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Abstract

Image mosaicking is a process in which small images are composed together into one single
image. We will focus on this topic in this work. Especially, we will focus on a computer
processed image mosaicking of regular-shaped input images regularly arranged into a grid.
Displayed data is from the field of tissue pathology where large 2D high-resolution color
images were acquired from wide-field optical microscope. The output image is obtained by
registration and stitching adjacent images resulting into a large-scale 2D high-resolution
color image.

The solution will be presented through-out this work as well as particular environment
where our in-house developed program is used. Novel approaches to this problem will be
described too and their aspects discussed. A special measure is developed characterizing
the quality of image with respect to voxel-based image registration techniques. The pro-
gram makes use of special order, derived from application of graph theory, for registering
adjacent images. That enabled it to handle images mainly containing empty background
well. Program also performs well by using a stream stitching approach. In particular,
it is feasible to compose an image of size larger than the memory capacity of processing
computer. The result of stitching is claimed to contain no harming artifacts from the point
of view of pathological analysis.

The work is based on two accepted articles that are included in the appendix of this
thesis.

Keywords:
rigid image registration, image stitching
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Chapter 1

Introduction

1.1 Preface

We will deal with the computer processed image mosaicking problem in this thesis. The
image mosaicking is a process in which large image is somehow composed from several
smaller images according to given rule or methodology. We will specify this rather vague
definition in more details in the next section to achieve a good insight into the problem
that was solved and that is the subject to this thesis.

For this moment, we will just allow ourselves to classify this problem into the field of
computer graphics which, in turn, belongs to the most often studied fields in computer
science. Moreover, the problem can be considered as an image processing problem in our
case since the image was further processed after the final mosaic was created. Composed
large images were further annotated, i.e. specific features of displayed data are discovered,
labeled and described, and images were stored into a database afterthat.

Since this work was solved in collaboration with the Department of pathological
anatomy at Brno Faculty Hospital — Bohunice, the displayed data were images of tis-
sues typically. The task was to acquire large color image of tissue at the best possible
resolution and picture quality. The adopted approach was to acquire image of specimen
part by part and then compose these parts together into final large image. Details will be
given in the next section. The output of the method, which is to be described later in this
document, is available in the digital collection in the Hypertext Atlas of Dermatopathol-
ogy at http://www.muni.cz/atlases. The program, a software outcome of this work, is
still in frequent use there at the department.

The work has been published in two papers [7, 19] already. Each focused on just a part
of the whole problem and at different level of details. Since the obvious space constraints
given by publishers of papers, we decided to write this thesis in which we will concentrate
on several interesting aspects of the work and describe them properly. Of course, the whole
methodology will be described too. But still, we included both papers into the Appendix
B (on page 35) as the sources of comprehensive summary of the method.
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1.2 Problem introduction and specification

Since the advent of digital microphotography the researchers can get more from their
microscope device than just photographs of specimen. The transition into the digital
world removed some barriers. As an example of the most limiting barriers we can take
either the size of final image (a grayscale photo) while maintaining the best resolution
achievable, or the non-reproducibility and further processing of data stored analogously
without losing the quality of data. The migration into digital world enabled us to overcome
such barriers allowing us for on-line remote consultation with other colleagues, accessing
remote database which contains reference images of some disease, easier lecturing etc.

The acquisition of a large image at the highest resolution and picture quality possible
with respect to the given optical setup can be considered as a specific feature of digital
microphotography. The area of specimen, that can be captured at the single moment, is
limited by the optical instrument. We will call this a field — a single image that can be
captured at once. Larger area of specimen can be captured by acquiring several smaller
images (fields) and composing them together — mosaicking. Each field can be acquired
at the limits of optical setup, namely at high magnification and resolution possible. The
overall quality of large image doesn’t necessarily have to be worse than the quality of
every field. The composition preserves the resolution, sharpness as well as all other picture
quality descriptors.

The arrangement of fields in a mosaic resembled orthogonal grid, see Figure 1.1, which
was supposed to be stitched together. The mounting stage, to which the specimen was
mounted, was controlled to make the adjacent fields slightly overlapping. However, the
movement resolution of the stage is still lower than the resolution of the CCD chip that
actually acquires, digitizes, the light information which forms the sensed image. In fact,
the overlap was the only source that provided us with the information how to align adjacent
images so they could truthfully constitute a large image of the whole specimen. We were
expecting the mounting stage to translate perfectly. That allowed us to expect adjacent
images to be just somehow translated to one another, no rotation or rescaling was expected.
The process of determining the best alignment of, possibly adjacent, images is generally
called the image registration.

The content of displayed images was merely tiny parts of human skin or organs, lots
of cells with different textures and plenty of intracellular space. The system was not
influenced by the ambient light, furthermore the acquiring instrument was located in a
dark room. The specimen was a flat structure. Even that, the sharpness of adjacent fields
slightly varied from time to time. The cause was often the mounting of the specimen
on the stage or the specimen itself. The normal axis of the specimen plane was not
exactly parallel to the optical axis resulting in different sharpness at the sides of field. So
the sharpness was slightly changing over the mosaic. In addition, the non-perfectness of
optics resulted in minor changes in the overlap data. For instance, if the optics or CCD
chip suffered from tiny distortion on the left-hand side of the view and the mounting stage
was moving then the same region was pictured once on the left-hand side and once on the
right-hand side of adjacent fields, i.e. once with tiny distortion and once without that.
Examples of input images are included in the Appendix.

Another registration related problem is the semantical content of a field. Specimens
contained holes or the specimen’s shape was not convex from time to time. Either way,
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Figure 1.1: An illustration of mosaicking process and an arrangement of fields. Each image
on the left-hand side from the arrow is termed as a field. Notice the overlap between
adjacent fields 1, 0 and 2, 0. Also notice the nature of displayed data. Finally, note that
there exist fields with background (white empty regions) in the overlap area that cause
major problems with reliability of registration.

white uniform illumination formed a background in images. Background is those regions
where no parts of specimen are present. Especially, background was often in the overlap
area of adjacent images. In such situation it was quite difficult to align such images even
for human observer.

Since the microscope was driven by an ordinary personal computer (PC), we planned to
use that computer also for mosaicking process. Hence, three technical constraints arisen.
The most limiting factors were the processor power and the amount of available memory.
The processor power was important for registration establishment because registration
methods can be rather demanding. The memory limitation as well as hard drive perfor-
mance were critical in respect to the amount of processed data. The amount of data was
usually not less than 200MB, although 1GB was nothing rare too. Thus, the design of the
solution to image mosaicking had to be efficient with computer resources. In particular,
the size of composed image could be considerably larger than the size of available memory
capacity which was expected to be up to 512MB.

The stitching process had to deal with data that was not absolutely the same in their
common overlap. Typically, if we aligned two adjacent images according to the upper
part of the overlap, then the lower part was misaligned by few pixels (less than ten).
No new artifacts should emerge after stitching, i.e. the shape of structures present in the
overlap region must be preserved as well as tiny tissue lines should be continuous as much
as possible. No data resampling was demanded in order to come over from one data
to another smoothly. Decent data blurring was allowed in order to hide the stitch from
human observer.
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1.3 Overview of the thesis

The rest of the document is outlined as following.
In the beginning of the next chapter we will describe the entire methodology we had

adopted. We will try to describe it briefly since the methodology is already described in
papers included in the appendix. Furthermore, we will briefly describe the registration
methods in order to provide at least some pieces of information required to understand
the text in the subsequent chapter. Optimization techniques employed will be mentioned
too.

The following chapter will summarize and discuss results we had achieved. We will
mention the determination of special registration order, robustness of selected registration
methods, optimization techniques employed, observed behavior of optical instrument and,
finally, the way to compose large images with seamless stitches.

The fourth, final, chapter will conclude the thesis. This chapter is followed by appendix
containing sample images (fields) and two original published papers.
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Chapter 2

Registration and stitching

2.1 Material and Methods

A wide-field optical microscope Leica DMLB (Leica, Germany) with CCD device Nikon
DXM 1200 (Nikon, USA) was used for fields acquisition of the specimen. We experimented,
depending on the magnification desired, with several objectives ranging from 10x to 100x
magnification (lens were HC PIApo 10/0.4, HC PIApo 20/0.7, HCX PIApo 40/0.85 CORR
and HCX PIApo 100/1.35 Oil Imm). The instrument was driven by Lucia DI software
(Laboratory Imaging, Czech Republic).

Lucia DI software was used for acquisition of every field. The system refocused before
each acquisition in order to get sharp images. An automatic focusing failed from time
to time — for example due to specimen mounting as described in previous chapter. The
software provided a composing function for situations where even human operator driven
focusing failed. The composing function could compose 2D image from several 2D images,
each focused at different distance. Only sharp regions, selected from the sequence of
images, were used in composition resulting in image that was sharp everywhere.

The output of Lucia software is a sequence of images that is passed to our in-house
developed program. Relative positioning of two consecutive images is known due to me-
anderic scan used by the Lucia software. Thus, a grid position of each field is available
prior to the mosaicking step (see Figure 1.1 and notice the coordinates printed inside each
image).

Each image in the sequence is a 2D color image. Typical dimension was 1232 × 972
pixels (picture elements). The color was characterized via red, green and blue 8-bit color
channels. The overlap between adjacent images was set typically from 5% to 10% of image
dimension. There were usually from 30 to 1000 of images in one mosaic resulting in data
through-put of 105MB to 3500MB.

We will describe the methodology of mosaicking. The method can be divided into three
steps. The goal of the first and the second steps together is to establish global coordinates
of top left corner of every image in the mosaic. Global coordinate unambiguously deter-
mines the final position of the field in pixel units with respect to the selected (0, 0) point
in the final large image coordinate system. In the first step we established a special order
of fields according to which they will be processed in the second step of the method. In the
second step each field is examined, the registration to adjacent images is conducted and
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1. for ∀i ∈ Im do Pr[i] := 0 and V al[i] := −∞

2. i′ := maxi∈Im
(∑

j∈Sur[i]Mes[i↔ j]
)

3. while ∃i ∈ Im : Pr[i] = 0 do

4. for ∀j ∈ Sur[i′] : Pr[j] = 0 ∧ V al[j] < Mes[i↔ j] do V al[j] := Mes[i↔ j]

5. Pr[i′] := 1, PRINT(i′)

6. i′ := maxi∈Im:Pr[i]=0(V al[i])

7. end while

Figure 2.1: The modified Prim algorithm. The registration sequence is the order in which
fields are printed in this algorithm (step (5)).

also the final global coordinates are computed. The final step stitches all fields together
according to the supplied global coordinates. More details to each step will be described
in the following sections.

2.2 Registration order establishment

Assessing of a special order was adopted. The purpose of the order is to register fields at
first that can be probably well registered and their global coordinates can be decided well.
In the end of the sequence should be images containing background in overlaps and these
should be embedded into the mosaic in the least harming way.

We made use of graph theory for that purpose. We considered a mosaic to be an
adjacency graph with fields as vertices and edges only between adjacent vertices (fields).
Edges were weighted according to the measure described below. Registration order was
established from modified Prim algorithm. The Prim algorithm computes usually the
minimum spanning tree. We were printing out vertices in the order in which they are
processed during the modified Prim algorithm. Let us denote a set Im to be the set of all
fields in the given mosaic and Sur[i] to be the set of all adjacent fields to the field i ∈ Im,
i 6∈ Sur[i]. The algorithm is written in pseudocode in the Figure 2.1. Note the output
sequence property that states: if ∀i ∈ Im is si the index of i in the sequence and si > 1
then there always exist at least j ∈ Sur[i] with the property sj < si.

The weights associated to edges were computed from the measure given by equations
(2.1) and (2.2). The measure should emphasize overlaps that provide more information
with respect to registration methods,

Mes[i↔ j] = Mes[i→ j] +Mes[j → i], (2.1)

Mes[i→ j] =
∑

(x,y)∈parti→j

|pi(x, y)− pi(x+ 1, y)|+

∑
(x,y)∈parti→j

|pi(x, y)− pi(x, y + 1)| . (2.2)
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Figure 2.2: An illustration of terms demonstrated on an example of registration in horizon-
tal direction. Notice parts of images as well as the area X×Y of all reasonable alignments.
The shift vector is displayed as a thick arrow.

We define a parti→j to be the set of all coordinates, within the coordinate system of image
i, of pixels from the overlap except for the most right and the most bottom pixel lines.
Value of pixel from the field i at coordinate (x, y) will be designated as pi(x, y). See
Figure 2.2 for illustration of terms. Only the grayscaled (reduction from 24-bits to 8-bits
per pixel) parts of images were stored in computer memory during the first two steps of
the method. The measure was computed over the overlap data of both adjacent fields.

2.3 Registration methods

The information provided from the mounting stage about its movement was not accurate
at the resolution of images. We used the information hidden in the overlapped area of
adjacent images in order to recover exact translation between those two. We searched
only for translation, no rotation, rescaling or whatsoever was expected.

We used registration methods for the optimal alignment recovery. There exists several
methods for registration according to survey papers [3, 6, 5] and recently [26]. These
are mainly grouped into the two categories: voxel-based and feature-based registration
methods.

We excluded methods from the feature-based category due to the nature of displayed
data. Extracting most of the classical image features [14, 11, 24] was expected to be less
reliable for further processing, i.e. for registration.

The registration methods from the voxel-based category were used instead. The basic
idea behind this methods is to evaluate all possible/reasonable alignments and select the
most appropriate one. The evaluation of given alignment should therefore characterize
the appropriateness, the quality of a match. The highest the evaluation was the more
appropriate the alignment was. We will describe selected methods briefly. For a detailed
description refer to [5, 18] or to the original sources that will be cited nearby. We had also
make use of [4, 16]. The n-pass method is such method that needs for its computation to
examine exactly n-times data from given overlap. All presented methods work directly on
raw data.
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The alignment of two adjacent fields was defined by a shift vector. Shift vectors were
two dimensional (sx, sy) and ranged from the region all reasonable alignments, i.e. sx ∈
X ∧ sy ∈ Y according to the notation of Figure 2.2. The X × Y region was controlled via
percentage p of the field dimension, X = p · x − R and Y = 2p · y. Parameter p was the
input parameter to the whole method.

We also used the concept of default vectors for both registration directions, i.e. whether
we are registering fields adjacent to one another in horizontal (as in Figure 2.2) or vertical
direction. The very first registration in given direction determined the default vector for
that direction. Every consecutive registration result was compared to the default vector.
If the difference between default and found vectors was not significant, then the default
vector was updated via reaveraging with the new vector. Otherwise, the default vector
was used instead as the result of given registration. The difference was judged upon the
respective differences in both coordinates. In particular, if the difference of at least one
coordinate was more than 10 pixels, the found vector was compensated. This mechanism
was used to detect misalignments and enabled us to embed fields when required.

Registration as well as final global coordinate determination was performed according
to the sequence given in the first step of the method. Global coordinate (0, 0) was set to
be the top left corner of the first field in the sequence which was determined in the step
(2) of algorithm in Figure 2.1. For every field in the sequence, except for the first one,
the registration was computed with all adjacent fields that did not have the final global
coordinate already established. Global coordinate of every field in the sequence, except
for the first one, was determined as the weighted average from coordinates suggested
from adjacent fields that did have the final global coordinate already established. The
suggestion was based on the respective global coordinate and shift vector. The weight
associated to the corresponding edge in the underlying graph representation of the mosaic
was used.

2.3.1 Alignment evaluation methods

The stochastic sign change. The stochastic sign change (abbreviated to SSC) is,
perhaps, the most simple and basic test for similarity. We determined the sequence of
differences from corresponding pixel intensities in the common overlap given by evaluated
alignment. We counted occurrences of the following situations:

• difference value change from strictly positive (above zero) to zero or less,

• difference value change from strictly negative (bellow zero) to zero or above,

• difference value remained zero.

The count is divided by the length of the sequence and that is returned as the evaluation of
given alignment. SSC evaluation is simply one-pass evaluation following the idea that the
more sign changes there are the more similar these two images in their common overlap
are.

The last situation is for the sake of exactly the same data from both overlap area. In
such circumstances the pixel intensity differences are zero obviously. That would lead to
no sign changes at all while the alignment is perfect, in fact.

11



The normalization allows for comparison of evaluation values of alignments represent-
ing different size of overlaps. The larger the evaluated overlap is the longer the sequence
is which allows for possibly more changes. On the other hand, we must restrict the size
of overlap from being too small since the fraction might get higher because of the division
by small number. Note the area R × Y of restricted alignments in Figure 2.2. We used
R = 5 pixels. The range of possible evaluations is 〈0, 1〉.

This method presumes that the data from both adjacent images is identical except
for non-correlated additive noise with the zero mean value and symmetric probability
density function. Moreover, the higher the brightness difference between registered fields
is, the less sign changes will occur. Sign changes will occur sparsely in such case and
the SSC’s expressibility will become poorer from the similarity point of view. At some
level of brightness difference the SSC will completely lose the ability to point out optimal
alignment. The similar behavior would happen if the noise won’t be centered at zero value.

The sum of absolute valued differences. This evaluation (abbreviation is SAVD)
seems to have its root in the least-square criterion which is very popular measure of simi-
larity in computer science. We computed the overall sum of absolute values of differences
of intensities of corresponding pixels. The sum is then divided by the overlap size for the
same reasons as in the sign change criterion. The small overlap restriction is preserved.
SAVD is defined as the MAX constant minus the computed sum — in order to be consis-
tent since we defined that evaluation rises as the given alignment is closer to the optimal
one. The best alignment is then achieved when the sum is equal to zero value, hence the
evaluation is equal to MAX value. Any sub-optimal alignment will differ at some pixel
pair resulting in strictly above zero value of the sum. The sum, in fact, expresses the
average difference of corresponding pixel intensities and since the maximum difference of
8-bit color is 255, we set the MAX constant to the value of 255.

SAVD suggests the least-square criterion. The square function, which purpose is in
fact to turn the negative values into positive ones, is substituted with the absolute value
function in this case. The advantage is its less sensitivity to outliers — corresponding
pixel pairs which differ notably in comparison to others. This improves the similarity
evaluation when the noise is present provided the noise won’t over-buzz the image itself.
In other words, the noise won’t affect the total sum as much as it would affect in least-
square criterion leaving this way the noise-free pixels to control the total value of the sum.
SAVD’s range of possible evaluations is 〈0,MAX〉.

It is slightly faster than SSC and more reliable too. It is again one-pass evaluation.
The images to be registered should be identical, small variance in brightness and noise is
acceptable.

The normalized cross-correlation coefficient. Also known as Pearson r-coefficient
sometimes also referred as linear or product-moment correlation [16], abbreviated to NCC.
The basic implementation is typically two-pass evaluation [2] which can be straighten into a
one-pass evaluation [18]. We implemented the NCC with the range of possible evaluations
to be 〈−100, 100〉. The optimal alignment was reached for the 100.

This evaluation measures the extent to which the intensity values of corresponding
pixels are “proportional” to one another. The term proportional means linearly related.
The higher the NCC is the better can be every pixel pair from overlap described with
single linear equation. For instance, this implies that NCC should work when additive
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noise is present with expectation equal to additive coefficient and symmetric probability
density function. Multiplicative noise with expectation equal to linear coefficient should
be handled too. Thus, NCC evaluation should still find the optimal alignment of images
with different brightness.

The correlation ratio. We implemented the correlation ratio (CR) evaluation ac-
cording to [13, 12] where it is compared to the Woods criterion and to the mutual informa-
tion measure. While the NCC evaluation handles just linear dependency, the CR should
handle any functional dependency [13].

The idea behind is, at first, to estimate the “dependency” of pi(x, y) data on pj(x′, y′)
data, j ∈ Sur[i], from the given overlap and, at second, to quantify this dependency. We
would like to find the function ψ∗ which satisfies the formula:

ψ∗ = min
ψ
V ar[pi(x′ + tx, y

′ + ty)− ψ(pj(x′, y′))], (2.3)

where ψ : 〈0, 255〉 → 〈0, 255〉 represents the functional dependency, (x′ + tx, y
′ + ty) ∈

parti→j , (x′, y′) ∈ partj→i and (tx, ty) is examined shift vector (given by the examined
alignment). V ar is symbol for statistic variance (the second order central moment).

The correlation ratio can be computed in one-and-one pass. That means to scan once
the entire overlap to get some statistics and then to process the statistics. The method
is still rather fast. Unfortunately, the description of theoretical background as well as
implementation details to this evaluation method are beyond the scope of this thesis.
Instead, readers are encouraged to review [13, 18].

We implemented CR with the range of possible evaluations to be 〈0, 100〉. The higher
the evaluation is the more optimal alignment is currently examined. In case of the optimal
alignment the functional dependency is fully explained by some ψ and, thus, the variance in
equation (2.3) will be zero, i.e. minimum and therefore ψ ≡ ψ∗. The restrictions regarding
the noise volume hold as for NCC. Even in spite of the fact that the CR evaluation is
considered to be an extension of NCC in terms of more complex functional dependencies
it can handle.

The mutual information. We also implemented the mutual information (abbrevi-
ation MI) as an alignment evaluation method. This method also deals with probability
estimations. Unlike CR, which is based on functional dependency, the MI is based on sta-
tistical independency. The basic literature regarding MI and registration of large images
can be considered [22] followed by papers [20, 21], technical reports [23] and notably [8].
We also implemented a variant to the method [25] originally suggested by Viola [22]. The
difference was due to the probability functions estimated from joint histogram.

The idea of MI is basically like this. We can think of the image data within the overlap
as of a sequence of trials. All possible trial results are numbered. Trial numbers are all
possible pixel values and are stored in the set T . We can imagine U to be the discrete
random variable with the probability density function PU . Similarly, V will be discrete
random variable with PV . Both variables are represent by data within the overlap of two
adjacent fields. If we can estimate the joint probability density function PW of U and
V so that PU and PV are the marginal probabilities, W is the discrete random vector
W = (U, V ), then we can base the evaluation on the following two ideas. Two random
variables are statistical independent if the equation 2.4 holds. Two random variables are
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statistically maximum dependent if the equation 2.5 holds,

∀u, v ∈ J : PU [U = u] · PV [V = v] = PW [U = u ∧ V = v], (2.4)
∀u, v ∈ J : PU [U = u] = PV [V = v] = PW [U = u ∧ V = v]. (2.5)

The MI evaluation method is defined for two discrete random variables according to
the information theory:

MI(U, V ) = I(U |V ) = I(V |U) = H(U) +H(V )−H(U, V ). (2.6)

The I(U |V ) denotes the information measure from information theory where the amount
of information that V has about U (I(U |V ) is expressed as the Shannon entropy of U
(H(U)) subtracted by the conditional Shannon entropy of U provided V (H(U, V )).

We found another definition of mutual information in [5] on pages 24, 25:

MI(U, V ) =
∑
u,v∈J

PW [U = u ∧ V = v] log
PW [U = u ∧ V = v]
PU [U = u] · PV [V = v]

. (2.7)

This measures the mutual information between U and V via the dependency degree using
the Kullback-Leibler distance between the numerator and denominator of the fraction in
the logarithm. This is in correspondence with the idea explained by equations 2.4 and 2.5.
Both definitions of MI are equivalent, i.e. equation 2.6 can be converted into 2.7 and vice
versa.

The general pitfall of the MI method is the estimation of joint probability density that
rises the computational complexity of the evaluation to one-and-one-squared pass method.
That can be understood as scanning the entire overlap in order to compute some statistics
that is separately evaluated later with quadratic complexity to the length of statistics,
i.e. to the color depth per pixel in the input images.

2.3.2 Registration optimization

The drawback of voxel-based registration methods is the need to explore the parameter
space of expected transformation. Time consumption for deciding one registration depends
on the searching of the space. That, in turn, depends on the dimensionality of the space,
the domains of parameters and last, but not least, the computational demand of evaluation
method (including size of processed data).

The influence of mentioned aspects can vary. However, it is always safe, while it is
still reasonable, to reduce as much as possible everywhere. We narrowed the parameter
space dimension by searching just for translation, i.e. search over just two parameters.
We narrowed their domains into a reasonable large area where optimal alignments can be
expected. We also lowered the number of examined parameters until the optimal ones are
found by optimizing the search in the parameter space.

The problem of searching the parameter space is, in fact, the problem of searching the
global maximum. We used two optimization techniques that we called n-step optimization
technique and the gradient ascend search. We will allow ourselves in the following text to
use the terminology that we are searching vectors.

The n-step optimization technique resembles the multiscale approach, or sometimes
also called a pyramidal approach. The space is searched in blog2(n)c+1 iterations. In the
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first iteration, the technique examined every n-th vector and selected the best evaluated
one (xbest, ybest). In every consecutive iteration, n was lowered to its half (n := bn/2c),
the search space was narrowed into 〈xbest − n, xbest + n〉 × 〈ybest − n, ybest + n〉 and it
was again scanned every n-th vector for a new (xbest, ybest) vector. The iteration stoped
whenever n equals to zero, i.e. after the finest search in a small region around, possibly
global, maximum.

The gradient ascend search is a classical iterative optimization technique. We started
the iteration with the default vector for given direction and denote it (xbest, ybest). In each
iteration, better evaluation was searched around in the neighborhood of all 8 adjacent
vectors (adjacent vectors were differing in some of its coordinate by at most one pixel
from the given vector (xbest, ybest)). If no better vector were around, the iteration would
stop. It is guaranteed that the last (xbest, ybest) vector described the best alignment around,
possibly the optimal one.

We optimized the very first registration in both directions with the n-step optimization
technique because it searched all space of allowed shift vectors. The first registration
in given direction defined the default shift vector for that direction. Every consecutive
registration in given direction was then optimized by gradient ascend technique.

2.4 Mosaic composition and stitching

The final step of this method was a stream stitching — the third step. At this stage, our
developed software already knew final global coordinate of every field in the mosaic. All
grayscale (8-bit per pixel) parts were released from memory.

The stream stitching worked in two directions. It could assemble a part of final large
image from the fields present in the given grid row. This is called the horizontal direction
stitching, see Figure 2.3. Whereas, the vertical direction stitching worked with two al-
ready assembled grid rows and connected (stitched) them together with the least memory
requirements as possible. That means to store as much pixel lines of the first assembled
grid row as possible into a hard drive while the currently stored line is still not interfer-
ing with the second assembled grid row (adjacent grid rows are overlapping). The whole
process was iterative starting with horizontal direction stitching of the top most grid row.
In each iteration, the following grid row was assembled and connected to the upper part
by vertical direction stitching. The process finished after connecting the last grid row and
storing remaining pixel lines of the final large image into a hard drive.

The stitching itself was implemented as smooth passing over from one data to adjacent
one. The intention is to display original data, then suddenly quickly and seamlessly come
over to the adjacent original data. We tried to change the source of data continuously
within the overlap area.

The passing was controlled by weights assigned to every pixel from the overlap. The
output was computed for every pixel of the overlap using simply the weighted average
of corresponding pixel values from both image data. Consider the horizontal direction
stitching for instance and see the left picture in the Figure 2.4. Owing to the orthogonality
of mosaic grid and the fact that fields cannot be arbitrary rotated, the overlapping region
given by every reasonable alignment is a rectangle. In particular, every pixel line from the
given rectangle (overlap, in fact) contains the same number of pixels. Let us denote the
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Figure 2.3: The illustration of stream stitching process. Lines 1, 2 and 3 were each sepa-
rately the product of horizontal direction stitching. The stream stitching firstly connected
lines 1 and 2 by the vertical direction stitching. In the next iteration it appended line 3
and so on.
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Figure 2.4: The left picture displays several weight distributions. The horizontal dashed
line is the constant weight, the gray dotted is a linear weight, the gray solid is weight based
on cosine function. The thin black solid curve is based on the 2nd order polynomial while
the thick black solid curve is based on 4th order polynomial. For detailed expressions
refer to [18]. The right picture visualizes the “zig-zag” method. It also tries to illustrate
the weights distribution within the overlap. The highest weights are attached to pixels
far from the edge whereas the weights get lower as the distance is shortening. The lowest
weights are assigned to pixels along the dotted curve.
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length of pixel line with l. The domain of weight function w : 〈0, 1〉 → 〈0, 1〉 is “stretched”
to interval 〈0, l〉. Obviously, the pixel values with coordinate x ∈ 〈0, l〉 from left field are
weighted by w(x/l) while the corresponding pixel values from right field are weighted by
1− w(x/l).

We proposed several weight functions, refer to Figure 2.4 for list of them. Notably, the
weight function w(x) = 1, x ∈ 〈0, 1〉 corresponds to overlapping the data originating from
the left field over the data from right field. We also experimented with a “zig-zag” weight.
The idea is to stitch the data in a narrow stripe which is irregularly meandering from top
to bottom of overlap. We used 20 pixel wide stripe. More details can be found in [18].
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Chapter 3

Results and discussion

3.1 Registration order

The shape of specimen permitted a lot of background area in the mosaic. In particular, it
often happened that the background region was spread over two adjacent fields. In such
cases, overlaps contained merely or solely background. The background provides very
limited amount of information regarding the alignment of such fields. Thus, registering
such fields seemed to be more or less a lottery that, in addition, often complicated the
final stitching. For instance, misalignment of two fields shifted the global coordinates of
fields in particular grid row resulting in wrong mosaic. We provided a mechanism that
enabled us to overcome problems with background in overlaps.

The purpose of a value, that was attached to every edge of underlying graph rep-
resentation, was to evaluate the quality of overlap with respect to registration methods
implemented. Since global coordinate of each field must be determined, each field must
be processed at least once. Hence, we would like to visit each vertex in the graph. More-
over, we can only visit some of those vertices that have some of their neighbors already
visited. We allowed ourselves to move in the graph only along edges. Furthermore, we
preferred to move first along higher valued edges in order to visit fields that are possibly
easier to register, in other words, that are possibly less probable for registration failures
(misalignments) to occur. The proposed modification to Prim algorithm satisfies all that
requirements.

The measure Mes[i ↔ j] represented major influence to the order establishment. It
managed to emphasize fields with tissue in overlap to the overlaps with background. The
justification of the design of equation (2.2) can be as following. Imagine two sheets of
paper that have to be registered. Since the sheets are empty, or at least one of them, we
are unable to determine the correct alignment. There is simply no information to do that.
When we draw a dot on each sheet we gain something. We get translation parameters if
we align those dots. Depending on the transformation expected we might still need more
information, for instance we still cannot decide the rotation. If we draw another pair of
points we might establish the rotation (or get confused. . . ). Let’s assume the new pair
of dots did not denied the translation parameters. Hence, we got rotation parameter in
addition. If we draw line on both sheets we again get more information even when we
are expecting just the transformation and rotation, i.e. the amount of information already
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Figure 3.1: The left image displays the graph representation of illustration data from
Figure 1.1. Notice the difference of weights. Low values corresponds to overlaps with
background regions while, in contrast, high values corresponds to overlaps with containing
solely a tissue. The associated weight is normalized value of equation (2.1). The right
image displays the order that was established from given data.

extracted seems to be enough. The lines can ensure us that the parameters are correct.
They gave us more confidence that observed dots were not noise etc. To sum it up, it
seems that the more objects is present on the sheets, the better a human being can register
these two sheets. The values given by suggested measure behaves according to this claim.

The Figure 3.1 gives an example. The illustration from introduction was used and the
corresponding graph representation was created. The Figure 3.1 also displays the order
established for such data. An example of somewhat larger mosaic is in the Figure 3.7 (on
page 26) where the fields from the first 1/3 of the registration order are emphasized.

Even that low measure values corresponded to the overlaps where registration failed,
the correct threshold for determination of the possibly worse-registrable overlaps is gen-
erally hard to guess. The texture of background may be arbitrary in general. For that
reason, we belive that it is much safer to put confidence on the mounting stage property
rather than on the measure itself. The mounting stage property will be described in the
next section. The mounting stage property is more probable to hold and independent on
background’s texture.

3.2 Comparison of alignment evaluation methods

3.2.1 Robustness comparison

We made use of 3D graph in order to visualize the behavior of alignment evaluation because
the evaluation behavior is central to the registration. Evaluation value is displayed for
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Figure 3.2: Examples of alignment evaluation method characterization. The graphs are
computed for registration of horizontally adjacent fields — Figure A.1 and Figure A.2.
By using notation from Figure 2.2: (cx, cy) ∈ X × Y,X = 〈0, 76〉, R = 〈77, 86〉 and Y =
〈−68, 68〉. The term MI hist stands for MI with probabilities estimated from histogram
and the term MI Parz stands for MI with probabilities estimated using Parzen window
estimator (see [22, 18]).

every reasonable shift vector (cx, cy). The Appendix A contains images that were used in
all tests through out this section.

The selected evaluation methods are robust. Moreover, the Figure 3.2 shows that the
evaluation methods are smooth, contain single peak at the shift vector representing the
optimal alignment and the peak base is rather wide. In addition, the normalizations of
evaluation methods seemed to improve the evaluation values correctly so that they can
be directly compared regardless the size of underlying overlap or whatsoever. Note the
behavior in Figure 3.2 that evaluation slightly rises when cx approaches the R interval,
notably for SSC, SAVD and MI. This is accounted for a side effect of normalizations. We
observed similar graphs on all tested data borrowed from the collaborating Department
of pathological anatomy.

We tested the behavior of alignment evaluation methods to several image quality degra-
dations. Figures 3.3, 3.4 and 3.5 document the behaviors when the right field image was
made more brighter, unsharped and covered with noise, respectively. The robustness may
be due to the size of the overlap given by every reasonable alignment. The stripe of pro-
hibited alignments always established reasonable amount of data present in every overlap.
The evaluation method was, thus, provided with enough information to make a decision.

We also observed a feature of evaluation methods that it actually doesn’t really matter
for what color channel the registration is performed. We tried to register images in every
color channel separately and in grayscale. We observed that there are always at least two
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Figure 3.3: Examples of alignment evaluation method characterization. The right field
image was made more brighter than the original.

–60
–40

–20
0

20
40

60

c_y

0
10

20
30

40
50

60
70

SSC:      c_x

0.2

0.25

0.3

0.35

0.4

0.45

–60
–40

–20
0

20
40

60

c_y

0
10

20
30

40
50

60
70

SAVD:     c_x

238

240

242

244

246

248

–60
–40

–20
0

20
40

60

c_y

0
10

20
30

40
50

60
70

NCC:      c_x

0

20

40

60

–60
–40

–20
0

20
40

60

c_y

0
10

20
30

40
50

60
70

CR:       c_x

10

20

30

40

–60
–40

–20
0

20
40

60

c_y

0
10

20
30

40
50

60
70

MI_hist:  c_x

0.1

0.2

0.3

0.4

–60
–40

–20
0

20
40

60

c_y

0
10

20
30

40
50

60
70

MI_Parz:  c_x

25

30

35

40

45

50

Figure 3.4: Examples of alignment evaluation method characterization. The right field
image was jittered, bigger objects were retained, edges lost their sharpness.
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Figure 3.5: Examples of alignment evaluation method characterization. The right field
image was covered with random, equally spread noise. The original structures in the image
were still recognizable.

color channels with their shift vectors close to the grayscale one. The specimen was tinted
into somewhat pink-to-red color before acquisition. Hence, we presume that it suppressed
information present in either green or blue color channel. Nevertheless, the information
aggregated into the grayscale seemed to be enough for optimal alignment determination.
It allowed us to store parts of fields in just 8-bit color depth which introduced considerable
memory savings.

The registration results discovered a mounting stage property. Since the controlling
software drives the mounting stage to move always the same amount of units in a given
direction, the shift vectors for given direction seemed to obey normal distribution char-
acterization. The concept of default vectors then estimated the mean values for both
directions. We made use of this feature and the robustness of evaluation methods for
detecting the registration failures as described earlier. Drawback of this approach is in the
first estimation of mean shift vector for given direction. We were successful by establishing
an order, as described in the previous chapter, and providing the first estimate of mean
shift vector from the first registration result.

The shape of alignment evaluation methods enabled us to use optimization techniques.
The evaluations exhibited smooth changes while continuously moving through the param-
eter space of shift vectors. Also the shape of graphs is favourable to optimize searching
parameter space. Namely, the n-step optimization technique could not be fooled by local
maximum since there is one huge peak with base much broader than value of n. Typically,
small values for n ∈ {4, 6, 8, 12} were satisfactory while reliable, since the technique got
better overview of the parameter space owing to the finer step. The continuous-like behav-
ior of evaluations was good for gradient ascend optimization technique from the obvious
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Entire
search

4-step
tech.

8-step
tech.

16-step
tech.

Gradient
ascend

SSC 55.323s 3.372s 1.027s 0.465s 0.031s
SAVD 44.746s 2.701s 0.821s 0.369s 0.036s
NCC 63.568s 3.995s 1.215s 0.546s 0.050s
CR 74.594s 4.746s 1.441s 0.648s 0.060s
MI h 121.567s 7.835s 2.296s 0.990s 0.085s
MI P 873.925s 56.460s 15.468s 5.384s 0.352s

Table 3.1: Speed comparison of alignment evaluation methods. Every column displays the
amount of time required for one registration of typical pair of adjacent images. The column
“Entire search” represents non-optimized registration. The gradient ascend optimization
started its search from default shift vector established over the whole mosaic from which
given pair was extracted. The default shift vector was not equal to the highest evaluated
shift vector. Experimental times were measured on 1.5GHz processor (3014.65 bogomips).

reason.

3.2.2 Time consumption comparison

Alignment evaluation methods can be also compared according to the time consumption.
Table 3.1 summarizes our results. Notice two facts. At first, the n-step optimization
techniques introduces a great speedup even for small values of n. At second, the speedup,
in general, is in the order of magnitude regarless the evaluation method. Moreover, our
implementation of mosaicking program spends considerable more time when accessing the
data stored on the peripheral than computing the final global coordinates (with optimized
registration computation).

3.3 Establishment of final global coordinates

Final global coordinate of every field was determined from some of its adjacent fields
according to the algorithm described in the previous chapter. The contribution of each
adjacent field was weighted relevant to the measure Mes[i↔ j]. That naturally controlled
the influence. Whenever the global coordinate was supplied from adjacent field to which
the measure is poor, the influence to the final global coordinate of given field will be lower
since there is higher risk of misalignments resulting in wrongly estimated final global
coordinate.

This framework proved to establish reliable final global coordinates. We can support
this claim from inspection of several large mosaics. The suggested global coordinates to
selected field from its adjacent fields did not usually differ in more than 3 pixels in x or y
coordinate in the most cases.
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3.4 Stitching and stitch camouflaging

Owing to the memory limitation constraint some kind of stream data processing had to
be implemented. We were also looking for simple and fast algorithm. The input data
typically suffered from almost negligible translation in some area of the overlap region.
We disliked the idea of input data resampling in order to match another data to which
it is being stitched. We felt that interpolation errors would result in the same blurring
effect as in the adopted approach. Hence, we implemented stitching by weighted average
without testing any other possible solution.

The perception of stitch by human eye (brain) must be well understood in order to
tune the weight function. The weight function is the most important parameter of selected
approach. We tested several weight functions and several sizes of overlap. From the
knowledge we learnt, we can conclude following statements. Some are demonstrated in the
Figure 3.6. When images are not identical, changes will occur and will be noticeable even
in spite of the fact that stitched overlap contains pixel intensities derived from intensities
originating from both overlaps. The weight smoothness aims against the rapid changes.
We presume that the weight should slowly change its values so the eye can get used to
the changes. Once the eye (human brain, respectively) gets used to changes in displayed
image data, changes then became less noticeable for the human being. Nevertheless,
since the real data lacks the optimal alignment, the best suboptimal alignment must be
used. Consequently, in the larger region, that displays wide stitch due to slowly changing
weight function, will accumulate more artifacts. For instance, the blurring of data which is
caused by roughly the same weights used in averaging, Figure 3.6. The change should be,
therefore, reasonably quicker. Weights should change more rapidly, resembling continuous
smooth step-like function.

The slope of the weight can be regulated by the size of overlap (that is an input pa-
rameter to Lucia DI software). We report hardly noticeable stitches when using slowly
changing weight function, based on the 2nd order polynomial for instance, stretched to
length of around 40 pixels. Alignment evaluation methods proved to be relatively indepen-
dent on the overlap size which allows for controlling the quality of stitches by regulating
the size of overlap. It seems, from our observations, that reasonable narrow overlap pro-
vides us with nice stitches. On the other hand, larger overlap puts more confidence on the
registration and gives more space to maneuver when stitching.

We gained even better results after employing the “zig-zag” stitching method. It is
a logical conclusion drawn from the preceding paragraphs. Successful setting was a 20
pixel wide stripe together with the weight function based on the 2nd order polynomial.
The stitching was further enhanced by letting the narrow stripe continuously, smoothly
and randomly meander along direction perpendicular to the stitching direction. The idea
behind meandering is to move the stitching area somewhere within the overlap without
giving any piece of information where. For instance, a human being wouldn’t normally
notice the stitch in some certain row if there weren’t similar row with more noticeable
stitch.

If the data from both overlaps are perfectly identical, i.e. each corresponding pixel
pair holds exactly the same intensity value, then the selection of weight is unimportant
as long as the sum of corresponding weights equals to 1. The weights preserve the overall
brightness in the region. The suggested stitching method allows for arbitrary change of
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Overlay: Linear: 2nd order polynomial:

4th order polynomial: “Zig-zag”: “Zig-zag” visualized:

Figure 3.6: The figure demonstrates application of six different weights on the same overlap
data and the same given alignment. The class of weight function used is described in the
text above each picture. The “Zig-zag” visualized is the ordinary “zig-zag” method with
the difference that each pixel value from the area of narrow meandering stripe was inverted,
i.e. p→ 255−p. A sample pass of “zig-zag” method is visualized in this way. Each picture
is a rectangle constantly drawn from given horizontal direction stitch. Notice the different
artifacts emerging.
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Figure 3.7: This is an example of mosaic created from 90 fields. Each field designated with
its grid coordinate and the its number in the registration order. The first 30 fields in the
order are emphasized by enlightened frame to demonstrate the performance of registration
order.

brightness in a local region by adjusting the sum of weights at appropriate positions.
This might counterbalance illumination errors of particular optical instrument. It should
handle, for example, mosaicking of images acquired with brighter left-hand side than the
right-hand side of images.

Final note is about the memory usage of this stitching algorithms. The mosaic from
Figure 3.7 is a grid of 10 rows times 9 columns with overlap of adjacent fields to be 7%.
The overall image size was thus 315MB. Before the registration order establishment all
grayscaled parts were loaded into memory. This represented the first memory usage peak.
The memory usage was 2.8MB at that moment. The second usage peak was achieved
when vertical direction stitching was conducted. The memory usage was 20.6MB at that
moment. To sum it up, the maximum memory required was up to 6.6% the size of the
final large image.
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Chapter 4

Conclusion

This thesis was about the image mosaicking problem. We considered given input images,
slightly overlapping arranged into a grid, displaying biomedical specimen — typically
tissues of skin or organs. The goal was to seamlessly stitch input images into one large
image. We described the method and discussed some of its aspects. We have also presented
results obtained using a special in-house developed software that implemented presented
method.

We presented an algorithm that can establish registration order. The novelty is in the
fact that it enabled us to handle registration of images with background in the overlap.
The description is accompanied by examples and some discussion.

A decent theoretical background to the topic of alignment evaluation methods was
supplied. Text is properly accompanied with citations of original sources so that anyone
can develop system by himself/herself with the help of this document. We have tested
major algorithms for evaluating the optimality of given alignment. These algorithms
are representatives of the voxel-based family, i.e. they compute various statistics directly
on the raw image data instead of extracting features from images in order to discover
the optimal alignment from these features. The image preprocessing can be of course
performed but our results prove that it is not necessary in this case — some alignment
evaluation methods handled even very noisy images. We have observed some difficulties
with the mutual information matching method. Mainly with the version that uses the
Parzen-window technique for estimating probabilities.

The time consumption of the entire image mosaicking problem was mainly due to the
registration step. The reason is in the amount of data that must be processed during the
evaluation of every alignment. We have published a table in this thesis which summarizes
our results regarding the optimization of registration step. We compared among align-
ment evaluation methods using either full parameter space search or optimized parameter
space search. The table shows encouraging information. Up to three orders of magnitude
speedup can be achieved by employing the special two level optimization scheme. The
scheme makes use of discovered property of mounting stage.

Finally we have found a satisfactory solution for stitching of images when these are
almost identical. Our solution is fast and accurate in that it preserves the information
contained in the data. That means, for example, that it preserves shapes and colors of
objects. The uniqueness of the stitching method can be considered innovative in this field
since it focuses on where and how the stitching is performed. The output of stream stitch-
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ing algorithm is deemed satisfactory even from the pathological analysis point of view.
However, there is always a place for improvement. The stitch can be meandered through
the regions displaying low mutual difference, along the minimum error path [15]. In this
thesis, it was demonstrated that the stream stitching can be efficient with memory when
composing final large image. In particular, the large image doesn’t have to necessarily fit
into computer memory at the moment.

We used data from the Department of pathological anatomy at Brno Faculty Hospital
— Bohunice. The developed software is still in use there.

The work was also presented at the international conference. The paper, accepted into
the proceedings of this conference, is included in the Appendix.
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Chapter 5

Acknowledgments and notes

Presented work has been partly supported by the Ministry of Education of Czech Republic
(Grant No. MSM-0021622419).

The software program used free file formats processing libraries [9, 17]. For that reason
we are obliged to include the following lines:

TIFF library:

Copyright (c) 1988-1997 Sam Leffler

Copyright (c) 1991-1997 Silicon Graphics, Inc.

JFIF JPEG library:

This software is copyright (C) 1991-1998, Thomas G. Lane.

All Rights Reserved except as specified in the README file provided with the Independent
JPEG Group’s software.

In order to be complete with citation of used sources, we must cite [10] for providing
reference to the programming language used. Also cite [1] for reference to LATEX program
that was used for typesetting this document.
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Appendix A

Sample images

In this chapter we will present five images that were used in the chapter 3.2.1. See the
captions for more details regarding respective images.

Figure A.1: This is the reference (the left) image. All tests, from the subsection 3.2.1
starting at page 19, were performed on this image data. The examined adjacent image
was to the right of this one so the overlap area is on the right-hand side of this image.
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Figure A.2: This is the registered (the right) image. The overlap is, therefore, located
on the left-hand side of this image. Notice, both reference and registered images are
very similar not only in their overlap. Also the nature of texture as well as contrast and
brightness are almost the same. This is good for voxel-based registration techniques since
there exists nearly perfect match. On the other hand, this is not good for voxel-based
registration techniques since there might be more reasonable alignments.

Figure A.3: This is the registered image that was adjusted to become more brighter in
comparison to the original one. No artificial noise was added.

33



Figure A.4: This is the registered image that was adjusted to become less sharp. No
artificial noise added.

Figure A.5: This is again the registered image that is the original image to which a random
noise was added. No brightness or sharpness adjustments.
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Appendix B

Original papers

This chapter contains two published original papers that are reprinted at the end of this
document starting from the following page.

The first paper is entitled “Pořizováńı obraz̊u o velmi vysokém rozlǐseńı metodou
skládáńı” and was published in the journal “Česko-Slovenská patologie a soudńı lékařstv́ı”
in 2004 [7]. The paper provides broader information regarding the image mosaicking prob-
lem. Not only the methodology itself is described. Also the context and reasons for doing
this are mentioned as well as ideas that lead us to the decision for doing it exactly this
way. It is written in Czech language.

The second paper is entitled “Mosaicking of High-Resolution Biological Images Ac-
quired from Wide-Field Optical Microscope” and was accepted to the conference proceed-
ings of EMBEC’05 (3rd European Medical & Biological Engineering Conference) in 2005
[19]. This paper focuses on the subject closely. It describes and discusses merely the
registration and the order in which it is conducted. It also contains discussion regarding
the mosaicking of images in a slightly general case.
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Souhrn

Při získávání mikroskopických obrazů o velmi vysokém rozlišení metodou skladu výsled-

ného obrazu z jednotlivých dílů jsme narazili na některé problémy. Mezi nimi byla nutnost

refokusace mezi jednotlivými dílky. S tím souvisely problémy se spojením obrazů, které

si vzájemně zcela neodpovídaly a oblast spojení byla zřetelná. Byl vyvinut program pře-

konávající některé problémy při spojování obrazových dílků, který pracuje se všemi díly

naráz a hledá optimální pořadí spojení dílů. Jednotlivé dílky spojuje strmým gradientem,

který probíhá po náhodně generované křivce. Program dává dobré výsledky i při spojení

obrazů s pozadím či otvory ve snímané tkáni. Metoda postupného snímání a následné

montáže obrazu byla využita i pro snímání sbírky kožních lymfomů ve spolupráci s Insti-

tutem pro dermatologii Univerzitní nemocnice v Curychu. Takto vzniklá digitální sbírka

je veřejně k dispozici jako kapitola šesté verze Hypertextového atlasu dermatopatologie

na www.muni.cz/atlases.

Klíčová slova: digitální mikrofotografie, počítačová analýza obrazu, interaktivní atlas,

dermatopatologie, hypertext

Abstract

In order to acquire microscopic images of very high resolution by composing large images

from individual parts several problems had to be solved. One of them was the necessity

to adjust the focusing level when moving from one part to another. Re-focusing lead to

problems with joininig the image parts, which did not correspond exactly and the area

of image fusion was noticeable. A computer program was developed to overcome these

problems. Our program worked with all the image parts together to find their optimal

order for image fusion. Individual image parts were joined using a steep gradient running

along a randomly generated curve. This method gave good results even in images with

background or holes in the tissue. The method of composing large images from individual

parts was used for digitizing the skin lymphoma collection of the Institute of Dermatology,

University Hospital, Zurich. This collection of digital images is a part of the 6th version

of Hypertext atlas of Dermatopathology at www.muni.cz/atlases.

Keywords: digital microphotography, image analysis, interactive atlas, dermatopathology,

hypertext
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V současné době se v patologii uplatňují metody digitální mikrofotografie. Jsou to metody,
které znamenají kvalitativní změnu v mikrofografické dokumentaci a uplatňují se ve výuce,
dokumentaci, tvorbě referenčních publikací, v telepatologii i v samotné diagnostice.

Digitální mikrofotografie umožňuje nejen okamžité získání obrazů bez závislosti na vyvolá-
vací laboratoři, ale též získání obrazů o velkém rozlišení, snímání velkých ploch preparátu
i uplatnění speciálních metod při digitálním zpracování výsledných snímků (například
sesazení obrazů získaných při různých vlnových délkách při vizualizaci výsledků FISH).
K tomu přistupuje i možnost sdílení a výměny obrazů po počítačové síti. Lze očekávat,
že tyto metody povedou během několika let k zásadním změnám v publikování i výuce a
že ovlivní i samotnou diagnostickou práci (například možností vzdálené konzultace).

Mikrofotografie (ať již na klasický film nebo digitální) má limity dané rozlišovací schop-
ností. Tyto limity jsou dvojí: médium pro záznam obrazu (film nebo světločivý prvek
kamery) a dále rozlišovací schopnost optického systému (především objektivu). Kromě
toho se fotograf musí vyrovnat s problémem tloušťky snímané tkáně v kombinaci s hloub-
kou ostrosti objektivu. Sumace objektů ležících nad sebou nepříznivě ovlivňuje kvalitu
snímku, naopak u snímků o velkém rozlišení (malé numerické apertuře a tedy malé hloubce
ostrosti) chybění struktur snímané tkáně může vadit.

Již dlouhou dobu se používají techniky, které umožňují některá z těchto omezení pře-
klenout, zejména slepování výsledných fotografií z jednotlivých dílků. Dílky byly buď
snímány vedle sebe (za účelem pokrytí velkých ploch preparátu) nebo v různých fokuso-
vacích rovinách (výsledné montáže měly velkou hloubku ostrosti a umožňovaly například
sledování vláknitých struktur v silných řezech).

V současné době se začínají používat metody montáže obrazů, kde systém (mikroskop,
digitální kamera, skanovací stůl a software) skládá velké obrazy z postupně snímaných
obrazů běžné velikosti. Tato metoda umožňuje získat obrazy o velkém rozlišení a překonat
omezení daná optikou. Tyto obrazy se dají využít ve výuce i v diagnostické praxi (2, 3, 7).

V dnešní době jsou k dispozici další metody (např. konfokální mikroskopie) a dále je
možnost prohlížení výsledných snímků pomocí počítače. Zobrazovací software je schopen
nabídnout funkce, které u klasických tištěných snímků nejsou k dispozici: přístup k detailu
(zoom), vertikální proostřování podobně jako u mikroskopu (s výběrem vhodné fokusovací
roviny nebo zpracování proostření na způsob videosekvence nebo zpracování a sumace více
rovin do jednoho snímku). Obrazy o velkém rozlišení jsou k dispozici na některých www
stránkách (6, 10), na (5) je možné i měnit zaostřovací roviny.

Software dále umožňuje obrazy různým způsobem anotovat, třídit a rychle vyhledávat.
Lze říci, že dnes již výhody počítačového zobrazení histologických snímků svou kvalitou i
komfortem předčí obrazy tištěné.

Prostředí Internetu je pro šíření obrazové informace ideální (8). V dnešní době lze říci, že
Internet je dostupný všude. Rychlost přenosu a přístupnost dnes nabývají forem, které
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měli autoři atlasu na mysli v době, kdy vznikal Internetový dermatopatologický atlas
(1996) (4). Největšími překážkami v současné době je pro naši republiku specifická situace
v cenách a kapacitách pro datový přenos, daná pozicí státem podporovaného dominant-
ního telekomunikačního operátora.

Pro patologii má obrazová informace zásadní význam. Lze předpokládat, že v krátké době
se digitální mikrofotografie zcela prosadí. V článku budou popsány naše zkušenosti se zís-
káváním obrazů o vysokém rozlišení pro digitální dermatopatologický atlas a diskutovány
některé problémy.

Materiál a metody

Starší snímky z atlasu byly získány digitální skanovací kamerou Leica S1 v rozlišení
5000×5000 px (obrazových bodů). Následně byly upraveny do výsledné velikosti maxi-
málně 2500 px. Obrazy o vyšší velikosti byly získávány manuálním skladem obrazů v ob-
razovém editoru. V současné době používáme automatický systém pro snímání obrazů o
vysokém rozlišení metodou skladu obrazu z jednotlivých dílků.

Snímání obrazů probíhá na systému Lucia DI (Laboratory Imaging, Praha), který řídí
skanovací stůl (Märzhäuser 2D), digitální kameru (Nikon DXM 1200) a mikroskop (Leica
DMLB, objektivy HC PlApo 10/0.4, HC PlApo 20/0.7, HCX PlApo 40/0.85 CORR
a HCX PlApo 100/1.35 Oil Imm, pro přehled i objektivy PL Fluotar 2.5/0.07 a HC
PL Fluotar 5/0.15). Preparáty jsou připraveny obvyklou cestou, nicméně pozornost je
věnována dobrému napnutí řezu a standardní tloušťce krycího skla a montovacího média.

Obrazy o velkém rozlišení jsou získávány metodou snímání a následného spojení jednot-
livých dílků. Systém Lucia DI řídí fokusování před každým záběrem, 3D rekonstrukci
snímků a ukládání snímků na disk. Jednotlivé dílky jsou do výsledného obrazu spojeny
zvlášť vyvinutým programem. Nakonec jsou obrazy digitálně zpracovány (barevná ko-
rekce, kontrast, velikost) programem Adobe Photoshop 6.0, anotovány a vloženy do atlasu.
Získané obrazy obsahují jak přehlednou informaci tak i detail (viz obr. 1).

Problémy při snímání obrazů o velkém rozlišení

Snímání a sklad obrazů umožňuje použít objektivů o velkém zvětšení i pro snímání velkých
ploch preparátu. Tyto objektivy mají velkou numerickou aperturu a tudíž malou hloubku
ostrosti. Není možné nastavit rovinu skanovacího stolu dostatečně přesně tak, aby snímání
proběhlo v jedné fokusovací rovině. Ideálně rovné není ani podložní sklo ani vlastní tkáň.
Snímaná plocha při použití objektivu 40× a skladu 10×10 dílků je přibližně 4×3mm
(dílek 1200×1000 px). Přitom vertikální posun objektivu o 0.5µm má již zásadní vliv na
ostrost obrazu.
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Je proto nutné, aby před každým snímaným obrazem systém zaostřil. Systém Lucia DI
má možnost fokusování pomocí software (systém snímá více rovin a vyhodnocuje tu nej-
vhodnější na základě analýzy obrazu). Tento postup se ukázal jako dostačující.

Zásadní vliv pro kvalitu výsledného spojení má korekce obrazových dílků s ohledem na
homogenitu pozadí. Systém Lucia DI umožňuje sejmutím několika zorných polí bez ob-
razu sestavit referenční obraz pozadí a vliv nehomogenního osvětlení odstranit (shading
correction). Tato funkce se ovšem uplatní i při snímání klasických digitálních snímků.

Testovali jsme také vliv 3D rekonstrukce na kvalitu výsledného snímku. Zkoušeli jsme
každý dílek obrazu sejmout v několika rovinách (typicky 3 nebo 5) a provést pro každý
dílek obrazu rekonstrukci (v podstatě tak vzniká montáž ostrých částí obrazu z různých
snímaných rovin). Funkce pro 3D rekonstrukci je součástí systému Lucia DI (obr. 2). Tento
postup se osvědčil pro obrazy snímané menším zvětšením (objektiv 20×), pro objektiv
40× nebyl většinou nutný a při snímcích imerzním objektivem někdy selhával a někdy se
objevily ve výsledném obraze artefakty (světlejší kontury kolem některých částí jader).
Nevýhodou je značná časová náročnost procesu (snímání jednoho obrazového dílu ve více
rovinách trvá cca 70 s, obraz 20×20 se tedy snímá řadu hodin).

Problémy při skládání obrazů

Jednotlivé části obrazů jsou snímány s mírným (5%) překryvem. Obrazová informace
z oblasti překryvu je použita pro přesné stanovení vzájemné polohy dílků obrazu před ko-
nečným spojením vzájemným prolnutím. Dokonalé spojení je teoreticky možné jen tehdy,
pokud si okrajové oblasti dílků přesně odpovídají. Vzhledem k tomu, že mezi snímáním
jednotlivých dílků je nutno přeostřit, oblasti se liší a dokonalé spojení není možné. Další
skupina problémů souvisí s postupným narůstáním obrazu, kdy je nově nasnímaný dílek
napojen na předchozí. Pokud oblast překryvu neobsahuje dostatek informace pro přesné
spojení (například je snímáno pozadí), potom je možné dílek napojit jen na základě in-
formace z kalibrace skanovacího stolu, což není zcela přesné. Pro spojení nekontrastních
oblastí obrazu nebo pozadí tato nepřesnost nevadí. Pokud se však meandr snímání vrátí
zpět do tkáně, nepřesná poloha dílků může bránit přesnému spojení nového dílku s dílkem
předešlým a zároveň s dílky předchozí řady.

Z těchto důvodů byl sestaven program, který pracuje s již nasnímanými a na disk ulože-
nými dílky obrazu (9). Tento program vyhodnocuje obrazovou informaci v překryvných
oblastech, hledá polohu jednotlivých dílků a zároveň i pořadí, v jakém se mají dílky spo-
jovat (obrazové hrany s dobrým kontrastem napřed, hrany s pozadím nakonec).

Spojování předem pořízených obrázků probíhá ve třech krocích. V prvním kroku jsou nej-
prve načteny okraje (také nazývány jako hrany) všech spojovaných obrázků, překonverto-
vány do šedotónní stupnice (8 bitů na pixel), uloženy do paměti a následně ohodnoceny.
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Ohodnocení má vyjádřit vhodnost hrany k hledání správného přeložení obou sousedních
obrázků. Jako míra vhodnosti se osvědčila suma absolutních hodnot rozdílů jasů soused-
ních pixelů.

Druhým krokem je nalezení tzv. vektorů posunutí (1), které definují polohu dílků ve
výsledném obraze. Obrázky společně s ohodnocením jejich hran lze chápat jako graf, kde
vrcholy jsou právě obrázky. Pořadí hledání vektorů posunutí je pořadí, v jakém zpracovává
vrcholy Primův algoritmus hledání maximální kostry s tím, že začátek je v obrázku,
který má maximální součet ohodnocení všech jeho hran (čili poskytuje nejvíce informace
k připojení jeho sousedů).

Pokud nelze spolehlivě stanovit polohu daného dílku, použije se implicitní vektor získaný
z dobře definovaných obrazových hran. Využívá se toho, že použitý skanovací stůl je velmi
přesný (nalezené vektory posunutí u jednoho složení se většinou liší maximálně o 3 pixely
v každé souřadnici). Typické použití implicitních vektorů posunutí je připojení obrázků,
které obsahují v hraně spojení výhradně pozadí.

Vyhledávání vhodného vektoru posunutí je prováděno jako úplné prohledávání definič-
ního oboru obou souřadnic; každý vektor je opět ohodnocen. Hledá se vektor, který reali-
zuje globální extrém (většinou maximum). Ohodnocování vektorů popisuje, jak dobré by
bylo napojení obou obrázků právě při tomto vektoru. Byla testována různá kriteria (11):
Stochastic Sign Change, Sum of Absolute Valued Differences, Normalized Correlation
Coefficient a Mutual Information.

Byla implementována tzv. n-kroková optimalizace (hledá se extrém přes každý n-tý vektor,
v okolí extrému přes každý n/2-tý vektor, atp.). Velké urychlení je dosaženo už pro n = 4
(na procesorech s frekvencí okolo 1,5 GHz pak trvá jedna hrana přibližně jednu vteřinu),
úspěšně odzkoušeny byly i hodnoty n = 8 nebo n = 12. Čím větší hodnota n, tím větší
pravděpodobnost nenalezení správného vektoru posunutí.

Posledním krokem procesu skládání je spojení všech obrázků v jeden. Jako dobré skrytí
přechodu mezi obrázky se osvědčilo prolnutí jednoho v druhý na úzkém pásu (okolo 20
pixelů), který probíhá a náhodně se přitom klikatí společnou oblastí překryvu obou ob-
rázků (obr. 3). Obrázky se k sobě přikládají způsobem zleva doprava a shora dolů. Vždy se
znovu z disku načte celý řádek matice obrázků, složí se v jeden celek a ten je celý připojen
k dalšímu řádku. Proces se dobře vyrovnává s pozadím i s děrami uvnitř preparátu.

Program je psaný v jazyce C++ (především pro OS Linux) a pracuje neinteraktivně, má
široké možnosti konfigurovatelnosti. Nároky na operační paměť jsou velmi malé.

Tímto způsobem je možné snímat obrazy značných velikostí (teoreticky bez omezení). Při
velikosti dílku 1200×1000 px a počtu dílků až 25×20 dosahují výsledné obrazy velikosti
přes 1 GB (tiff). Tyto obrazy jsou dále zpracovány (barevná korekce, úprava kontrastu,
zaostření), zmenšeny a archivovány. Po převedení do formátu jpeg (JFIF) jsou popsány,
anotovány a vkládány do atlasu.
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Popsaný postup byl použit pro digitalizaci části sbírky kožních lymfomů Dermatologic-
kého institutu Univerzitní nemocnice v Curychu. Lymfomy jsou snímány ve zvětšení 20×,
40× i 100×. Vzhledem k tomu, že literatury o kožních lymfomech není mnoho, předpoklá-
dáme, že veřejně dostupná sbírka asi 150 obrazů doprovázená stručnou textovou informací
přispěje k lepší orientaci v této problematice.

Závěr

Velkoplošné snímání histologických preparátů vyžaduje adaptivní sledování roviny fokusu.
Byly popsány vlastnosti programu, který spojuje jednotlivé díly obrazu přes problémy
vzniklé změnou roviny ostrosti mezi jednotlivými dílky. Metodika je uplatněna při snímání
nové kapitoly o kožních lymfomech i nových obrazů v Internetovém atlasu (www.muni.
cz/atlases).
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Tato práce byla podpořena výzkumným záměrem

MZ č. 00065269705.
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Obrázek 1:
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Obrázek 2:
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Obrázek 3:
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Legenda k obrázku 1

Celkový přehled i detail v jednom obraze (pagetoidní retikulóza, 100×).

Legenda k obrázku 2

Srovnání detailu obrazů, pořízených prostým sejmutím (100× imm.) (vlevo) a rekonstrukcí
z několika rovin zaostření (vpravo). U rekonstruovaného obrazu je místy patrný detail,
který u prostého obrazu byl mimo fokus.

Legenda k obrázku 3

Dva dílky obrazu před složením (40×). Dílky byly získány prostým sejmutím. Protože
došlo k přeostření, překryvná oblast pravého dílku je mimo ideální rovinu fokusu. Snímek
je spojen prolnutím po nepravidelně probíhající křivce.
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MOSAICKING OF HIGH-RESOLUTION BIOMEDICAL IMAGES
ACQUIRED FROM WIDE-FIELD OPTICAL MICROSCOPE
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Abstract: Large 2D high-resolution color images were
acquired from wide-field optical microscope. The
specimen was from the field of pathology of tissues.
Each large image was obtained by stitching from a
grid of smaller images. Separate acquisitions required
registration and stitching of adjacent images. The
novel use of special order for registration allows for
easy processing of images with solely background.
The order is determined from graph representation
based on the grid. In this way, a reliable registration
confidence test could be provided. The final large im-
age was composed by stream stitching process because
of imposed memory limitations. The stitches between
adjacent images themselves were hidden by meander-
ing technique. The methodology is described and sev-
eral aspects are discussed in this paper. Our experi-
ence, gained from practical application of our system
in the department of tissue pathology, supports the
claim that the system is robust, fast and accurate.

Introduction

Digital microphotography becomes more and more pop-
ular in pathology of tissues. One of few enhancements
we gain from transition into digital world is the possibil-
ity to acquirelarge 2D images at high resolution. Such
big images can be annotated and stored into a database
as reference images. High-detailed reference images can
be used, for instance, when examining another data, for
teaching purposes or even in tele-pathology.

We were acquiring high-resolution 2D color images
from optical microscope by composing smaller images
(fields) of specimen. This solution enables us to acquire
every field at the limits of given optical setup, namely
at high magnification and resolution possible. The fields
were arranged into an orthogonal grid spreading over the
entire region of interest of a given specimen.

Nevertheless, high lateral resolution of attached CCD
camera is better than the resolution of the movement of
mounting stage. This and the mechanical matter of step-
per motors implies that the lateral movement of specimen
is not described sufficiently at the resolution of fields (im-
ages). Adjacent fields were therefore acquired with small
overlap providing information for correct alignment of
fields.

Another issues stem from the thickness of specimen
and from the almost-perpendicularity of specimen plane.
The system had to refocus on every field. Due to this and

the imperfection of optics, the overlaps of adjacent fields
were not exactly identical and some smoothing had to be
performed while stitching fields.

The registration was even more complicated because
of the structure of specimen. There were fields displaying
solely background due to a hole in the specimen or non-
convex shape of it. Determining the correct alignment of
such fields is hardly possible even for operating personal.

Last, but not least, constraint required a really large
mosaicked image (e.g. more than 1GB) to be created us-
ing a computer with much less of physical memory (e.g.
0.5GB).

Materials and Methods

The specimen samples were mounted on a 2D moving
stage (M̈arzḧauser, Germany) and acquired with CCD
Nikon DXM 1200 camera (Nikon, USA), microscope Le-
ica DMLB (Leica, Germany) with 10x to 100x objectives
(lens HC PIApo 10/0.4, HC PIApo 20/0.7, HCX PIApo
40/0.85 CORR and HCX PIApo 100/1.35 Oil Imm). The
system is driven by Lucia DI software (Laboratory Imag-
ing, Czech Republic). Fields, comprising a grid, are ac-
quired row by row, each odd row from left to right while
each even row from right to left — a meandering scan.

Lucia DI software refocused at each particular field.
Sometimes to get a sharp picture, a stack of images was
acquired in which each image was focused at different
distance. Montage from focused parts of images from 3D
stack was conducted resulting in 2D sharp field.

Thus, grid coordinate of each field was known. All
fields had the same dimension, typically 1232×972 pix-
els, and all were in 24-bit colors. Adjacent fields were
acquired with overlap, typically 5–10 percent of the field
dimensions.

After the acquisition, all fields were stored into sep-
arate files and ready for further three-step processing.
The goal was to determine a good order for processing
of fields as well as to register adjacent fields resulting in
global pixel coordinates attached to every field. Coordi-
nates were then used in the final third step where sort of
stream stitching process was creating final large image.

Let us denote a setIm to be the set of all fields and
Sur[i], i ∈ Im, to be the set of all adjacent fields, i.e. fields
that are, if they exist, to the left, top, right and bottom
relative to the given fieldi. A set of pixel coordinates, in
the coordinate system of fieldi, of a part corresponding
to overlap between fieldsi and j is designated asparti→ j.
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Coordinates of the most right pixel line and the most bot-
tom pixel line are excluded from the set for the sake of
equation (2). Pixel value of fieldi at coordinate(x,y)
will be pi(x,y).

Boundaryparts of every field were converted into 8-
bit grayscale and stored into computer memory. Apart
is actually an edge of a boundary frame of an image. It
is slightly wider than the overlap that was used during
acquisition of individual fields. It was expected that every
part contained the real overlap. Some parts are outlined
in Figure 1 by dashed lines.

X R

Y

i ∈ Im

j ∈ Sur[i]

Figure 1: Parts and possible alignments

The registration order is established from weighted
graph representation(Im,Mes) of the grid. Vertices of
the grid are fields themselves, the setIm. Edges are just
between two adjacent vertices (fields). The weight of ev-
ery edge is described byMes[i↔ j],∀i ∈ Im,∀ j ∈ Sur[i].
Modified Prim algorithm for finding maximum spanning
tree is used, Figure 2. It is the order, in which fields are

(1) for ∀i ∈ Im do Pr[i] := 0 andVal[i] :=−∞
(2) i′ :=maxi∈Im

(

∑ j∈Sur[i]Mes[i↔ j]
)

(3) while∃i ∈ Im : Pr[i] = 0 do
(4) for ∀ j ∈ Sur[i′] : Pr[ j] = 0∧Val[ j] < Mes[i ↔ j]

doVal[ j] :=Mes[i↔ j]
(5) Pr[i′] := 1, PRINT(i′)
(6) i′ :=maxi∈Im:Pr[i]=0(Val[i])
(7) end while

Figure 2: Modified Prim algorithm

printed in the given algorithm (step (5)), that is used for
fields registration and computation of global pixel coor-
dinates. The weight is given by equations (1) and (2):

Mes[i↔ j] =Mes[i→ j]+Mes[ j → i], (1)

Mes[i→ j] = ∑
(x,y)∈parti→ j

|pi(x,y)− pi(x+1,y)|+

∑
(x,y)∈parti→ j

|pi(x,y)− pi(x,y+1)| . (2)

The correct alignment of two adjacent fields was
established by voxel-based registration methods [1, 2].
These methods test all reasonable alignments, theX ×Y

area in Figure 1, and evaluate each of them. The best
alignment should have the highest evaluation. In our im-
plementation, the search for translation of corresponding
parts was just enough. The result of registration was a
two-elements vector, thick arrow in Figure 1, estimating
the best alignment of two adjacent fields.

Two default vectors were maintained, one for hori-
zontal and one for vertical alignments. The very first reg-
istration in given direction determined the default vector
for that direction. Every consecutive successful registra-
tion in the same direction improved the respective default
vector. Improvement was done via re-averaging so far
computed successful registration vectors in given direc-
tion. Registration was considered successful whenever
the found registration vector did not differ more than 10
pixels from default vector in some of its elements. Oth-
erwise, the found vector was ignored, default vector was
supplied and no improvement was calculated.

Searching the alignment space was reduced by two
optimization techniques. The very first search in given
direction was improved usingn-step optimization tech-
nique. First, this technique tests everyn-th alignment
among all from those inX ×Y . Then, it searches every
(n/2)-th alignment in an×n surroundings of the, so far,
highest evaluated alignment. The last step repeats with
n := n/2 and ends whenn = 1. After the default vec-
tor for given direction was established, every consecutive
search was optimized using gradient ascend technique. In
this case, the search starts with the default vector. Neigh-
boring vectors are examined and the highest one is se-
lected for the next iteration. The iteration stops whenever
no better alignment is around.

Global coordinates of the top left corner of every
field i ∈ Im were determined immediately when align-
ment vectors betweeni and all j ∈ Sur[i] were computed.
The global coordinate(0,0) was in the top left corner of
the fieldi′ determined in the step (2). The modified Prim
algorithm (Figure 2) ensures the property that whenever
global coordinate ofi is being computed, there exists at
least one field fromSur[i] that has its global coordinate
already established allowing to set the global coordinate
of i in this way.

Global coordinates of every top left corner were used
when creating final large image. The original 24-bit color
images (fields) were loaded into memory from a given
grid line and stitched together according to associated
global coordinates. The first two grid lines were assem-
bled separately and stitched together. Then, as much as
possible pixel lines were stored into the output image file
(and removed from memory). The third grid line was as-
sembled and stitched with the rest of the first two grid
lines. The process was repeated by storing as much pixel
lines as possible and proceeding with next grid line until
all grid lines are processed.

A smooth transition within an overlap was utilized.
Horizontal transition between fields occurred when as-
sembling a grid line and vertical transition occurred when
stitching two grid lines. Transition was implemented as

50



weighted sum of both intensities of corresponding pix-
els. The weights were controlled by two continuous func-
tions: one was smoothly lowering influence of image data
while another was raising influence of the counterpart im-
age data.

Results

We have tested five registration methods, namely the
stochastic sign change (SSC), the sum of absolute valued
differences (SAVD) [1], the normalized cross-correlation
coefficient (NCC) [1, 3, 4], the correlation ratio (CR)
[5, 6] and mutual information [7, 8]. Two versions for
estimation of underlying pixel intensity probability den-
sities in mutual information method were tested: estima-
tion from joint histogram (MIh) [9] and estimation us-
ing Parzen estimator (MIP) [10]. The time consumption
of tested registration techniques is presented in Table 1
where each value (time) is for the same particular regis-
tration. The last column was measured on different regis-
tration in the same grid since the used default vector was
the result from previous columns.

Table 1: Speed comparison of registration techniques

Entire
search

4-step
tech.

8-step
tech.

16-step
tech.

Gradient
ascend

SSC 55.323s 3.372s 1.027s 0.465s 0.031s

SAVD 44.746s 2.701s 0.821s 0.369s 0.036s

NCC 63.568s 3.995s 1.215s 0.546s 0.050s

CR 74.594s 4.746s 1.441s 0.648s 0.060s

MI h 121.567s 7.835s 2.296s 0.990s 0.085s

MI P 873.925s 56.460s 15.468s 5.384s 0.352s

The most important observations were, perhaps, the
robustness of voxel-based registration methods and the
movement behavior of the mounting stage. Tested reg-
istration methods proved that it is enough to search on
just grayscaled data for correct alignment. This intro-
duced big memory savings since parts could have been
stored in just grayscale. Furthermore, all methods except
MI P exhibited smooth evaluation of alignments and per-
formed equally well under normal circumstances. The
smoothness is illustrated in Figure 3 wherex andy axes
constitute a region in a plane of evaluated translational
vectors. Each vector represents unique alignment. The
vertical axis describes the evaluation. Domain of tested
alignments is demonstrated in Figure 1, where the regis-
tration of adjacent fields in a grid row is outlined, in the
gray area. Using the notation from both figures it holds
(x,y) ∈ X ×Y . TheR×Y area was excluded from evalu-
ation. In this particular example of Figure 3 the overlap
was set to 7%. Thus, it was:X = 〈0,76〉, R= 〈77,86〉 and
Y = 〈−68,68〉. The smoothness enabled us to make use
of optimization techniques which introduced acceleration
that can be seen in Table 1.
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Figure 3: Alignment evaluation

The observed distribution of translational vectors in
given direction resembled normal distribution. This was
in agreement with expected behavior of moving stage be-
cause the controlling software always made it move by
exactly the same number of distance units. Small fluctua-
tions about mean value are due to better lateral resolution
of the optical setup. The aim of default vector, for the
direction under consideration, was to estimate the mean
value of the stage. This reasoning enabled us to use the
default vector as a starting alignment for gradient ascend
optimization technique which, in fact, only refined the
registration for given situation.

The robustness of registration technique and the de-
fault vectors provided the solution for detection of regis-
tration failures. It occurred, from time to time, that regis-
tration of two adjacent fields failed. Typically, the back-
ground formed more than two-thirds of overlap or there
were at least two equally probable alignments — graphs,
as those in Figure 3, contained more than two peaks. The
deviation from expected behavior was detected using de-
fault vector as described in the previous section.

The registration order was very important because of
default vectors estimation. We were successful with mod-
ified Prim algorithm, Figure 2, which builds a maximum
spanning tree on the most robust edges — robust from
the registration point of view. The robustness was in-
dicated by the measure given by equations (1) and (2).
The proposed measure emphasized overlaps with non-
constant texture that displayed some edges (i.e. structure)
which, in turn, was expected to guide the registration pro-
cess. Especially, the measure was low for overlaps with
background only. The ordering for highly-scattered non-
convex specimen acquired using a grid of 10× 9 fields
is demonstrated in Figure 4. Every field is designated by
its field coordinate and its number according to registra-
tion order. Fields, with its coordinate depicted in a frame,
were among thirty fields that had its global coordinates
established first.

A transition smoothing was performed when stitching
adjacent fields. Since the overlap data were not strictly
identical, a simple overlay of, say, left field over right
field was not satisfactory. Notice the right-hand side of
Figure 5A where the overlay is noticeable. The direction
of transition is horizontal in Figure 5. Also note that the
overlay can be implemented as weighted sum with one
weight function constant at value 1 and another weight
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Figure 4: Mosaicked image and the registration order

function constant at value 0. A slightly better adjustment
of weights represented the linear weight function ranging
from 1 to 0 and from 0 to 1, respectively, over the en-
tire overlap. Pitfall of such smooth transition is visible
in the middle vertical stripe of overlap in Figure 5B. A
kind of blurring is visible there due to similar values of
both weight functions and due to data shift induced by
non-identical overlap data. We got better outcome by us-
ing quadratic or even biquadratic weight functions (rang-
ing again from 1 to 0 and vice versa), Figure 5C. Such
weights performed more rapid and yet smooth transition
making the blurred stripe narrower thus less noticeable.
A “zig-zag” technique further improved the outcome of
polynomial weights by narrowing the transition stripe, in
our implementation to 20 pixels, and by letting it to me-
ander along the axis perpendicular to transition direction.
Result of this technique is shown in Figure 5D. Visual-
ization of meandering transition stripe is in Figure 5E.

The stream stitching of fields was selected because
of memory constraint. It also holds a pleasant property,
from the implementation point of view, enabling to al-
ways stitch along the whole edge of adjacent fields or ad-
jacent assembled grid lines. Furthermore, this property
also determines the minimum memory requirement. The
memory subsystem must be able to store at least two grid
lines of entire input 24-bit color images (fields). Depend-
ing on image dimensions and the size of overlap, this re-
quirement was more demanding than the requirement to
store, at the moment, all 8-bit grayscale parts from all
fields in a memory subsystem.

Discussion

The nature of pathological specimen, which typically dis-
plays some tissue, predetermines the voxel-based regis-
tration methods. Tissues hardly ever contain some spe-
cific features that can be extracted. Furthermore, these
features should be present within overlaps of all adjacent

A B C

D E

Figure 5: Demonstration of few transition techniques

fields. Consequently, the feature-based registration tech-
niques are out of question.

Voxel-based techniques proved to handle images of
tissues well. Unfortunately, the search through the pa-
rameter space is really time demanding. Even in spite of
the fact that we search only for translational vectors (i.e.
two dimensional space). In our particular experiments the
evaluation of alignments behaved well which enabled us
to use optimization techniques. In this way, we were able
to outweight the time consumption and gain a really fast
implementation.

However, in general case, we cannot be confident of
the shape of the alignment evaluation of an arbitrary data
without any prior analysis. An example of a shape of an
evaluation is in Figure 3. Moreover, the Gaussian prop-
erty of moving stage cannot be expected in advance ei-
ther. In such situations we always have to search the en-
tire registration parameter space. If the shape of evalua-
tion is smooth then we may use then-step optimization
technique to speed up the registration process since it is
quite a general optimization technique (it resembles clas-
sical pyramidal approach to search for global extrema). A
huge speed up can be gained even for smalln, i.e.n= 4,
while the base diameter of peak is usually larger than ba-
sic step. Still, we may remain helpless without the Gaus-
sian property of moving stage — for instance, when the
shape of evaluation is not unimodal.

The Gaussian property of moving stage allowed us
to handle fields where registration was not clear. We
tested the reliability of registration by computing de-
viation from default vector which estimated the mean
movement of moving stage for that particular direction.
This solution worked well. We could have used weights
from described graph representation to detect potential
registration-failure fields instead. But we would still have
to decide what to do with such fields, how to determine
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the global coordinates. In our approach the default vec-
tors become handy in such situations. We also believe,
though we have not tested, that detection of successful
registration by deviation from default vector is more pow-
erful since it is not based directly on specific image data.
In fact, the detection of failure is based on the behavior
of registration.

The order establishment is crucial for setting the de-
fault translational vectors. In our implementation the re-
sponsibility is on the measure given by equations (1) and
(2). The measure should represent the applicability of
given overlap to image registration procedure. The higher
the measure is the more information the part poses which
is expected to be better for registration methods. The
adjacent fields with background in their overlap are less
weighted than fields with tissue in overlap since the back-
ground is expected to be more uniform. The texture of
background is more solid with a few noticeable pixel in-
tensities changes in comparison to texture of arbitrary tis-
sue.

The aim of transition was to preserve the original in-
formation as much as possible. The stitching process left
original data untouched and moved into adjacent image
data as fast as possible. A small area of entire overlap was
computed from both image data which typically resulted
in a decent blur. We’ve adopted this solution because of
streaming nature of final large image composition which,
again, enabled us to work with whole field’s edge or as-
sembled grid line.

Conclusions

We have described a software solution for obtaining large
2D color images in high-resolution microscopy. For this
purpose we developed a special program which can run
very fast while still accurate as much as possible. The
entire system can efficiently make use of digital micro-
scope and an ordinary personal computer for acquiring
large-scale high-resolution color images of pathological
specimen.

However, the presented methodology doesn’t have to
work on general image mosaicking problem satisfacto-
rily. For example, we are expecting the orthogonal grid
of fields, which may pose a strong requirement in gen-
eral, although it is quite natural in microscopy. The se-
lection and processing order of techniques was focused
on microscopy of tissues. The parameters of techniques
were tuned for particular optical setup. We tried to dis-
cuss some aspects of our solution and suggest what to do
when some of expected constraints are not met.

The system is still in use in The Faculty Hospital Brno
in combination with Lucia DI software. The mosaicking
process itself works fully automatic on several different
kinds of tissue. The registration in combination with de-
fault vectors computes global coordinates well in respect
to the stitching. The smoothed transition was not deemed
harming by pathologists. The stitching process, as de-
scribed, didn’t produce any artifacts that could violate the
analysis.
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