts ‘{’ and ‘}’ are used, then more than one (or even all of them) may be
written on the same line. Moreover, all other words on such a line are taken as a separate
subframe each. For example, the following shortcut produces the next tree of frames.

bash$ macek -pGF4 ’!prtree;{ U24 {{U24 U25} {U35}} }’
~944~ Printing the subtree of the frame 0x81551f8 [noname]:

~ (1.1)fr [noname] ""
~ (2.1)fr [U24] m2x2 "the matroid U_2,4 uniform"
~ (3.1)fr [U24-1] ""
~ (4.1)fr [U24] m2x2 "the matroid U_2,4 uniform"
~ (4.2)fr [U25] m2x3 "the matroid U_2,5 uniform"
~ (4.3)fr [U35] m3x2 "the matroid U_3,5 uniform"

When reading the program input, the first frame argument on the command line forms
the root of the frame tree, and all possible other frame arguments are then arranged as
its sons (in addition to its subframes). One may combine the concept of subframes and
multiple frame arguments like in the following example.

bash$ macek -pGF4 ’!prtree’ ’{ U24 U25 }’ U35
~998~ Printing the subtree of the frame 0x8155b28 [noname]:

~ (1.1)fr [noname] ""
~ (2.1)fr [noname-1] ""
~ (3.1)fr [U24] m2x2 "the matroid U_2,4 uniform"
~ (3.2)fr [U25] m2x3 "the matroid U_2,5 uniform"
~ (2.2)fr [U35] m3x2 "the matroid U_3,5 uniform"

4.5 Addressing the Frame-tree

So far, we have shown only default parameter addressing in frame commands. However,
one often needs to address arbitrary frames in the subtree, not only the pre-defined ones.
Notice that some commands require precisely one frame in the parameter, while most of
them accept an arbitrarily long list of input frames. This section shows the syntax of
the parameter addressing. It is possible to skip this section until you get to the chapter
Chapter 6 [Commands], page 25.

In general, nodes in the frame tree are addressed using natural correspondence between
rooted trees and balanced bracketings. In this interpretation, ‘()’ means the current (root)

16 Macek manual

frame — that one holding the command, and ‘(())’ means the first son of the current one.
You can see that the frame addressing is relatively rooted at the current frame. There is no
way to address frames out of the current subtree. To actually point to a node in the tree,
one must give a letter ‘t’ or ‘T’ in the bracketing. Alternatively, a letter ‘s’ or ‘S’ picks all
sons of the pointed node instead. The difference between the letters ‘t,s’ and ‘T,S’ is that
the lower-case letters request to erase the picked nodes after processing certain commands,
while the upper-case letters do not. The current frame is never erased.

We now provide several sample addresses to illustrate the concept. The address ‘(T(T))’
picks both the root and its first son. The address ‘(()()((T)))’ picks the son of the son
of the third son of the root. To save repetitions in the address, one may use numbers;
‘((2)((T)))’ is equivalent to the previous example. The address ‘((3)(5T))’ picks five
sons of the root starting with the fourth one (the first three are skipped). Moreover, you
may use, instead of the repetition number, a text ‘/name/’ which skips sons up to the one
named name. If the frame tree does not contain the requested nodes, an error message is
printed.

Special rules concern non-positive repetition numbers. If ‘(N...)’ is used, and N <= 0,
then the repetition number actually used in N + D, where D is the number of remaining
sons of the parent of the current node (inclusive). For example, ‘((0T))’ has the same effect
as ‘(S)’, while ‘(()(-1T))’ picks all sons of the root except the first and the last one.

In addition to the previous, you may concatenate more than one address to one with
‘+’, like ‘((t))+((t))’ picks the same first son twice. To save typing of closing brackets,
you may end the address expression simply with ‘|’, like ‘((()(T(s|’. As a special concept,
you may write the (whole) address as ‘~1’ to pick all resulting frames of the previous
command, or ‘~N’, N = 1, 2, ..., 9 to pick the resulting frames of the N -th previous command.
Similarly ‘^N’ picks the previous results and allows them for further erasing, depending on
the command. (The same thing as ‘T,S’ versus ‘t,s’.) Be careful not to erase these frames
before using them again.

Some commands have also output parameter address which tells them where to store the
resulting frames. The output address starts with ‘>’ and continues with the same bracketed
expression as described above. However, this time all nonexistent nodes from the address
are automatically created (no error is reported). Another exception concerns non-positive
repetition numbers; if they are followed by a t,T,s,S letter, then they refer to the number of
remaining output frames instead to the remaining sons in the tree. For example, ‘((-1t))’
stores all but the last output frames as (new) sons of the root.

To learn the concept of parameter addressing well, it is best to play with the command
‘!move’ which moves (copies, deletes) nodes across the frame tree. We provide several
examples. Make more examples yourself.

Chapter 4: Frames – Data Handling 17

bash$ macek ’!prtree;!move ((T)) >(()(t));!prtree’ ’W3;{}{}’

~052~ Printing the subtree of the frame 0x8155048 [noname]:
~ (1.1)fr [noname] ""
~ (2.1)fr [W3] m3x3 "the matroid W_3, wheel of 3 spok"
~ (3.1)fr [W3-1] ""
~ (3.2)fr [W3-2] ""

~052~ ------------------------------------
~052~ Printing the subtree of the frame 0x8155048 [noname]:

~ (1.1)fr [noname] ""
~ (2.1)fr [W3] m3x3 "the matroid W_3, wheel of 3 spok"
~ (3.1)fr [W3-1] ""
~ (3.2)fr [W3-2] ""
~ (2.2)fr [W3] m3x3 "the matroid W_3, wheel of 3 spok"

~052~ ------------------------------------

bash$ macek ’!prtree;!move ((S)) >(()(s));!prtree’ ’W3;{}{}’

~153~ Printing the subtree of the frame 0x81553b8 [noname]:
~ (1.1)fr [noname] ""
~ (2.1)fr [W3] m3x3 "the matroid W_3, wheel of 3 spokes"
~ (3.1)fr [W3-1] ""
~ (3.2)fr [W3-2] ""

~153~ ------------------------------------
~153~ Printing the subtree of the frame 0x81553b8 [noname]:

~ (1.1)fr [noname] ""
~ (2.1)fr [W3] m3x3 "the matroid W_3, wheel of 3 spokes"
~ (3.1)fr [W3-1] ""
~ (3.2)fr [W3-2] ""
~ (2.2)fr [W3-0] ""
~ (3.1)fr [W3-1] "fr #1 got by ’!move ((S))’, to ’(()"
~ (3.2)fr [W3-2] "fr #2 got by ’!move ((S))’, to ’(()"

~153~ ------------------------------------

bash$ macek ’!prtree;!move ((t));!prtree’ ’W3;{}{}’

~298~ Printing the subtree of the frame 0x8155128 [noname]:
~ (1.1)fr [noname] ""
~ (2.1)fr [W3] m3x3 "the matroid W_3, wheel of 3 spokes"
~ (3.1)fr [W3-1] ""
~ (3.2)fr [W3-2] ""

~298~ ------------------------------------
~298~ Printing the subtree of the frame 0x8155128 [noname]:

~ (1.1)fr [noname] ""
~298~ ------------------------------------

18 Macek manual

bash$ macek ’!prtree;!move (T) >((()(t)));!prtree’

~379~ Printing the subtree of the frame 0x8155050 [noname]:
~ (1.1)fr [noname] ""

~379~ ------------------------------------
~379~ Printing the subtree of the frame 0x8155050 [noname]:

~ (1.1)fr [noname] ""
~ (2.1)fr [noname-0] ""
~ (3.1)fr [noname-0] ""
~ (3.2)fr [noname] "fr #1 got by ’!move (T)’, to ’(("

~379~ ------------------------------------

bash$ macek ’!prtree;!move ((T|+((T| >(()((0t|;!prtree’ ’W3’ ’’

~164~ Printing the subtree of the frame 0x8155208 [noname]:
~ (1.1)fr [noname] ""
~ (2.1)fr [W3] m3x3 "the matroid W_3, wheel of 3 spokes"
~ (2.2)fr [noname-2] ""

~164~ ------------------------------------
~164~ Printing the subtree of the frame 0x8155208 [noname]:

~ (1.1)fr [noname] ""
~ (2.1)fr [W3] m3x3 "the matroid W_3, wheel of 3 spokes"
~ (2.2)fr [noname-2] ""
~ (3.1)fr [W3] m3x3 "the matroid W_3, wheel of 3 spok"
~ (3.2)fr [W3] m3x3 "the matroid W_3, wheel of 3 spok"

~164~ ------------------------------------

4.6 Macro Substitutions

The Macek program provides also simple text-based macro processing. When you write
‘$macro’ or ‘${macro}’, then this expression is replaced with the first word (use quotas for
longer text with spaces) following the latest option ‘@sub-macro’; Section 5.3 [Substitution],
page 22. If no such option is found, then the first word of ‘@subd-macro’ is taken. If even
this is not found, then the replacement text is empty. To input the character ‘$’ itself, use
‘\$’ or ‘$$’. Under normal circumstances, the macro processing is not recursive. This is a
different concept than ‘~1,^1’ shortcuts described in the previous section.

This kind of macro-processing is provided only for command-, option-, and include-lines.
For replacements in matrix entries use ‘@replace’ described above Section 4.2 [Matrix-
Entry], page 12.

Again, it is best to illustrate the use of macros in several examples.

bash$ macek ’@sub-mac ABCDefgh;!prtext $mac’
395~ ABCDefgh

Chapter 4: Frames – Data Handling 19

bash$ macek ’@sub-mac "ABCD efgh .. WXYZ";!prtext $mac’
457~ ABCD efgh .. WXYZ

bash$ macek ’@sub-mac TEXT;@sub-mac "X-$mac-$mac-X";!prtext $mac’
519~ X-TEXT-TEXT-X

bash$ macek ’@sub-mac TEXT;@sub-mac "X-$mac-$$mac-$mac-X";!prtext $mac’
519~ X-TEXT-$mac-TEXT-X

More involved and nonstandard examples are provided here. Be careful when using text
macros in this nonstandard way since strange things may happen. . . (Like an error in the
last example.)

bash$ macek -pGF4 ’@sub-line "U24;{U35}";$line;!prtree’
273~ Printing the subtree of the frame 0x80f6f38 [U24]:

~ (1.1)fr 0x80f6f38 [U24] "the matroid U_2,4 uniform"
~ (2.1)fr 0x8116610 [U35] "the matroid U_3,5 uniform"

bash$ macek ’@sub-line "!prtree";$line’ R10
~ (1.1)fr 0x80f8918 [noname] ""
~ (2.1)fr 0x8103090 [R10] "the matroid R_10"

bash$ macek ’@sub-a "$$b";@sub-b "$$a";$a’
... error happens ...

20 Macek manual

Chapter 5: Frame Options 21

5 Frame Options

An option starts with the keyword ‘option’ or the character ‘@’ on a line. The next
word is the option name, and option values continue after the name. Various options have
various numbers of values, and an arbitrary number of option lines of the same name may
appear. Quote the option values if they contain spaces or other special characters.

In general, an option holds arbitrary information that we want to store in the input
frame. This information affects the input frame immediately from the line containing the
option. Moreover, depending on particular situation, option values may be inherited by all
subframes of the frame holding this option.

To learn more, read next about particular option groups recognized by the Macek pro-
gram. The list of all recognized options is obtained by calling ‘macek -HHo’. (Not all of
them may be described in this manual.) If an unknown option or the wrong number of
values are given, then an error message is reported.

5.1 Inheritance of Option Values

An option affects the frames it appears in, and, in most cases, it also affects all descendant
frames. However, in some situations we want to explicitly request repeating an option in
the descendants, like when writing a frame to a file, or when generating new subframes in
the program. (This does not concern the name and comment options which are repeated
automatically, see below.)

For all options having names that are listed as the values of some ‘@finherit’ option,
the last one option instance is copied to every descendant frame when it is written to a file.
The option ‘@finheritall’ works similarly, but it copies all option instances to the written
file.

Learn more about inheritance from the following examples. (View the results in the
output file ‘sample.mck’.)

bash$ macek ’@replace X 1;!writeto sample’ ’@replace Y 2’
bash$ macek ’@replace X 1;!writeto sample’ ’@finherit replace’
bash$ macek ’@replace X 1;@finheritall replace;\

!writeto sample’ ’@replace Y 2’
bash$ macek ’@replace X 1;@finheritall replace finheritall;\

!writeto sample’ ’@replace Y 2’

The options ‘@extinherit’ and ‘@extinheritall’ achieve similar effects when new sub-
frames are generated by extending a matrix; See Section 6.7 [Generating], page 30.

5.2 Naming the Frames

Each frame has its name, and optionally a text comment (about one line of a text).
The name for a frame may be explicitly set by giving the option ‘@name "frame-name"’.
Similarly, one may give a comment to the frame by ‘@comment "some comment..."’.

The frame comments are there just for user information, while the names are used
elsewhere in the program, such as when writing frames to files. See Section 6.3 [FWriting],
page 26.

22 Macek manual

5.3 Options for Substitutions

The Macek program provides two ways of replacing text on the input. The first one,
called substitution, is used for option/command values, include files, etc. The second one,
called replacement, is used in matrix entries or in field expressions.

When ‘$macro’ appears on the input, then it is substituted with the first value of the last
instance of the option ‘@sub-macro’. (Based on the current input scanned so far.) When
‘@sub-macro’ option is not found, then ‘@subd-macro’ is tried instead.

When an option ‘@replace X (expr)’ is given in a frame, then all following appearances
of the symbol ‘X’ in matrix-entry expressions is replaced with the text ‘(expr)’. We suggest
to use capital letters for such symbols. Similarly, an option ‘@repl-PF X (expr)’ replaces
the symbol ‘X’ only when in the specific partial field PF. This pfield-specific replacement
has priority.

You may prevent a symbol from a recursive replacement ‘@replace X (expr+_X)’ by
prefixing it with the underscore ‘_’, which is otherwise silently ignored on matrix lines. To
ensure that the replaced values satisfy your requirements, you may use the option ‘@require
(expr) [01.]’. See Section 4.2 [Matrix-Entry], page 12.

5.4 Adding and Erasing Options

All frame options are read and interpreted before command processing starts, but it is
still possible to add more options to selected frames during command execution using the
command ‘!append "input" >dest’. See Section 6.4 [FReading], page 27. The intention of
this command is to append the additional input to the selected frame — so the command
‘!append "@option value" >(T)’ adds the given option to the current frame at the time
when this command is executed.

It is not possible to delete options that were already scanned to a frame, but special
options ‘@erase optname’ and ‘@eraseall optname’ are provided to suppress the last or
all previous occurrences of the selected option(s). This means that the suppressed option
will not be interpreted further. (However, the option still remains in the option list of
its frame.) You may also use a combination like ‘!append "@eraseall optname" >(T)’ to
erase the selected option values via a command.

Try to play with the next examples to learn more:
bash$ macek ’@sub-x AB;@sub-x $x-C’ ’!prtext $x’
bash$ macek ’@sub-x AB;@sub-x $x-C;@erase sub-x’ ’!prtext $x’
bash$ macek ’@sub-x AB;@sub-x $x-C;@eraseall sub-x’ ’!prtext $x’
bash$ macek ’@sub-x AB;@sub-x $x-C’ ’@erase sub-x;!prtext $x’

bash$ macek ’@sub-x A;!append (T) "@sub-x $x-B;!prtext $$x"’
bash$ macek -pGF4 ’!extend b;!append (T) \

"@ext-forbid U25";!extend b >(()(s));!prtree’ U24

5.5 Options for Generating Extensions

The program provides commands for generating extensions of matrices, See Section 6.7
[Generating], page 30. These commands need to keep additional information about the
matrices during the generation process, which is achieved using the various ext-* options.

Chapter 5: Frame Options 23

The option ‘@ext-bsize R C’ tells that the base minor of generating process occupies
the first R rows and C columns of the matrix. The option ‘@ext-signature’ keeps the
signature of the elimination sequence of generating process. (The signature tells, in a bit-
representation, whether rows 0 or columns 1 were extended at each step of the process.)
These options are set during the generating process, and they should never be altered by
hand.

The option ‘@ext-forbid min1 min2 ...’ lists matroids which are forbidden as minors
when generating extensions. Each value of the option represents one forbidden minor, and
these values are processed in the same way as the input frames in the program. Notice that
this value-processing happens later, when the respective ‘!extend’ command is executed.
For example, the option ‘@ext-forbid F7 "F7;!dual"’ means that the matroid F7 and its
dual will be excluded in the next extension-generating command.

The option ‘@ext-tight min1 min2 ...’ lists matroids which form the set defining a
“tight-major” for generated extensions. This option works similarly as ext-forbid. The
option ‘@ext-nofan f’ tells that no fan of length f or longer may appear along an elim-
ination sequence when generating extensions. Notice also the options ‘@extinherit’ and
‘@extinheritall’ that control inheritance of other options in the generated extensions
Section 5.1 [Inheritance], page 21.

5.6 Other Options

The option ‘@nopfcheck’ causes the program to skip the partial field test. If the partial
field currently used in the program is not total, then not all matrices are valid Section 3.6
[P-Fields], page 9. So a randomized quick test is usually run to uncover most of undefined
matrices. However, for a very long input you may want to skip even this quick test.

The option ‘@transpose’ immediately transposes the matrix scanned so far. If more
matrix lines appear after this option, then they continue the transposed matrix. Usually
you would use this option to obtain a dual matroid from an existing one. This option is
never inherited or written to files.

bash$ macek ’!print (S)’ ’grK5’ ’grK5;@transpose’

The option ‘@inputpf PF’ immediately switches the input partial fields to new PF. That
means all subsequent matrices in the subtree of the current frame are read and stored in the
new partial field. See Section 6.8 [Diff-fields], page 33. No other frames than the current
one and its descendants are affected. Do not mix different partial fields for one matrix.

bash$ macek -pGF2 ’!print ((T));!pfield GF3;!print (()(T))’ \
U23 ’@inputpf GF3;U24’

24 Macek manual

Chapter 6: Frame Commands 25

6 Frame Commands

A command starts with the keyword ‘command’ or the character ‘!’ on a line. The
next word is the command name, and command parameters continue after the name. For
example, we write a frame to a file with ‘!writeto filename ((T))’. It is possible to quote
parameters with spaces ‘"long parameter text"’.

When reading the input, commands are scanned and immediately stored into their
frames. However, they are executed (in order) later, after the whole input is scanned.
If more than one frame of the input tree holds commands, then the frames are processed
in the reversed depth-first order. In particular, descendants are processed before the root.
Each command can access only the frame it is stored in, and its descendants. (Like if this
frame was the root of the whole tree.) Usually, you should give all commands in the root
frame.

6.1 Command Overview

When using commands and options in the Macek program, it is important to fully
understand the order in which options and commands are scanned and applied, as written
above. The later execution of commands, in particular, means that all matrix entries and
all options from the input are already known when the command is executed, even if they
appear after this command. It does not matter how you mix between commands and options
on the input.

Yes, there is an exception to the previous rule – the @sub-* options vs. command
parameters. Keep in mind that the input macro substitution applies when reading the
command, not when executing it. Therefore, all @sub-* options must appear before the
respective macros are used on the input.

Also notice that some options, like ‘@transpose’ or ‘@inputpf’, behave more like com-
mands, but they still stay as options with their immediate application. (You may consider
using the corresponding commands ‘!dual’ or ‘!pfield’, respectively.)

Before proceeding further, be sure that you understand about frame-addressing in com-
mand parameters; See Section 4.5 [Addressing], page 15.

A command has several or no parameters. (Among them, the possible output address
‘>xxx’ has special meaning and position.) If the required parameter is missing, then it
is substituted by its default value. Determining the default value is a kind of a magic; it
depends on a command context, current frame tree, etc. If you are not sure what the default
value in the specific situation is, then read the program output where the parameters are
printed, or add the command ‘!verbose’.

run the program with -g2 and see the substitution made in the debugging output.
The purpose of this “magic” parameter substitution is to save you typing the parameters

over and over. In most easy situations you may just use the commands with no parameters
at all, and the default values will do what you expect. (Unless your expectations are very
unrealistic.)

Another note concerns frame names and comments. Some commands change the frame
name to indicate their effect on the frame (matrix). They also may set the frame comment
to a description of the command.

26 Macek manual

To learn more, read next about particular commands recognized by the Macek program.
The list of all recognized commands is obtained by calling ‘macek -HHc’. (Not all of them
may be described in this manual.)

6.2 Printing Commands

We start with the printing commands in the program. The command ‘!pr’ prints a
simple description of the given frame(s). The command ‘!print’ similarly prints the ma-
trix(ces) of the given frame(s), and ‘!prtext’ prints the text given as a parameter.

The command ‘!prmore’ prints various additional matroidal information about the given
matroid(s). The printed information does not depend on particular representation or the
partial field, only on abstract matroid properties. This may be used to better understand
the structure, or to compare matroids over different pfields by hand (using a hash-value
printed at the end). Currently, numbers of bases are printed out, and small flats and
separations are listed; all depending on the current output verbosity by ‘!verbose’.

To display the whole subtree of the given frame(s), use the command ‘prtree’. Each
descendant frame (up to certain depth) is printed on a separate line, in the depth-first order.

In general, one may control the amount of information printed out with the commands
‘!verbose’ and ‘!quiet’, that can be used with a number +-N.

Try the following examples:
bash$ macek -pGF4 ’!pr (s)’ U24 U25
bash$ macek -pGF4 ’!quiet;!pr (s)’ U24 U25
bash$ macek -pGF4 ’!prtree’ U24 ’{U25 U35}’
bash$ macek -pGF4 ’!prtree (s)’ U24 ’{U25 U35}’
bash$ macek -pGF4 ’!print ((t)(s))’ U24 ’{U25 U35}’
bash$ macek -pGF4 ’!verbose;!print’ U24
bash$ macek -pREG ’!prmore’ R10
bash$ macek -pGF3 ’!verbose 2;!prmore’ F7-

6.3 Writing to Files

The commands described here are provided for saving (writing) frames to files. One may
write either one frame (including its matrix), or the whole subtree of a frame. The format
of the output file is a text described in the section Section 4.1 [Frame-syntax], page 11.
(The syntax is likely more formal than what you would give to the program on a command
line, but the general rules are the same.)

When writing (or reading) files, search paths are used, See Section 3.5 [Environment],
page 9. Each file name is automatically appended with the extension ‘.mck’ (if it is not
given otherwise). If no file name is specifically given to the command, then the name of the
frame is used.

The command ‘!write (frame)’ writes the frame addressed by (frame) to a file named
by the frame. More than one frame may be given. The command ‘!writetree (frame)’
writes the whole subtree of the frame addressed by (frame) to a file named by the
frame. The commands ‘!writeto fname (frame)’ and ‘!writetreeto fname (frame)’ do
the same, but they use a name ‘fname’ for the saved file. If ‘fname’ ends with a slash ‘/’,
then it is used as a directory prefix for writing, and the frame name is used for the file itself.

Chapter 6: Frame Commands 27

Possible commands contained in a frame are never written to a file. On the other hand,
all options except @transpose are written, and even some options inherited from ancestors
may be written if requested Section 5.1 [Inheritance], page 21. The exception is the @name
option which is not written for the root frame, so that this frame later gets its name from
the file name.

Again, we provide few examples:
bash$ macek -pGF3 ’!writeto sample1 ((T))’ ’W3’
bash$ macek -pGF3 ’!writetreeto sample2 (T)’ ’{U24 W3}’
bash$ macek -pREG ’!extend c;!write ((S))’ grK33

6.4 Reading Frames

Under normal circumstances, you do not need any command to read frames, since the
input frames are scanned with the input. However, in some cases extra commands are
necessary; like if you want to read a frame in another partial field than the current one, or
if you want to add more options to frames after scanning the input.

The command ‘!read input >(dest)’ reads a frame (sub)tree from the string input,
and stores the tree as rooted at the position (dest) in the current tree. The string input
is considered similarly as a command-line argument to the program, including use of the
line shortcuts as described in [line-shortcuts], page 11.

The command ‘!append (fram) input’ reads the given text input, and appends it to
the given frame (fram). The appending works as if the given text continued the original
input stream of the frame, but you must understand that many other things may have
already happened from the original input scanning, which may result in unexpected effects.
In general, we suggest to use this command only in situations when you want to add
more options to some frame during command executions, or if you want to add additional
commands to the current root frame. (However, if you add commands to descendant frames,
they never get executed again unless !restart is used.)

6.5 Manipulating Frames and Matrices

We provide two commands for rearranging the frame tree in the program. The command
‘!move (src) >(dest)’ moves (copies, or deletes) the given source frames addressed by
(src) to the destination positions addressed by (dest). In accordance with the addressing
convention Section 4.5 [Addressing], page 15, the source frames are copied if they are selected
with ‘T’ or ‘S’, and they are moved if selected with ‘t’ or ‘s’. If the destination parameter is
not given, then the selected frames are deleted from the tree. When deleting a frame with
descendants, the whole subtree is disposed of. The root frame (of this command) cannot
be deleted.

The command ‘!flatten (src) >(dest)’ collects all descendants of the frames in (src),
and stores them in the positions addressed by (dest). The command ‘!mmove (src)
>(dest)’ is similar to !move, but it moves only the matrix, and no other frame attributes.
The command ‘setname name (frame)’ sets a new name to the given (one) frame.

Many examples of the ‘!move’ command are presented in Section 4.5 [Addressing],
page 15. We provide a few more here:

28 Macek manual

bash$ macek ’!move ((T))+((T)) >(()(S));!prtree’ grK33
bash$ macek ’!flatten (T) >(()(s));!prtree’ ’{grK5 grK33}’
bash$ macek ’!flatten (s) >((s));!prtree’ ’{grK5 grK33}’

Besides the tree-manipulating commands described above, we provide a bunch of com-
mands for manipulating matrices in the frames.

The commands ‘!dual (mat)’ transposes the matrix(ces) in the given frame(s) (mat).
Its effect is similar to the option ‘@transpose’ applied after the matrix, but the important
difference follows from the fact that options are applied immediately while commands are
executed later, Section 5.6 [Other options], page 23.

The command ‘!pivot row col (mat)’ pivots the given matrix in (mat) on the entry at
row times col. (Rows and columns are numbered in order from 1.) The pivoted entry must
be nonzero. Pivoting switches the labels of the pivoted row and column. The resulting
matrix replaces the previous one (in the same frame).

The command ‘!delete lab (mat)’ deletes the element of the label lab from the matroid
represented by the given matrix in (mat). Note that, unlike when pivoting, the elements
are identified by their labels, not by their order! This allows to delete (as a matroid element)
not only columns of the matrix, but also rows after (automatic) pivoting. The command
‘!contract lab (mat)’ similarly contracts the given element.

The command ‘!deleach (mat) >(dest)’ creates a list of new frames with matrices
obtained by deleting each one of the elements of the matroid represented by the given matrix
in (mat). The resulting new frames are stored according to the output address given in
(dest). The command ‘!coneach (mat) >(dest)’ works similarly for contractions. The
command ‘!remeach (mat) >(dest)’ produces all one-element deletions and contractions
of the matrix (as the previous two together).

bash$ macek -pGF2 ’!print (S)’ grK5 ’grK5;!dual’
bash$ macek -pGF5 ’!print;!pivot 2 1;!print’ P8
bash$ macek -pREG ’!print;!delete 2;!print’ grK5
bash$ macek -pGF2 ’!coneach;!print ((S));!prtree’ W3
bash$ macek -pGF4 ’!remeach;!print ((S))’ U24

6.6 Structural Matroid Functions

We start with the command ‘!inpfield (mat)’ which checks whether the given ma-
trix(ces) (mat) is proper over the current partial field Section 3.6 [P-Fields], page 9. The
result is printed out. This command has no meaning for normal fields.

bash$ macek -pREG ’@nopfcheck;!print (S);!inpfield (S)’ \
’ 1 1; 1 0’ ’ 1 1; 1 -1’

Another command ‘!mhash h-value (mat)’ is used to find matroids in the list (mat)
which have the given matroid hash-value h-value. This is the same hash-value as computed
and printed in ‘!prmore’ Section 6.2 [Printing], page 26. The value is matroid-invariant,
and so it may be used to informally compare distinct matroid representations, even over
different partial fields. Non-equality guarantees that the matroids are not isomorphic. The
next example works when using matroids hash-value ver 1.0. If the program is upgraded to
a higher hash version, you have to adjust these examples first.

Chapter 6: Frame Commands 29

bash$ macek -pRoot6 ’!prmore;!pivot 1 4;!prmore’ O7
bash$ macek -pGF3 ’!mhash 13068150 (S)’ O7 P7

Next we describe a collection of minor-structural commands. (You should first under-
stand problems concerning inequivalent matroid representation from Section 4.3 [Represen-
tations], page 14.) If you want to see more about the command result (like where the minor
is displayed, etc.), use the command !verbose before Section 6.2 [Printing], page 26.

The command ‘!minor (mat) (min)’ finds out whether the given matroid(s) in (mat)
has a “minor” in the given list (min). Here by M having a minor N we mean that some
strongly equivalent matrix representation of M displays a submatrix which is unlabeled
equivalent to N . So when asking for a minor N in the matroidal sense, one has to give all
representations of N up to unlabeled equivalence in the list (min). The minor (if found)
can be displayed when ‘!verbose’ printing was requested before. In such case a submatrix
of an equivalent matrix of (mat) that is equal to (min) up to scale is printed out. With
‘!verbose 2’, all displayed minors are printed out.

The command ‘!equiv (mat1) (mat2)’ looks for unlabeled equivalent pairs of matroids
in the given lists. (In general, equivalence testing is much faster than minor testing.) The
command ‘!eqpair (mat)’ is similar to the previous one – it looks for each matroid in the
list whether some other matroid further in the list is equivalent to this one.

The command ‘!tmajor (mat) (min)’ tests whether the matroid in (mat) is a “tight
major” of the given list (min) of matroids. In theory, a matroid M is a tight major of a
family F if no element of M can be both contracted and deleted keeping a minor in F .
For our implementation, the same notes as for !minor apply here. A warning is printed if
(mat) itself has no minor in (min).

bash$ macek -pREG ’!minor’ ’{W4 R10 R12}’ grK33
bash$ macek -pREG ’!print;!verbose;!minor’ R12 grK33
bash$ macek -pREG ’!verbose 2;!minor’ grK4 grK3

bash$ macek -pREG ’!deleach;!equiv’ R10 grK33
bash$ macek -pREG ’!eqpair’ ’R12;!coneach (T) >((0t))’
bash$ macek -pREG ’!verbose;!eqpair’ ’R12;!remeach (T) >((0t))’

bash$ macek -pGF2 ’!tmajor’ ’{S8 R12}’ ’{F7 F7#}’
bash$ macek -pGF2 ’!verbose 2;!tmajor’ R12 grK33
bash$ macek -pGF2 ’!extend bb;!tmajor ((TS))’ F7 ’{F7 F7#}’

The command ‘!unique (mat1) (mat2)’ is a special function provided for "clearing"
lists of matroids of isomorphic non-equivalent pairs. The idea is that the list (mat1) is that
one to clean, and the second list (mat2) contains alternative representations of the matroids
from the first list (in one-to-one correspondence). If these assumptions are not true, then an
error is reported. Only those matroids of the first list are accepted that have no equivalent
matroid further down in any of the two lists. Efficient use of this function requires a way of
finding inequivalent representations of a given matrix — like the w− > w+1 automorphism
of the field GF (4).

To show an example of the command ‘!unique’, we consider GF (4) co-extensions of the
matroid P7.

bash$ macek -pGF4 ’!extend r;!prtree;!writetreeto p7ex ((T))’ P7

30 Macek manual

This call generates 19 nonequivalent co-extensions of P7, and writes them to the file
‘p7ex.mck’. You may look at the generated matroids using ‘!prmore’, and you find out
from their structural properties that some non-equivalent pairs are likely to be isomorphic.
Precisely, you find out these isomorphic pairs with the next call, where ‘@replace w _w+1’
applies w− > w + 1 automorphism to the matrices in ‘p7ex.mck’. Section 4.2 [Matrix-
Entry], page 12.

bash$ macek -pGF4 ’!unique’ p7ex ’@replace w _w+1;<p7ex’

Finally, we are left with several other structural commands. Use ‘!bwidth3 (mat)’ to
see whether the given 3-connected matroid(s) have branch-width at most 3, or higher.
(It is yours responsibility to ensure that the tested matroid really is 3-connected!) Call
‘!fan (mat)’ to print the longest fan found in the given connected matroid(s), and ‘!hasfan
f (mat)’ to see whether the matroid(s) has a fan of length at least f, Again, you may request
printing the fan with ‘!verbose’.

bash$ macek -pREG ’!remeach;!bwidth3 ((TS))’ R10
bash$ macek -pREG ’!extend r;!bwidth3 ((TS))’ R12
bash$ macek -pREG ’!verbose;!bwidth3 ((TS))’ R12
bash$ macek -pGF2 ’!fan’ ’{F7 W3 W4 R10 R12}’
bash$ macek -pGF2 ’!verbose;!fan’ ’{F7 W3 W4 R10 R12}’

We provide commands for determining matroid connectivity. The command
‘!connectivity (mat)’ prints the connectivity of given matroids (2,3,4,. . .). The com-
mands ‘!isconn (mat) c’ and ‘!isconn3 (mat)’ check the required connectivity of given
matroids. Notice that, unlike [Oxley], we do not consider the matroid U23 to be 3-connected.
We define a matroid M to be n-connected, n > 0, iff M has at least 2n − 2 elements, and
M has no proper k-separation for k = 1, ..., n− 1.

For example, ‘!isconn (mat) 4’ is passed by matroids that are at least 4-connected.
Another example uses the 3-connectivity filter to prepare correct input to ‘!bwidth3’ com-
mand.

bash$ macek -pREG ’!remeach;!connectivity ((TS))’ R10
bash$ macek -pREG ’!remeach;!connectivity ((TS))’ grK5
bash$ macek -pREG ’!remeach;!filt-isconn3;!bwidth3 ((TS))’ grV8

6.7 Generating Extensions

An important function of the Macek program is to generate 3-connected (co)extensions of
a matroid over the partial field. All matroids we speak about here must be 3-connected. We
refer also to the description of options used in the extension generating process Section 5.5
[Extensions], page 22.

The command ‘!extend [rcb]+ (mat) >(dest)’ generates 3-connected (co)extensions
to the matrix given in (mat) according to the first text parameter, and stores them in the
given destination position (dest). A letter r in the first parameter means to do a row
coextension, a letter c means to do a column extension, and a letter b means to do both of
them. (You would mostly use b here unless you know really well what you are doing.)

It is possible to combine multiple letters in the first parameter of !extend. For example,
‘!extend bbb (mat)’ generates three steps of one-element extensions, and all results of each

Chapter 6: Frame Commands 31

of the steps are stored. It is also possible to give more than one matrix in the input list
(mat). Then the extensions are generated for each of the matrices. However, in such case
it is not allowed to use multiple steps.

To extend the given one matroid to a specified size and rank, use the command
‘!extendsize r c (mat)’. This command repeats the extension steps until all extension
matrices of dimensions r times c are produced. Unlike for !extend, the intermediate con-
structed extensions are not stored here.

Try the following few examples:
bash$ macek -pGF4 ’!extend b;!prtree’ F7
bash$ macek -pGF4 ’!extend r (S);!prtree’ F7 F7#
bash$ macek -pGF2 ’!extend bbb;!prtree’ F7
bash$ macek -pGF2 ’!extendsize 5 5;!prtree’ F7

Another set of examples shows the effects of additional generating attributes given by the
ext- options Section 5.5 [Extensions], page 22.

bash$ macek -pGF5 ’!extend;!prtree’ U25
bash$ macek -pGF5 ’@ext-forbid "U35";!extend;!prtree’ U25
bash$ macek -pGF5 ’!extend;@ext-forbid "U25;!dual";!prtree’ U25
bash$ macek -pdyadic ’!extend;!prtree’ F7-
bash$ macek -pdyadic ’!extend;@ext-nofan 4;!prtree’ F7-

When generating extensions with ‘@ext-forbid M’, only those extensions not containing
an M -minor are created. This construction is equivalent to generating all extensions, and
then filtering out those with an M -minor, but the above example is faster. On the other
hand, the option ‘@ext-nofan f’ is a sequential option – it restricts the appearance of the
whole generating sequence, not only the resulting matroid. For example, a matroid N
having no fan would not be generated with ‘@ext-nofan 4’ if all sequences leading to N
contain a 4-fan.

Warning!! The above described commands !extend and !extendsize are very complex
in their nature, and one may easily produce “false” results when (s)he does not fully under-
stand all the hidden details of the computation. That is why we provide here the following
detailed explanation of the extension-generating algorithm in Macek. The theory behind
our extension-generating algorithm is written in the paper [Petr Hlineny: Equivalence-Free
Exhaustive Generation of Represented Matroids, submitted 2002]. However, you do not
have to worry about most of the details if you are working only within “nice” partial fields
with unique matroid representability like binary, regular, or ternary.

We assume that the reader is familiar with matroid representations and their
(in)equivalence Section 4.3 [Representations], page 14. A matroid S is called a stabilizer for
a given partial field if, for any 3-connected (or stable) matroid M with an S-minor, any two
representations of M displaying the same subrepresentation of S are strongly equivalent.
Moreover, S is called a strong stabilizer if every subrepresentation of S extends to whole
M .

Consider that we want to generate all matroids having the given matroid (called further
the base minor) S as a minor, subject to representability over the pfield and to other
conditions (attributes). Then, by Seymour’s splitter theorem, there is a sequence of single
steps (extensions / co-extensions) building a matroid M from the base minor S keeping 3-
connectivity; except the case when the base minor is a wheel or a whirl(!). Such a sequence

32 Macek manual

of single steps, when viewed in the reverse order (i.e. as deletions / contractions), is called
the elimination sequence for the (resulting) matroid M over the base minor S.

Formally, an elimination sequence consists of the base minor S in the given matrix
representation, of the resulting matrix for the matroid M , of the order of lines of M as they
are added to S, and of the signature of the sequence telling which lines of M are extended
and which are coextended. (The sequence signature is taken separately from the order
since the order naturally follows from the matrix representation of M , while the signature
does not.) The base minor S is always displayed in the matrix representation of M in the
upper-left corner.

We call two elimination sequences equivalent if their base minors are unlabeled identi-
cal, they have the same additional attributes, and their resulting matrices are unlabeled
equivalent. To avoid generating equivalent sequences repeatedly, we require the generated
elimination sequences to be minimal with respect to the following canonical order : We
compare two sequences lexicographically first by their signatures (preferring the signature
bits corresponding to lines closer to the base minor), and then by their lines as they are
added in the sequence (again preferring the lines closer to the base minor).

One important note concerns the use of letters r,c as modifiers of the ‘!extend [rcb]’
command: These letters allow you to choose which extensions (row/column) are done at
each step of generating, but they do not modify in any way the canonical order of sequences.
In particular, if you specify ‘!extend cr’, then you get only(!) those canonical extensions
that happen to add a column before adding a row, but not those that add a row before
adding a column.

After all, unless you are using “nice” partial fields with unique representability like bi-
nary, regular, or ternary; we suggest to generate extensions from strong stabilizers, to guar-
antee extendability and to limit inequivalent representations. Notice, however, that even
when the base minor S is a strong stabilizer for the current partial field, two nonequivalent
sequences may produce isomorphic matroids (to M) — this may happen if there are more
(labeled) S-minors in M which display inequivalent representations of S.

Since the options @ext-bsize and @ext-signature describing the elimination sequence
are stored with the generated extension matrices, one may continue the generating process
in multiple steps while still keeping uniqueness of the generated sequences over the whole
universe generated from S. This allows to continue the computation in parallel on many
computers – make the first step(s), and then distribute each of the extensions to another
computer.

However, never touch the @ext-bsize and @ext-signature options by hand, or(!) you
twist the canonical order and lose extensions. Moreover, never change the matrix between
generating steps for the same reason, and do not mix matroids of elimination sequences
created in different major versions of the program. Do not even switch between partial
fields during generating.

If you want to generate extensions of, say, two base minors S1, S2, then you have to
manually exclude repetition of those extensions that contain both S1, S2. One easy way to
achieve this is to generate the extensions of S2 with an additional option ‘@ext-forbid S1’.
(Consider also the option ‘@extinherit[all] ext-forbid’ to inherit the exclusion of S1 for
the generated extensions.) You may learn more in the practical examples below Chapter 7
[Practical], page 37.

Chapter 6: Frame Commands 33

6.8 Working in Different Partial Fields

The Macek program allows to work in different partial fields than the given one by -pPF
〈undefined〉 [-p], page 〈undefined〉. The command ‘!pfield NPF’ switches the program to
temporarily use a new partial field NPF. The new partial field stays in effect until a new call
to !pfield, or until the current frame execution is finished. Compare this command with
the option ‘@inputpf PF’, Section 5.6 [Other options], page 23.

However, calling !pfield only switches the program’s internal arithmetic, but the ma-
trices in the frame tree still remain represented over the original partial field. If you want to
work with them in the new partial field, then you must first import them. For that purpose
the ‘!import transl (mat)’ command is provided. All entries of the matrices in the list
(mat) are translated to the current partial field using the translation named transl. Read
about partial-field translations in Section 3.6 [P-Fields], page 9.

After importing a matrix to a different partial field, this matrix may no longer be proper
Section 3.6 [P-Fields], page 9. So, unless you are sure that this matrix is indeed proper,
you should call the command !inpfield to test it.

bash$ macek -pGF4 ’!print;!pfield GF2;!import Id0;!print’ U24
bash$ macek -pNREG ’!print;!pfield GF3;!import Nreg-tr;!print’ P7
bash$ macek -pNreg ’!extend r;!prtree;!pfield GF3;!import \

Nreg-tr ((S));!equiv ((S)) ((S))’ P7

6.9 Command-Flow Control

The Macek program provides simple command-flow control described here. The com-
mand ‘!restart’ restarts command processing in the whole frame tree. (Commands already
processed are deleted, so they are not executed again.) This command may be useful, for
example, in connection with the command !append which adds new code to descendant
frames. See Section 6.4 [FReading], page 27.

The command ‘!skip n’ causes command processing to skip the next (up to) n commands
in the current frame. Commands in other frames are not affected. The command ‘!exit
r’ immediately stops command execution, and returns the value r to the calling shell. See
below for an example.

The command ‘!iflist len [<=>!] (fram)’ is used to test whether the given frame-list
(fram) contains number of frames comparable to the value len. One may use relations =,
!=, >, >=, <, <=. If the relation is true, then the next command after !iflist is executed,
otherwise the next command is skipped. If you want to skip more commands, use !iflist
in combination with !skip.

Try the following simple examples.
bash$ macek ’!iflist 0 < (S);!print (S)’
bash$ macek ’!iflist 0 < (S);!print (S)’ R10
bash$ macek ’!iflist 0 = (S);!skip 3;!print;!extend;!prtree’
bash$ macek ’!iflist 0 = (S);!skip 3;!print;!extend;!prtree’ W3
bash$ macek ’!iflist 0 = (S);!skip 2;!print;!extend;!prtree’

The next example is more involved. See that the command !extend is copied to all
descendant subframes, and then it is executed in each one of these subframes after !restart.

34 Macek manual

bash$ macek ’!append (S) "!extend c (T) >((0t))"\
;!restart;!prtree’ W3 W4 R10

Another involved example is the procedure &splitlist (Section 6.11 [Procedures],
page 34) distributed with the package:

- use in macek as ’{<list};&splitlist [length] [depth(]’
@subd-param1 10
@subd-param2 "(("
!move ${param2}(${param1}t)| >${param2})(s)|
!iflist ${param1} < ((S))
!append (T) "&splitlist $param1 $param2"

This procedure serves for breaking-up the given frame list into small pieces. Notice
the command-flow in that procedure; first one small chunk of the list is moved to a new
node, then the length of remaining list is tested, and, if longer than the given value, the
whole procedure is appended again to the current frame. (The appended commands are
automatically executed after !append.) An example of use is here:

bash$ macek ’!prtree’ ’{<bw3-tern-exc};&splitlist 4’

The !exit command returns an integer value back to the calling shell. In bash, one
may retrieve the returned value as follows:

bash$ macek -g-2 ’!exit 123’ ; echo $?
123

6.10 Command-output Filtering

Some of the above described commands that usually print a “yes/no”-type answer, may
be modified by a prefix to filter the input list of frames. The prefix ‘filt-*’ causes the
command ‘*’ to keep those frames for which the answer is “yes”, and to delete the others.
(Address the frames with s or t.) The prefix ‘filx-*’ has the exactly opposite meaning.

The prefixes ‘rem-*’ and ‘rex-*’ suppress both printing and filtering in the command.
The only result of such a modified command is the resulting list to be remembered for
subsequent ‘~N,^N’ parameter addressing, Section 4.5 [Addressing], page 15.

The commands that can be modified by these prefixes include !minor, !tmajor,
!inpfield, !isconn, !equiv, !hasfan, !bwidth3, !mhash. Find the current list of all
modifiable commands by calling ‘macek -Hc’.

Here are a few examples that illustrate these concepts:
bash$ macek -pREG ’!deleach;!coneach;!minor’ R12 grK33
bash$ macek -pREG ’!deleach;!coneach;!filt-minor;!prtree’ R12 grK33
bash$ macek -pREG ’!deleach;!coneach;!rem-minor;!pr ~1’ R12 grK33

6.11 Procedures – Collecting Commands

Often, one needs to execute a whole sequence of commands repeatedly for different
parameter values. For this purpose the program provides the concept of procedures.

A procedure line starts with the keyword ‘procedure’ or the character ‘&’. The procedure
is written as ‘&proc p1 p2 ...’. When scanning input, such a procedure call is expanded

Chapter 6: Frame Commands 35

into the following actions: Substitutions are created as ‘@sub-param1 p1’, ‘@sub-param2
p2’, etc. Then the file ‘proc’ is included into the place. It is assumed that this file contains
a sequence of commands, using the parameter values as $param1, $param2, etc. The possible
output parameter ‘>out’ is accessed as $paramres. To give default values to the procedure
parameters, use ‘@subd-param1 p1-default’.

See examples distributed with the program in ‘Procedures/*’. . .

To simplify single command-line calls to some mostly used Macek functions, we provide
few shortcuts that are implemented as include files. You may use simple calls like the
following ones:

bash$ macek print R10
bash$ macek -pGF4 print U35
bash$ macek print grK33 grK5
bash$ macek -pREG prints grK5
bash$ macek -pREG conn R10 R12
bash$ macek -pREG minor R10 grK33
bash$ macek -pREG equiv R10 grK33

The above shortcuts use the feature of an automatic file-include for command line argu-
ments to Macek. So ‘print’ is actually a file containing the print command, and similarly
with others. See ‘Procedures/shortcut/*’. User may easily prepare more such shortcuts.
However, we suggest to use shortcuts only in those very simple situations like the above
examples.

36 Macek manual

Chapter 7: Practical Macek Computations 37

7 Practical Macek Computations

In this section we want to present several practical examples of computations with the
Macek program. They are intended both to show you the power of this program in practice,
and to demonstrate that it computes correctly some well-known matroidal results. We
start with proving that the matroid R10 is a splitter in the class of regular matroids (see
Seymour’s decomposition theorem).

7.1 R10 as a Splitter for Regular

bash$ macek -pREG ’!extend b;!prtree’ R10

This program call works in the regular partial field. A representation of the matroid R10
(distributed with the program) is read from a file, Then the command ‘!extend’ is called
to get all 3-connected row- and column-extensions of the matrix of R10 in regular numbers,
using the default parameter address ((T)). As you may immediately see, no extension is
generated. (If there were some, they would be stored to >(((0t))).) Thus, using Seymour’s
splitter theorem, R10 is a splitter for 3-connected regular matroids.

bash$ macek -pNREG ’!extend b;!prtree’ R10

Similarly, we show that R10 is a splitter for 3-connected near-regular matroids.

7.2 Extending F7 in Binary

bash$ macek -pGF2 ’!extend b;!prtree;!minor’ F7 F7#

In this case, we generate all binary extensions to the matrix of the Fano matroid F7. Then
we print the two generated extension in the tree as sons of F7, and finally we show that
both the extensions have the dual of F7 as a minor. Hence F7 is a splitter for binary
matroids with no F7∗ minor.

Alternatively, one may achieve the same result with another call that excludes the F7∗-
minor immediately in the generating process. (Notice that commands are executed even
inside option parameters.)

bash$ macek -pGF2 ’@ext-forbid "F7;!dual";!extend b’ F7

bash$ macek -pGF2 ’!extend r;!print ((s))’ F7

We continue in the direction of the previous example. We compute the two binary row
coextensions of the Fano matroid F7 and print them. See that the first one of them is
the affine plane AG(3, 2), and the second one is known as S8. Both of these matroids are
distributed with the program.

bash$ macek -pGF2 ’!extend c;@ext-forbid "AG32;!dual"’ S8

The next call shows that there is only one column extension to S8 with no AG(3, 2)∗-minor.
This extension is known as P9.

38 Macek manual

7.3 Extending K5 in Binary

bash$ macek -pGF2 ’!extend b;!minor’ grK5 ’{grK33,"grK33;!dual"}’

Here we generate all binary 3-connected extensions of the matroid of the graph K5, and
then check which of them have the matroid of the graph K33 or the dual as a minor. We
see that 5 out of 6 generated matroids have one of the minors.

bash$ macek -pGF2 \
’@ext-forbid grK33 "grK33;!dual";!extend bbb;!prtree’ grK5

Notice that this command should be called from one (logical) line of the shell. Now we
compute the binary extensions to K5 in three steps, adding one element at each step. We
immediately exclude those extensions with K33 or the dual as a minor. Since no new
extension is generated at the third step, this computation proves that there are altogether
only two binary 3-connected (row) extension to K5 without K33 or the dual as a minor.
These two matroids are known as T12 and T12/e.

7.4 Ternary vs. Regular extensions

In this example we show that generating regular extensions of a matroid gives the same
results as generating the same extensions over the ternary field with a forbidden U24-minor.
(The idea behind this is that ternary matroids without U24-minor are binary, and hence
also regular.)

bash$ macek -pREG \
’!extendsize 6 6;!prtree;!writetreeto ex-reg ((T))’ grK33

bash$ macek -pGF3 ’@ext-forbid U24;\
!extendsize 6 6;!prtree;!writetreeto ex-tern ((T))’ grK33

Again, these commands should be called from one (logical) line of the shell. The result-
ing lists of each of the extension commands are written to the files ‘ex-reg.mck’ and
‘ex-tern.mck’. (Actually, the same list as ex-tern can be obtained by generating all
ternary extensions, and then filtering out those with U24-minors.) Finally we look at the
generated lists again, and show that they are the same with the following command. We
do not need to switch between the regular and ternary partial fields here since the regular
representations may be read everywhere.

bash$ macek -pGF3 ’!equiv’ ex-tern ex-reg

7.5 Extending F7 in Quaternary

bash$ macek -pGF4 ’!extend bb;@ext-forbid U25;!minor’ F7 U24

In this example we show the quaternary 3-connected extensions of the Fano matroid F7
without U25-minors. Notice that all such generated extension have no U24-minor either,
and so they are all binary. Since this computation would continue forever, it cannot serve
as a rigorous proof, but it suggests that all quaternary extensions of F7 without U25-minor
are binary. (Which is, indeed, known to be true.)

Try the same example with more extension steps, that is like:

bash$ macek -pGF4 ’!extend bb..b;@ext-forbid U25;!minor’ F7 U24

Chapter 7: Practical Macek Computations 39

7.6 Examining Near-Regular Extensions

In this section we show how to generate near-regular extensions of the matroid P7, and
how to see the inequivalent ones of the same matroids. Run the following two commands,
and watch their outputs carefully.

bash$ macek -pNREG ’!extend b;!quiet;!prmore’ P7
bash$ macek -pGF3 ’!extend b;!quiet;!prmore’ P7

You see that a total of 8 extensions are generated in the near-regular case, but only 4
of them have distinct matroid hash-values. This suggests that there are, in fact, only 4
non-isomorphic extensions. (Which can be verified by other means, try it. . .) Distinct
matroid hash-values always mean non-isomorphic matroids. On the other hand, there are
12 extensions generated in the ternary case, and you may find all those 4 near-regular hash-
value classes as distinct matroids there (non-isomorphic since ternary representations are
unique).

This example is to show you that nonequivalent representations of the same matroid
frequently occur when working over more complex (partial) fields, and a possible way how
to handle them. Another interesting point here is that two distinct matroids of the 12
ternary extensions have the same hash-value (this is in version 1.0 hash-values which may
change in future!). To see that the matroids are really different, find out that one has
two triangles while the other has only one. Run the same script without the suppressing
command !quiet to see more about structure of these two (and others) matroids. Hence,
even if two hash-values are the same, the matroids still may be non-isomorphic!

bash$ macek -pGF3 ’!extend r;!prmore’ P7
bash$ macek -pGF3 ’!extend r;!verbose;!prmore’ P7

7.7 Extending Whirls

In this section we want to demonstrate the fact that wheels and whirls are exceptions
in Seymour’s splitter theorem which is a base of our extension-generating algorithm, Sec-
tion 6.7 [Generating], page 30. This is another potential problem, in addition to non-
equivalent representations, that must be closely watched when using extension generating
functions of Macek.

bash$ macek -pGF4 ’!extendsize 4 4;!writetreeto xu24 ((T))’ U24
bash$ macek -pGF4 ’!extendsize 4 4;!writetreeto xwh3 ((T))’ Wh3
bash$ macek -pGF4 ’!equiv’ xwh3 xu24

The first call generates 8-element rank-4 extensions of U24 – the 2-whirl. The second call
generates 8-element rank-4 extensions of Wh3 – the 3-whirl. On the third line you may
then see that not all matroids generated secondly appear in the first list, despite them all
having a U24-minor.

7.8 Branch-Width 3

bash$ macek -pREG ’!bwidth3 ((T));!deleach;!coneach;!bwidth3’ R10

In this example we show that the regular matroid R10 is an excluded minor for matroids
of branch-width 3. The first command !bwidth3 ((T)) verifies that R10 itself has branch-
width bigger than 3. Then the next two commands construct all one-element deletions and

40 Macek manual

contractions of R10, which are all stored to the default address >(((0t))). Finally, we see
that all these deletions and contractions have branch-width 3 in !bwidth3 (with the default
frame address ((S))).

One important remark here is that you cannot perform the same computation with an
arbitrary matroid, since the command !bwidth3 requires a 3-connected matroid on the
input. Since the matroid R10 is 4-connected, all its one-element deletions and contractions
are indeed 3-connected, but this may not be true for other matroids! Then you have to use
the command ‘!filt-isconn3’ to filter out the matroids which are not 3-connected.

bash$ macek -pREG ’!remeach;!filt-isconn3;!bwidth3 ((TS))’ grV8

7.9 Binary Excluded Minors for Branch-Width 3

It is known that if M is an excluded minor for branch-width 3, then M has at
most 14 elements [Hall, Oxley, Semple, Whittle]. Moreover, Dharmatilake conjec-
tured that all binary excluded minor for branch-width 3 belong to the following set:
{grQ3, grO6, grK5, grK5∗, grV 8, grV 8∗, R10, ND11, ND14, ND23}. The first seven of
them are regular matroids. We need to look only at remaining binary non-regular ma-
troids on up to 14 elements. We have proved this conjecture using a Macek script described
next.

The whole script, named bw3bin, is prepared as a procedure. One call to it performs
one step of the whole computation. See below how to call this procedure step by step. . .
The procedure takes one argument which contains a starting list of matroids for this step.
The default value for the argument is "f7.".

Call this as: macek -pGF2 ’&bw3bin f7..’
#
@subd-param1 "f7."

Next the procedure prepares its working subtree. (This is not necessary in general, but
we do so here to neatly organize the procedure.) Each node in the subtree is named and
commented so that you see its purpose. Keep in mind that this part of the procedure is
processed immediately when the file is read from the input.

@sub-known-excluded "bw3-bin-exc"
@sub-excluded "(((S)))"
{
@name "bw3bin-w"
@comment "bw3bin working subframe:"
{
<${known-excluded}
}{
@name extens1
@comment "new b-extensions of $input [${param1}]..."
}{
@name e-bwidth4
@comment "those generated with bwidth 4 get here:"
}{
@name e-bwidth4n
@comment "those new excl-minors with bwidth 4 get here:"

Chapter 7: Practical Macek Computations 41

}{
@name e-bwidth3
@comment "those next with bwidth 3 get here:"
}}
@sub-input "(()(S))"
{
<$param1
@comment "this is the starting set of matroids ${param1}:"
}

Here the computation part of the procedure starts. We first define macros for easy access
to parts of the above subtree. Notice that we later close the parameter addresses that use
these macros with ‘|’, so that we do not have to bother with the proper number of brackets
that must be closed. Then we decrease output verbosity level, and print the whole starting
tree.

@sub-generto "(((4)("
@sub-generall "(((1)("
@sub-gener4bw "(((2)("
@sub-gener4n "(((3)("
!quiet
!prtree (T)

This part generates all one-element extensions and coextensions to the starting list of ma-
troids. Then the generated extensions are copied to a storage, and they are as well separated
by branch-width into generto and $gener4bw. Notice the way we separate the generated list
— we first mark those frames not having branch-width 3 by the command !rex-bwidth3,
and then we move the marked frames away. (If we used !filt-bwidth3, then those frames
not having branch-width 3 would be lost.)

!extend b $input >$generto(0t)|
!move ${generto}S| >$generall(0t)|
!rex-bwidth3 ${generto}S|
!move ^1 >$gener4bw(0t)|

Finally, we store the results into several files. Out of those (co)extensions not having
branch-width 3 we filter out ones having minor among already known excluded minors.
The remaining ones are returned as possible new excluded minors (which do not actually
exist as we see).

!writetreeto ${param1}b-all (T)
!writetreeto ${param1}b ${generto}T|
!writetreeto ${param1}b-4 ${gener4bw}T|
!move ${gener4bw}S| >$gener4n(0t)|
!filx-minor ${gener4n}s| $excluded
!writetreeto ${param1}b-4n ${gener4n}T|
!prtree

Here we show how the above procedure is called to get the final result. The whole
file defining the procedure should be included in the Macek distribution under the name
‘bw3bin’. You need to first create the starting list of matroids ‘f7.’ looking like:

{ F7 }

42 Macek manual

Recall that we are searching only through non-regular binary matroids, and hence we may
assume, up to duality, that all matroids we need to generate contain an F7 minor. We then
call:

bash$ macek -pGF2 ’&bw3bin f7.’

The previous command performs one step of the search process. The next step starts with
the file ‘f7.b’ generated previously. Then the next step starts with ‘f7.bb’, etc. . .

bash$ macek -pGF2 ’&bw3bin f7.b’
bash$ macek -pGF2 ’&bw3bin f7.bb’
bash$ macek -pGF2 ’&bw3bin f7.bbb’
bash$ macek -pGF2 ’&bw3bin f7.bbbb’
bash$ macek -pGF2 ’&bw3bin f7.bbbbb’
bash$ macek -pGF2 ’&bw3bin f7.bbbbbb’

We have to execute seven steps total to get to matroids on 14 elements. You may easily
check in the resulting files that no other excluded minors for branch-width 3 were found.

7.10 Ternary Excluded Minors for Near-Regular

It is known that if M is an excluded minor for near-regular representability, then M
has at most 8 elements [Geelen, unpublished]. Moreover, it happens that all four excluded
minors for GF(3) representability are also excluded minors for near-regular representability.
Thus to find all excluded minors for near-regular representability, one just has to search
through ternary non-binary matroids. Similarly as above, all such matroids must contain
an extension of the 3-whirl.

We show how to find all 6 such excluded minors using the Macek program. (They are
F7−, AG(2, 3)− e, their duals, P8, and AG(2, 3)− e by DeltaY .)

The whole script, named excnreg, is prepared as a procedure. Each call executes one
step of the whole computation. (There are, actually, only two meaningful steps, since we
need to get from 6-element Wh3 to 8 element matroids.) The procedure takes one argument
which is then used to construct the filenames of three input lists - starting near-reg and
ternary lists, and previous excluded minor list. (Possible second argument should be always
‘b’. . .) The default value for the argument is "nre6.".

#
Call this script as macek -pNREG ’&excnreg nre6.’ .
#
@subd-param1 "nre6"
@subd-param2 "b"
@sub-extdesc $param2
@sub-nrein $param1
@sub-nretin $nrein-tern
@sub-nrexcl $nrein-excl

This part prepares the working subframes with their names and comments.
{
@comment "For extensions in Near-Reg :"
{
@comment "the starting list"

Chapter 7: Practical Macek Computations 43

<$nrein
}{
@comment "the extensions"
}}
{
@comment "For extensions in GF(3) :"
@ext-forbid $nrexcl
{
@comment "the starting list"
(must be read in ternary later!)
}{
@comment "the extensions"
}}
{
@comment "For filtering minors"
{}{}
}

Here we generate all next-step extensions in the near-regular partial field. Then we
switch to the ternary field, and generate analogous ternary extensions. The forbidden list
for ternary extensions — excluded minors known so far, is given by an option above. Notice
that we can read the input ternary list only after switching to the ternary field, otherwise
an error would occur. (Other possibility is to consider the option ‘@inputpf GF3’ above. . .)
We have to keep the ternary and near-regular lists separately (despite them containing the
same matroids), because their extension signatures are different.

!quiet
!prtree
!prtext "Now we generate all next-step extensions in Near-reg."
!extend $extdesc (((S))) >((()((0t)|

!pfield GF3
!prtext "Now we generate extensions in GF3 with no known excl minors."
!read $nretin >((3)(t))
!move ((3)(s)) >(()(((0t)|
!extend $extdesc (()((S))) >(()(()((0t)|

Next we look at which of the ternary extensions have no minor among the near-regular
extensions. These are the new excluded minors. Resulting lists are written to files for use
in the next step.

!move ((()(S)| >((2)(((0t)|
!import nreg-tr ((2)((S)|
!rex-minor (()(()(S)| ((2)((S)|
!move ^1 >((2)(()((0t)|
!read "@comment \"For merging excluded minors :\";$nrexcl" >((3)(t)|
!move ((2)(()(S)| >((3)((0t)|
!prtree

!writetreeto "$nrein$extdesc-exc" ((2)(()(T)|
!writetreeto "$nrein$extdesc-excl" ((3)(T)|
!writetreeto "$nrein$extdesc-tern" (()(()(T)|

44 Macek manual

!pfield Nreg
!writetreeto "$nrein$extdesc" ((()(T)|
!prtext "One step of &excnreg finished. Call next with one more \"b\"."

Here we show how the above procedure is called to get the final result. The whole
file defining the procedure should be included in the Macek distribution under the name
‘excnreg’. You need to first create the starting lists of matroids ‘nre6.’ and ‘nre6.-tern’
looking like

{ Wh3 }

and an empty file ‘nre6.-excl’ for collecting the excluded minors. Then you call:
bash$ macek -pNREG ’&excnreg nre6.’
bash$ macek -pNREG ’&excnreg nre6.b’
...

Chapter 8: Remarks 45

8 Remarks

8.1 Program Reliability

In this chapter we discuss correctness and reliability of the results of Macek computa-
tions. When developing this project, we made every possible effort to produce a stable and
very reliable software tool. Such an effort is, indeed, necessary if we want to use Macek
computation results in research papers. However, if your view of computer programs is
distorted by bad experiences with products of one unnamed Redmond company, then there
are many ways how you can test our program, and ensure that you are getting correct
answers.

Almost every algorithm in our program contains thorough internal checks. These include
watching data consistency at critical steps, repeating algorithms on modified input data (an
equivalent input like a matrix with swapped or pivoted lines, or a dual matrix, etc.), and
using alternative or brute-force algorithms for the same question. User may find much more
information about the internal checks directly in Macek source files.

To save time, time-consuming internal checks are randomized and executed only occa-
sionally. Moreover, we provide an alternative executable ‘macek.nodebug’ which does not
include the internal checks, and so it is significantly faster.

Extensive debugging messages generated by the program with ‘-g3’ show you exactly
what the program does, and they may be easily followed in the program source files (which
contain also detailed descriptions of algorithms). Since randomized algorithms are used
in the program, the course of program computation may vary from one run to another,
but the final results should, of course, stay the same. User may also test correctness of
Macek computations by comparing the output with known theoretical results. Several such
examples are presented in Chapter 7 [Practical], page 37.

Another way of checking the program output is to compare it for different versions of the
program. For example, from Macek version 0.8 many structural algorithms were replaced
by new ones that are cleaner and faster. In particular, this means that comparing structural
answers from version 0.8.2 with the same answers from version 1.0.2 provides a nontrivial
proof of correctness. Find out more about this topic by reading the corresponding source
files.

Lastly, we want to note that we have designed our program to be an advanced tool for
skilled users. (Here we mean mainly skilled in matroid theory.) The Macek program is not
idiot-proof. So keep in mind that “garbage in, garbage out”. Watch out carefully whether
the program is really computing the tasks you expect it to. And finally, (RTFM!) read this
whole manual very carefully before starting with complicated computations.

8.2 Troubleshooting

The troubleshooting section is not written yet. If you have troubles with the Macek
program, let me know so that I may include some solution tips here. . .

http://www.mcs.vuw.ac.nz/research/macek/.

http://www.mcs.vuw.ac.nz/research/macek/

46 Macek manual

8.3 Adding Functions to Macek

This chapter of the Macek manual is provided for those who are not satisfied with the
current functionality of this program; who want more functions in it, and who are able to
contribute to Macek development. There are lots more things you can do if you really want!

According to the GPL license covering Macek, you may obtain and modify any source
file of the program. However, we suggest you follow the guidelines provided next, so that
your additions to Macek will be compatible with the future development. And, if you write
a nice piece of code for Macek, let me know so that I can arrange it within the master
distribution. http://www.mcs.vuw.ac.nz/research/macek/.

Before playing with new functions for Macek, read the relevant source files of the dis-
tribution since they contain a lot of technical description and comments. Then prepare
you code separately in a separate directory. (You may use the provided subdirectory
‘src/addons’. . .)

There are three areas in which it is useful to add you code directly to the existing Macek
code, and special (empty so far) files ‘*.inc’ are provided there for you: additional partial
field definitions and translations ‘pfield/pfdef-more.inc,pftran-more.inc’, additional
command handles and option descriptions ‘frame/frcoms-more.inc,fropts-more.inc’,
and extra control rules for extension generating ‘gener/gener-more.inc’. Read the com-
ments in these files, and follow samples there.

Good luck with development!

8.4 Acknowledgements

The author acknowledges support from the Victoria University of Wellington, and from
the Marsden Fund of New Zealand (a grant to Geoff Whittle).

The author also thanks Geoff Whittle for stimulating discussions about the nature and
goals of this program, mainly in the early stages of development, and Steven Archer for
testing the program and poolishing this manual.

http://www.mcs.vuw.ac.nz/research/macek/

Index 47

Index

Here we list the concept index for this manual. (Go to the next index if you look for
program commands / options.)

-
-g . 7
-h . 7
-H . 7
-p . 7
-v . 7

A
adding more . 46
adding options . 22
addressing. 15
arguments . 7

C
command overview . 25
command shortcut . 34
command-flow . 33
command-line . 7
commands . 25
conditional . 33
connectivity . 28

D
deleting options . 22
different pfield . 33

E
environment . 9
erasing options . 22
errors . 8
examples (few) . 6
examples-practical . 37
exit/value . 33
expression . 12
extension generating . 30
extension options . 22

F
field . 9
file-reading . 27
file-writing . 26
filter/command . 34
filter/output . 34
frame . 11
frame addressing . 15
frame input . 7

frame syntax . 11
frame-commands . 25
frame-options . 21
frame/matrix . 12
frames/matrices briefly . 4

G
generating extension . 30

I
import pfield . 33
inheritance . 21
input syntax . 11
installation . 3
internal checking . 8
isomorphism-hash . 28

M
Macek program . 7
macro substitution . 18
manipulating . 27
matrices/frames briefly . 4
matrix entry . 12
matrix equivalence . 14
matrix/change . 27
matrix/matroid . 14
matroid isomorphism. 28
matroid representation . 14
matroid-structural . 28
messages . 8
messages/errors . 8
minors . 28
more functions . 46

N
naming . 21

O
option-name,comment . 21
options . 21
options-extension . 22
options-other . 23
options-substitution . 22
output . 8
overview . 1
overview/command . 25

48 Macek manual

P
partial field . 9
platforms . 1
practical . 37
printing . 26
procedures . 34
program . 7
program briefly . 3
program error . 8
program output . 8

Q
quickstart . 3

R
reading . 27
reliability . 45
remember/output . 34
remembered result . 16

replacement . 22

S
standard-form matrix . 14
structural . 28
subframe . 15
substitution . 18, 22
syntax/frame . 11

T
tree/modify . 27
troubleshooting . 45

V
version1 . 1

W
writing . 26

Index 49

Here we list the index of all frame- commands and options described in this manual.

A
append . 27

B
bwidth3 . 28

C
comment . 21

coneach . 27

connectivity . 28

contract . 27

D
deleach . 27

delete . 27

dual . 27

E
eqpair . 28

equiv . 28

erase . 22

eraseall . 22

exit . 33

ext- . 22

ext-bsize . 22

ext-forbid . 22

ext-nofan . 22

ext-signature . 22

ext-tight . 22

extend . 30

extendsize . 30

extinherit . 21

extinheritall . 21

F
fan . 28

filt- . 34

filx- . 34

finherit . 21

finheritall . 21

flatten . 27

H
hasfan . 28

I
iflist . 33
import . 33
inpfield . 28
isconn . 28
isconn3 . 28

M
mhash . 28
minor . 28
mmove . 27
move . 27

N
name . 21
nopfcheck . 23

P
pfield . 33
pivot . 27
pr . 26
print . 26
prmore . 26
procedure . 34
prtext . 26
prtree . 26

Q
quiet . 26

R
read . 27
rem- . 34
remeach . 27
replace . 22
require . 22
restart . 33
rex- . 34

S
selfmap . 28
setname . 27
skip . 33
sub- . 22
subd- . 22

50 Macek manual

T
tmajor . 28

transpose . 23

U
unique . 28

V
verbose . 26

W
write . 26
writeto . 26
writetree . 26
writetreeto . 26

	Overview of Macek
	Using Macek
	About Version 1.0

	Quick-Start
	Installation of Macek
	Run the Program
	Matrices and Frames
	Examples of Use

	The Macek Program
	Command-line Arguments
	Frame Input
	Program Output
	Error Reporting
	Program Environment
	Partial Fields

	Frames -- Data Handling
	General Input Syntax
	Matrices and their Entries
	Matroid Representations
	Subframes
	Addressing the Frame-tree
	Macro Substitutions

	Frame Options
	Inheritance of Option Values
	Naming the Frames
	Options for Substitutions
	Adding and Erasing Options
	Options for Generating Extensions
	Other Options

	Frame Commands
	Command Overview
	Printing Commands
	Writing to Files
	Reading Frames
	Manipulating Frames and Matrices
	Structural Matroid Functions
	Generating Extensions
	Working in Different Partial Fields
	Command-Flow Control
	Command-output Filtering
	Procedures -- Collecting Commands

	Practical Macek Computations
	R10 as a Splitter for Regular
	Extending F7 in Binary
	Extending K5 in Binary
	Ternary vs. Regular extensions
	Extending F7 in Quaternary
	Examining Near-Regular Extensions
	Extending Whirls
	Branch-Width 3
	Binary Excluded Minors for Branch-Width 3
	Ternary Excluded Minors for Near-Regular

	Remarks
	Program Reliability
	Troubleshooting
	Adding Functions to Macek
	Acknowledgements

	Index

