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Abstract

The thesis is focused on the analysis of time-lapse images acquired using a fluorescence
light microscope. In particular, for the purpose of automated evaluation of motion of
stained cell structures, e.g., proteins or cell nuclei, perceived over a time period, we aim
towards an object tracking based on an optical flow field. An optical flow method estimates
a flow field in which a vector is assigned to every pixel in an image. The vector represents
the difference in position of the same pixel content between two images. To track the given
position it is then enough to simply follow flow vectors provided good flow estimates are
available.

The thesis reviews the process from acquiring image data to methods for computing
optical flow. The description starts with the limits of the imaging technology and char-
acterization of the obtained image data. The survey part reviews and discusses methods
that allow for conducting object tracking. Optical flow methods based on filtering are then
inspected more closely as well as the representation of motion in spatio-temporal images.

Emphasis is put on efficient and accurate image filtering, which is an essential part
of the filtering-based optical flow methods. The Gaussian and Gabor filters are studied.
Firstly, recursive 1D filtering is analyzed to show it is very fast, efficient and accurate.
On the other hand, handling of boundary conditions is somewhat complicated but it
is demonstrated to be feasible. Secondly, separability of Gaussian and Gabor filter is
investigated resulting in a framework which utilizes many recursive 1D image filtering tasks
along generally oriented axes. The framework allows for filtering with general anisotropic
Gaussian and Gabor filters. The anisotropy manifests itself with elliptical kernel shape
with distinguished main axis. Important achieved result is that this axis can be arbitrarily
oriented. The framework is more accurate but slightly less efficient compared to an optimal
solution available. Nonetheless, for the target case of Gabor bank filtering a scheme is
presented which is shown to give an almost-optimal efficiency.

The fast and more motion sensitive Gabor bank filtering was tested on the original
Heeger’s optical flow method. The method utilizes bank of Gabor filters and an error
function which controls the estimation of flow vector from the collection of filter responses.
A preliminary result is given which uses new bank parameters as well as a new error
function.

A generator of synthetic sequences of test images with associated ground-truth flow
fields was developed and is described in the thesis. The generator works with one global
motion layer to move the whole cell and several independent local motion layers to addi-
tionally move selected interior cell structures. Movements are described using flow fields
which are function of time. Altogether, the generator allows for the synthesis of datasets
simulating time-lapse acquisition of complex processes in live cells. Such synthetic se-
quences are an indispensable tool for the verification of the algorithms that estimate flow
field.
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Chapter 1

Introduction

1.1 Live cell studies

Computer science has found its way into many established scientific fields. A cell biology
has not became an exception. And similarly to other fields, computers, as the visible acting
tool of the computer science, have settled in most, if not all, aspects of the field. Quite
often, it is not a typical desktop computer, which we are used to, but it may take a form
of a small embedded microchip which we would certainly find in almost any electric device
in the biological laboratory. But computer science is not only used to design a specific
piece of programme to drive some instrument, even if the programme is allowed to make
decisions and act differently as a result of different values read from instrument’s sensors.
Computers, so to speak, store the state-of-the-art knowledge. They help to navigate
within it, help to find relevant information, help to discover functional dependencies, help
to discover repeating patterns (consider, for instance, the human genome which is known
to consist of roughly 20.000 genes), etc. They even aid in the planning of biological
experiment by performing simulations and suggesting what probes to use, for instance.
These remarks are examples of what is called data processing and data analysis.

In the cell biology, as the name suggests, we deal with cells. Unfortunately, cells are
naturally invisible to the human naked eye. Technical reason for that is that the size of
a cell is simply too below an eye resolution, i.e., the size of the smallest distinguishable
patch that one can typically see is greater than any cell. A workaround has emerged when
a microscope was invented. A microscope, as a magnifier, enabled us to see cells. Various
modifications to the microscope and various specimen preparation techniques have been
developed in order to enable observation of different cells, different parts of them and even
different processes in the cells. Anyway, the information acquired from the microscope
is always a visual one. Hence, image is the primary representation of information in the
cell biology when microscopes are used. This has paved the way for the fields of image
processing and image analysis to have became significant representatives of the utilization
of the computer science in the cell biology.

We have mentioned the topic of various types of microscopes and various imaging tech-
niques. Different modifications of the microscope have gradually appeared over the years
[1] until we have arrived to an optical microscope equipped with a motorized stage, mo-
torized revolver with optical filters, digital camera and a confocal unit, eventuelly. Each
of its components is interconnected with a computer. This shall allow for unsupervised
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automated acquisition of the specimen: long-term (over-night) study with many periodi-
cally taken images by the digital camera. Images of individual cells from different portions
of a specimen may be obtained using motorized stage (lateral movement) or automatic
autofocusing may be implemented as well if the stage allows also for a movement along the
optical axis (axial movement). These are only a few examples of possibilities of modern
acquisition in the cell biology. The selection of installed hardware is closely bound with
the imaging technique that is going to be used [2, 3]. Problem in the cell biology is that the
cell itself is transparent [4, 3]. It is merely like a transparent sticker attached to the glass.
The sticker is very difficult to observe if it is not enhanced in some way, e.g., coloured or
stained. We just simply see through it otherwise. Therefore, cells or mostly only their
interior parts, nuclei or chromosomes for instance, are often stained. Staining with a fluo-
rescent dye is a popular approach to enhance certain cell material [5, 4, 6]. The principle
is that the incoming light from a microscope light source excites the fluorescent dye, the
dye then emits some light which is collected and directed to the digital camera [7]. The
use of optical filters, namely the excitation filter to reduce frequency band of the incoming
light and emission filter to reduce frequency band of the outcomming light are key factors
to achieve a good performance of the technique [5]. In addition, reasonable combination
of the filters and dyes allows to stain the specimen with two or more dyes, each of which
will enhance different parts of a cell. By switching the filters in an optical path one may
capture independent images of the same portion of the specimen, each time with different
parts visible. The images are artificially composed together in the computer afterwards so
that a mutual relation of cell parts can be studied. Acquisition of cell images using this
particular type of microscopes with the technique of fluorescence staining is denoted as
fluorescence light microscopy.

The most important property of the fluorescence imaging is that it shows physical
spatial structure of a cell [8, 5]. This is especially well suited for applications such as
studies of the spatial structure of chromatin as well as function-structure relationship in
human genome, changes of this structure and/or function during cell cycle, differentiation
and between healthy and cancer cells, studies of the function, dynamics and interactions
of selected proteins in live cells or finding new biomarkers which make difference between
normal healthy cell and cancer cell. Among these we focus on the live cell studies in which
one typically deals with a sequence of fluorescent images that are acquired periodically over
the time, the time-lapse sequence. As a consequence, the time dimension is introduced
into the image data enabling new views of explored cells. For example, we may measure
the speed of movement, directly observe important pathways of fluorescence proteins or
indirectly observe pathways of a material to which the fluorescence proteins are attached,
compare the spread of chromatin during the cell division or just observe the growth of cells.
On the other hand, the possibility of observing a cell over a certain, even small, period
of time is traded for a few new drawbacks which do not occur in fixed fluorescence cell
studies, e.g., the FISH or immunofluorescence techniques. The most apparent one is that
the staining and then observation of cell material must not lead to an immediate death of
the cell or to abrupt changes in the cell behaviour [3]. This was rather limiting earlier but
nowadays it is mostly overcome by labelling (or tagging) live cells with fluorescent proteins
[9, 4]. The acquisition of stained live cells is also called the time-lapse fluorescence light
microscopy.

Once the biological process is captured by means of a sequence of images, we would
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like to analyze it. We may think of two fundamental types of problems (or tasks) [10].
The first one is related with the analysis of single still image. It contains image processing
tasks [11, 12, 6], such as to improve the quality of an image (e.g., noise removal, edge
enhancement) or as to extract objects in the image (e.g., segmentation of whatever is
demanded, be it the cell itself, nuclei, mitochondria or proteins, to name a few), and
image analysis tasks, such as to extract features (e.g., measure volume of a cell, density of
chromatin, counts of telomeres) or analyze mutual relations (e.g., detect co-occurence of
proteins suggesting they interact). The second type is related with the sequence of images
and with a semantic link between them such as associations or correspondence. The main
task here is to track structures in images which gives us the ability to say a certain object
in one image corresponds to a certain object in some other image in the sequence [13, 14].
Or, this can also be important, to be able to say the object that appeared previously is
no more present in the following images. Both types of problems are equally important.
Consider, what good would it be to extract features from all single images in a time-lapse
sequence while not being able to show their development over the time (because of the
links missing)? On the other hand, how can we establish a link between two images when
we have no augmented regions to link between (because of the segmentation lacking)?
This is the chicken-egg problem. This is perhaps the reason why solutions from any of
the two sorts are often half-way inbetween them when the analysis of time-lapse images is
considered. That is, one has to tackle both segmentation and tracking in the solution as
in [15, 11, 16, 14, 17, 10], to give only a few references.

In this thesis we shall consider a particular method of optical flow computation, which
belongs to the second type entirely [18]. This is because the method, like any other optical
flow computation method, provides results that are only preliminary in terms of a tracking
application. The method results must be further processed in order to make the tracking
complete but, due to the chicken-egg, that would involve some segmentation method to
extract regions in images to track.

1.2 Topics of the thesis

Optical flow for tracking and other applications

We will focus on the computation of an optical flow. An optical flow method assigns a
vector to every pixel in an image. Note that the term pixel is used to denote the smallest
picture element. The vector represents the difference in position of the same pixel content
between two images, it is called the flow vector. In the image sequence, the content seems
to flow or drift along the assigned flow vectors. Altogether they constitute a flow field for a
given pair of images. Since the flow computation works directly at the level of image pixels,
it more or less tells motions of anonymous masses in the image sequence [19, 11]. The
flow field describes an optical (or visual or percieved) flow of displayed content, or mass
or simply brightness patterns, from one image to the other. There is no explicit reference
stating what the mass represents (e.g., nuclei, groups of proteins, single mitochondria),
that would be a task for image segmentation. There is also no explicit reference relating
masses, or already recognized structures, in the consecutive images, that would be a task
for tracking. The flow field, if it is computed correctly, really only expresses what we
percieve at the first sight when we inspect a time-lapse sequence.

In this work we aim to adapt the optical flow computation to the images from time-
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lapse fluorescence light microscopy. The aim is to provide flow fields of such a quality
that enables to design a simple yet reliable tracking application based on flow fields. The
tracker should be given initially a set of points (positions) in the image. Possibly, each
point would represent an object of biological interest. It should then move the points
(adjust the positions) using the intermediate pre-computed flow fields automatically so
that, eventually, the points would follow objects that they are supposed to represent. We
won’t deal with the methods to automatically select points from given image, it is beyond
the scope of this work.

There is also a bunch of other interesting applications in image processing and analysis
that would benefit from correct flow fields, i.e., from the information of what has happened
between the two consecutive images [20]. Some couldn’t be done without such information.
For example, a computation of average velocities or acceleration of certain cell material
after the cell was subjected to some infection, for instance. This really requires to know
the change of coordinates to assess the distance travelled during the given amount of
time. For some applications, using the flow field represents an alternative solution, which
is another motivation to the effort of computing a flow field. For example, we may fit the
flow field to some model of global motion (e.g., translation, rotation, cell contraction or
expansion) to correct for global motion, i.e., subtract the modeled global motion flow field
from the computed one, to study remained local motions within the cell easier. According
to the flow field we may warp a result of segmentation, which is typically represented as
a mask image, to prepare a good initialization for the segmentation of the consecutive
image, etc. Indeed, optical flow is often used for 2D motion-based segmentation methods
[21]. But we won’t demonstrate such applications of optical flow in this thesis. Here,
we regard the optical flow field computation just as a tool to support methods that link,
either manually or automatically, augmented (e.g., segmented) content between images in
a time-lapse sequence.

Intensive Gabor filtering and the energy-based optical flow method

Among the optical flow computation methods we will put emphasis, for reasons to be
explained later in Chapter 3, on methods based on an intensive use of image filtering.
Namely, we will revisit the method originally proposed by David J. Heeger. For the
moment let us just state that the methods based on image filtering represent one branch
of optical flow computation. The underlying theory is inspired by some early stages in
the processes in the human vision [22, 23, 24, 25]. Basically, the current belief is that
there are several receptors in the early stage of the human vision. Different receptors
are sensitive to different orientations of patterns and different velocities of patterns. The
perception is based on the responses. It is expected to form in some middle stages [26,
27, 28, 29]. Anyway, in the flow computations we simulate the function of receptors with
image filtering with Gabor banks. Traditionally, researches used only a few filters. We
think the reasons were twofold: 1) the limiting memory resources in the computers, since
filtering with every single filter stores its result in a new copy of the input image, and 2)
the unavailability of efficient filtering schemes for specialized Gabor filters, since filtering is
often time consuming except for a few simple cases. The first barrier is no longer an issue
as the amount of installed memory in a personal computer regularily increases and got
already several times above the size of images acquired with current digital cameras used in
the fluorescence microscopy. The second barrier was broken just recently when algorithms
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for efficient Gaussian and Gabor image filtering were reported [30, 31, 32, 33]. The thesis
includes one such algorithm for filtering with Gabor banks with increased sensitivity. As
a direct consequence, optical flow based on filtering and consequent image analysis tasks
can be conducted easily and immediately on a common personal computer found in every
office or laboratory.

Generator for evaluation of optical flow

Last but not least, we have developed a unique generator of artificial time-lapse image
sequences accompanied with flow fields for the purpose of evaluation of optical flow meth-
ods. The flow fields serve the purpose of a correct data, often termed as a ground-truth
data. It allows for comparison and quantitative evaluation of computed flow field with
respect to a correct flow field, so that one can immediatelly see how good an algorithm is
performing on the given test data. This is done predominantly by computing an angular
error between a computed flow vector and a ground-truth vector, it is then averaged over
all vectors in the image. Such benchmarking was intensively used in the results section of
the thesis.

1.3 Outline of the thesis

The format of the thesis is such that the text is extended with full reprints of the original
publications (co-authored or solely authored by the author of this thesis). The publications
constitute significant part of the contribution of this thesis. The text itself aims to provide
a comprehensive introduction to the these by providing broader context to the problem in
question, more elaborated introduction, motivation and related work, additional reasoning
and justification to the published methods, etc. We advice the reader to approach each
topic by first reading the introductory part of the respective chapter, then the original
publications at the end of it and then continue with the rest of the chapter. Summaries
to all publications are given in Sections 4.2 and 5.3.

The content of the following chapters is as follows. We start, in Chapter 2, with
giving more details on the process of acquistion to make description of the nature of
input time-lapse images easier, which is important to understand some arguments in the
next chapter. Chapter 3 discusses ways to achieve tracking and arrives to the conclusion
that it is worth trying to approach it via the optical flow. An overview of techniques of
optical flow computations is then presented. Reasons for the selection as well as necessary
underlying theory of the particular method are given. This chapter represents the survey
part of the thesis whereas the following two chapters represent the practical part and
the two main contributions of the thesis. In Chapter 4 we propose a method to separate
spatial Gaussian filtering, extend it to complex spatial Gabor filtering and, finally, propose
a new scheme for efficient spatial filtering with specialized Gabor banks. We continue with
the Heeger’s optical flow method, for which the Gabor bank filtering plays a central role
both in terms of time consumption and accuracy. We propose two main modifications to
it. Chapter 5 overviews means to optical flow accuracy measurements and surveys tools
to achieve it. It then describes design, control and future development directions of our
in-house developed generator of artificial time-lapse microscopy images with ground-truth
flow fields. The text of the thesis concludes with summary. The thesis concludes with
reprints of the original publications.
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Chapter 2

Time-lapse fluorescence
microscopy

So far, we have outlined possibilities of live cell studies: we tried to give principle of the
imaging technology based on the fluorescence phenomenon, we tried to give examples of
what sort of biological experiments we can observe with it and, also, we tried to show
what sorts of computer science problems may arise when implementing a fully automated
analysis system.

In this chapter we would like to illustrate typical properties of input data that we deal
with. We would like to do it by exploring the imaging technology to the necessary level
of detail and pinpointing its aspects and limits.

2.1 Acquisition using an optical microscope

2.1.1 Specimen preparation

In order to make use of the fluorescence phenomenon in live cell studies, cells must be
prepared in advance. A special biological marker is inserted into a cell by means of inserting
a special gene sequence to a cell DNA to force it to produce the marker during its lifetime
and, sometimes, in its next generations. The marker is known to attach only to certain
intracellular part, quiet often to some protein, which we then observe in an experiment.
We then choose which part to observe by choosing the right marker [4, 34]. Each marker is
visually different or unique to fullfil its role: to outline or designate the selected part of cell
in order to ease its observation in a microscope. In our case, we make use of fluorophores
or fluorochromes, which are terms commonly used for markers with the ability to fluoresce.
They enable us, under appropriate circumstances that we shall discuss in the next section,
to obtain images in which markers are displayed with substantially stronger intensities
than the rest of a cell. In other words, bright patches in obtained images are showing
accumulations of markers. And since the distance between marker and target molecules is
smaller then resolution of an optical microscope, we assume that exactly the same bright
patches in obtained images are, in fact, showing the selected intracellular parts as well
[35]. This is how flourochromes visually enhance parts they attach to.

In addition to the requirements given above, the inclusion and presence of a marker
must be harmless to cells and must not influence their behaviour [3]. Although it seems
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Figure 2.1: A schematic representation of how a monomeric fluorescent protein is employed for
imaging of β-actin. A mammalian cell is transfected (a) with a cDNA chimera composed of a fusion
of the genes encoding the fluorescent protein and β-actin. The gene is transcribed (b) to produce
mRNA that is then translated (c) to form the chimeric protein. The trafficking and localization
(d) of the protein is dictated by the protein-of-interest, the fluorescent protein, ideally, does not
interfere. In the case of β-actin, the chimera is incorporated into actin filaments (e) along with
the endogenous protein. Shown in the inset is a fluorescence image of a gray fox lung fibroblast
(FoLu) cell that has been transfected with mTFP1-β-actin [36]. Reprinted with permission from
the Scholarpedia [37].

as a natural requirement on the marker properties, it is common only in the live cell
studies. In the following text, we will come across another, rather more implicit, addi-
tional requirements on the fluorochromes that will emanate from the used technology. For
example, we would like to use fluorochromes with narrow excitation and emission bands
or with increased resistance to photobleaching (light emitted from a fluorochrome fades
proportionally to the time the fluorochrome is being exposed to the excitation light).

A foundation to markers, that fulfil the most of the requirements listed above, was
set in early 1960s when Shimomura et al. [38] managed to isolate a naturally fluorescent
protein, the now-famous green fluorescent protein GFP, that was previously observed as
a green fluorescent substance in jellyfish [39]. It took another 30 years until researchers
managed to clone GFP [40]. Finally in 1994, Chalfie et al. were the first who used GFP
in an experiment with live cells [41] and started the “green revolution” [9]. The marker
gene sequence is appended to the sequence of target protein and inserted into a living
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Figure 2.2: Example of excitation/emission spectra of the FITC fluorescent protein. Note
that emission peak is positioned at longer wavelengths. Figure was generated with the
CBIA’s “Optic: Modelling and optimization of the light throughput of an optical system” at
http://cbia.fi.muni.cz/optic.

cell. The cell then produces original protein joined together with the fluorescent one, see
Fig. 2.1. Since 1994, in a relative short period of time, wealth of fluorescent markers,
also called fluorescent probes, has become available for live cell studies [4, 34]. Different
markers allowed biologists to tag nearly any protein they may desire. They also differ in
their excitation and emission frequency bands allowing to use more markers at the same
time. For example, there exists BFP (blue) or CFP (cyan) fluorescent proteins. Refer to
Rizzo et al. [34] for a recent overview of fluorescent proteins available.

2.1.2 Microscope components

The selection and constitution of components in a fluorescence microscope is determined
by the fluorescence phenomenon: a material absorps irradiating light (often termed the
excitation light) and immediately emits its own light. But to make use of the fluorescence,
it is vital that emitted light has different wavelength than excitation light (that the partic-
ular fluorescence material is sensitive to) in order to be able to distinguish between the two
types of lights. In fact, George G. Stokes was the first to find out that emission is always
at longer wavelenghts. This is reffered to as the Stokes shift, see Fig. 2.2 for an example
of excitation/emission spectra of the FITC fluorochrome. For detailed explanation of the
phenomenon of fluorescence we refer to Wolf [8].

Main components of a fluorescence microscope

The main components of a fluorescence wide-field optical microscope are depicted in
Fig. 2.3, refer to Stephens and Allan [42] or Kozubek [2] for detailed explanation of modern
fluorescence microscope setups. There may exist other variants of fluorescence wide-field
microscopes, the figure shows a reflected microscope for instance, but the acquistion prin-
ciple is always the same. The light passes from the light source through excitation filter
into a condenser. The excitation filter narrows the frequency spectra of the light source
by suppressing some frequency bands. In the condenser, the incoming relatively spread
beam of light is condensed into a narrower and hence more intensive beam. The light
then approaches specimen. Some photons from the incoming light pass through the spec-
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imen. Some are reflected into various directions, eventuelly into an objective or even back
into the condenser. Some are absorbed by fluorescent molecules which, in turn, emit new
photons (with longer wavelengths) again into all directions. Portion of the reflected ir-
radiating light and emitted light is collected by the objective and continues through an
emission filter into a detector. The emission filter (sometimes also reffered to as barrier)
blocks some frequency bands preventing them to reach the detector. For the detector,
a photomultiplier tube (PMT) or a CCD camera are the two most often used devices
[1, 43, 42, 4, 3]. In the following and the rest of this thesis, we will always consider only
the use of a CCD camera — even for the case of confocal microscopy. This follows the
concept introduced by Kozubek et al. [44] and later evolved by the same authors [45, 46].

Depending on the position of the objective we distinguish between transmitted and
reflected microscopes. In the former one, the light that passes through the specimen is
collected what makes the condenser and objective appear on opposite sides of the specimen.
In the latter one, the light that is reflected towards the condenser is collected. This
is a preferred setup because the fluorescence microscope objective can serve also as a
well-corrected condenser. In fact, they are a single component and, as such, a reflected
microscope easily has the objective/condenser always in perfect alignment. On the other
hand, the light from specimen now travels the same path towards the light source. To
allow it to reach the detector, a beam-splitter in the form of dichroic mirror (also termed
dichromatic mirror) is inserted between the excitation and emission filters and objective,
just like in Fig. 2.3. The dichroic mirror reflects some wavelengths while other wavelengths
are transmitted. Ideally, the reflected wavelengths match excitation intervals of often
used fluorochromes and, in the same fashion, the passed-through wavelenghts match their
emission intervals. Since reflected microscopes place condenser/objective on one side of
a specimen, it may just be below or above a specimen allowing to look at a specimen
from bottom or from top. The placement below a specimen is, perhaps, the most common
in live cell studies because we may easily cover a specimen with a special chamber with
special athmosphere in order to provide living cells with more suitable environment from
their point of view. It is referred to this setup as to the inverted microscope.

The combination of excitation and emission filters acts as selector for what is going
to be imaged when, for instance, a specimen is stained with more dyes. The selection
is realized, at first, by letting pass a light only of proper (excitation) wavelengths such
that only certain fluorochromes may fluoresce and, at second, by blocking unwanted light
heading towards the detector. This is also useful to suppress specimen autofluorescence.
Autofluorescence is an effect when some cell material naturally fluoresce, without our ad-
ditional intervention, when irradiated with light of proper wavelengths. If the light source
would include such wavelengths, the specimen would autofluoresce and possibly interfere
with light emitted from inserted fluorochromes. The filters are especially important in
microscopes equipped only with source of white light, i.e., light comprising of wide range
of wavelengths. The dichroic mirror may additionally “post-narrow” the spectra of irra-
diating light as well as it may additionally “pre-narrow” the spectra of light travelling
towards the detector. This is due to the reflectance/transmittance characteristics of the
mirror.

In some rare cases, one or both filters may be omitted from the optical path. For exam-
ple, excitation filter may be omitted if a single-wavelength laser source is used. Similarily,
if a detector sensitive only to certain interval of wavelengths is employed, the emission
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Figure 2.3: Typical components and illustration of their typical arrangement on the optical path in
a fluorescence wide-field reflected microscope. The irradiating light from source passes through the
excitation filter. After it is reflected from the beam splitter, typically a dichroic mirror, it travels
into condenser/objective and through a specimen where it causes emission of new emitted light.
The light is then transmitted through the beam splitter, through the emission filter and reaches
the detector. The objective works also as a condenser in this setup. Reprinted with permission
from Jan Hubený’s dissertation [47].
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filter may be omitted as the detector already filters the other wavelengths by ignoring
them. However, modern fluorescence microscopes are usually equipped with a small num-
ber of excitation and emission filters in the body (or chassis) of a microscope by means
of, possibly motorized, filter-cube revolvers or filter wheels [1]. The selection of filters is
usually driven by excitation/emission spectra of fluorescent dyes one is expecting to use
in her biological experiments. Fluorochromes employed in the dyes should have reason-
ably separated excitation/emission spectra. They also should respect reflect/pass-through
properties of the dichroic mirror, or vice versa.

Confocal unit

Owing to the transparent nature of cells, we may improve an optical microscope with a,
so called, confocal unit. It is a piece of hardware that enables microscope to acquire thin
optical sections from a specimen by inserting an opaque plate with a tiny hole in it into
the optical path. The purpose of the pin-hole is to let all light from the focal plane pass
while blocking any light emerging from other depths in a specimen (depths are understood
in the direction of the optical axis, the z axis), see Fig. 2.4 for illustration of the principle.
The focal plane is a plane perpendicular to the optical axis with the property that objects
from this plane appear the sharpest in a detector compared to images of objects from other
depths. Clearly, the smaller the pin-hole diameter is, the narrower the optical section is
because less light from planes further to the focal one reaches the detector. Of course, the
pin-hole must be carefully positioned such that it enables passing of light right from the
focal plane and not from any other. Regarding the terms often used in microscopy with
respect to the coordinate system, we call the axial direction the one which is parallel to
the optical axis and we call the lateral direction or lateral plane the one which is parallel to
the focal plane. This imaging mode is called the confocal microscopy while the traditional
one (without the confocal unit) is called the wide-field microscopy. A consequence for
the wide-field optical microscopes is that the acquired image in the detector is formed
with contribution of photons emerging also from other planes than the focal one. And
since images of the other planes are slightly blurred in the detector, the acquired image is
somewhat blurred as well. Again, the necessary condition for confocal microscopy is that
the specimen must be transparent. If it were not transparent, the incoming light would be
reflected or absorped by specimen surface. The light wouldn’t be able to penetrate into
a specimen. In fact, the confocal effect may be used, not necessarily only, whenever the
fluorescence staining is used because of the same prerequisities.

Problem with the use of confocal effect is that the pin-hole blocks most of the irradiat-
ing light. This is because the pin-hole diameter is very small, usually on the order of tens
of micrometers. Moreover, single pin-hole enables to acquire small patch of a specimen
at certain lateral (and axial) position. In order to assess the whole 2D image of specimen
at certain (axial) depth, one has to move the pin-hole within the lateral plane, typically
by means of meander scan, so that the whole visible area of specimen is covered. An
elegant solution was invented by Nipkow in 1884 [48] and adapted for optical microscopy
by Petráň in 1968 et al. [49]. Nipkow originated a rotating opaque disc that nowadays
has thousands of pin-holes in it spread over the disc such that any two pin-holes are suf-
ficiently far away from each other not to disturb the blocking effects and such that they
altogether cover the whole visible area of specimen during revelation of the disc, see the
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Figure 2.4: The principle of confocality. The light from source irradiates a specimen. The returning
light carries images of whole range of thin optical sections, i.e., thin planes within a specimen
perpendicular to the optical axis. Photons from other than some selected plane hit the opaque
surface of the plate with pin-hole. Only a thin optical section is imaged in the detector in this way.
Reprinted with permission from Jan Hubený’s dissertation [47].
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Figure 2.5: The principle of microlens Nipkow rotating disc. The light from source is focused
with microlenses in order to increase its intensity. It then passes through a dichroic mirror into
corresponding pin-hole. The arrangement of microlenses and pin-holes on both discs is identical,
only diameter of microlenses is several times greater than diameter of pin-holes. Both discs are
mounted on a common shaft keeping their rotation synchronized. The light then travels into
condenser/objective and through a specimen where it is reflected and travels exactly the same
path back. Only the reflected light from focal plane (and small lateral and axial proximities)
squeezes through some pin-hole in the disc. It is then reflected by the dichroic mirror and reaches
a detector, typically a CCD camera. Reprinted with permission from Jan Hubený’s dissertation
[47].

Pinhole disk in Fig 2.5. The more pin-holes are available, the greater part of specimen is
imaged in a detector simultaneously. The meander movement of pin-hole is replaced by
revelation of the disc. This makes the whole acquistion faster but requires a 2D detector
to be used, e.g., a CCD camera. Originally without the microlenses disk, only about 5%
of the irradiating light reached a specimen [45], what means that the sum of areas of all
pin-holes represents about 5% of the visible area in the microscope. As the image of the
specimen is captured in portions of 5%, the exposure time is, therefore, 20 times longer
to capture the whole image compared to the wide-field mode. With the advent [50] of, so
called, microlens Nipkow disc the light throughput had increased up to 40–60% [46], see
Fig. 2.5. The total area of pin-holes, however, remained approximately the same. Only the
intensity of light was locally increased, Fig. 2.6, allowing to, possibly, shorten the exposure
time in order to obtain the same amount of excited photons from a specimen. As the area
of pin-holes was kept but the exposure time was shortened, the overall acquisition time is
shorter compared to the classical Nipkow disc but still longer compared to the wide-field
mode.

Note that even when the confocal unit is used, acquired images are always two di-
mensional (2D). A 3D image of specimen may be formed by acquiring 2D images at con-

13



Figure 2.6: The comparison of light throughput in confocal units with Nipkow rotating discs with
or without the use of microlenses. The drawing in the left-hand-side shows classical configuration
only with the Nipkow disc. Most of the incoming light simply hits the opaque surface of the disc.
The drawing in the right-hand-side shows two discs: the upper one with microlenses of diameter
several times greater than diameter of pin-holes that are in the lower disc. Significantly greater
portion of incoming light is focused to pin-holes resulting in a lot more light reaching a specimen.
Reprinted with permission from Jan Hubený’s dissertation [47].

secutively changing depths and then stacking them one above the other, just like plates
are stacked in a kitchen cabinet. A microscope must be equipped with a moving stage
or moving objectives in the axial direction to be capable of acquiring optical sections
positioned at different depths. For further reading on the topic of time-lapse confocal
(3D) microscopy general requirements, limitations and directions in image analysis and
visualization we refer to the overview publication by Gerlich et al. [43].

2.1.3 The acquisition

We have observed that though the principle of visually enhancing some biological material
with the use of fluorescence is fairly simple, the selection for correct and functional micro-
scope setup to make use of it is rather difficult. The greatest deal of guilt in this situation
is, perhaps, attributed to the “analog” nature of fluorescent dyes and, partially, of the
optical components as well, see Fig. 2.7. In this figure, we observe that there is relatively
significant, and not unusuall, intersection in the excitation and emission wavelenghts of
the FITC fluorescence dye. The intersection reveals very narrow band from which, in the
ideal case, the excitation filter should start blocking wavelengths present in an irradiating
light and/or the emission filter should stop blocking wavelengths present in the reflected
light — similarily to the way the S630 60 emission filter does in the figure. All microscope
components’ characteristics should rather precisely correspond with characteristics of flu-
orescent dyes biologists would like to use [3]. On the other hand, biologists must plan their
experiment with respect to available dyes that respects available light source, filters and
also dichroic mirror’s properties and, of course, that binds proteins of interest in a cell.
Sometimes in studies where two or more different intracellular objects are to be observed,
a fluorescent dye must be used to stain one object even though a more appropriate dye
exists only to meet the above requirements and to avoid interferrence with a dye used
to stain the second object, or vice versa. Thus, the acquisition just has to start with a
compromising setup sometimes.

Unfortunatelly, this is not where all difficulties end. Even during the acquisition itself,
there exist two dominant obstacles closely connected with the fluorescence microscopy:
the photobleaching and the phototoxicity [43, 3]. The former is attributed to the fact that
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Figure 2.7: Example of excitation/emission spectra of the PubSpectra FITC fluorescent protein
and pass-through characteristics of the PubSpectra S630 60m emission filter. Note that the filter
is tunned for this fluorescent protein. Figure generated with the CBIA’s “Optic: Modelling and
optimization of the light throughput of an optical system” at http://cbia.fi.muni.cz/optic.

fluorescence dye can be understood as a container of light photons that the dye emitts as
long as it is exposed to the excitation light until the container is empty [8]. The latter
refers to the fact that cells are normally not used to be exposed to intensive light and so
they may change their behaviour when irradiated. As a result, the exposure time should
be as short as possible in order not to waste all photons from the container, i.e., keep
some for a next shot, and not to change cell behaviour significantly. On the other hand,
short exposure time forces less photons to be emitted from the container resulting in faint
images in the detector. A partial solution is to increase intensity of the irradiating light
since it increases intensity of the emitted light but this works only to some extent, i.e.,
there is always an upper bound on the amount of released photons per unit of time [8].

While the problem of appropriately designing biological experiment with respect to
imaging capabilities is common both to the wide-field and confocal microscopy, the pho-
tobleaching and phototoxicity are subjects of serious concern mostly only in the confocal
microscopy [43, 3]. This is because the confocality is achieved only by blocking light com-
ming from other axial distances. In other words, the whole specimen is irradiated and
bleaches while only a 2D image of one optical section of specimen is being formed in a
detector. To acquire the whole volume of optical sections, a specimen is irradiated several
times longer — more than it would be in the wide-field mode. Hence, in the setting for
live cell imaging the exposure time is merely a compromise between quality, e.g., signal-
to-noise ratio, of every single acquired 2D image and the number of such images possible
to obtain in total. Note that the total number of such 2D images in the whole time
series is a multiple of the number of slices (the 2D images of optical sections) captured
at single time instant and the number of time instants required. The first multiplicand
controls the distance between neighboring optical sections (axial resolution, in fact) while
the second multiplicand controls the delay between two consecutive time instants when
total duration of the process to be “recorded” is known. The latter one is crucial for this
thesis as it controls the temporal sampling rate. Generally, since acquisition of single 2D
image in the confocal mode lasts longer than in the wide-field mode and, on top of it,
several such images are required to form the stack of images (the volume) at certain time
instant, the wide-field mode is often preferred to the confocal [43, 42]. Especially, it is so
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when observed process is relatively dynamic, e.g., fast movements or rapid division occur,
etc. In such cases the confocal mode may be simply too slow. In case when an observed
structure is rather flat (in the lateral plane) without significant deformations along the z
axis (in the axial direction), we may afford obtaining only 2D images over time but all of
improved quality.

2.2 Characterization of acquired/input image data

2.2.1 Properties of image data

Images we typically deal with owe most of their nature to the fact that they were acquired
at the bleeding edge of microscope capabilities. We tried to give an insight what are
an optical fluorescence microscope components and what are their mutual relations in
terms of components’ optical parameters. We saw that each component is indispensable.
Unfortunatelly, each introduces some small attenuation [8] and some kind of noise or error
into the process of formation of acquired image [42, 1].

The optical components, e.g., lenses, objective or filters, typically introduce aberrations
in obtained images. The most important are the non-ideal point spread function (PSF)
representing monochromatic aberrations and chromatic aberrations [1]. The former one
describes how a point in a specimen is imaged with the optical system. In general, it
follows from this function that images of points are a bit blurred in the lateral direction
and more blurred in the axial direction [2, 6]. Correspondingly, microscopes have worse
axial resolution than lateral resolution. Clearly, axial resolution is relevant only to 3D
images, i.e., when confocal unit is used. The chromatic aberration exists due to the fact
that light when transmitted throughout lens is refracted differently depending on the light
wavelength. The same object when stained with two different dyes is possibly rendered at
slightly different positions in a detector because different staining involves use of probes
with different emission wavelengths. This is important when one is investigating mutual
positions of stained objects, so called co-localizations studies. These require that cell is
acquired twice, each time with microscope set up for acquisition of the given fluorescent
probe, each time it is stored in a different colour channel of the acquired image. Note,
however, that in this thesis we are focused on analysis of movement in the single channel.
Hence, we don’t have to pay attention to such inter-channel errors. Similarily, we will not
focus on the process of reverting the errors due to the point spread function. This is a job
of a process called deconvolution and it is beyond scope of this work.

The detector, we assume a CCD chip, typically introduces great deal of noise because
the less light reaches the detector, the more apparent the noise is. And since, as we have
seen in the text above, the amount of light is greatly decreased by short exposure times
and by the properties of the optical system, the presence of noise introduced by the CCD
chip may be considerable [35]. The CCDs give rise to the following three most evident
noise types [1, 4]: the readout noise, the dark charge noise and the photon shot noise.
The readout noise occurs during the “counting” of photons in the detector, i.e., during
the process when “amount” of incoming light is translated into an electric signal before
it is digitized. This is an intrinsic parameter of every CCD chip and there is nothing
we can do about it. The dark charge noise, also often termed the dark current noise,
is a noise produced by thermally generated charge. It is especially evident in tests with
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shutter remaining closed during image integration in the CCD, the CCD will read out
some values despite there was no incomming light. That is why this noise has adjective
dark. It is manifested predominantly in regions in images where no fluorescence appears
and the background values are still not zero (zero pixel intensities represent no signal). An
intensive cooling of the CCD, e.g., to -70°C, suppresses this source to some extent. Last
but not least, the photon shot noise is a detectable statistical fluctuation in the incoming
photon flux. This one is especially a result of small intensity of light approaching the CCD
chip because otherwise the fluctuation would be negligible.

Hence, the data considered in this thesis will be time-lapse sequences of monochromatic
grayscale, i.e., single channel, 2D or 3D images. We will call the single 2D or 3D image
a frame, sequences will be consisting of consecutive frames. The displayed structures in
each frame will be a bit unsharp, due to the point spread function, and low contrast,
due to the limited amount of light during the acquisition process. There will be often
present certain amount of, so called, non-specific staining or cross-talks. This is a weak
signal emanating from regions in a cell where either no fluorescent dye should be present
or another dye with partly overlapping excitation/emission spectra is present. Technically
speaking, images suffer from low SNR (signal-to-noise ratio) and low contrast, they are
rather faint typically with absence of strong edges. Typical dimension will not exceed
1000px neither in the x axis nor in the y axis. In the case of 3D images, the dimension in
the z axis will not exceed 100px. The number of time instants, frames, is mostly less than
10. Example of two HL60 nuclei are presented in Fig. 2.8. A nice summary on challenges
to automated tracking of fluorescence microscopy images can be also found in the recent
work of Dzyubachyk et al. [51].

2.2.2 Properties of observed movements

Cells are mostly floating, waggling or rotating in their medium on the microscope slide,
see Fig. 2.9. Our experience shows that it happens predominantly in the lateral direction.
Movement, in the sense of floating up or down, in the axial direction seems to be very
unlikely during the observation, they only decline sometimes. We believe that this is
because of the medium, which is liquid and in which cells are, sort of, nailed down on
the slide by the gravity. Another reason is the small thickness of the specimen, i.e., the
distance between the slide and the cover glass, which doesn’t permit cells to float or rotate
significantly in the axial direction as well. Hence, they typically don’t occlude. On the
other hand, they often touch one another. Cells also do not change their size dramatically.
If such phenomenon is expected to occur, the sampling period between acquisitions is
usually adjusted so that there is no great change between two consecutive images in the
series. All of this, to a great extent, is applicable to subcellular components as well, see
Fig. 2.10.

For instance, Matula et al. [16] designed an alignment technique to suppress global
movement of live cells in a time-lapse confocal (3D) images. The authors reported no
significant scale changes even between several time-consecutive images in their test data.
They also reported no considerable rotation around x or y axis. Their technique is based
on pairing of detected intracellular objects. In this case, images of telomeres and images
of HP1 domains were used. They succeeded with an extension of the translation, rotation
and scale invariant 2D registration method of Chang et al. [52] into 3D space even when
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Figure 2.8: Example of two 3D frames of HL60 nuclei with stained HP1 domains. Only a digest
in the form of two xy, yz and xz orthogonal cross-sections for each cell can be printed here. The
first cell is displayed in B and E: it spans a volume of 300× 300× 10 pixels which corresponds to a
volume of 23.4× 23.4× 5.0µm in this case (results in z-step of size 0.5µm), two lateral sections at
z=2 in B and z=6 in E are shown, the yz section is shown for x=150 and the xz section is shown
for y=150. The second cell is displayed in C and F: it spans a volume of 300 × 300 × 16 pixels
which corresponds to a volume of 19.5× 19.5× 9.6µm in this case (results in z-step of size 0.6µm),
two lateral sections at z=7 in C and z=12 in F are shown, the yz section is shown for x=203 and
the xz section is shown for y=150. Notice that to keep the aspect ratio, the yz and xz sections
of the second cell are rendered with “greater pixels”. Also notice that the resolution in the axial
direction (z axis) is worse, the texture is more jagged. The example illustrates the sort of spatial
arrangements of stained structures inside these cells as well as the intensity proportions we have
to deal with when analysing this type of images. The latter is demonstrated with two intensity
profiles shown in A and D. The A (or D) profile sweeps along imaginary line in the xy section of
B (or F) as designated with red arrows in B (or F). The more a red curve in A or D is to the left,
the greater pixel value it represents. All images were enhanced for printing purposes. Courtesy of
Vladan Ondřej.
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Figure 2.9: Illustration of a typical motility of isolated whole cells. Four consecutive 2D frames
(time instants) are shown in A,B,C and D. The artificial line-marks are occuping the same locations
(they are registered) in the image sequence. They were inserted only to ease observation of cell
movements. Using these, one may notice that the bottom-left cell is waggling while, for example,
the bottom-right cell is translating and rotating at the same time. All images were enhanced for
printing purposes.
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Figure 2.10: Illustration of movements of intracellular structures (HP1 domains in a HL60 nucleus).
Nine slices of the two consecutive frames mapped to red (darker in B&W print) and to green
(brighter in B&W print) are shown here. Quite intentionally, this 5th frame was also shown in
Fig. 2.8B with raw pixel intensities. In order to give an example of how cell changes and moves
between two consecutive time instants, we have opted to show only silhouettes of cell and HP1
domains. In the display, we observe mosty translational and/or rotational motion of domains of
various magnitudes: from stationary ones inside the cell, though the cell itself is a bit clockwise
rotating, to domains travelling as far as 12.5 pixels between these two frames, e.g., pixels in the
red (earlier) circle are translated to the green (latter) circle by the vector (−5, 11, 1). However,
this magnitude of movement also includes a local magnitude of global movement of cell as such.
This movement must be “subtracted” from the measured one in order to assess a true movement
of the domain within the cell, which is usually the information desired by biologists. Notice that
we also observe a bottom of the cell in slice z=8 as the cell contour is smaller. In fact, the slice
at z=9 is empty in the original data because it is imaging optical section from the specimen just
bellow this cell. Courtesy of Vladan Ondřej.
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they kept the support for rotations only around the z axis, that is 2D lateral rotations.
From their results it suffices to describe a global movement of the particular cells by means
of a 3D translation vector and rotation angle around the z axis. This was also evidenced by
Bornfleth et al. [15]. Dufour et al. [53] proposed a segmentation and tracking method that
uses volume conservation constraint to improve outlining of cell boundaries. They tested
their method on two types of cells, namely the human parasite Entamoeba histolytica
and proliferating MDCK cells. Sample images in their publication evidence a flat lateral
distribution of cells in the acquired 3D volumes as well.

We are often working with images where only a single cell is shown. Quite often, these
images are a result of an automatic or semi-automatic extraction that simply makes a
copy of the relevant rectangular portion from the original image. In this way, it aims
to split images with several cells into more images each with a single cell and its small
neigborhood. Clearly, once the region (in 2D) or volume (in 3D) of interest is determined
around a given cell, it is fixed and kept constant over the whole image sequence so that the
movement of cell is apparent even in the new sequence of extracted (and smaller) images.
A region/volume of interest is given by its offset within the original image and by its size.
For instance, this was the case of images of cell in Fig. 2.8.
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Chapter 3

Related work and theory

We aim to be able to track some objects in time-lapse image sequences of live cell studies.
The goal is not to design an ultimate tracker, i.e., a program that would follow and draw a
line along some user-selected object in all images in the time-lapse sequence. We wish not
to head towards an approach with explicit segmentation involved. This is predominantly
because we don’t want to restrict ourselves to tracking of any particular objects. We aim
only to provide just enough information, in whatever form, that would enable anyone to
link any objects in the sequence once they are segmented, either beforehand or afterwards.
The optical flow technique can achieve this.

The purpose of this chapter is to review approaches to tracking followed by introduction
to optical flow computation. Both topics should be dealt with mainly in the context of
biomedical images. In the second half, we take a close look on the representation of motion
both in spatio-temporal images as well as in the Fourier domain. We will also discuss some
of its aspects with respect to the human visual system as well as with respect to motion
estimation based on Gabor filtering.

3.1 Tracking in biomedical images

3.1.1 Overview of approaches to tracking

The two main concepts

According to the literature [20, 54, 11, 13, 55, 17, 14, 53, 18, 56] and, we believe, also
as a consequence of the chicken-egg dilema explained in the introduction, we have only
two fundamental options how to approach the tracking. Either we preprocess the input
images and obtain some characterizing feature vectors in the first step among which we
establish correspondences in the second step; or we estimate motion of some anonymous
masses (patterns) either moving or still and use the estimate in following stages where
objects are identified and tracking is completed. The feature vector carries information
such as coordinate of centre of mass, mean intensity value, size, roundness, local dominant
orientation or even some intensity pattern, etc. [13, 46, 57]. In the rest of this section
we shall see that the two typical representants of the two concepts are the techniques of
image registration and optical flow, although counter-examples exist.

The image registration, in the context of this thesis, can be regarded as the process
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of overlaying two images such that they become aligned. The images should show the
same scene taken at different times. A parameterized transformation model transforms
one image to the other. The registration process seeks proper parameters of this model for
given image pair such that images align well in terms of some similarity criterion. Clearly,
the model should be general enough to allow for correct alignment. This is useful, for
example, for suppresing global movement of a cell [16, 10]. The image registration can be
also conducted at the level of objects, i.e., aligning views (cropped subimages) or matching
feature vectors of the same object in two or more images. This is useful for tracking several
independently moving objects within images in the sequence [58]. A necessary precondition
in this case is that the linked objects must be segmented beforehand.

The optical flow techniques produce flow fields. A flow field describes an optical (visual
or percieved) flow of displayed content (mass or simply small brightness patterns) from
the earlier frame to the later one by means of a collection of, so called, flow vectors. There
is one flow vector associated with every pixel. There exists one flow field for every pair
of consecutive frames in the time-lapse sequence, eventually. In order to track certain
structure in the sequence, it is simplest to adjust the structure’s position according to the
flow fields. However, to understand the type of detected motion, e.g., how much a cell is
rotating, further analysis of the flow fields must be conducted as well as segmentation of
the cell.

Tracking as motion estimation

Despite establishing inter-frame correspondence of still objects is also a goal of any tracking
method, most researchers expect that the subjects to tracking are in motion. This is
probably why methods typical for the general field of motion estimation, a representant
of the computer vision field, are often encountered in the time-lapse microscopy image
processing and analysis. The optical flow is nice example of such an application. Some
concepts are, however, called differently.

For instance, Cédras and Shah [20] in their survey on motion-based recognition used
the term “motion correspondence” for the sort of methods that, we cite: “deals with
extracting interesting points, characteristic features in an image, that can be tracked in
time.” As a counter-approach they used the optical flow. Konrad [54] considered, we cite:
“two essential models in motion estimation: a motion model, i.e., how to represent motion
in an image sequence, and a model relating motion parameters to image intensities, called
an observation model.” The former model tries to describe what happens with pixel
intensities in the image sequence if they display object in movement. We aim to find
its driving parameters such that the model fits to the given image sequence. It should
encompass at least an image formation model, motion model and surface model [54]. But
in the end, it is only a transformation, whose parameters we seek, within images, i.e., an
image registration technique. The latter model, according to Konrad [54], deals directly
with image intensities respecting the constant brightness assumption (eq. (3.8), explained
in Section 3.1.3), i.e., variants of optical flow. Dubuisson06 [56] identifies the two sources
of information for tracking: a model of appearance of the moving object and a model
of the dynamic behaviour of the object. The former source, in fact, enables us to seek
difference in positions over time of some fits of the a priori given model. The model can
be arbitrary, e.g., colour distribution, intensity patterns or edges. Dubuisson notes that
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deformable models, snakes and appearance models are the most popular techniques for
tracking. The second main source of information, according to the author [56], is the model
of dynamic behaviour, which imposes no constraints on the shape of the object. It rather
deals directly only with sets of observations, which we may understand as pixel intensities.
Methods based on this source of information then estimate evolution of such observations
from which the motion can be estimated. Finally, the recent (computer vision) survey
publication on general object tracking by Yilmaz et al. [59] identifies four features to
track: the colour, edges, optical flow and texture (in a form of precomputed descriptors).
The colour information can’t be exploited in microscopy unless we stain the same tracked
structures with more dyes, which is fairly unusual. The edges refer to the deformable
models and the texture to the image registration. The publication often notes that the
optical flow, besides tracking based solely on it, is often used as an auxiliary source of
information, especially for methods based on active countours [60, 61, 62]. Occasionally,
it even initiates a particular method [63].

To sum it up, the techniques of image registration and optical flow seem to be the two
most often used for correspondence finding. Thus, we shall examine each closer.

3.1.2 Image registration

Classifications of image registration techniques

We have already mentioned one aspect according to which the registration techniques can
be classified. This was the level or (spatial) scope at which the registration shall operate.
In particular, we may want to align a whole given image to a reference one. We may also
want to align just subimages containing objects extracted from both given and reference
images prior to the registration. While in the former case we align one image to the other
one, in the latter case we align n to m objects simultaneously. Note that n does not have
to be the same as m due to extra or missing detected objects in, possibly, either images.

Another classification is possible according to type of a transformation model. Say that
the transformation model has vector ~pN of N model parameters. When all N parameters
are supplied, we obtain a particular instance of the model, the image transformation.
The transformation can be, in the general case, defined with function ~y = T (~pN , ~x) that
“transforms” input image coordinate ~x (a column vector) into its corresponding coordinate
~y in the transformed image. To transform a source image means then to forward its
pixel value at ~x to a new coordinate T (~pN , ~x) in the transformed image. If good model
parameters ~pN are used, the transformed image should be similar to the reference image,
in which case we say that the transformed image is registered.

Transformation models

The most frequently used transformation models in the time-lapse microscopy are the
rigid, affine and nonrigid transformations [10]. The rigid transformation preserves shape
and content of the transformed pattern, it can only translate and/or rotate it but it can’t
deform it. The affine transformation, in addition to what the rigid one is capable of, can
scale and shear. Hence, it only preserves topology. The nonrigid transformation can be
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arbitrary. For example, the model of affine transformation for 2D image is given as

~y = T (~p6, ~x) =
(

a1,1 a1,2

a2,1 a2,2

)
~x +

(
b1

b2

)
. (3.1)

Here, N = 6 and ~p6 = (a1,1, a1,2, a2,1, a2,2, b1, b2). The parameter N represents the degree
of freedom of the transformation model. The higher the number is, the more complex and
also the more general the model is. The affine transformation degree of freedom is up to
N ≤ n2 + n for a sequence of nD images.

The selection of a model is based on apriori knowledge of processed data [64]. When
tracking several cells in an image sequence, the transformation model should be quite
general, e.g., it should allow for local deformations, cell divisions, cell entering and/or
leaving the frames [13, 51]. When aligning single cell, the transformation model should also
account for intracellular deformations such as in Fig. 2.10 where different cell structures
change their shapes and/or positions differently. Elastic transformation models are often
used when nonrigid transforms are required [10].

It is important to realize that in order to fully determine parameters, the vector ~pN ,
of the assumed transformation model, we should be able to find at least N applications of
it in the processed pair of images at the same time. In other words, we should be able to
find a mapping in the form of j pairs (~xi, ~yi), i = 1, . . . , j with j ≥ N . The mapping yields
a collection of constraints ~yi = T (~pN , ~xi), which we solve for ~pN . However, such system
has rarely a single correct solution (ideal fit of the model). As a result, minimization of
a residual error E~pN

is often sought. The residual error is supposed to indicate quality of
~pN under the examined constraints. For example, when group of points move over time,
the residual error may take the form:

E~pN
=

j∑

i=1

(~yi − T (~pN , ~xi))2. (3.2)

The goal of image registration technique is to find mapping as well as ~pN that together
minimize E~pN

. In words, it seeks optimal mapping whose optimality is (quantitatively)
supported with the most consistent instance of the transformation model. Note that the
mapping represents the correspondence. Unfortunately, it often leads to an iterative cost-
minimizing process [65, 66], which may be time demanding. When some very flexible
model is employed (N is high), we may not be able to have N constraints available to
complete the registration, e.g., when, returning to the example, only j < N points is
available.

Principle of voxel-based and feature-based techniques

The image registration techniques can be also classified as voxel-based or feature-based
[64, 10]. Basically, this classification distinguishes between sources of information supplied
into the registration routine.

The voxel-based techniques work directly with image data. They typically perform no
feature extraction. The mapping pairs (~xi, ~yi) are given with the image transformation ~yi =
T (~pN , ~xi). These techniques evaluate blocks of image data with correlation-like measures
[64, 10]. During the search for appropriate instance, the vector ~pN of the transformation
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model, each instance is examined against very large constraint system with j À N . Note
that j can be as large as the number of pixel coordinates in the overlap of a transformation
of the given image, IG, and the reference image, IR. The residual error is usually of the
form:

E~pN
=

j∑

i=1

IV SM
(
IG(~xi), IR(T (~pN , ~xi))

)
(3.3)

where IV SM
(
IG(~x), IR(~y)

)
is an Intensity Values Similarity Measure operating on pixel

value at ~x in the given image and on pixel value at the mapped (destination) coordinate
~y = T (~pN , ~x) in the reference image. The IV SM returns with a real number. The higher
it is, the less similar the intensities are. The E~pN

is often a sum of absolute/squared
differences or other correlation-like similarity measure [10, 64]. If the right-hand-side of
eq. (3.3) is modified, correlation or a more elaborate measure of, so called, correlation ratio
[67] or mutual information can be obtained [68]. A common property of most voxel-based
registration techniques is a great computational demand as, in the worst case, for every
reasonable model parameter combination ~pN the sum E~pN

must be evaluated, which, in
turn, ranges nearly over the whole input image. Considerably faster variants based on the
fast Fourier transform exist [69].

The feature-based techniques, or also alternatively the point-based techniques, extract
feature vectors both from the given and reference images. There is typically one such
vector associated with some salient loci (corner, landmark or contour, etc.) or otherwise
interesting region such as some intracellular structure of interest (gene particle, chromo-
some territory, protein domain, etc.) or even a whole cell. A feature vector consists of
several measured quantities whose selection depends on situation and on type of objects
the feature vector is associated to. The purpose of the vector is to uniquely describe and
identify the object it represents, at least object coordinate is always included in the vector.
This is where the designation point-based has come from. Other examples of the measured
quantities are mean intensity, local histogram, area/volume or local maximum curvature
[65, 10]. In general, the selection of points as well as of the features should be invariant
to the assumed transformation model [65, 64], e.g., assign feature vectors only to centres
of circular blobs if rotation is expected to occur. It is these feature vectors that are dealt
with in the registration routine. Say, j vector pairs are examined. The residual error has
the form:

E~pN
=

j∑

i=1

FV SM(~v G
~xi

, ~v R
~yi

) (3.4)

where FV SM(~v G
~x , ~v R

~y ) is a Feature Vectors Similarity Measure operating on a pair of
feature vectors associated to object at point ~x in the given image and to object at point ~y
in the reference image provided the pair (~x, ~y) is included in the examined mapping. The
transform model function T is usually incorporated into the FV SM by assuming that
motion of objects obeys some implicit geometric properties. Note that object coordinate
is always included in the feature vector. The FV SM returns with a real number. The
higher it is, the less similar its input feature vectors are.

The point-based approaches are generally preferred in biomedical imaging [10] since for
every ~pN there are only a few easily computed feature vectors dealt with in comparison to
the large number of examined pixels in the voxel-based approach, i.e., the sum in eq. (3.4)
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aggregates over far less values of i than the sum in eq. (3.3).

3.1.3 Optical flow

We are already familiar with the fact that any optical flow method produces flow field for
a pair of images and that there is one flow vector associated to every pixel. The idea is
that the flow vector should estimate relative change of coordinate that the intensity at the
associated pixel undergoes between the two frames. This is formalized for a pair of 2D
images as

I(x, y, t) = I(x + u, y + v, t + 1) (3.5)

in which I(x, y, t) is an intensity value at coordinate (x, y) at some time instant t, the
following time instant is represented as t + 1. A flow vector (u, v) is associated to the
pixel at ~x = (x, y). Note that we have increased the image dimensionality and replaced
the sequence of 2D images with only a single spatio-temporal 3D image in which the
consecutive original 2D frames are stacked along the third axis. The third axis is, therefore,
often denoted the temporal axis, the t axis.

The equation is usually reformulated using the Taylor series expansion [19, 70, 71].
The right-hand-side of eq. (3.5) is then changed to:

I(x + u, y + v, t + 1) = I(~x, t) + uIx(~x, t) + vIy(~x, t) + It(~x, t) + O(~x, t). (3.6)

The error term O(~x, t) encompasses the rest of the expansion, namely the 2nd and higher
derivatives. The Ix(~x, t), Iy(~x, t) and It(~x, t) are the partial derivatives of image intensities
in the directions of the x, y and t axes, respectively. We assume that the error term
is negligible, i.e., O(~x, t) ≈ 0, and thus we drop it in the following equations. After
substitution of eq. (3.6) to the original eq. (3.5) and subtracting the common term I(~x, t),
we obtain:

uIx(~x, t) + vIy(~x, t) + It(~x, t) = 0. (3.7)

By letting ∇I(~x, t) = (Ix(~x, t), Iy(~x, t), It(~x, t)) to be the image gradient, a row vector of
partial derivatives, we obtain equivalent to eq. (3.7):

∇I(x, y, t) · (u, v, 1) = 0. (3.8)

These two equations are often called the brightness constancy constraint or the bright-
ness constancy assumption [71]. Sometimes, it is even called the gradient constraint equa-
tion [72, 70]. Provided all of the above assumptions hold, this constraint relates image
gradient at some coordinate with the optical flow velocity (u, v). In particular, the vector
(u, v, 1) should be perpendicular to the image gradient ∇I(~x, t). It is remarkable how well
this constraint performs in general [71] since the original eq. (3.5) is quite often violated
in real images. There can be many reasons for it, e.g., different illumination conditions or
noise. In time-lapse microscopy, the violation is mainly due to the noise and the effect of
photo-bleching, which both differ with every acquisition.

Another way to arrive to these constraints is to track points of constant brightness
in the constructed spatio-temporal 3D image [19, 72, 71]. That is to follow a spatial
trajectory ~x(t) = (x(t), y(t)) in the course of time t such that I(~x(t), t) = c, where c is
some constant pixel intensity. Taking a temporal derivative of it,

dI(~x(t), t)
dt

= 0, (3.9)
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using the chain rule we obtain,

dI(~x(t), t)
dt

=
∂I

∂u

du(t)
dt

+
∂I

∂v

dv(t)
dt

+
∂I

∂t

dt

dt
= 0, (3.10)

which we further develop to eq. (3.7). In order to achieve that, it is helpful to realize that
derivative of trajectory in time is a velocity, e.g., du(t)

dt = u, and that velocity components
u(t) and v(t) are in the directions of axes x and y, respectively. The partial derivatives,
for example, ∂I

∂u then becomes Ix. We will later realize that this derivation is more in the
view of Section 3.3.1.

With the 30 years of existence1 of the now-classical constraint on brightness constancy,
eq (3.8), there also co-exist a collateral classical problem and classical solution to it. The
problem is that for any pixel we have only a single constraint (be it eq. (3.5) or eq. (3.8))
with two unknowns. There has to be at least one constraint more added to estimate
flow vector (u, v) for the given pixel. In fact, any number of constraints may be added
and turn the estimation of optimal flow vectors into a minimization problem. Horn and
Schunck [19] proposed to use the smoothness constraint that forces the flow vectors (u, v)
to be locally smooth. This can be expressed with Laplacians of the components of the
flow vectors [19] or alternatively as a sum of squared 1st derivatives of the flow field [71].
For this moment let us conclude that there exist a few variants of both the brightness
constancy and smoothness constraints, see [70, 71, 73] for overview. We will return to this
topic later in Section 3.2 when comparing different optical flow computation methods.

A particular limit of the approach is that the estimated velocities (u, v) should be small,
i.e., |(u, v)| < 2px per frame [70, 73]. It can be best seen in eq. (3.6) in which truncated
Taylor expansion is pulled into the constraint. In order to keep the error term O(~x, t)
small the terms u and v should be rather small. Computing optical flow for sequences
where faster velocities occur is typically achieved in a coarse-to-fine manner [74, 75, 70].
It uses pyramidal representations [76, 77] of both images between which the flow fields is
to be estimated. The pyramid comprises of several copies of an input image at iteratively
decreased spatial resolutions with the original image in the bottom. Velocities are first
estimated in higher levels, they are then propagated towards the bottom by warping
one image according to the current estimates. The warped image is expected to become
sufficiently close to the second image and the process is repeated.

Note that despite we have presented optical flow for 2D image sequences, many con-
straints can be readily extended to general dimension nD, n ≥ 3. However, providing a
working implementation of such a method may be far from the decleared readiness. Im-
plementations of some established (differential) methods for optical flow computation on
3D image sequences has been published just recently [78, 79] and [P7].

True motion, optical, component and normal flows

Let us make a comment on the nature of optical flow fields. It is not true that the flow
field must describe exactly what is happening in the displayed scene. It really should only
describe what we see in some low level sense, i.e., without emploing our prior knowledge of
the world. In other words, the estabished definition, due to Horn and Schunck [19], is that
optical flow is “the distribution of apparent velocities of movement of brightness patterns

1Indeed, the influential publication by Horn and Schunck [19] has been published in 1981.
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in an image.” This is especially the case of real world images where perspective projection
from inherently 3D real world is applied to form a flat 2D image and where specular
effects, light reflections, shadows, occlusion and/or surface change happen [80, 81, 82].
For example, consider a car moving on a straight road towards us and the road is exactly
paralel to the normal of image plane. Thus, the road in the image is pictured as it is
going from the top to the bottom. The car then appears to move a bit downwards and
gets bigger with each image in the sequence. Hence, the optical flow vectors would point a
bit downwards and a bit away from a common centre located somewhere in the car what
would suggests that in reality the car is perhaps crashing and drowning into the road while
it is getting physically bigger because the pixel resolution is constant within the sequence.
But the car just goes on the road. This is an illustration of the difference between the
optical flow field and the true motion flow field. The true motion flow field should describe
our understanding of the scene. In this case the motion flow vectors assigned to the car
would have to contain additional element to express the depth. This element would also
allow to make all vectors originating from the car to be exactly the same because the car
is expected to be rigid, i.e., every piece of the car (bodywork, roof, windows, bumbers,
lights, etc.) should move with the same velocity and in the same direction.

We can regard the optical flow field equal to the true motion flow field in cell mi-
croscopy. The reasons are explained later in Section 5.2 in Chapter 5. We will briefly
summarize them here, for convenience: Cells are floating predominantly in their lateral
direction in their physiologic liquid and, owing to the gravity, they “sit” on the slide,
which we observe either from the bottom or from the top. The axial distance of cells from
objective can be, therefore, regarded constant in both wide-field and confocal modes.

Even though there is a reduction of information when moving from the true motion
flow field towards the optical flow field in the general case, the latter is sometimes still
impossible to retrieve. It is very often due to the effect of aperture, Fig. 3.1. Following
the figure, there may be many acceptable flow vectors and no clue to select which one
is correct. Most of the optical flow computation methods in this case tend to select the
flow vector in the direction of image gradient, the one given by eq. (3.8). Such vector is
often termed the component flow vector as it is only partially correct, only one component
of the correct optical flow vector is found. In fact, some methods start directly with the
component flow which they then re-adjust according to some additional constraints to
finally obtain a flow field [83, 84, 85]. The component flow is often also called the normal
flow.

3.1.4 Current trends in time-lapse microscopy

For time-lapse microscopy, the review by Eils and Athale [13] suggests to use either spe-
cialized single particle tracking, parameterized image registration or optical flow. This
is confirmed also by Gerlich et al. [11] and others [55, 17]. However, for the particle
tracker Eils and Athale [13] note: “The basic principle of single particle tracking is to
find for each object in a given time frame its corresponding object in the next frame.
The correspondence is based on object features, nearest neighbor information, or other
inter-object relationships. Object features can be dynamic criteria such as displacement
and acceleration of an object as well as area/volume or mean gray value of the object.” In
our opinion, this essentially describes the image registration techniques as outlined above.
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Figure 3.1: The aperture effect. In A, suppose a constant intensity “pattern” translating top-right
and shown at two consecutive time instants t1 and t2, t2>t1. It occupies the lighter area and
moves into the darker one in the course of time. In B and C, suppose we observe the situation with
a spatially fixed apertures. Owing to the corner we can easily tell what is the correct direction
of movement in B. But if there is only limited amount of information, as in C, we can’t be sure
which of the suggested vectors is the correct one. The dotted one is the component flow vector,
i.e., vector in the direction of image gradient. The red thick one is the correct vector.

Hence, we regard both particle tracking and parameterized image registration to be only
two differently focused image registration techniques. The techniques of image registation
and optical flow, thus, dominate.

Typical applications of image registration to biomedical images

Kozubek et al. [46] suggests to stay only with the image registration for tracking. Meijering
et al. [17, 57] notes that the basic concept underlying the vast majority of published
methods for tracking particles or other cell interior structures involves detecting individual
particles in every frame and then linking them. In general, such concept leads to some
variant of image registration technique as we see [17, 57] that, basically, a feature vector is
computed, distance measure is established and correspondence finding algorithm is used.
According to the recent literature [11, 13, 17, 10], two different tasks in live cell studies
are solved with image registration techniques.

The first task is the suppression of global motion when only a single cell is imaged.
The images of a cell shall be registered after it such that any changes inside the cell are
clearly apparent. In this case the registration of a whole image is considered, usually the
rigid transformation model is used [10] and appropriate feature points are extracted. The
feature points can be either associated to some well detectable cell structures that are
static or fixed within the cell [86] or Matula et al. [16] showed that the feature points
can also represent intracellular structures of interest provided that majority of them move
mainly or solely due to the movement of the cell. In both cases, the feature vectors may
contain only coordinates of the points they represent because the assumption on rigid cell
movement preserves the spatial relative arrangements between the points. As a result,
eq. (3.2) can be used directly. Note that we must extract at least N feature points to
constrain the model properly. Alternatively, Rieger et al. [87] showed an approach based
on computation of inertia tensor directly from pixel intensities, thus avoiding the need
for segmentation prior the registration. Their approach offers a successful example of
application of voxel-based image registration technique.

The second task is simply to track given, usually already segmented, objects. These
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objects may take a form of many cells moving individually throughout an image sequence
or several intracellular structures of interest moving within a single cell. Unlike in the
first task, the tracking should only provide the mapping (the inter-frame correspondence)
between appearances of the object. Typically, a point-based representation with feature
vector is utilized [16, 58, 15, 17, 57]. In the case of tracking whole cells, usually only a cen-
tre of mass is computed for each and the correspondences between frames are established
in the nearest neighbor fashion [88, 58]. This should work perfectly until the inter-frame
translations of cells are greater than are cell radii. A very popular approach is to track
cells with deformable models [57, 10, 53], which is somewhat a hybrid scheme according
to the taxonomy we have presented in this work. The approach conducts segmentation
simultaneously with tracking by combining both feature vectors and direct intensity inves-
tigation. Sometimes, ideas typical for computation of optical flow are incorporated [89].
In the case of tracking cell particles, for which, interestingly, it does hold that their inter-
frame translations are several times greater than are their radii, additional constraints are
often introduced. These are, for example, more containing feature vectors (e.g., shape
characteristics or intensity patterns) to certify match, assumption on motion smoothness
or probabilistic approaches, see [18, 17, 57, 10] and references therein.

Applications of optical flow to biomedical images

Optical flow is a good candidate for global motion suppression in live cell studies [90, 73,
91, 10]. With the optical flow, we can easily correct for global motion even in sequences
showing several isolated (not touching) cells provided there is always a reasonable (spatial)
distance between the cells. Modified optical flow for global motion suppression was also
used by Kim et al. [91]. A general registration, an alignment, of two frames based on
optical flow was presented earlier by Bouguet [90]. The review by Miura [18] on tracking
movement in cell biology notices that optical flow has been mostly overlooked and gives an
example analysis of protein movement using it. He notes that optical flow is a viable option
when objects change their shape or when there are many object with overlapping tracks.
It suffices to compute flow fields directly without any prior assumptions and consequently
track either user or automatically selected/segmented regions [47, 92]. The granularity of
this methodology depends on what is demanded in the study and what is possible from
results of the optical flow computation. Recently, we showed that modern optical flow
algorithms provide good accuracy on fluorescence microscopy images [P7] so that it can
be successfully applied for global motion suppression as well as for tracking cells and also
intracellular structures [47]. The tracking was achieved by marking objects of interest
and following those marks. Basically, it amounts to making a list of coordinates which is
updated by the flow fields for every next frame. The authors did not test their method
on tracking of particles. Quelhas et al. [86] used the optical flow for fluorescence images
of a plant root. They detected cell divison in already registered frames by detecting local
peaks in magnitudes of the flow field. Note that in both publications [P7] and [86] the
modern optical flow computation methods [93, 94] were utilized.

The methods based on the principles of active contours, level sets and deformable
models are notably popular for the task of tracking cells as a whole [14, 53, 56, 10, 51], in
contrast to tracking particles or other cell interior structures. Note that this is a concept in
which the segmentation and tracking is inseperably interconnected. Zimmer et al. [14] also
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admit that such methods typically require tuning of many parameters, especially weights
or different energy terms and initial contour. They suggest to make use of additional
sources of information from the image, such as the motion itself obtained with optical flow
[89], to improve performance of the deformable cell tracking models.

Conclusion on motion estimation in biomedical images

It is difficult, if not impossible, to state which approach is in general better. The complete
tracking solution will always need to extract data from a given frame (includes segmenta-
tion to allow for image analysis) and link it between the frames (to allow for time-resolved
evaluation of some features, be it a volume or acceleration). The extraction and linking is
sometimes referred to as to the spatial and temporal aspects of tracking [57], respectively.
Using this parallel, the two aspects will always be present in tracking because it deals with
spatio-temporal data.

To some extent, it is a question of one’s preference which approach is favoured as
all should lead to the same result, ideally. We have decided to split the task and focus
predominantly on motion estimation as such, postponing the segmentation step to some
other stage in the analysis. We have opted to use the optical flow for the motion estimation.

The optical flow computation is based on a few simple assumptions, namely the tracked
pixel should look similar over time, small local region of pixels should exhibit rather
similar motion and temporal sampling should be frequent enough such that inter-frame
correspondences can be reliably determined. These are, however, general requirements
for motion estimation. On the other hand, the segmentation, especially on the type of
images from cell microscopy, need to utilize some form of prior knowledge about the
extracted objects. For example, to segment protein molecules it is usually to seek for
round intensity patches, small in diameter with pixel intensities (at least slightly) above
their surround. But segmentation of cell nuclei is incomparably more complex process
requiring, for example, the use of level set methods [95]. We think it is better to conduct
segmentation with the aid of motion estimation (optical flow), rather than conducting
motion estimation with the aid of segmentation (object-level registration techniques). We
think it is better not to restrict to estimation of motion of only some objects.

A flow field can be regarded as general and flexible image transform as it directs
motion of every single pixel. Actually, the resolution is slightly worse as we don’t have
enough constraints for the determination of flow field and so, typically, pixels in close
vicinity cooperate. Still, it is possible to use the same optical flow computation routine to
estimate motion of several cells shown at the same time or just to focus on a single cell
and estimate motion inside it (provided cell is captured at sufficient resolution).

In addition, we are also inspired by the human visual system, which is clearly a good
system to model in terms of its performance. In particular, it seems that we, the human
beings, can make statements on motion of any object even if we have never seen it before,
i.e., we had no prior knowledge or experience. This motivation will be strongly apparent
especially in the sections to come.
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3.2 Optical flow computation techniques

In this section we would like to identify an optical flow computation method that would
perform the best on our type of data that we have described in Section 2.2.1. Unfortu-
nately, none of the methods is universal and the choice strongly depends on the type of
image data. Recently, a clue was given by Miura [18] for measuring movement of pro-
teins, vesicles and cells. He attended to the differential approach based on eq. (3.8) with
increased temporal support in form of either the temporal local smoothness constraint or
spatial local smoothness together with eigenvalue analysis of spatio-temporal structural
tensor. In addition to his results, we have decided to also rely on earlier studies, namely on
the influential study by Barron et al. [72] followed by Galvin et al. [81]. Similar attempts
have been made by McCane et al. [96] and by Baker et al. [97] but they have limited scope
of tested methods (they have focused predominantly on the differential approaches). Since
there are currently many various methods to choose from, we have opted to focus only
on major approaches rather than on particular method. Basically, fundamental difference
between approaches is in the selection of constraints they employ.

Following the taxonomy of Barron [72], these are the following major approaches:

Differential: It computes velocity from spatio-temporal intensity derivatives (1st or 2nd
order) often accompanied with some smoothness constraint. Velocities are estimated
locally or globally over all pixels simultaneously by means of minimizing sum of
outcomes of penalizer functions (often squares only). This approach is often called
the gradient approach as well.

Region matching: Images are divided into many reasonably small blocks. Velocity is
defined as the shift vector that maximizes some similarity measure (cross-corelation,
or minimizes sum of squared difference) between two image blocks at different times.

Energy-based: The input image is decomposed with a collection of bandpass velocity-
tuned filters into several energy images (computed pixel-wise as magnitude of the
complex result of the filtering). Velocity is computed in weighted least squares
sense. For every pixel, the residuals are differences between the measured energy
outputs and the expected filtering responses. The expected responses are functions
of velocity. Estimated velocity is the one realizing the least squares minimum.

Phase-based: The input image is decomposed with a collection of bandpass velocity-
tuned filters into several phase images (computed pixel-wise from the complex result
of the filtering). Each phase image provides one suggestion of component veloc-
ity, which is estimated in the direction of phase gradient. A velocity is estimated
by fitting a motion model in the least squares sense to the component velocities
aggregated over a small spatial neighborhood.

The reader is kindly referred to the survey publications [72, 81, 96, 18, 73, 97] for ref-
erences on particular methods. Nevertheless, we have already explained the idea of the
differential approach. The region matching resembles the voxel-based registration tech-
nique since both approaches measure similarity of regions directly with pixel intensities.
In the optical flow, however, only shift of blocks is expected in contrast to voxel-based
registration where arbitrary image transform may be employed. The last two approaches
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are sometimes treated together under a common name of filtering-based optical flow. They
will be explained later in Section 3.3.4 in detail.

As of 2002 [98], it was assumed [72, 98] that the generally good performers were the
method by Lucas and Kanade [99], which is the representant of differential approach
with local spatial smoothness operator, and the method by Fleet and Jepson [83], which
represents the phase-based approach. The other surveys [81, 96, 97] haven’t tested energy-
based nor phase-based approaches. But they have agreed on the method of Lucas and
Kanade.

Considerable improvement came with the nowadays highly-regarded methods by Brox
et al. [94] in 2004, Bruhn et al. [100] and Papenberg [93], followed with the TV-L1 method
by Zach et al. [101] in 2007. These are all representants of the (new era of) differential
approach. Recently, even modifications to some of these for 3D image sequences were
reported [P7] and [102]. Refer to the recent survey on data and smoothness constraints by
Weickert et al. [73]. The novelty of these methods was in the use of robust penalty func-
tions, the use of coarse-to-fine scheme for optimization and the incorporation of stronger
local constraints on the motion [71]. And it was exactly this “technological” advance that
enabled the progress. As Sun et al. [103] notices the formulation has changed little since
Horn and Schunck [19]. For instance, Brox et al. and Zach et al. suggested in their meth-
ods the use of intensity preservation constraint, eq. (3.5). Sun and colleagues also show
that applying the new computational concepts into the the method of Horn and Schunck,
the performance of this method has improved as well [103].

However, even these modern differential methods have their limits. They are, like any
other differential methods, strongly dependent on sampling density of input images both
in the spatial and temporal dimensions. This affects the computation of derivatives, espe-
cially the higher order ones. A common approach to “stabilize” estimation of derivatives
is to smooth the image sequence prior the numerical differentiation. Fleet and Weiss [71]
noted that we may actually conduct the smoothing and differentiation in one step with
some smoothing derivative filter. This idea has been adopted by Weber and Malik [104]
and later by Bruno and Pellerin [98]. The authors in fact, used several bandpass derivative
filters. Since their “prefiltering” resembled filtering with Gabor filter, we will, according
to Heeger [105], show later in Section 3.3.4 that the “prefiltering” approach is very close
to the energy-based approach adopted by Heeger [106].

It is only our impression that all four approaches are based on more or less similar or
even the same assumptions in terms of intensity preservation, smoothness of the recovered
motion and well sampled image data. Hence, we would expect to obtain rather equal per-
formance. Since the phase-based method had been competetive with the differential until
2004, what have happened that now it seems to lack behind? Notably that we have dis-
cussed that the modern differential methods have not changed their paradigm, but “only”
the underlying computation machinery. In the similar fashion, we have identified a weak
point in both energy- and phase-based methods: the filtering. Indeed, most researchers
and even today [107] aim towards fast implementation of filtering, which was traditionally
the greatest performance bottleneck of the approach in terms of time demand, but they
do not focus on optimizing the filters for optical flow computation. We believe that it was
predominantly because of the fact that in order to compute the filtering fast, the filters
could take only limited number of some simple shapes.

We shall investigate in this thesis that if we manage to overcome this barrier and allow
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for fast filtering with filters of, possibly, any shape, if that would allow for the filtering-
based methods to improve as well. This, the results of such methods in earlier studies and
the fact that human visual system was evidenced to conduct intensive spatio-temporal
filtering, were the main motivating factors in our decision to consider the filtering-based
optical flow in the rest of the thesis. Moreover, modern differential methods have provided
rather good accuracy on live cell images [P7] (about 9° for sequences with combined global
and local motions) but it still leaves a room for improvement.

3.3 Motion estimation based on filtering

3.3.1 Representation of motion

Motion in the space-time domain

Motion detection is extraction of spatio-temporal orientation [24]. This encompasses two
concepts. Firstly, we recall that a velocity is distance travelled over time. This basic
definition inevitably connects two dimensions: the space and time. Indeed, we can’t tell
if something is in motion or is still from a single image, and this is important to stress,
without employing our prior knowledge of the world, e.g., car shown on road is most
probably moving. We really need to see at least two images and compare them. We may
generalize this idea and collect all frames we have in the image sequence and stack them
one above the other while preserving the order in which they appear in the sequence. If
the sequence consisted of 2D images/frames, the stack can be considered as a single 3D
image, quite often denoted as 2D+t image, also called the space-time cube. The time
(or temporal) dimension is simply added to the original dimensionality of the frames,
which is commonly termed as the space (or spatial) dimension. A spatio-temporal image
is constructed in this way.

The second concept encompassed with the spatio-temporal representation is the notion
of deemed orientation of structures created from patterns in motion. This follows from the
fact that if a pattern is translating on a regular basis between the frames, it leaves a spatio-
temporal trace in the stack, see Fig. 3.2. If we fix a point within the translating pattern,
we may obtain a trajectory of pattern’s movement. Since the trace is a representation
of spatial positions over a time, it allows for velocity extraction. Considering the left
drawing, the 1D-over-time example, in Fig. 3.2, we see that velocity corresponds to the
tilt of the thick line or, equally, of the tilt of a pattern’s edge.

The given representation of motion has two shortcommings. As it is directly targeted
at simple translational movement, it doesn’t cope with complex movements and with de-
formations of patterns over time. However, both is a matter of resolution that we use.
What is a complex motion anyway? Is it a rotation, for example? Can’t it be charac-
terized at more finer level, i.e., with higher resolution, with piece-wise translations? For
instance, the rotational movement of some object can be represented as many translational
movements of individual pieces of the original object when the pieces are sufficiently small.
This example will be recalled again in Chapter 5 on the generator of ground-truth datasets
for optical flow (Fig. 5.1C on page 99). The situation is similar with deformations of an
object. On the other hand, isn’t it the difference in velocities assigned to different parts of
the object that we use to realize that object is actually being deformed? We will not give
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Figure 3.2: Two examples of traces left after translating narrow patches. In the left, the patch
translates rightward with velocity 1px per frame in a 1D+t spatio-temporal image. In the right,
the patch translates along the dashed vector (1,1) between frames, i.e., with velocity of

√
2 pixels

per frame, in the x-y plane in the 2D+t spatio-temporal image.

an ultimate answer on this matter. We rather wanted to bring it to the reader’s attention.
In the end, we are willing to compute an optical flow for a given image sequence. As the
optical flow is represented with a flow field, a collection of straight vectors assigned to
pixels, everything related is commited to looking for simple straight, i.e., translational,
movements of pixels. If rotational movements are to be discovered, one has to further
process computed flow fields or take some completely different approach.

On the other hand, the given representation of motion is advantageous whenever the
captured scene is rich in texture (to avoid the aperture effect). Consider the example with a
2D+t space-time cube in which the initial image has ideally random texture. We (logically)
factor the image into a convex foreground region and a background. The background is
static, not moving and not changing over the time. The foreground translates but its
content is not changing. As the foreground moves into a new location in the next image,
it reveals a portion of previously unseen background that we ideally randomly fill again.
As a result, the foreground is indistinguishable from the background in every frame of
the sequence. But its motion is apparent in the presented representation because both
foreground and background are not chaning over the time. Both give rise to intensity
isolines which have different slope, e.g., the background related isolines are parallel to the
time axis in the space-time representation. The representation can show a movement of
otherwise “invisible” pattern in this way [54]. This is something that the “segment-and-
track” approach can never handle. A similar example from real life exists. Consider a
fish that can perfectly mimic its environment such that we can’t see the fish when it is
still. But we see it, actually its outline and with difficulties, whenever it is in movement
owing to the revealed portions of the environment, which produce spurious artifacts, that
we manage to detect, into otherwise perfect fish cover. Another advantage, provided the
texture is rich enough, is that the moving pattern can be of whatever size and shape.

36



Motion in the Fourier domain

We can also view the image motion in the frequency domain. Again, since in the motion
analysis the two dimensions, space and time, are always treated together, we are going to
find the Fourier transform of the spatio-temporal representation above. We will stay with
representation of a translating 2D image. Let us use the notation I0(x, y) for values of
the image at position (x, y). The spatio-temporal image I will have one coordinate more,
namely the t. Suppose the original image I0 is translating by (u, v) between frames. Hence,
its trace in the spatio-temporal image will be in the direction (u, v, 1) and its content will
be defined as

I(x, y, t) = I0(x− ut, y − vt). (3.11)

Note that ∀x, y : I(x, y, 0) = I0(x, y).
The Fourier transform of I(x, y, t), which we are going to denote FI(ωx, ωy, ωt), is given

as
FI(ωx, ωy, ωt) =

∫∫∫ ∞

−∞
I(x, y, t) e−i2π(ωxx+ωyy+ωtt)dxdydt, (3.12)

into which we apply eq. (3.11) and rearrange to obtain

FI(ωx, ωy, ωt) =
∫ ∞

−∞

[∫∫ ∞

−∞
I0(x− ut, y − vt) e−i2π(ωxx+ωyy)dxdy

]
e−i2πωttdt. (3.13)

The i is the complex unit, i2 = −1. The equation can be simplified if we introduce notation
FI0(ωx, ωy) to be the Fourier transform of the original translating 2D image I0(x, y). Using
the Fourier shift property,

∫∫ ∞

−∞
I0(x− ut, y − vt) e−i2π(ωxx+ωyy)dxdy = FI0(ωx, ωy) e−i2π(ωxu+ωyv)t, (3.14)

we replace the inner square brackets with it and shift the transform out of the integral,

FI(ωx, ωy, ωt) = FI0(ωx, ωy)
∫ ∞

−∞
e−i2π(ωxu+ωyv)t e−i2πωttdt. (3.15)

Finally, we make use of the fact that the Fourier transform at ω of the complex exponential
ei2πUt, function of t with a parameter U , is the Dirac delta function δ(ω − U). And since
the integral above is the Fourier transform of such complex exponential, we arrive to the
important relation between the 3D Fourier transform of the spatio-temporal image and
2D Fourier transform of the original translating 2D image:

FI(ωx, ωy, ωt) = FI0(ωx, ωy) δ(ωxu + ωyv + ωt). (3.16)

The equation basically formalizes the fact that in the Fourier domain a translating
pattern gives rise to the, so called, motion plane which is perpendicular to the spatio-
temporal direction of motion [22, 23, 105], see also an example in Fig. 3.3. Why is that?
The key is in the Dirac delta function which basically states that a value of the left-hand-
side transform is possibly non-zero only at coordinates for which it holds ωxu+ωyv+ωt = 0,
i.e.,

(ωx, ωy, ωt) · (u, v, 1) = 0. (3.17)
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Figure 3.3: Example of analysis of a translating random 2D image in the Fourier domain. In A,
the spatio-temporal image is illustrated. For the purpose of visualization only the I0(x, y) together
with trajectories of some brighter patches are displayed. The image translates with velocity (1, 1)
pixels per frame. In B, the spatio-temporal image (in red) is overlaid with its Fourier transform
(in green) to illustrate the perpendicularity of the motion plane. The plane is given with the two
V-style lines, best displayed in D. In C and D, two views of only the Fourier transform are given
with a demonstration of motion plane thickness in C. Notice the replica of the motion plane, which
is due to temporal alias, in the “left” corners.
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The Fourier coordinates must be simply aligned on a plane perpendicular to the velocity
vector (u, v, 1). Notice that the motion plane is actually a sheared, not rotated, version of
the FI0(ωx, ωy) as only a third coordinate ωt is added to obtain the FI(ωx, ωy, ωt).

There may be many variations of this expression. For instance, the one in eq. (3.16)
is particularly important because it easily completes the description of the motion plane:
it shows that the origin of the Fourier domain, i.e., ωx = ωy = ωt = 0, always lies in the
motion plane whatever velocity the plane represents. The other variant of eq. (3.16) tells
the mutual relation between the spatial frequencies ωx and ωy, the temporal frequency
ωt and the velocity of motion given from the velocity vector (u, v, 1) in terms of their
magnitudes:

|(u, v)| = −ωt

|(ωx, ωy)| cosφ
(3.18)

where |(u, v)| = √
u2 + v2 and

cosφ =
(u, v) · (ωx, ωy)
|(u, v)| |(ωx, ωy)| . (3.19)

The cosφ in both equations is the angle between the spatial frequencies and projection
(u, v) of the velocity vector (u, v, 1) into the Fourier domain plane ωt = 0. The denominator
in eq. (3.18) is then a projection of the spatial frequencies onto the axis given by (u, v).
Note that this axis is perpendicular to the intersection of the motion plane with the plane
ωt = 0, both lie in the latter plane. The idea we would like to comment on here is,
probably, more obvious in the degraded case for 1D, where the eq. (3.18) changes into

|u| = −ωt

|ωx| cosφ
. (3.20)

As the cosφ can be either 1, or -1, when both u and ωx have, or don’t have, the same sign,
respectively, we may rewrite it into simplier u = −ωt/ωx. The point of this relation is
twofold. Firstly, it shows that the slope of a motion line, in the case of 1D, in the Fourier
domain is proportional to the velocity. Secondly, it shows that the ratio between temporal
and spatial frequencies is constant. Notably, smaller spatial frequencies imply smaller
temporal frequencies and vice versa. In the time-lapse sequences of 2D images, we can
read the relation in the similar fashion with the specificity that distance of the projected
(wx, wy) from the origin is considered and related with the wt. Such ratio preservation
will be worth considering during the design of filter banks.

Let us make one more comment on the derivation of eq. (3.16). We were assuming
improper integrals and images of infinite sizes. This is correct from the pure mathematics
point of view. But in the reality of computer programs we see that images are always
discrete and limited in size. Assuming image of infinite size enabled us to overcome
certain issues with boundary conditions, where we would have to define what values to
use for I(x, y, t) for which, say, x − ut < 0. This is a classical image processing problem
with boundaries. We offer an alternative attitude on the derivation and apprehension of
the subsequently derived properties. The Fourier transform is a global operation while
we aim at computing optical flow, i.e., at computing vectors of local apparent motions.
We shall see in the next section that filtering the image may be actually regarded as
computing a local Fourier transforms. In this context, the word “local” means computing
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within spatio-temporally bounded volume, which constitues only a small fraction of the
volume of the entire space-time image. If the transform is taken far from boundaries, the
derivation above will be valid.

Extracting motion: A parallel with the human visual system

Humans have been given an incredible gift to immediately measure, or at least guess, a
velocity of a translating pattern. Not only that we, humans, can tell if the motion is
rightward or leftward, we can rate a distance travelled by comparing some two frames in
an, sort of, autonomous automatical manner. A judgement on rapidity and some prelim-
inary velocity estimation is made immediately [23]. Clearly, machines are not that gifted.
After the early works [19, 99, 108, 24, 106] on motion estimation have been published
in the beginning of 1980s, researches in the machine vision have quite soon identified a
processing framework common to the approaches [109]. Even different branches of optical
flow computation were found to be somewhat equal or equally powerful [109, 110, 105].
For the computations based on spatio-temporal image representation, the framework has
taken the form of the following processing pipeline.

When processing given point in the space-time representation, we really first try to
extract orientation of local structure and then combine this information in some small
spatio-temporally bounded vicinity to decide on what is the velocity at the given point
[111, 106, 27, 112]. The extraction of local structure is done passively by means of applying
various orientation selective filters [24, 110]. The spatio-temporal stack is processed with
each filter and its responses are stored in a new copy of the stack, this is often called
a channel [74, 22, 24, 109]. The idea of filters is that they sweep the stack producing
intensive (strong) responses in regions where they detect a structure of interest, e.g., an
orientation, to which the filter is tuned. The term filtering really fits here as the stack is
processed really only to catch [113, 114] regions with structure of interest. Unfortunatelly,
responses are not only a function of processed structure but in addition a function of
intensity contrast present in the image data [110]. Responses from more channels then
must be further processed in order to arrive to a common consensus whether certain
orientation is really present in the data. Examples of such processing will be given later
in Section 3.3.4.

The identification of a common computational framework doesn’t seem to be a coinci-
dence. Most of the approaches, especially the filtering-based ones, admit their inspiration
by the human visual system [24, 106, 115] or in the visual system of macaque or cats.
Without a doubt, this is a good system to model — we experience it everyday, although
we are able to fool it, sometimes. With great simplifications made, the accepted con-
cept is that the processing of observed motion in human visual system happens in three
stages: in the early filtering and parallel pathways, in the primary visual cortex and in
the middle temporal area [26, 28, 29]. In the early stages, the image is, sort of, sampled
with photoreceptive cells at the retina in the eye. Their responses are collected with the
ganglion cells from areas that are overlapping. The receptive fields of ganglion cells re-
semble simple lowpass and bandpass filtering tuned to different frequencies in the spatial
and/or temporal domain. Depending on type, cells filter with different filters. All cells
work in parallel. Ganglion cell synapse into the LGN (lateral geniculate nucleus), which,
basically, carry on with filtering with yet another various filtering parameters. Different
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LGN further process information from different retina cells enabling to emphasize different
aspects of the same visual stimuli (the input image). The cells here discard information
about spatial luminance and rather emphasize changes across space and time [28]. Though
a common qualitative characteristics of receptive fields of cells at this stage are known,
there is about 106 such cells, each with specific slightly differing parameters. They seem
to form functional subgroups. As a result lots of locally preprocessed channels are trans-
mitted further to the primary visual cortex, the V1. The V1, which is located in the rear
part of human brain, consists of simple and complex cells, which in some sense reflects
computational scheme they represent. The simple cells can be modelled with Gabor filters
[116, 117] while the complex cells can be modelled as a summation of quadrature pairs2

of simple cells. It is the primary visual cortex where the first orientation selective cells
appear. The primary cortex can be regarded as a first place where simple motion patterns
are extracted from the observed image. Moreover, cells can be thought of as banks of
spatio-temporal filters that decompose the visual world along the spatial and temporal
dimensions and, in doing so, determine the envelope of information to which we have
access [28]. The processed stimuli as well as many pathways bypassing the V1 continue
to subsequent cortical areas V2, V3 and so on until they reach the middle temporal area,
the MT or often denoted V5 as well. It is assumed that the understanding of complex
motions, relations between moving stimuli, anticipation of motion and similar tasks are
happening at this stage.

There is a certain amount of striking resemblance of the typical approach we take in
machine vision when compared to the simple description of the model of human visual
system. Apart from “digitizing” the world with photoreceptors, the first interesting par-
allel emerges right in the early stages. It seems that behaviour of the ganglian cells can
be approximated with the convolution operation during which a window slides over the
convolved image. Secondly, the filtering is applied in a serial fashion, the LGN after the
ganglian ones, with the property that LGNs may interact with variously spatially-arranged
ganglian cells. This can be simulated with multi-scale approaches. Together it seems that
human vision preprocesses input image with some bandpass filtering prior to computa-
tion of Gabor quadrature banks, in V1, to estimate reliably spatio-temporal orientation.
Finally, some reasoning or evaluation, maybe enhanced with our knowledge and experi-
ence converted into anticipation of particular motion, happens in the MT to yield our
perception of what we see. This corresponds with what we have said at the beginning: we
first try to extract orientations by means of bandpass filtering (recall the representation
of orientation in the Fourier domain) and then combine the results to estimate velocities.

Note that there is also one striking difference between the two processing pipelines. It
is the fact that human visual system doesn’t seem to work “on demand”. For instance,
instead of detecting a magnitude of observed movement and appropriatelly modifing re-
ceptive fields of cells at any level of the model, human brains simply seem to provide an
impressive amount of variously tuned cells containing also the at-the-moment-appropriate
ones. All the responses are then processed, often filtered again, in many different patterns
and many levels until a perception is build. The difference is in that we, in contrast to
our vision, currently can not compute and further process such an amount of filtering
operations in parallel and in real time.

2According to Freeman and Adelson [124]: “A pair of filters is said to be in quadrature if they have the
same frequency response but differ in phase by 90° (i.e., are Hilbert transform of each other [138]).”
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3.3.2 Filters to detect motion

Gabor filters in the space-time domain

Following the parallel with the human visual system, we will focus on simulating the
filtering done in the V1 area. We are seeking predominantly a filter with parameters
close to the obtained receptive fields data of the simple and complex cortex cells. The
filter should be linear to achieve fast computation, eventuelly. Secondly, it should have
good parameters in the Fourier domain because the motion of arbitrary patterns can be,
probably, best detected via its (local) Fourier transform. When designing a filter bank, a
great deal of attention is given to how the bank samples the Fourier domain [118, 119, 98].
From the analysis of the human visual system [28] and the analysis of motion representation
in the Fourier domain [24] at the same time, it follows that the filter should be able to
create a quadrature pair.

The Gabor filter seems to be a good adept [110, 116, 118, 111]. The 1D Gabor filter
is given as

Gb(x, σ, w) =
1

(2π)1/2σ
e−

1
2

x2

σ2 ei2πwx. (3.21)

The filter, originally defined by Gabor [120], encompasses the carrier ei2πwx of frequency
wpx−1 within the Gaussian envelope e−x2/2σ2

, see Fig. 3.4. Its generalized form, however, is
probably due to Daugman [116] who was seeking a spatial linear filter with optimal conjoint
limits on resolution of orientation, spatial frequency and two-dimensional spatial position.
Citing from his work [116]: “Each such filter occupies an irreducible quantal volume
(corresponding to an independent datum) in a four-dimensional information hyperspace
whose axes are interpretable as 2D visual space, orientation, and spatial frequency, and
thus such a filter set could subserve an optimally efficient sampling of these variables.”
In this light, the human visual system appears to enjoy optimal, in accordance with the
information theory, encoding of the visual stimuli for subsequent processing [121]. It
matches well the receptive fields of simple cells [116, 117]. Its real and imaginary parts
form together a quadrature pair. It is also bandpass limited in the Fourier domain. For
derivation of further descriptive parameters, such as bandwidth and peak response, of
given Gabor filter, we would direct the reader to the nice introductory publication by
Movellan [122].

The Gabor filter is easily generalized to nD:

Gb(~x,C,W ) =
1

(2π)n/2|C|1/2
e−

1
2
~xT C−1~x eiW~x (3.22)

where C is a n× n Gaussian (symmetric and positive definite) covariance matrix, W is a
1 × n row matrix with frequency tuning and ~x is a coordinate column vector in the nD
space. The matrix W often takes the form [2πw1, . . . , 2πwn]. The superscript T denotes
a transposition.

When dealing with time-lapse sequences of 2D images, we are using 3D Gabor filters,
technically. It is then advantageous [P2] to define tuning of a Gabor filter with parameters
directly related to parameters of the motion for which the filter is supposed to be the
most sensitive. We propose to use two angles α and β, as shown in Fig. 3.5, to steer
the direction of the main axis of the filter envelope. It is well-known that any Gaussian
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Figure 3.4: Example of the complex 1D Gabor filter with σ = 5.0 and frequency w = 1/7.6px−1.
The filter consists only of the red curves (darker in B&W print). The thinner green lines (lighter in
B&W print) outline the Gaussian part of the Gabor filter. Note that they wrap the filter. Hence,
it is called the Gaussian envelope.

is always separable3 along its major axes. We define one of them to be the main axis,
the referential axis in other words. Notice, in Fig. 3.5, that the direction along which the
complex exponential propagates is perpendicular to the main axis. Details on constructing
such a steered filter, i.e., details on obtaining C and W for eq. (3.22), are given in Section 2
of our original publication [P2].

This concept is not limiting [32]. Suppose any arbitrary nD Gabor filter is given. In
particular, any matrix C is given to define arbitrary Gaussian envelope. The Gaussian
restricts it to always be a positive definite symmetric matrix. As such, there always exists
decomposition C = RT ER where R is a rotation matrix and E is diagonal [123]. The
decomposition is achieved with the Singular Value Decomposition technique, the SVD.
The rotation matrix R has column vectors orthogonal to each other and each is of length
1 [32]. The column vectors form an orthonormal basis. This has interesting consequences.
It holds4 RT R = I, with I being the square identity matrix, thus allowing for RT = R−1.
The inverse C−1 then takes the form of RT E−1R. If we think of R as of a transition
matrix, ~u = R~x, from the (orthogonal) coordinate system of an image, with coordinate
in ~x, to a new (orthogonal) coordinate system given by the column vectors of R, with
coordinate in ~u, the inverse C−1 in the Gaussian’s exponential can be regarded as

e−
1
2
~xT C−1~x = e−

1
2
~xT (RT E−1R)~x = e−

1
2
(R~x)T E−1R~x = e−

1
2
~uT E−1~u. (3.23)

Since E was assumed to be diagonal, say E = diag(σ2
1, . . . , σ

2
n), the shape of Gaussian

3A filter is said to be separable if the same convolution result can be achieved after at least n 1D
convolutions conducted in a serial fashion, i.e., next convolution is applied on a result of a previous one.
Typically, it is expected that filter can be separated into exactly n convolutions that are computed along
the coordinate system axes. The order is not important.

4Due to the transposition, the ith column of R becomes the ith row of RT . Hence, values on the
diagonal of the multiple RT R are squared lengths of vectors, which we know is 1 due to the assumed
constraint on length. Values apart from the diagonal are dot products of different vectors, which we know
is 0 due to the assumed orthogonality.
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Figure 3.5: Steering an anisotropic Gabor filter. At first, consider the filter envelope centred at
the origin of the (spatio-temporal) coordinate system and with its main axis aligned with the x
axis, in A. Desired filter tuning is obtained by rotating the envelope by angle α around the z axis
(around the origin). The coordinate system is never rotated but suppose for a moment that y axis
was rotated by α to obtain new axis yα. We rotate the filter envelope by angle β around this new
axis, shown in B. We refer to this second rotation as to the tilting of the filter. In C and D, there
are two views on the same 3D Gabor filter. The filter main axis is initially aligned with the x axis.
After the rotations, it aligns with the xα and xαβ axes, respectively. For the visualization, only
positive lobes and only half of the filter is shown. When the filter is finally tuned, its main axis
aligns with the axis denoted xαβ in C and D.

envelope is now clearly apparent by means of σi along its major axes, which are identical
to the new coordinate system axes. Any arbitrary Gaussian covariance matrix C can be
regarded to be, in fact, only a composition of simple obvious diagonal matrix extended
with an implicit incorporated coordinate system transform.

Gabor filters in the Fourier domain

The 1D Gabor filter, eq. (3.21), is a multiplication of two terms: the normalized Gaussian
envelope with zero mean and the carrier, which is represented with complex exponential
function. The Fourier transform of the multiple, FGb(ω, σ,w), can be regarded as convolu-
tions of Fourier transforms of individual terms. Further advancing the idea, the transform
of Gaussian is Gaussian again with modified normalization constant and inversed sigma.
The transform of a complex exponential is a single point5 in the Fourier domain positioned
at the frequency w given in the exponential. In fact, it is the Dirac delta function δ(ω−w).
Finally, convolution on a single point produces a copy of the mirrored convolution kernel
centred at that point. In fact, the impulse response is computed, one may refer to eq. (4.2)
on page 61 for the formula of convolution with Gaussian kernel, for convenience. To sum
it up, the Fourier transform of complex 1D Gabor filter is [25, 122]

FGb(ω, σ,w) = e−
1
2
(ω−w)2σ2

. (3.24)

The Gabor filter’s bandpass is exactly the same as the bandpass of its enveloping Gaussian
except for that the Gaussian is always centred at the zero (origin of the Fourier domain)

5This can be derived from the Fourier transforms of cos(2πωx) and sin(2πωx), from the Euler equation
eix = cos(x) + i sin(x) and from the fact that the Fourier transform is linear.
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Figure 3.6: Example of the Fourier transform of the complex 1D Gabor filter with σ = 5.0 and
frequency w = 1/7.6px−1. The curve is (real) Gaussian with σ = 0.2 with its centre offset at
w = 7.6px−1.

while the Gabor filter’s bandpass is positioned at some offset given by the frequency
tuning of the filter, Fig 3.6. This is also supported by the fact that the complex filter is
transformed into a pure real function.

The transform of a complex Gabor filter is in the general nD case of the form:

FGb(~ω, C, W ) = e−
1
2
(~ω−~wW )T D−1(~ω−~wW ), (3.25)

simply “some” Gaussian centred at the Fourier domain coordinate ~wW . We had to adopt
the notation ~wW for a column vector to represent content of W because we have defined
W to be a row matrix: (~wW )T = (w1, . . . , wn) ⇐⇒ W = [w1, . . . , wn]. Note that ~ω is
a column vector representing frequency coordinate. As the transform is a Gaussian, its
covariance matrix D can be decomposed as explained in the previous section, eq. (3.23).
In addition, we know that major axes are kept and only sigmas are inversed in the Fourier
transform of a Gaussian. Hence, we write D = RT E−1R while we assume C = RT ER.
Substituting result from the latter, E−1 = RC−1R−1, into the former, we obtain D =
RT RC−1RR−1 = C−1. The transform of a complex Gabor filter, eq. (3.25), is in the
general nD case of the form:

FGb(~ω, C,W ) = e−
1
2
(~ω−~wW )T C(~ω−~wW ), (3.26)

A more elaborated example of the Fourier transforms of some Gabor banks will be given
later on page 81 in Fig 4.11.

Alternatives to Gabor filter

A result of convolution with complex Gabor filtering is a complex valued image. But
the complex result is typically not used directly. Instead, it is dealt either with the
magnitude (energy) or with the phase of it. This is where the division of filtering-based
optical flow methods to energy-based and phase-based have come from [72]. However, both
approaches have in common the struggle with computational demands of convolution with
Gabor filter. We will show later in the text, in Section 4.1.3, that convolution with Gabor
filter can be very time demanding if the filter is not of some special form, e.g., isotropic
Gaussian envelope or carrier propagating along some of coordinate axes. Moreover, the
computation may require many frames to process, i.e., the filter has large temporal support
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and so requires many frames of the sequence to be kept in the memory at the same time.
Researchers have tranditionally attacked this fact by using Gabor filters in some “basic”
simple forms and/or by replacing the true Gabor filter with some, possibly recursive,
approximations. We will review now some of these alternative approaches.

First of all, an interesting concept of, so called, steerable filters was introduced by
Freeman and Adelson [124]. They proposed a framework that allowed for synthesizing
output of a filter tuned to arbitrary orientation from outputs of a small set of basis filters
by means of linearly combining them. Clearly, the concept has certain requirements.
Unfortunately, any Gabor filter does not meet them [125]. On the other hand, a tuned
2nd derivative of Gaussian as well as a filter with whom a quadrature pair it forms can
be computed using the concept. The former filter resembles a real part of complex Gabor
filter while the latter resembles the imaginary part. In the 2D case, the arbitrarily oriented
2nd derivative Gaussian can be computed with only 3 separable spatial filters. The other
filter can be computed with 4 separable filters.

The derivatives of Gaussian were utilized also in the method by Weber and Malik
[104]. The advantage of Gaussian filter and its derivatives is that they are separable and,
consequently, convolution with them can be computed rather fast, we’ll explain that later
in Section 4.1.3. Spinei et al. [119] and later Bruno and Pellerin [98] used the separability
of Gaussian as well as the fact that convolution with Gabor filter can be also computed
as a convolution with Gaussian filter, we will cover that again in Section 4.1.3. This is an
exact replacement, no approximation. They further replaced the Gaussian filtering with
recursive Gaussian filtering. But the recursive filtering is an approximation of the true
Gaussian filtering. As the approximation is not the exact filter though it is rather accurate
[126], the whole filtering pipeline does not compute an exact Gabor filtering. Since this
is such a subtle change in the filtering, we may argue whether it is still Gabor filtering or
an autonomous alternative. For instance, Bruno and Pellerin denoted it as a Gabor-like
filtering, Spinei et al. did the opposite.

A solution, pioneered by Watson and Ahumada [23], made use of space-time separable
Gabor-like filtering, i.e., the spatio-temporal 3D filter is broken down into a cascade of
two 1D spatial filters and one 1D temporal filter, in which they used some causal temporal
1D filter. A causal filter requires only current and previous input values to compute
its response. An anti-causal filter, on the other hand, requires in addition also future
input values and so a delay is introduced before the response can be computed. The true
1D temporal Gabor filter is an anti-causal one. Adelson and Bergen [24] followed with
the second and third order derivatives of Gaussian, spatial filters were anti-causal while
temporal one was causal again. They showed a simple scheme to construct orientation
selective Gabor-like quadrature pairs. Fleet and Langley [127] replaced the 1D component
with recursive filter. In particular, when processing a 2D time-lapse image sequence, a
complex spatial 2D Gabor filter is applied on every image in the sequence. Afterwards,
the result is processed along the temporal axis. The advantage of recursive filtering in this
application is predominantly in that it has very short temporal support, i.e., only a few
frames must be kept in the memory, and that it is computed faster [112]. Furthermore,
Clifford et al. [128] adaptively modified the temporal component tuning to optimise for
the assumed local motion in the space-time image according to a previously measured
velocity. Gautama and van Hulle [129] required to compute phase derivatives from result of
a complex Gabor bank filtering. They conducted only the 2D spatial filtering, from which
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the spatial phase gradient was obtained, completely leaving out the 1D temporal filtering.
They instead, similar to the recursive filtering, aggregated phase difference based on which
they estimated current temporal phase gradient. It is noteworthy that this approach has
been recently re-implemented to work on GPU [107]. The authors claim that it achieved
real-time performance and accuracy near the established differential methods such as the
TV-L1 [101] or the one by Papenberg et al. [93].

Austvoll [84] used for his phase-based method complex directional filters with envelope
approximated with Kaiser windows [130]. The advantage of this windowing function is
that it has limited support, unlike Gaussian which falls down to zero at infinity and is,
therefore, in practice always truncated. Austvoll and Nayar [131] have, however, observed
that their optical flow method gives twice worse results when an IIR variant of filters
is used. Furthermore, the directionality of filtering is achieved by rotating a space-time
image around the temporal axis, i.e., technically around the z axis.

Another alternative to complex Gabor-like filters is their extension, the monogenic
signal [132]. While a Gabor filter is localized in the Fourier transform in the form of a
convex bandpass blob, the monogenic signal forms a radial bandpass torus [133]. The
bandpass consists of frequencies of a certain range in absolute value but with arbitrary
direction. Instead of convolving with a quadrature pair of filters, a spherical quadrature
triple is used. The approach should overcome the limit of a Gabor filter, which is that local
phase can be estimated from its response partly successfully since the local orientation has
to be known in advance to steer the filter. The monogenic signal can estimate the local
orientation and the local phase [133]. The resemblance with Gabor filter is in the profile
it has as it encompasses the Gabor filter at all phases. In particular, even and odd Gabor
filters are “simulated” as well. While this looks like an interesting concept, we do not see
the concept becoming wide spread in the literature at the time of writing.

Let us note that all of these variants are actually trying to approximate the Gabor
filter — in contrast to Gabor filter approximating some of the variants above. Moreover,
the Gabor filter has pleasant mathematical properties, e.g., the Fourier transform is given
explicitly with closed-form formula with pleasant properties itself, and theoretical prop-
erties, e.g., it reaches the lower limit for the joint entropy for linear spatial filters [116].
It is also “biologically” motivated. This is why we have decided to focus directly on com-
plex Gabor bank filtering in this thesis as a local orientation estimator for filtering-based
optical flow computation. If we manage to achieve fast and correct implementation of the
Gabor filtering, the motivation for the use of any of the above approximating variants will
be void.

3.3.3 Applying filters to estimate motion

In this section, we would like to show how to combine Gabor bank filtering with the spatio-
temporal representation of motion. We will show it in the context of the energy-based
approach because, in our opinion, it is more illustrative compared to the phase-based
approach (filter response is presented with its energy) and it appears to directly target at
the orientation patterns in the space-time image.
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The principle of the energy-based approach

The energy-based approach to motion estimation is a way a complex Gabor filter is applied
to instantaneously and quantitatively judge on the presence of local orientation in the
spatio-temporal representation. We aim to show here only the principle by demonstrating
it on different filter banks without any ambition to draw conclusions on their appropriacy.
An example, where filtering responses are compared, will be given later in Fig 4.10 on
page 80.

We begin with the example of spatio-temporal representations of 1D translating pat-
terns, consider Fig. 3.7. The representation, the space-time image, is convolved several
times, each time with different filters. It is to be understood that the filtering is done in
a parallel fashion, where copies of input image are filtered exactly once, rather than in a
serial fashion, where single copy is iteratively convolved each time with a different filter.
Many (parallel) copies of the convolved input image, the channels, are created in this way.
The filters may be rather of diverse shapes. But they always should be tuned to respond
to some interval of local orientations. To understand this interval, it is advantageous to
consider the whole situation in the Fourier domain.

Moving bars give rise to motion lines in the Fourier domain in the 1D+t case, just like
moving 2D patterns give rise to motion planes in the 2D+t case [23, 111, 83]. The spatio-
temporal and Fourier representations of the same motion are fortunatelly interconnected
with the important invariant property of “mutual perpendicularity” [22], eq. (3.17). Thus,
as bars moving with different velocities leave traces of different slopes in the space-time
image, they also induce motion lines of different slopes with respect to the ωx axis, Fig 3.7B,
in the Fourier domain. Our aim, basically, is to detect the presence of such line and
then estimate its slope by, sort of, sampling the Fourier domain with the filter bank,
Fig. 3.7C,D. In other words, we are inspecting the Fourier domain through a few (weighted)
windows, i.e., through the green (bright) blobs in the figure. If a blob is a product of
Fourier transform of a Gabor filter, the blob is always convex. Moreover, as every motion
line passes through the origin (ωx = ωt = 0), there exists certain range of slopes that
define lines that pierce this blob. This is the interval of local orientations detected by the
examined filter.

Unfortunatelly, real Gabor-like orientation selective filters are phase sensitive [24].
Since such filter includes the oscillating carrier, its response to a moving pattern depends
on how the pattern happens to line up with the carrier at each moment. The response
can be positive, negative or even zero, e.g., when the pattern would form the same carrier
delayed by a quarter of carrier period. As a result, we can’t judge on presence of local
orientation directly from instantaneous responses. Instead, a pair of the same filters with
the same envelopes and with frequency carriers out of phase by a quarter of the carrier
period, i.e., by π/2 radian, is used. It is a quadrature filter pair [124]. If the carrier
is based on basic trigonometric function, say it would be the sine function, the other in
pair would be the cosine function. Instead of computing a single convolution with just
the single real filter, we instead conduct two convolutions in parallel, once with the first
and once with the second filter from the pair, square their responses and pixel-wise sum
them. Such filtering result is called the energy, see Fig. 3.7K–P for example. Owing to the
quadrature and the fact that sin2 x + cos2 x = 1, the instantaneous response, the energy,
is stabilized and reflects the presence of local orientation proportionally. From the Euler
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Figure 3.7: Illustration of application of filtering to motion estimation. The upper row shows
several image overlays. In A, the spatio-temporal representations of four 1D rightward translating
patterns are shown. From different slopes of the bars, we see that each pattern travelled with
different velocity. Namely these were 0.4, 1.2, 2.0 and 2.8px/frame, respectively. The pattern was
always of the same width. In B, image overlay of four respective Fourier transforms is shown.
Notice, in A and B, that bars moving with velocities starting from 2px/frame tend to appear
with similar orientations. In C and D in green colour (in bright intensities in B&W prints), two
montages of right half-planes (ωx ≥ 0) of Fourier transforms of two sample filter banks are shown.
Every blob corresponds to one filter in a bank. In blue colour (in dark intensities) are the motion
lines, from B, induced by the translating 1D bars. The middle row, in E–J, presents a collection
of the space-time images of filters from the two banks while the lower row, in K–P, presents a
collection of the energy responses of these filters. The coordinate systems here are the same as in
A. Only the filters tuned to stationary and rightward motions are considered. Only the imaginary
(sine/odd phase) parts from the filters are shown, in E–J. In C and D, one may notice lowercase
ilatic letters nearby some four blobs that denote which spatio-temporal filter representation gave
rise to the respective blob. All images were enhanced for printing purposes. The images K–N have
intensities stretched by factor 1.3 while the images O and P have intensities stretched by factor
4.0. The brighter a pixel in the image K–P is, the stronger response on the input image A the
respective filter gives.
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formula, the real and imaginary parts of a complex Gabor filter form a quadrature pair.
Before we proceed further, we owe to explain a bit about the (in)compatibility mat-

ter present in the figure. It is due to the fact that the Fourier transform is a global
operator while Gabor filtering, just like convolution with any other kernel, is a local op-
erator. Hence, when investigating what is the prevailing motion at any given pixel of the
space-time input image by means of inspecting its Fourier domain representation, we must
consider Fourier transform taken only over a small vicinity of this pixel, a local Fourier
transform. Otherwise, the responses in the Fourier domain may be dominated by pixels at
spatio-temporally distant locations in the input space-time image (because the transform
is computed over the whole image) and so the responses may be significantly different
compared to the local Fourier transform. In this respect, the direct investigation of the
Fourier transform of the space-time image, Fig. 3.7C and D, is correct only under the
assumption that the image, Fig. 3.7A, represents only a small region around the investi-
gated pixel. We will show, in Section 4.1.3 on page 71, that using a number of complex
Gabor filters can be regarded as computing local Fourier transforms for the number of
frequencies. Unfortunatelly, only large regions, such as the whole image, allow for nice
and apparent motion lines. One should rather evaluate local Fourier transforms for several
frequencies prior to designing an optimal filter bank.

Some remarks on designing motion estimating filters

When designing the filter bank, there are a few aspects worth considering. First of all,
greater velocities produce motion lines of similar slopes in the Fourier domain. This is a
consequence of eq. (3.20), from which it holds u = −ωt/ωx. For greater velocities u, a
change in ωt induces a smaller change in ωx, which, in turn, gives rise to rather vertical mo-
tion lines, Fig. 3.7B. Note that all lines pass through the origin in the Fourier domain. It is
then somewhat harder to distinguish between them. They are more apparent in regions of
high temporal and small spatial frequencies. Unfortunately, the high temporal frequencies
face the barrier originating from the discrete nature of time-lapse image processing. The
greatest frequency is 2px−1, which comes from the limit on the smallest practical wave-
length of the period of 2px. Other limit, so typical for the temporal frequencies, stems
from the rate of temporal sampling during acquistion of the time-lapse sequence, i.e., the
frame rate and, consequently, the temporal resolution. An artificial increase in temporal
resolution may be achieved by interpolating some missing frames. Filters tuned to greater
temporal frequencies can be used then. As the velocity connects the space domain with
the time domain, another work around may be to decrease the spatial resolution, e.g.,
by factor of 2, while keeping the temporal one. The velocity then appears slower in such
down-sampled space-time images. This is a preferred solution because the spatial reso-
lution is typically far better and the decimation by factor of 2, 4, or even 8 sometimes,
still preserves the main features of the image data [109]. Moreover, instead of adding new
full-size frames, we rather add new half-size ones. Since any of the two solutions do not
add new information, the latter solution then appears more efficient. A scale space data
representation, a pyramid, is built in this way [76, 74]. Furthermore, the same set of filter
banks, specifically designed to estimate local orientations corresponding only to slower
velocities, may be used at all levels. On the other hand, motion estimation at the reduced
levels has also reduced accuracy due to the reduced resolution.
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Owing to the utilization of the scale space approach, we are able to focus only on some
type of motion estimating filters. In particular, we focus on the filters tuned to smaller
velocities, let us say less than 1.2px/frame. Since smaller velocities produce motion lines
that range from strictly horizontal slopes, when there is no motion present, up to +/−50°,
when there is 1D rightward/leftward motion of up to 1.2px/frame, we may construct a
filtering set similar to the one in Fig. 3.7I,J, or D, respectively. Evidence on human visual
system, however, supports rather radially arranged ensemble of filters [116, 118], just like
it is illustrated in Fig. 3.7E–H, or C, respectively. Following Daugman [116], and his result
on Gabor filter’s property of “irreducible quantal volume in the conjoint space-time and
frequency domain hyperspace”, and from eqs. (3.22) and (3.26), we observe that a filter
is either small in the Fourier domain and large in the space-time, or vice versa. It can’t
be small in both domains simultaneously. This is a dilema. The radially arranged filters
seem to be more orientation selective and less prone to detect aliases, thus better suited
for motion estimation. Notice, in Fig. 3.7K–N, that such filter bank managed to extract
different orientations well. But such filters, when tuned to small velocities as in insets E
and F, require rather long temporal support in the space-time at the same time. Thus, it
sets a requirement on minimum but still large number of frames present in the time-lapse
sequence. In addition, longer temporal support has increased probability that the constant
motion assumption will be violated. The constant motion assumption comes from the fact
that the filters are designed to detect spatio-temporal orientation of straight, not curved,
motion traces. Grzywacz and Yuille [115] suggest to prefer filters of short temporal and
rather long spatial support. The filters of the sort shown in Fig. 3.7D have short temporal
support, shown in insets I and J. Their Gaussian envelope was given with σt = 1.0, which
constraints their minimum temporal support to 7 frames. The radially arranged group of
filters has, on the other hand, support of up to 70 frames. By the way, the filter set shown
in Fig. 3.7D is (1D+t)-version of the one used in the now-classical energy-based method
by David Heeger [111, 106]. In the energy part of our example given in insets K–P, the
Heeger’s filter bank has rather balanced responses for the smallest velocity. The forward
movement filter, inset J, also includes stronger response to velocity 1.2px/frame, inset P,
while the “stationary” filter, inset I, also includes response to “false” motion, the motion
alias of velocity 2.8px/frame, because the corresponding motion line’s alias really pierces
the middle green blob (nearly in the centre of the inset D). The Heeger’s bank seems to
be less selective to different local orientations but it is very economical in terms of its
temporal support.

Notice that the discussion above applies even for the human visual system. For ex-
ample, consider two cars moving on the street, one is going rather fast while the other is
going very slow. Looking at the street, which car will we first realize as moving at all?
And if we are further interested in details on the car, on which car the details will be
easier to see? Details is a content of higher spatial frequencies. An extreme example is
the noise, which itself can be regarded as very detailed textural information, though un-
wanted. It is well-known that noise can be suppressed with lowpass filters. Slowly moving
cars tend to preserve intensities of pixels at given spatial coordinates over certain short
period of time. Hence, slowly moving cars tend to occupy smaller temporal frequencies. In
this respect, we may realize that humans see details (higher spatial frequencies) easier on
slowly moving cars (small temporal frequencies) while details are, kind of, blurred (small
spatial frequencies) on fast moving cars (high temporal frequencies). Clearly, the latter is
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strongly dependent on the magnitude of car velocity. Note that it corresponds well with
the motion lines in Fig, 3.7B, especially well with lines associated with faster motions.
Citing from Bigün’s work [118]: “The linear cells in the visual cortices of primates are
very sensitive to i) gratings with high spatial frequencies moving slowly and ii) gratings
with low spatial frequencies moving fast.”

Moreover, if we turn our head with the movement of the fast car, we, sort of, introduce
a “camera movement” to decrease the relative observed velocity. Despite that we aim to
increase our ability to read details on the fast car, we often experience that we actually
see better but still somewhat worse compared to the situation with the slowly moving
car. This can be simulated with the scale space approach given above. Anandan [109]
pointed out the following principle: “Large-scale image structures can be used to measure
displacements over a large range with low accuracy and at a low sampling density, while
small-scale image structures can be used to measure displacements over a short range
with higher accuracy and at a higher sampling density.” This is in accordance with our
presented idea of the scale space approach. The first part of the sentence refers to a
coarse representation of the space-time image, i.e., the copy of it at some higher level in
the scale space, where we find half-sized frames with lower spatial resolution. In such a
copy, only large-scale structures have survived the down-sampling and so they are dealt
with here. Small displacement here is, owing to the low resolution, translated into larger
physical distance than the same displacement in the original space-time image. This
refers to the “over a large range with low accuracy.” The latter is again due to the
low resolution. As the down-sampled copy was created to contain only motions at slow
velocities, their orientations in the spatio-temporal representation are almost vertical, i.e.,
along the temporal axis. Hence, we may resample in this axis to decrease the number of
frames a bit while leaving the motion traces still apparent and continuous.

Finally, let us return to the first question on the delay we, humans, need for estimating
velocity of motion as this can be regarded as the size of the temporal support of some
cells in the V1. Clearly, we immediately recognize that one car is moving fast but we are
not certain how fast it is. In contrast, we tend to inspect the motion of the slow car quite
a while, compared with the other car. For instance, consider the pedestrian crossing: we
immediatelly decide not to step into the road when a car is approaching fast while we tend
to hesitate whether we make it or not when a car is approaching very slowly — probably
because we need to accumulate the motion history to obtain an estimate on the velocity,
which is later processed in the brain, which itself also significantly contributes to the delay
before we eventuelly decide. Note that the discussion assumes regular temporal sampling
of the human visual system.

Conclusion on filtering to estimate motion

Anyway, the above discussed ideas about filter shapes and how to apply them have im-
plicitly outlined certain, rather general [109], computational model on detecting local
orientations in spatio-temporal representations of time-lapse sequences. The model sug-
gests to decompose space-time images into several channels computed at a few spatial
scales. Every channel is sensitive to some local orientation, whose presence is proportion-
ally signified in every pixel with its intensity. Every channel can be characterized with
its spatio-temporal bandpass properties in the Fourier domain as well. All channels taken
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together over all scales are then expected to factor the Fourier domain well.
The discussion above arrived to the two main conclusions. It showed that it is worth

considering the scale space approach in which the same set of filter banks may be used at
all levels, the set should be tuned predominantly to slower velocities. And, it explained
what type of spatial structures or patterns we should look for when we focus on detecting
certain local orientation in the spatio-temporal representation, i.e., when we focus on
certain velocity. As a consequence, it seems that it is worth designing complex Gabor
filters of the “radial type” [116], tuned to motion planes of the slope between ±50° and
localized at higher spatial frequencies in the Fourier domain [118] and with short temporal
support and reasonably long spatial support [115] in the space-time domain. Owing to
the interconnection between velocity, slope of the motion plane, spatial and temporal
frequencies [22], we can compute what should be an optimal temporal frequency, eq. (3.18)
on page 39, for a filter once we decide what should be its spatial frequency and velocity to
be tuned to. In the case of 2D+t, every filter is tuned to local orientation corresponding
to some 2D spatial direction of movement with velocity below 1.2px/frame. Filters tuned
to the same magnitude of movement form a filter bank, see Fig. 3.8 for an example of such
a bank.

The filter bank is a must. Firstly, we have noted earlier that responses are also a
function of intensity contrast present in the image data [110]. By comparing responses
among filters we easier recognize whether a given response is predominantly due to the
local orientation or not. Secondly, we have noted earlier that we are, sort of, inspecting
the local Fourier domain through a few windows, through a few apertures in other words.
Every channel represents one such aperture. Since there can be many motion planes that
pierce given single aperture while producing (nearly) the same responses, we need to use
more apertures in order to correctly and reliably estimate a motion plane. Clearly, we
seek motion plane that is consistent with responses of all channels. The performance is
greatly influenced by a distribution of the apertures in the Fourier domain. An example
of how a motion plane intersects a filter bank is given in Fig. 3.8.

The suggested model together with the suggested filter setting seems viable for motion
estimation. As it aims to mimic the human visual system we notice, from discussions in
the previous sections, that it, at least, allows for the same features.

Note that the collection of instantaneous energy responses, which is the result of appli-
cation of the complex Gabor bank filtering, must be further combined to decide on what is
the velocity at every pixel of the space-time image. This follows the processing framework
outlined in Section 3.3.1 on page 40. Examples of complete methods are subject of the
next section.

3.3.4 Examples of filtering-based optical flow methods

Depending on how we treat the quadrature pair filtering results we recognize two types of
filtering-based optical flow computation methods: the energy-based and the phase-based.
The former works with magnitudes (energies) computed on the complex results while
the latter uses their phase. The former is represented with the method by David Heeger
[111, 106] while the latter is represented with the method by David Fleet and Allan Jepson
[83]. Both methods have in common the intensive use of filtering of the space-time image.
Thus, both methods split the space-time image into several channels. They essentially
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Figure 3.8: Example of 3D filter bank shown in the Fourier domain. All filters in the bank were
tuned to the same magnitude of movement, i.e., to the same slope of the motion plane, but to
different spatial directions, or headings, of the movement, i.e., to different projections of the normal
of respective motion planes into the plane ωy = 0. The motion plane is represented with the red
frame, it represents the movement shown in Fig. 3.2 in the right and in Fig. 3.3C,D.

differ in the next stage in the way results from the channels are combined to yield velocity
estimates.

The energy-based example

Basically, the energy-based approach is based on the “Fourier nature” of a motion as it tries
to estimate slope of the motion plane from a few observations made via the filters/channels.
Heeger [106] used the Parseval’s theorem6 to be able to directly compare the measured
energies with theoretical responses of the channels to some given velocity. The theoretical
responses were (pre)computed for every channel and for every reasonable velocity in the
Fourier domain, basically, as a volume of intersection of the velocity induced motion plane
and the blob representing the associated filter. The theoretical responses were functions
of velocity. They represent what would be an ideal response of the given filter to a
perfectly random plane translating with the examined velocity. So, for every pixel in the
space-time image there is a collection of measured responses and many collections of ideal
responses, each associated with certain velocity. The task is then to find the velocity whose
collection best matches, in the least square sense, the measured collection. Clearly, the size
of all collections is the same and it is exactly the number of the channels used. In other
words, the method seeks optimal velocity by seeking a motion plane that best explains the
measured responses. To allow for comparisons, any motion plane is “seen” only via the
theoretical responses. The method seeks such responses that match the measured ones
the closest.

6Parseval’s theorem states that the integral of the squared values over the space-time image is propor-
tional to the integral of squared components of its Fourier transform.
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The phase-based example

The phase-based approach, according to Fleet and Jepson [83], benefits from the obser-
vation that gradient of a local phase computed in every channel, i.e., in every complex
filtering result, is in fact local instantaneous frequency present in the filtering result [134].
If the frequency is due to a pattern translating by (u, v) pixels per frame, eq. (3.17) should
hold and we may change it to obtain

(φ′x, φ′y, φ
′
t) · (u, v, 1) = 0, (3.27)

where φ′x is derivative of phase in the direction of the x axis, etc. Such equation is a
variance on the constant brightness constraint given in eq. (3.8). Instead of following
a contour of constant intensity in the space-time image, a contour of constant phase is
followed in the (local) Fourier transform of the space-time image. This approach works
with the motion-related property of “mutual perpendicularity” [22], eq. (3.17), and with
the fact that amount of information is equally the same in the space-time image and in its
Fourier transform. The phase is often more stable with respect to smooth constrast changes
and near-identity affine deformations in the space-time image [83, 135, 136]. This was also
accented in the comparison publications, e.g., in the one by Barron et al. [72], where the
phase-based method was among the best performing methods in terms of accuracy.

Once the filtering is done, the method of Fleet and Jepson [83] computes for every pixel,
i.e., for every spatio-temporal coordinate (x, y, t), actually an estimate of a component
velocity ~vi, rather than a final velocity ~v = (u, v). For the reasons explained earlier, a
final velocity cannot be estimated directly from only a single channel. Hence, it is called
component velocity as it estimates only a final velocity component in the direction of
spatial phase gradient ~ni:

~vi = ṽi~ni = ṽi

(φ′x, φ′y)
|(φ′x, φ′y)|

. (3.28)

Such component velocity is obtained for every pixel coordinate and every channel directly
from the filtering result R(x, y, t) using the equation (φ′x, φ′y, φ′t) · (ṽi~ni, 1) = 0, a variant
of eq. (3.27), and the following equation, as the authors suggest, for computation of the
instantaneous local phase gradient:

(φ′x, φ′y, φ
′
t) =

Im[R∗(x, y, t)∇R(x, y, t)]
R∗(x, y, t)R(x, y, t)

. (3.29)

The operation Im[z] extracts imaginary part from a complex number z, the R∗(x, y, t)
is a complex conjugate of R(x, y, t). Note that the numerator is actually a real vector of
imaginary parts taken from elements of multiplication of a complex scalar, the filtering
result, with a complex vector, the gradient of the filtering result. The denominator is a
squared magnitude, a squared energy, of the filtering result.

The authors assume that the final velocity can be described as (u, v) = (α0 + α1x +
α2y, β0 + β1x + β2y) where the six unknowns are gathered in a column vector a =
(α0, α1, α2, β0, β1, β2)T which is assumed to be constant within a small local region centred
at coordinate (x, y, t). For the projection of the final velocity to its component velocity it
should hold

(u, v) · ~vi = ṽi. (3.30)
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Rewriting the left-hand-side of the equation and giving it the form of a multiplication of
row and column six-element vectors, it is changed into a constraint for the final velocity:

[
1

|(φ′x, φ′y)|
(φ′x, φ′xx, φ′xy, φ′y, φ

′
yx, φ′yy)

]
a = ṽi. (3.31)

Finally, for every pixel in the space-time image, the component estimates from all channels
and tiny spatial vicinity of the examined pixel are further combined in an over-constrainted
system of linear equations Ra = s in six unknowns in a, with rows of R given in eq. (3.31)
and column vector s given with corresponding elements ṽi. Least squares solution that
minimizes |Ra−s|2 defines the final velocity (u, v) = (α0, β0). Typically, not all computed
component velocities are used to form the matrix R. The authors employ a few sanity
tests on the intermediate results to, possibly, discard some so that the final velocity is
estimated only from reasonable and valid constraints. Sometimes, the tests do not make
the computation of final velocity possible at all.

The approach by Fleet and Jepson [83] was influential. Not only they have shown that
it was possible to achieve good results with the filtering-based approach to optical flow
computation, they have also shown that other than intensity-based constraint can be used
and that not all measured values must necessarily be always used. For instance, we will
show in Section 4.3.4 that suppressing some intermediate results considerably improves
accuracy of the method by Heeger.

The other examples

It may be a coincidence, however, we see reflection of the above concepts in another popular
approach by Joseph Weber and Jitendra Malik [104], published 5 years after Fleet and
Jepson [83].

Weber and Malik used the differential approach, represented with eq. (3.8), to optical
flow computation within the filtering-based framework. The authors used several, say N ,
differently bandpass filtered images Rk(x, y, t), i.e., the channels, to obtain more indepen-
dent constraints associated with every pixel so that its final velocity could be estimated.
The authors also employed several additional constraints to reject some intermediate re-
sults before they would incorrectly influence the final velocity estimation. Hence, for every
pixel individually only N ′ ≤ N constraints are used. The final velocity for every single
pixel is estimated, again, from an over-constrainted linear system of the form:




R1x R1y

R2x R2y
...

...
RN ′x RN ′y


 ·

(
u
v

)
=




−R1t

−R2t
...

−RN ′t


 (3.32)

where, for instance, R2x is an estimate of derivative in the direction of the x axis computed
on the result of some 2nd filtering. Note that the estimation of directional derivatives can
be realized with convolution. The filtering is, in the context of this work, a synonym
for convolution. And since convolution is associative, we don’t have to take convolution
of the input image with some bandpass kernel followed by convolution that estimates
directional derivatives. Instead, we may precompute convolution of the bandpass kernel
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with the derivative estimator and apply the result, a derivative filter, on the input image
afterwards. The input image is then convolved only once directly producing data for the
linear system above.

Referring back to the reflections of Fleet and Jepson’s work in this method, we notice
the resemblence of eq. (3.32) with Fleet and Jepson’s system Ra = s when α1 = α2 = β1 =
β2 = 0 and when the phase gradients are replaced with prefiltered intensity gradients. The
note on replacing the gradients supports the view that Weber and Malik were using a new
constraint, namely the set of prefiltered intensity gradients in contrast to the ordinary
intensity gradient ∇I. In this view, they were following several contours of prefiltered
constant intensity gradients simultaneously rather than contour of constant intensity or
phase.

Weber and Malik [104] used the first and second order Guassian derivative kernels at
different scales to obtain many bandpass versions of the space-time input image, many
constraints in other words. But, as mentioned above, not all of them had to be accepted
for further processing in the method. The linear system was real and solved with the
total least squares technique. A very similar approach by Bruno and Pellerin [98] used
the same scheme but they used recursive implementation of complex Gabor filters to feed
the complex linear system. The velocity vector is real. The linear system, associated with
every pixel, was changed to become real as well,




Re[R1x] Re[R1y]
...

...
Re[RN ′x] Re[RN ′y]
Im[R1x] Im[R1y]

...
...

Im[RN ′x] Im[RN ′y]




·
(

u
v

)
=




Re[−R1t]
...

Re[−RN ′t]
Im[−R1t]

...
Im[−RN ′t]




, (3.33)

and solved using the M -estimators technique [137], which minimizes sum of functions
of (not squared) residuals — unlike minimizing sum of squared residuals as in the least
squares technique. The solver was designed to reduce the effect of outliers, which is an
alternative to discarding unreliable constraints as in the previous approaches.

The last two approaches [104, 98], that incorporate the differential approach into the
filtering-based framework, are perhaps closer to the energy-based methods [105]. It means
that each of the two approaches should predominantly extract and deal with magnitudes
(energies) from the filtered data in order to be considered an energy-based method. It is
trivially accomplished if the filtering is real, as is the case of Weber and Malik [104]. If the
filtering is complex, as is the case of Bruno and Pellerin [98], the situation is somewhat
more complicated. Taking derivative of result of complex filtering changes both magnitude
and phase of the result. In the same fashion, taking real and imaginary parts, eq. (3.33),
cannot be in general regarded as extracting information solely from either magnitude or
phase alone.

Frequency domain analysis under the constant brightness assumption

Let us consider rather similar parallel path to the latter approach of [98]. In this path, we
continue working with complex numbers, i.e., the derivations of complex filtering results,
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to supply them into the (this-time-complex) linear system in eq. (3.32). In this path, we
also try to minimize sum of squared residuals E(u, v) over all rows of the system. This is
formalized, individually for every pixel in the input space-time image, using the modified
but still apparent “classical” [19, 72] differential summation:

E(u, v) =
N ′∑

k=1

|uRkx + vRky + Rkt|2. (3.34)

Note again that the positional index is dropped from all terms of the equation and further.
According to the discussion in Section 4.1.3 on page 71, if we assume that the Gabor

or Gabor-like filtering mimics or approximates to some extent the computation of true
Fourier transform on appropriatelly cropped (small) and centred image, given in eq. (4.22)
on page 73, then we may claim Rk ≡ FI(~wk) where ~wk is the frequency tuning of the kth
filter, ~wk = (wkx , wky , wkt). The operator “≡” means “is proportional”. Since the FI is a
regular Fourier transform applied only on small image, all properties of Fourier transform
hold. Namely, we will use the derivative theorem

FIx(ωx, ωy, ωt) = iωxFI(ωx, ωy, ωt) (3.35)

where Ix is the derivative of some image I taken in the direction of the x axis and i2 = −1.
Following the earlier discussion on the convolution operations used in the approach, the
order of convolutions with the kth filter and with the derivative operator can be swapped
owing to the commutativity property of convolution. Thus, we may assume that the value
Rkx is actually a value after filtering the derived image and so it is “proportional” to
FIx(~wk).

We rewrite eq. (3.34) according to [105]:

E(u, v) ≡
N ′∑

k=1

∣∣∣uFIx(~wk) + vFIy(~wk) + FIt(~wk)
∣∣∣
2

(3.36)

≡
N ′∑

k=1

∣∣∣u iwkxFI(~wk) + v iwkyFI(~wk) + iwktFI(~wk)
∣∣∣
2

(3.37)

≡
N ′∑

k=1

[
(u, v, 1) · ~wk

]2 ∣∣∣FI(~wk)
∣∣∣
2
. (3.38)

Note that the term in square brackets is actually eq. (3.17) on page 37, which, sort of,
measures the appropriacy of the associated motion plane, which is given by the examined
velocity (u, v), with given coordinates both in the Fourier domain. The smaller the value
is, the better fits the coordinates onto the motion plane. Value of zero indicates perfect
fit. The summation in eq. (3.38) should be understood as weighted summation of the
appropriacy measurements weighted with the measured energies after the filtering. The
greatest contributors to the sum are filters that are tuned to frequency components where
the energy (or power) in the space-time image is concentrated, i.e., where the sought
motion plane is expected to form — of course, under the condition of ideally translating
pattern in the whole small vicinity of the examined pixel. The task is to find velocity that

58



induces such motion plane that is the most appropriate to these measurements. The first
term is then close to zero and the sum is kept low in this way.

Such approach, in fact, detects appropriate motion plane via some observed energies.
This is why we regard it to belong among the energy-based approaches. And this is also
why we regard the approach by Bruno and Pellerin [98], though this analysis was only a
parallel to them, to belong more or less among the energy-based optical flow computation
methods.
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Chapter 4

Spatial filtering for optical flow
computation

In this chapter we focus on filtering in the spatial domain and provide both theoretical
and practical background on how to approach it. We will always bear in mind the context
of the filtering, which is the motion detection in sequences of 2D images. The images in
a sequence are stacked together so that a, so called, space-time (2D+t) image is created.
However, technically it is always only an (3D) image and, thus, the filtering happens
solely in the spatial domain. The filtering is hoped to mimic processes in the very early
stages of the human visual system, at least we are going to reproduce the shape of optimal
filter from it, the Gabor filter. We are heading towards the energy-based optical flow
computation methods. But the filtering can be used also for the phase-based methods.
We are, therefore, interested in filtering with complex filters as they are a nice special case
of quadrature filter pairs, which we need for the two filtering-based methods.

4.1 Spatial filtering

4.1.1 1D Filtering

Filtering along a line, that’s what a 1D filtering is, is the most basic situation. From
the discussion above, we realize that 1D filtering is useless for motion estimation, for
which at least two dimensions must be present. However, we shall see in next sections
that any higher dimensional filtering with a separable filter can be implemented in the
image domain by means of a cascade of several pieces of 1D filtering. And since we shall
deal with separable filters, it is important for us to find a reasonable 1D spatial filtering
implementation. The filtering or the filters used must allow for both fast and accurate
computation.

We will turn our attention to the filtering with Gaussian filter, although we want
primarily to efficiently filter with Gabor filter, which is essentially different from Gaussian.
We will see in the next section that filtering with Gabor filter can be interchanged with
filtering with Gaussian. Probably, this also the reason why many researchers focus on fast
implementation of Gaussian and very occasionaly of Gabor filtering.

Despite the Gaussian filter is well-known, we define it here, at least to introduce
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Figure 4.1: Examples of the Gaussian filter with different parameter σ. Note where each filter is
attenuated.

notation. The 1D Gaussian filter is given as

Ga(x, σ) =
1

(2π)1/2σ
e−

1
2

x2

σ2 . (4.1)

The constant fraction serves the purpose of normalization factor. The real exponential
defines the shape of the filter and its properties as well. Only positive values of σ are
considered. Note that the filter is symmetric with respect to x = 0. Also note that both
filter tails, x → ±∞, approach zero in the limit. Moreover, they fall to zero approximately
from the distance of ±3σ. In other words, the filter’s support (or span) is often considered
to be only 6σ, i.e., Ga(x, σ) ≈ 0 ⇐⇒ |x| > 3σ, see Fig. 4.1. This is an important point
for the implementation.

The convolution with this filter, the Gaussian filtering, is a collection of results O(y)
obtained with the following equation:

O(y) =
∫ ∞

−∞
I(x) · Ga(y − x, σ)dx. (4.2)

The I(x) is a value of pixel at x in an input image, O(y) is a value at y in an output
image. We often digitize the Gaussian filter as follows:

Ga(x, σ) =





1
N e−

1
2

x2

σ2 if x ∈ 〈−s, s〉 ∩ Z,

0 if x ∈ Z \ 〈−s, s〉,
(4.3)

s = d3σe, (4.4)

N =
∑

x

e−
1
2

x2

σ2 over x ∈ 〈−s, s〉 ∩ Z. (4.5)

The dqe is the lowest integer not smaller than q, the ceiling. The Z is the set of all integer
numbers including zero. The filter’s support is always 2n+1. We often refer to the Ga(x, σ)
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as to the convolution kernel. Note that the kernel is mirrored during convolution. The
eq. (4.2) is then digitized to:

O(y) =
∞∑

x=−∞
I(x) ·Ga(y − x, σ). (4.6)

The operation of convolution is often noted with ∗, e.g., O = I ∗Ga(σ).
For the implementation in computers we make use of the comutativity of the convo-

lution, I ∗Ga(σ) = Ga(σ) ∗ I, refer to [138, 139] also for other properties of convolution.
The digitized formula then becomes:

O(y) =
s∑

x=−s

I(y − x) ·Ga(x, σ). (4.7)

Note that bounds of the sum were changed as a result of eq. (4.3). In order to filter at
some position y, the program must sweep input data in the vicinity of y and, during the
sweep, element-wise multiply with the Gaussian Ga(x, σ). It is preferable to use filters
with small σ because it results in small s, which, in turn, allows for better utilization of
processor caches. Small σ is preferrable also in terms of time complexity as we shall see in
the next section. Such convolution is often called the naive, or sometimes the plain or the
full, convolution. Since the filter has limited support and works only with limited number
of input data values, this filtering is also denoted as the Finite Impulse Response filtering,
the FIR filtering [113, 114].

We will often need to conduct the 1D Gaussian filtering in a higher-dimensional image,
e.g., in 2D or 3D. In the case of a general nD image, the convolution may be demanded to
run along arbitrary direction (column) vector, say ~b = (a1, . . . , an)T . In this case, eq. (4.7)
is changed to:

O(~y) =
s∑

x=−s

I
(
~y − x~b

)
·Ga(x,

σ

∆L
) (4.8)

where ∆L = |~b| =
√∑n

i=1 a2
i and s is updated for the new Gaussian’s parameter σ/∆L.

For this moment, we will assume all ai ∈ Z, i.e., the ~b is an integer vector. Since the input
image is at least 2D, many such convolutions must be computed in order to fully convolve
the image, Fig. 4.2.

Let us make a short comment on the form of eq. (4.8). Alternatively, we may change the
kernel to G(x∆L, σ) to obtain a new expression that leads to exactly the same results. But
it is less efficient since the original “full-size” s is kept. Whenever it holds |x| > ds/∆Le,
the kernel values drop to zero and the computation of convolution becomes only a waste
of time. Another possibility would be to use the “full” Gaussian G(x, σ) in the equation
and rather normalize the x~b by using the x~b/∆L instead. This means that the direction
vector ~b degrades in its functionality as it would only tell an orientation, azimuth in 2D,
without the ability to express the magnitude, the size of convolution step. We have opted
for the more general solution, the one given by the equation.

4.1.2 Recursive 1D filtering

Opposed to the FIR filtering, we may consider the implementation of Gaussian filtering
by means of the Infinite Impulse Response filtering, the IIR filtering [113, 114]. The
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Figure 4.2: Illustration of how 1D convolutions must be repetatively applied to complete the
convolution of the whole input image in the given direction. Three runs along the direction vector
~b = (2, 1) are shown. They are marked as A, B and C, respectively. In fact, it suffices to start any
run only from the pixels in the magenta (gray in B&W print) area. Note that the width, i.e., the
dimension in the x axis, of the vertical magenta stripe is exactly 2. Similarly, the height, which
is the dimension in the y axis, of the horizontal magenta stripe is exactly 1. It will always be the
case that the stripes and their dimensions will be given with the direction vector ~b.

fundamental difference between the two is that the IIR filter utilizes recursion in the
process of output value computation. The filter simply considers not only values from an
input image, it also considers return values from any previous computation(s), in addition.
As a result, the filter shape, i.e., the impulse response, is somewhat harder to see directly
from the filter’s coefficients. This is different to the FIR where the impulse response
is merely a mirror of the kernel. Mentioning the kernel, in the FIR filtering the kernel
size was dependent on filter’s parameter, recall eq. (4.4). In particular, the greater the
Gaussian’s σ is, the larger the kernel is. In the IIR filtering, we will see that the size of
“kernel” does not depend on the value of σ. This is the most exciting feature about the
IIR. The term recursive filtering is often used as an alias to the IIR filtering.

To the best of our knowledge, we recognize only three approaches to recursive Gaussian
filtering published so far in the literature. This is the work done by Deriche [140], by Young
et al. [126] (improved later by van Vliet et al. [141]) and finaly by Jin and Gao [142]. All
of these are approximations to the FIR filter. Because each focuses on different criteria
when seeking their approximate solution, differences in performace have arisen. We refer
an interested reader to the original literature for particular details on recursive Gaussian
(and its derivatives) filtering [140, 126, 141, 142] and later then on recursive Gabor filtering
[143]. Fortunatelly, a review and comparison publication at the same time1 on the three
approaches [140, 126, 142] exists due to Tan et al. [144]. We allow ourselves to reproduce
their Table 1 and Table 2 ([144], p. 225) for convenience, see Table 4.1 and Table 4.2,

1The authors were actually looking for fast implementation of position dependent Gaussian filters so that
they could implement foveation, a process of human vision that blurs peripheral regions more intensively.
They had to compare existing approaches for accuracy, speed and extensibility to their demands. Their
work has become a, de facto, standard reference for the comparison on accuracy and speed of the three
recursive approaches.
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σ = 1 σ = 2 σ = 3 σ = 4
Deriche [140] 2.0 0.84 0.85 0.79
van Vliet et al. [141] 19 7.3 6.0 5.5
Jin et al. [142] 0 18 41 56

Table 4.1: Reproduced Table 1 of [144]: Normalized RMS error (in %) of the three filters for a 2D
impulse response.

σ = 1 σ = 2 σ = 3 σ = 4
van Vliet et al. [141] 0.93 0.18 0.10 0.082
Deriche [140] 0.61 0.48 0.36 0.30
Jin et al. [142] 0 4.7 12 18

Table 4.2: Reproduced Table 2 of [144]: Normalized RMS error (in %) of the three filters for
responses measured on test image filled with uniform random noise.

respectively. The normalized RMS used in both tables is given as

1
ND

∑

(i,j)∈D

√
(OT (i, j)−OR(i, j))2

OR(i, j)
(4.9)

OT is a tested filtering result of an examined method, OR is a reference filtering result
obtained either from an analytic formula for an expected impulse response (Table 4.1)
or from FIR filtering with great support (Table 4.2), D represents domain of coordinates
within both images and ND is the number of such coordinates.

Based on their results we focus only on the recursive filters by Deriche and by Young
et al. The third approach showed worse performance (almost by one grade, we would dare
to say) in their tests while the other two were rather balanced if not almost equal. Strictly
speaking, the Deriche’s approach gave the best results in the test with impulse response
while Young et al. was the best on randomly filled image. As Tan et al. pragmatically
notes: it is the test with image rather than with single point impulse that is of practical
importance. Anyway, there are further indicating clues to consider.

In order to continue with the discussion to finally select “the best” approach, we need
now to define the two preselected. Both approaches (in fact, all four including [142, 141])
tackle the recursive filtering by means of the forward and backward passes or sub-filtering.
To conduct 1D filtering, one has to simply convolve in two 1D passes. Using the notation
O+, O− and T for auxiliary images and n+

i , n−i , d+
i , d−i and bi for filter coefficients, the

passes for Deriche’s approach [140] are defined as

forward: O+(x) = n+
0 I(x) + n+

1 I(x− 1) + n+
2 I(x− 2)

−d+
1 O+(x− 1)− d+

2 O+(x− 2)− d+
3 O+(x− 3), (4.10)

backward: O−(x) = n−1 I(x + 1) + n−2 I(x + 2) + n−3 I(x + 3)
−d−1 O−(x + 1)− d−2 O−(x + 2)− d−3 O−(x + 3), (4.11)

addition: O(x) = O+(x) + O−(x) (4.12)
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while the passes for Young’s et al. approach [143] are defined as

forward: T (x) = I(x)− b1T (x− 1)− b2T (x− 2)− b3T (x− 3), (4.13)
backward: O(x) = B · T (x)− b1O(x + 1)− b2O(x + 2)− b3O(x + 3). (4.14)

Notice the presence of recursivity in all passes. For the later approach, we also note here
that there are actually three variants published [126, 141, 143]. We consider here only
the latest version [143], which is for any Gaussian filter the same as the oldest version
[126] and which differs slightly in filter coefficients b1,2,3 from the “middle” version [141].
Anyway, this version is the most efficient one (we’ll cover that a bit latter).

There is a subtle difference in how both passes are employed in the approaches,
Fig. 4.3A,B. Deriche (and Jin et al. as well) requires to conduct forward and backward
passes on the given input image I(x). Afterwards, they obtain two result images, namely
O+(x) and O−(x), which they pixel-wise add to yield result of the filtering. Young et
al. requires the backward pass to run on a result of the forward pass T (x), on the other
hand. Clearly, considering computation of a single 1D Gaussian filtering, the Deriche’s
approach requires two intermediate auxiliary image buffers while the other only one such.
However, we may actually easily modify the backward pass of the Deriche’s approach,

backward: O(x) = O+(x) + n−1 I(x + 1) + n−2 I(x + 2) + n−3 I(x + 3)
−d−1 O−(x + 1)− d−2 O−(x + 2)− d−3 O−(x + 3), (4.15)

such that it incorporates the addition of result of the forward pass to obtain the final
filtering result directly from the backward pass. Note that we can do the same thing with
the forward pass as well, but not with both of them at the same time. The approach
got strictly serialized, exactly in the same way the other approach is. This equals both
approaches in terms of the number of auxiliary image buffers and the number of processing
steps required in total, Fig. 4.3B,C.

It is noteworthy that the design of Young’s et al. passes permits to compute them, so
called, in-place. The Young’s et al. approach, unlike the other, can be easily implemented
without any temporary auxilliarily image buffer(s). In particullar, the forward pass may
be computed directly to the O(x) image because the backward pass does not require value
from any position of its input image (originally the T (x)) other than the one it currently
modifies. To be able to use, say, O+(x) instead of I(x) as we would do when attempting to
process the Deriche’s forward pass in-place, we would require either n+

1,2 = 0 or d+
1,2,3 = 0

because we can’t read the original (pre-filtering) value and the modified (post-filtering)
value at the same time from the exactly the same memory positions x− 1 and x− 2. The
Young’s et al. filtering can be more memory efficient, again.

Moreover, nowadays when parallel computing is available even in every notebook com-
puter, we may seriously consider simultaneous processing of two (or even more) convolu-
tions. Since we aim at Gabor bank filtering, in which each Gabor filter is implemented by
means of modulation, Gaussian filtering and demodulation, we basically have to deal with
many pieces of Gaussian filtering. Considering parallel implementation only for pairs of
Gaussians, the Young’s et al. approach is favourable even in this respect. The Deriche’s
passes can run in parallel, see Fig. 4.3D. But it has potential performance bottleneck in
the synchronization before the addition. Furthermore, two filters at two processors need
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Figure 4.3: Work flows of the considered recursive IIR 1D filtering approaches. The basic and
the more efficient variants of Deriche’s approach are given in A and C, respectively. The modi-
fied variant strongly resembles the approach of Young et al. , in B. An illustration of a parallel
implementation of the Deriche’s approach, in D. Actually, more variants are possible for this case.
However, as long as the “basic” version is considered, the work flow will require at least three
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still one processing unit of time more when compared to two independently parallel runs
of the strictly serialized filtering.

Since convolution with the recursive filters achieves linear asymptotic time complexity
in size of input image, we must distinguish between the approaches by considering a finer
grain measure. Indeed, any of the forward or backward passes requires only a constant, i.e.,
trivially upper-bounded, number of neighboring pixels for the computation of any output
value. They differ only in the, so called, implementation constant, which is proportional
to the constant number of considered neighboring pixels. In accordance with literature,
e.g., with [144, 145, 146], we compare with the number of operations per pixel, ops/px,
required for an approach to complete the filtering. We count both single real multiplication
and single real addition as one operation each. Complex multiplication then results in 6
operations. In the view of this measure, the Deriche [140] requires 6 real multiplications
plus 5 real additions for the forward pass, altogether 23ops/px for the whole 1D Gaussian
filtering. Young et al. [143] needs only 13ops/px. Note that the other recursive forms of
Young et al. filtering require 14ops/px. While it is only a single redundant operation per
pixel, it must be stressed that it is per every pixel accessed during convolutions of the
whole spatio-temporal stack with the few filter banks in which every filter is separated
into several 1D filters. Every small inefficiency in the 1D filtering gets multiplied in this
way. This single operation more causes an unnecessary lag of nearly 8% ops/px of the
total demand, i.e., roughly about 8% of increase in computational time.
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Conclusions on 1D recursive filtering

To sum it up, appart from less ops/px hand in hand with better memory utilization, the
Young’s et al. approach was slightly more accurate on a given test image [144]. We have
also realized that it is directly suitable for parallelism-enabled computing environments.
Each parallel run works only with its local memory completely independently on any other
run. These are the reasons we have decided to use the 1D recursive filtering whenever
we would need 1D Gaussian or Gabor filtering in any direction, eq. (4.8), within any nD
image.

We have opted for the recursive filtering for the two reasons: the number of ops/px is
small and does not depend on the value of Gaussian’s σ. Indeed, all the above mentioned
approaches have their formulae for the forward and backward passes firmly given with
variability only in the filter coefficients not in the filter’s support. The σ is encoded in
the coefficients. In their publication, Young et al. [143] adds to it that the accuracy of
the filtering improves with increasing σ. Note that this is in accordance with our needs
because we aim to obtain highly selective filters in the Fourier domain, i.e., filters with
large σ in the image (spatial) domain and so more localized in the Fourier domain.

There is even more to it when regarding the recursive filters based on Young et al. [126]
and its successors [141, 143], a correct and fast boundary treatment has been worked out
quite recently [147, 145] and [P3], see Table 4.3. In particular, Triggs and Sdika [147] have
found an universal solution for Gaussian IIR filtering based on eqs. (4.13),(4.14), i.e., the
Young et al. family of recursive filters such as [126, 141, 143]. Their solution works also
for (direct) complex recursive Gabor filtering, though they haven’t provided it explicitly.
For the Gabor filtering computed with Gaussian filtering, i.e., for Gaussian filtering in
the context of Gabor filtering, we knew only one solution published by Bernardino and
Santos-Victor [145]. Their solution is capable of working for all Gaussian filters based
on Young et al. family [P3]. But to use it, we must provide filter coefficients and filter
poles of filter Z-transform. The requirement for poles is, however, an unnecessary barrier
in the use of the solution [P3] and limits its applicability, in practice, only to Gaussian
IIR filters defined in [141] where the poles are directly available. Otherwise, an automatic
3rd order polynomial root finder must be devised to obtain poles from filter coefficients
automatically. A correct boundary treatment based solely on filter coefficients and so for
any general IIR Gaussian in the context of Gabor filtering provided the Gaussian belongs
to the Young et al. family, i.e., can be defined with eqs. (4.13),(4.14), is shown in [P3].

Finally, to demonstrate performance of the implemented underlying 1D recursive Gaus-
sian filtering based on the latest approach of Young et al. [143], we include the following
three figures: comparison of impulse responses in the 1D and 2D case in Fig. 4.4 and
Fig. 4.5, respectively, and comparison of time consumption in Fig. 4.6.

4.1.3 2D Filtering

Once we enter into higher dimensions, starting already with 2D, we immediately face
the fundamental problem with Gabor filters: they are not separable. This is only a
technical problem but very important for anyone who requires fast computation of the
Gabor filtering. In fact, we are left with the naive 2D convolution or with the convolution
theorem together with the (fast) Fourier transforms back and forth. The former solution
is, at least, problematic when filter kernels grow in size. We see from eq. (4.7) that the
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general purpose (direct) recursive Gaussian in the con-
IIR machinery Gaussian filtering Gabor filtering text of Gabor filtering
Young et al. Triggs and Sdika Triggs and Sdika Ulman [P3]
[126] [147] [147]
van Vliet et al. Triggs and Sdika Triggs and Sdika Bernardino and
[141] [147] [147] Santos-Victor [145]

Ulman [P3]
Young et al. Triggs and Sdika Triggs and Sdika Ulman [P3]
[143] [147] [147]

Table 4.3: An overview of the state-of-the-art solutions to correct 1D boundary treatment in
recursive Gaussian and recursive Gabor filtering applications. The solution by Bernardino and
Santos-Victor [145] can be, actually, applied also on the Young’s et al. filters [126, 143] in the right-
most column of the table provided the solution is extended with automatic 3rd order polynomial
root finder. Details on this matter are given in the text and in Section IV-D in [P3].
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Figure 4.4: Examples of impulse responses of 1D FIR and IIR Gaussian filtering for two σ denoted
as “S”. The “EST” denotes an analytic curve of what should be the correct impulse response. Note
that for smaller σ there is an apparent small error in the regions of ±6.
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Figure 4.6: Examples of time spent with the several computations. Separable filters were used in
the 2D and 3D filtering. We clearly see that the IIR filter has constant time consumption. As the
filtering happens in more dimensions, from 1D to 3D, we see that its time consumption regularly
increases suggesting that individual 1D recursive filtering implementations along the axes x, y and
z, respectively, shows roughly the same time consumption. The FIR filtering also shows linear
dependence of the computation time on size of σ. The slope changes with dimension of filtering.
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naive convolution routine, the FIR, has time complexity O(nm) with n being the number
of convolved pixels and m being the number of filter coefficients. Considering convolution
of a square image n × n with a square filter of kernel size m × m, the complexity also
enters higher dimension: O(n2m2). If the filter were separable, we would have to compute
only a small number of 1D convolutions (but within a 2D image) and the (asymptotic)
complexity would slightly improve to O(n2m). Regarding the Fourier transform, we will
cover the use of it for the filtering in Section 4.1.5. For this moment let us foretell that
its time complexity is O(n2 log n) for n × n image. Comparing the two approaches, the
Fourier transform is preferable when the kernels are large, i.e., when m À log n. It is
important to keep the time complexity low, naturaly. In the optical flow computation
based on filtering, we need to compute many pieces of filtering, even tens of. If a single
filtering would take more time, the computation of a whole bunch may not be tractable.

Fortunatelly, the convolution with a 2D, or higher dimensional, Gabor filter can be
broken down into the three stages. In the following text we will always omit the constant
fraction from the Gabor filter expression. The equation for convolution with a general 2D
Gabor filter is

O(~y) =
∑

~x

I(~x) · e− 1
2
(~y−~x)T C−1(~y−~x) eiW (~y−~x) (4.16)

where I(~x) is input image real pixel value at coordinate (column) vector ~x, O(~y) is output
image complex pixel value, C is a 2 × 2 Gaussian covariance matrix and W is a 1 × 2
single row matrix with Gabor frequency tuning, W = [2πwx, 2πwy]. The equation can be
rewritten:

O(~y) = eiW~y ·
[∑

~x

[
I(~x)e−iW~x

]
· e− 1

2
(~y−~x)T C−1(~y−~x)

]
. (4.17)

The inner term in square brackets is a modulation with complex exponential e−iW~x, the
first stage. It results in a complex data that is fed into the middle stage, which is the
Gaussian filtering represented with the outer square brackets. Finally, the complex filter-
ing result is demodulated with eiW~y, the last stage. Both modulation and demodulation
operations are nothing but simple pixel-wise multiplication with position-dependent con-
stant. Since Gaussian filter is a real domain filter, it sufficces to convolve with it both
the real and imaginary parts of the modulated input independently of each other. In the
thesis, we will refer to this approach as to the staged approach.

The greatest advantage of the staged approach is that the complex convolution with
Gabor filter was replaced with two real convolutions with Gaussian filter. Clearly, real
arithmetics require less operations, multiplications and/or additions, than the complex
one. For instance, consider complex multiplication that consists of four real multiplications
and two real additions on top of it. The greatest advantage, however, is the shift from
filtering with non-separable Gabor filter to filtering with its Gaussian envelope. Note
that Gaussian filter is separable, even when arbitrary configuration (C is not diagonal)
is required [30, 33]. Depending on what filters we use for the 1D Gaussian convolutions,
different performance gain is achieved compared to the naive 2D Gabor convolution.

The separability allows for faster computation of the plain 2D convolution, eq. (4.16),
with only two or three 1D convolutions. To ease the comprehension of the following, we will
assume the Cartesian coordinate system is used. In the classical case when C is diagonal,
the Gaussian is easily separated along coordinate system axes, i.e., along the x and y axes.

70



When the desired Gaussian envelope results in a general C, we may decompose [30] into
a convolution along the x axis and another convolution along a direction vector (x1, 1)T

with x1 ∈ R. This keeps the number of convolutions lowest possible [32] at the expense
of allowing the x1 to take a real value. The convolution runs off a pixel grid whenever
x1 6∈ Z because pixels in the image are spread on a grid only at integer coordinates. Some
interpolation technique in the x axis must be used to, firstly, obtain values off the grid
so that convolution can be computed and, secondly, from these values reconstruct values
at the grid. Recently, an approach appeared [33] that uses three 1D convolutions with
direction vectors based solely on integer values. Such direction vectors, that can’t push the
convolution to fall off the pixel grid, elegantly canceled the need for interpolation as well
as an artifact connected with it [33] and [P1]. On the other hand, the third 1D convolution
introduced some additional ops/px outweighting the few saved ops/px originally required
by the computation of interpolation.

Regarding the use of interpolation, Lam and Shi [33] pointed out that the interpolation
in [30] introduces spatial inhomogeneity, i.e., the responses to the same impulses but at
different image locations ~xi are not identical when shifted back by the vector −~xi, see
Fig. 4.7. After the shift, impulse responses appear registered. They should be the same
but, in fact, they are slightly differing. This artifact is also called the positional variability.
They demonstrated the variability for the 2D case in their publication. Note that it is a
property of the used error measure that it readily tells an offset to the order of measured
error with respect to leading order of output data [33] and [P1]. They have found out that
the variability manifests at offset of 4 orders. We have managed to reproduce their results
with our implementation. Using this testbed, we have extended the study to the 3D case
and published it in our original publication [P1]. The 3D filters show positional variability
as well but at about two orders of magnitude higher (offset is only 2 orders) compared to
2D, probably because more interpolations must be used in 3D. We have extened according
to the Lampert and Wirjadi [32] who have published a general solution for nD with the
property that for n = 2 it turns into the one by [30] — the approach “criticised” by Lam
and Shi [33] for the positional variability in 2D. Concluding this topic, we show in Fig. 4.8
results of a test on some real data to see if the discussion is not only at some theoretical
level because the aforementioned measurements were conducted on impulse responses.
Unfortunately, it seems that at least in this particular test with the 3D image the error is
also present. Fortunately, we may use the other approach [33] and [P1] that does not use
interpolations but is often slightly more demanding in terms of required operations per
pixel.

Gabor filter as a local Fourier transform

We first, for convenience, give the definition of the Fourier transform, given in eq. (3.12)
on page 37, for a 2D image:

FI(ωx, ωy) =
∫∫ ∞

−∞
I(x, y) e−i2π(ωxx+ωyy)dxdy. (4.18)

Comparing the staged approach, given in eq. (4.17), ~x = (x, y)T , with this definition of
the Fourier transform, we notice that the integrated function in the Fourier transform
is essentially the modulation term in the first stage of the staged approach. But the
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Figure 4.7: Illustration of how data is prepared for measurement of the positional variability. A
sample single point impulse of constant height is placed at different positions in the image, as in A
and B. Note that positions within image are given with integer coordinates. The Gaussian filtering
with the same constant filter is conducted, sample results are shown in A and B over the impulses.
The results are then translated to the same place, say to the centre of coordinates as in C. The
variability is a logarithm of variances over all positions.
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Figure 4.8: Comparison of Gaussian filtering results that we obtained on a frame, in the left, from
the well-known Hamburg taxi sequence. Technically, it is a 2D slice from a 3D stack on which
we computed several 3D filtering with the same Gaussian filter. The results of filtering, gathered
at positions along the red line in the left image but only in its missing part, are plotted in the
right. The plot compares results of naive convolution, denoted as “ground-truth”, with results of
the state-of-the-art method by Lampert and Wirjadi [32] and with results of the method proposed
in this thesis [P1]. We see that the former method produces regurarly occuring error suggesting
that the error rate depends on position. Also note that the magnitude of error is occasionally in
the order of tens while the magnitude of results is in the order of hundreds, i.e., only one order of
magnitude higher.
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integration over the whole image is replaced with Gaussian convolution in eq. (4.17).
This is, however, only a Gaussian weighted summation over local region around every
pixel ~y = (x0, y0)T in the (space-time) image, which is illustrated for 1D in eq. (4.2).
The localization of summation is, perhaps, more apparent in the discrete version of it
in eq. (4.7). The first and the second stages together are really only performing locally
weighted evaluations, one such for every coordinate, of the Fourier transform, eq. (4.18),
for a frequency pair given by ωx = wx and ωy = wy, i.e., for the frequency tuning of the
Gabor filter. The evaluation in both cases is done with respect to the space-time origin
~x = (0, 0)T . In other words, the common point where the exponential e−i2π(ωxx+ωyy) of
the Fourier transform is always at zero phase for any frequency pair ωx, ωy is exactly
at the origin. A truly local Fourier transform must be computed as if (x0, y0)T was the
common point, i.e., as if (x0, y0)T was at the origin — just like it would be when the
(global) Fourier transform is computed on an appropriatelly cropped (small) and centred
image. But this is easily achieved with pixel-wise multiplication of the result after the
two stages with ei2π(ωxx0+ωyy0). Note that it is equal to multiplying with eiW~y, i.e., the
third stage of the staged approach, with the filter frequency tuning W = [2πwx, 2πwy]
and ~y = (x0, y0)T . With the multiplication we change the values of all individual pixels
at ~y to become results of localized evaluations of the Fourier transform with respect to
coordinate ~y. Afterall, the complex Gabor filtering can be regarded as computations of
local Fourier transforms, all evaluated only for a single frequency pair, namely the filter’s
frequency tuning wx, wy, inside a region given by the filter’s envelope.

The last stage resembles the shift theorem, which primarily relates Fourier transforms
of some image I(x, y) and its copy I ′(x, y) = I(x + x0, y + y0) — a shift of I such that
I(x0, y0) happens to be in the origin, in that it holds [138]

FI′(ωx, ωy) = ei2π(ωxx0+ωyy0)FI(ωx, ωy). (4.19)

It is like we were computing, for every coordinate ~y, local Fourier transform at the origin
of an image I ′, which would be the image I shifted by (−x0,−y0).

It is still our debt to explain why we are using the word “local” while we should correctly
say “locally weighted” because this is what the Gabor filtering actually computes. This is
an important difference. For a given pixel coordinate (x0, y0), the locally weighted Fourier
transform F ′I ,

F ′I(ωx, ωy) =
∫∫ ∞

−∞
I(x, y) e−i2π(ωx(x−x0)+ωy(y−y0)) e

−1/2

�
x2

σ2
x

+ y2

σ2
y

�
dxdy (4.20)

=
∫∫ ∞

−∞
I(x + x0, y + y0) e−i2π(ωxx+ωyy) e

−1/2

�
(x+x0)2

σ2
x

+
(y+y0)2

σ2
y

�
dxdy, (4.21)

does not compute exactly the same result as does the (global) Fourier transform on ap-
propriately cropped and centred image,

FI(ωx, ωy) =
∫ 3σy

−3σy

∫ 3σx

−3σx

I(x + x0, y + y0) e−i2π(ωxx+ωyy)dxdy. (4.22)

The integral limits as well as the property on limited support of the Gaussian function
were explained in section 4.1.1 on page 61. It is this limited support of the weighting
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function and the notion of how the Gabor filter’s carrier is applied on input data that we
owe for using the term local Fourier transform.

When computing energy after filtering with a quadrature pair, we compute the square
root of sum of squared responses of the filters. A quadrature pair, in the context of Gabor
filtering, are two real filters with the same Gaussian envelopes and with frequency carriers
out of phase by π/2. Owing to the Euler formula, eix = cosx + i sinx, real and imaginary
parts of a complex Gabor filter represent a quadrature pair. Computing energy of such
filtering then equals to computing magnitude of filtering result. It is a matter of fact that
when energy is computed after filtering with complex filter using the staged approach,
we can omit the third stage [119]. In the third stage, we multiply results of complex
filtering with complex exponentials only of the form eix, the filtering results then keep
their amplitudes.

Alternative approaches

First of all, recall that despite we are talking mostly only about Gaussian filters, it is
because of the fact that Gabor filtering can be efficiently computed using Gaussian filtering
[148, 145].

There are only a few examples we are aware of in the literature where 2D Gabor
filtering is used for motion estimation. It is rather a rare situation because the most often
processed spatial dimensionality is 2D and, owing to the way filters are applied for motion
extraction, the processed data is actually in a form of a spatio-temporal stack of 2D images,
i.e., it is a 3D image technically. Thus, the majority of filtering techniques for optical flow
computation are focused on 3D image processing. On the other hand, authors often aim
to decrease the number of frames their methods need to consider. This often ends up with,
we may say, classical Gabor convolutions in 2D accompanied with some modified temporal
processing/filtering, a system that together resembles motion estimation systems.

An example of this may be the method by Gautama and van Hulle [129]. They
suggested a phase-based method based on just spatial filtering, in contrast to the spatio-
temporal filtering used in the influential well-known phase-based method by Fleet and
Jepson [83]. As usual, they conduct the spatial filtering with banks of quadrature Gabor
filter pairs. For every filter, the authors establish the temporal phase derivative from time-
lapse sequences of filter phase responses by performing a least-squares linear regression.
The support for the regression is only 5 frames, whereas the spatio-temporal filtering in
[83] requires 21 frames. This method has not been the best in any of the tests authors
had conducted in their publication but it has been keeping up with the majority of tested
methods in terms of accuracy and number of estimated vectors (density of flow fields).
But unlike the others, the method allows for shorter temporal support and smaller com-
putational demand of the method. Recently, we have noticed its re-implementation on the
GPU with real-time capability [107]. Note that their filter banks consisted of filters with
isotropic Gaussian envelopes.

Bernardino and Santos-Victor [148], when seeking very fast implementation for com-
plex Gabor filtering, have shown that it is better in terms of the number of required ops/px
to approach the filtering in the staged manner. They considered the 1D recursive filtering
of the form given by eqs. (4.13),(4.14), i.e., filters general in use with very short support
and depth of recursion both independent of a value of σ. The savings is about 35% in
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computation (ops/px) compared to a single direct recursive Gabor filtering, [148]. This is
a result of avoiding an expensive complex arithmetics (convolutions with Gaussian instead
of Gabor filters), it is not a result of changing time complexity (like it was when we were
shifting from naive 2D convolution to a few separable 1D filters).

The same authors pushed the improvement even further, down to 62% savings, when
they replaced the 1D Gaussian IIR filtering in the staged scheme with 1D FIR filtering.
But it must be stressed that the FIR filter had support of only 5 pixels representing 1D
Gaussian with fixed σ = 0.95, such filter requires only 9ops/px. Clearly, this is an example
of application-taylored filter. In the same fashion, Nestares et al. [149] used four 1D kernels
of 11 elements in which real or imaginary parts of a desired Gabor were stored. In order to
compute a real or imaginary part of a 2D complex Gabor filtering with frequency tuning
in one of the four directions (0°, 45°, 90° or 135°), a proper combination of two or four 1D
convolutions along the x or y axes were conducted in a serial manner. The decomposition
into 1D FIR convolutions is based on properties of trigonometric additions formulas, e.g.,

sin(α + β) = sin(α) cos(β) + sin(β) cos(α), (4.23)
cos(α + β) = cos(α) cos(β)− sin(β) sin(α). (4.24)

Both publications were used to construct a particular multi-scale 2D image representations
based on Gabor functions. Both had fixed pre-selected parameters of the Gabor function
and, that is important, isotropic Gaussian envelope. As a matter of fact, the GPU-
based optical flow computation method [107] is actually using the filtering framework by
Nestares et al. [149]. Finally, Areekul et al. [150] required fast 2D anisotropic real Gabor
filtering for fingerprint enhancement. They realized that actually only 8 directions, i.e.,
0°+k · 22.5°, k = 0, . . . , 7, are explored in their application. Moreover, it was held in
their application that the frequency tuning of some Gabor and main axis of its Gaussian
envelope were identical. It was then an easy matter to convolve with one 1D Gabor filter
along an axis given by the orientation k · 22.5° and then convolve with one Gaussian along
a perpendicular axis (with orientation k · 22.5°+90° modulo 180°). Furthermore, four
directions were changed slightly so that the convolution could easily sweep the pixel grid
in a direction very close to the originally required one. In fact, this solution is a special
case of the one by [33], introduced 3 years later.

4.1.4 3D Filtering

The fundamental shift from simple 1D (line) filtering to higher dimension has already been
done in the previous section. Indeed, the shift from 2D to 3D is not that dramatical. For
instance, if a filter is found to be easily extensible to higher dimensions, e.g., the Gaussian
filter with its famous exponential term is very illustrative, we may probably repeat this
extension several times again to yield a variant of the filter of any desired dimensionality.
The same holds for separability of filters, etc. So, this section could have had title “nD
Filtering” but we’ll stay with 3D since this is the target dimension we want to deal with.

Basically, we make use of the staged approach, eq. (4.17), even in the 3D scenario again
to turn the convolution with a general Gabor filter into a modulation, then convolution
with a general Gaussian filter followed with a demodulation step. The Gaussian in the
middle stage is the Gaussian envelope of the given Gabor filter. Since vast majority of
optical flow computation methods use the basic form of Gaussian envelope, for example
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A B C D

Figure 4.9: Example of motion extraction. The basic anisotropic filter, in A, and general anisotropic
filter, in C, are applied to detect rightward translational 1D movement of a small dark patch. The
movement is captured with the dark diagonal line. Horizontally runs the spatial coordinate x,
vertically runs the temporal coordinate t. In B and D are the overlays of the Fourier transforms of
the (real) filters (lighter gray) over the transform of the moving (real) pattern (darker gray). The
general anisotropic filter, in D, appears to match closer than the basic anisotropic filter, in B.

all methods in Section 3.3.4, we could have finished the section right here. Note that the
basic form of Gaussian envelope is an extension of the 1D form given in eq. (4.1) to 3D:

Ga(~x, σx, σy, σz) =
1

(2π)3/2σxσyσz
e
− 1

2

�
x2

σ2
x

+ y2

σ2
y

+ z2

σ2
z

�
. (4.25)

It allows for easy separable filtering with 1D FIR or IIR filters along the coordinate system
axes, the x, y and z. This is very advantageous from the computational point of view.

But the basic Gaussian envelope is rather limiting. To illustrate it, consider the ap-
plication of two 2D Gabor filters (only real 2D filters with even/cosine phase for the sake
of clarity) to a 1D translating dark patch, Fig. 4.9. Notice that the general anisotropic
filter closely wraps around the motion pattern in the spatio-temporal represenation as
well as around the motion plane in the frequency domain. Such filter is more unlikely to
respond strongly to other motions, the filter is very selective allowing for finer sampling
of the frequency domain. On the other hand, convolution with such general filter is more
computationaly demanding.

This brings us to a question whether this is the only reason why general anisotropic
filters are greatly avoided in motion estimation. Is it because the majority of publications
on models of early human vision seem to consider mostly only the basic form of Gabor
filter as well? This would be a theoretical limit then. But the models may be slightly
inaccurate, though we have no evidence for this. But approaching it from the other side,
a counter-example exists. It is the nearly 15years old recognized publication by Lee [121],
inspired by the work of Daugman and others, who suggested to sample the frequency
domain in a log-polar manner, i.e., with nonorthogonal anisotropic Gabor filters both in
the frequency and so in the spatial domain too (a filter can’t be anisotropic only in one
domain). The acceptance of this publication suggests that truly general Gabor filters are
probably plausible models. Another question is whether authors of the majority of optical
flow computation based on Gabor filtering opted for basic Gabor filters only to ensure the
computation of their method is tractable? Maybe because they published their methods
prior the year 2006 — a year when optimal separability of any nD Gaussian filter [32]
has been solved for the first time? Truth is, that the solution suffers from the positional
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variability (was already discussed), which we managed to overcome just recently in 2008
[P1]. This would be a practical limit. Anyway, in the appended original publications we
show how to diminish the computational burden.

In the view of the current state of the art, Table 4.4, the separably computed con-
volution with the basic complex 3D Gabor filter given in eq. (4.25) and with the aid of
recursive 1D filters and the staged approach would require 86ops/px whereas the very
general 3D complex Gabor filter can be computed with the staged approach with only
126ops/px or 164ops/px in the positional-invariant version [P2], i.e., increase of 47% or
91%, respectively.

The former is achieved when the Gaussian envelope is separated according to Lampert
and Wirjadi [32]. They make use of the triangular factorization of Cholesky type decom-
position of the Gaussian’s covariance matrix C, eq. (4.17). This allowed them to rewrite
C = V DV T with V being an upper triangular matrix with diagonal unit,

V =




1 x1 x2

0 1 x3

0 0 1


 , (4.26)

x1,2,3 ∈ R and D being a diagonal matrix,

D =




σ2
1 0 0
0 σ2

2 0
0 0 σ2

3


 . (4.27)

Since C is a Gaussian covariance matrix, it is symmetric and positive definite. In the
general case of C being a n× n matrix, it has n(n + 1)/2 degress of freedom (elements on
diagonal and upper triangle). The authors require, for practical reasons, to use as many
zeros as possible for matrix elements. If zero can’t be used, they wish to use one whenever
possible. They also require that V has determinant of exactly 1. As V is an upper
triangular matrix, the multiplication along diagonal must equal 1. Thus, the diagonal of
V consists of ones. It has remained n(n − 1)/2 free values in the upper diagonal of V
and n values on the diagonal of D. As V DV T is equal to C, we see that both D and V
couldn’t have less unknowns than n(n+1)/2. But that is exactly what they have together.
Hence, their shape is optimal. Considering the argument of the exponential in eq. (4.17),
we develop it:

−1/2(~y − ~x)T (V DV T )−1(~y − ~x), (4.28)
−1/2(~y − ~x)T (V T )−1D−1V −1(~y − ~x), (4.29)
−1/2(~y − ~x)T (V −1)T D−1V −1(~y − ~x), (4.30)
−1/2(V −1(~y − ~x))T D−1V −1(~y − ~x). (4.31)

Application of the previous equation and by defining ~x = V ~u, we may finally rewrite the
staged approach, eq. (4.17), in the new coordinate system:

O(V ~v) = eiWV ~v ·
[∑

~u

[
I(V ~u)e−iWV ~u

]
· e− 1

2
(~v−~u)T D−1(~v−~u)

]
. (4.32)
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real domain integer domain
ai,j ∈ R ai,j ∈ Z

2D Geusebroek et al. [30] Lam and Shi [33]
m = 2 m = 3

3D Lampert and Wirjadi [32] Ulman [P1]
m = 3 m = 6

nD Lampert and Wirjadi [32] Ulman [P1]
m = n m = n(n + 1)/2

(bases not given explicitly)

Table 4.4: An overview of the state-of-the-art solutions on separability of any arbitrary nD Gaus-
sian filter into m directions for 1D convolutions. The table is divided into two columns with respect
to the domain used for the direction vectors ~bi = (ai,1, . . . , ai,n)T , i = 1, . . . , m, i.e., whether inter-
polations must be used during convolution. The table is applicable also to Gabor filtering if it is
conducted via the staged approach.

We observe that the original arbitrary Gaussian has taken the basic form here. In the
3D case, this means that it is possible to conduct simple 1D convolutions along the new
coordinate system axes, namely ~b1 = (1, 0, 0) with σ1, ~b2 = (x1, 1, 0) with σ2 and ~b3 =
(x2, x3, 1) with σ3. We remind that W is, in the 3D, a 1×3 row matrix with (de)modulation
frequencies along the original coordinate system, the WV is a 1 × 3 row matrix with
frequencies along the new coordinate system. The recipe on 1D convolution in nD was
already given earlier in eq. (4.8).

The latter increase of 91% in computation demand is due to our extension [P1] of the
positional-invariant technique originally developed only for 2D by Lam and Shi [33]. The
technique leads to the same principle as the one by Lampert and Wirjadi, except that the
matrix V is replaced with matrix A,

~x = A · ~u =
[
~b1

~b2
~b3

~b4
~b5

~b6

]
· ~u, (4.33)

in which the vectors ~bi belong entirely only to the domain of integers. The direction
vectors that pushed the 1D convolutions off the pixel grid were replaced with two or more
direction vectors that don’t do that. The rapidity of filtering was traded for stability and
accuracy of the filtering as this solution is positional-invariant and offers slightly higher
accuracy [P1]. Nevertheless, we will show in another our original publication that if a
Gabor bank meets some basic constraints on its design, we can actually convolve with it
in the positional-invariant version with the increase of up to 62% ops/px [P2] compared to
the bank of Gabor filters in the basic form. So the lack in performace is decreased while
the positive properties are kept.

Note that both solutions on how to separably convolve with Gaussian/Gabor filter are
exact. One may use whatever he/she wants for 1D convolution routine. In this thesis we
use the fast recursive filters [143].

Finally, let us return to the question of why not to use general anisotropic Gabor
filters. We have learned that the practical limit has been broken since even the general
anisotropic filtering has now the linear time complexity. We argue that a theoretical limit
based on human vision properties, if there is such, should be avoided. The general filters
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allow for “more specific” shapes, which, in turn, may aid the motion extraction and optical
flow computation. If humans are limited in some respect, e.g., require longer observation
period to discover motion parameters, why can’t a computer program perform better?
For instance, scientific cameras mounted on microscopes perform a lot better in terms
of sensitivity to incoming light than human’s naked eye. Regarding the Gabor filtering,
consider the example with the translating white square, Fig. 4.10. The Fourier transform
shows negligible short line in the direction (1,1,-2), which is a direction perpendicular to
the translational vector (1,1,1) of the square. Still, the anisotropic filters managed to react
on the motion: we see a clear distinction between responses of filters tuned to different
spatial (x-y) orientations. The more the filter orientation declines from the orientation
of the true motion, the weaker response it shows. The isotropic filters had a very decent
distinction in responses. Obviously, their measured data is rather worse leaving more
room for incorrect motion parameters determination in further stages of an optical flow
computation.

We conclude this section by offering an example of a collection of dense Gabor banks
which we can convolve with within reasonable time frame, i.e., up to couple of tens of
seconds on recent desktop computers. The collection consists of three banks, each is
designed to detect velocities of 1px, 1.6px and 3px per frame, respectively. Each consists
of 8 filters such that the spatial halfplane is sampled in orientation by 22.5°, refer to
Fig. 4.11 where the collection is shown in the Fourier domain. Every filter has its envelope
of the same common size, in particular σ1 = σ2 = 10, σ3 = 2. The envelopes differ only
in the orientation because every envelope closely wraps the carrier part of its filter, see
Fig. 4.12. The modulation frequency in this illustrative case was 1/5px−1. Note that the
spatial images of the filters strongly resemble edge detection or derivative filters. We hope
that setups like this or similar would help the filtering-based optical flow methods to catch
up again with the derivative-based approaches, just like it once used to be and like the
theory dictates [110, 105].

Regarding the alternative approaches, we have came across only one due to Wirjadi
and Breuel [31] who have devised an approximate separable anisotropic Gaussian filter.
Similarly to the 2D [30], they employed a cascade of three 1D convolutions in the directions
along the x and z axes and along a general third axis within the 3D image coordinate
system. We now see, due to the publication [32] published a year later, that such three axes
couldn’t provide an exact solution. Hence, it is only an approximate but with good error
rate most of the time. Still, we would be rather conservative in its use whenever the IIR
filters are to be employed along the three directions as the IIR filters are approximations
as well and the error rate may cumulate.

When regarding the spatial filtering in 4D, we return to the idea from the beginning
of this section: the spatial filtering in 4D, i.e., the spatio-temporal filtering in time-lapse
stack of 3D images, can be approached in exactly the same manner as we have outlined
for the 3D filtering.

4.1.5 Comparison with filtering in the Fourier domain

Before we answer the question, let us explain how to conduct Gabor filtering in the Fourier
domain. We aim to make use of the convolution theorem that relates results of convolu-
tion in the image domain with results obtained in the Fourier domain. In particular, it
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Figure 4.10: Top row: Maximum intensity projection of 2D+t image shows a moving spot on a
random background. Four 2D frames from this sequence are shown as well, in the right-hand-
side. The three rows of plots, from top to bottom: Intensity profiles (x axis shows pixel offset,
y axis shows pixel value) drawn along the dashed line from filtering results of the three banks
2–2, 2–1 and 1–1 on ideal data (left column) and data with noise (right column). The magnitude
(energy) of complex response is depicted. The shape of the Gaussian envelope is given with the
notation A–B where A is σ of the envelope in the direction of (1, 1, 1)T and B is σ in the other
two perpendicular directions. The parameter “alpha” tells the spatial orientation of the filter. The
figures are reprinted from our original publication [P2] for convenience.
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Figure 4.11: Sample collection of real Gabor banks shown in the Fourier domain. Two cross-
sections in the ωx-ωy plane in top left and in the ωx-ωz plane in bottom left illustrate the orientation
sampling and velocity tuning, respective, of the collection. Different colour (tone of gray in B&W
print) encodes filters tuned to different magnitude of velocity. The banks consists of more elongated
narrow-bandwidth filters which samples the Fourier halfplane at a finer grain. A 3D visualization
of the collection is given in the right. For visualization purposes, its second symmetric part is
intentionally missing.

Figure 4.12: Four filters of the sample collection of Gabor banks shown in the spatial domain.
Only imaginary parts are shown. The two filters, in A and B, detect the rightward motion once
with velocity of 1px per frame and once with 3px per frame, respectively. In C and D, example of
two filters tuned to the same velocities but different direction.

81



states that Fourier transform of a convolution result is equal to a result of element-wise
multiplication of Fourier transforms both of the convolved image I(~x) and a convolution
kernel k(~x):

I ∗ k = IFT

(∑

~ω

[FT (I)](~ω) · Fk(~ω)

)
(4.34)

where FT and IFT stands for the operation of the (forward) Fourier trasform and inverse
Fourier tranform, respectively. The Fk(~ω) is a result of the transform FT (k). The ~x is
image domain coordinate vector while the ~ω is the Fourier domain frequency vector.

This approach consumes O(2 · (n log n) + n) operations, i.e., O(n log n), when the fast
implementation such as the one by Johnson and Frige [146] is used and when n is the
number of all pixels in the transformed image. The calculation is altogether for the fast
Fourier transform of the input image, element-wise multiplication and fast inverse Fourier
transform. The transform of the filter kernel is not included as this can be done in advance
and stored in a LUT (abbreviation for a Look-Up Table). However, the size of the LUT
depends on the input image because the size of the transformed kernel must be exactly
the same as the size of transformed image.

We now draw our attention to the counts of operations per pixel required by the ap-
proach. Considering probably the most often used library for the fast Fourier transform2,
the algorithm implemented therein requires [146]

34
9

n log2 n− 124
27

n− 2 log2 n− 2
9
(−1)log2 n log2 n +

16
27

(−1)log2 n + 8 (4.35)

operations to transform the whole image consisting of exactly n pixels. Considering a 2D
image of 512 × 512 we see that the fast Fourier trasform requires 16621840 ops in total.
After normalizing with number of transformed pixels we arrive to 63.4ops/px. Thus,
utilization of the convolution theorem necessitates 2 · 63.4 + 6 = 132.8ops/px. Note again
that this number is an increasing function of n. If we use the recursive filters devised by
Young et al. [143] with the staged approach with Gaussian filtering without the use of
interpolation [33] including the zero-mean correction [148, 145], we arrive to the constant
of 127ops/px irrelevant to the image size and Gabor filter parameters.

This observation is also supported in the work by Bernardino and Santos-Victor [145]
who has tabulated the number of required ops/px for the fast Fourier trasform for some
image sizes. From their results we read that the 2D staged filtering with recursive 1D
Gaussian filters and zero-mean correction is faster for any image of size 256 × 256 or
larger. It is also noteworthy that the Fourier transform cannot naturaly compensate for
boundary effects which, most of the time, results in enlargement of the original input
image with proper boundary prior taking its transform, which, in turn, results in even
greater number of ops/px (not mentioning also the need for auxiliary image buffers to
store the enlarged copies).

When considering a development of time consumption with respect to the number of
processed pixels, the fast Fourier transform also suffers from, sort of, erratic behaviour,
refer to Fig. 2 in the publication by Wirjadi and Breuel [31] for comparison on 3D images.
The authors measured a total time for the forward and inverse transform plus the time for
multiplication in the Fourier domain not including, as expected, the time to transform the

2http://www.fftw.org/
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convolution kernel. The erratic behaviour is due to the fact that more efficient computation
of the transform was available for certain image sizes, this is a well-known feature of the
fast Fourier transform. Since the expresion for total ops/px for the spatial filtering does
not include any term with image size, unlike the eq. (4.35), the time consumption grows
proportionally with the size of the convolved image. This is also evidenced in their work.
In the similar fashion, Young et al. , in Fig. 5 of [126], was comparing time consumptions
of 1D filtering with respect to the size of σ. They have obtained two constant curves, the
one for spatial filtering showed smaller times. Again, the measure of ops/px can be used to
explain this. However, we realize that recursive filters do not change their support with σ.
The Fourier transform provides convolution with virtually any filter, including Gaussians
with different σ, with the same rapidity provided the filter is kept smaller than the input
image.

On the other hand, Rahman et al. [151] has just recently reported very fast imple-
mentation of Gabor bank filtering. The filtering was taken in the Fourier domain and
processed, together with the Fourier transforms, on a recent graphical card (GPU) using
the CUDA [152]. They report that such Gabor bank filtering with 24 filters in total to-
gether with a few other operations, e.g., normalizations and summations, to simulate the
image processing in the static pathway of a spatio-temporal visual saliency model achieved
180 times shorter computation time than their former CPU-based implementation in the
C programming language. To process the whole pipeline it required around 47ms for single
frame of 512× 512 size [151].

4.2 The original publications

We have presented currently available means to perform convolution with complex Gabor
filters. We have provided a necessary theoretical and technical background so that we are
ready to proceed with reading our original publications on filtering [P1, P2, P3] as well
as the publications on the application of filtering in the optical flow computation method
[P4]. The rest of this chapter will cover selected topics from the publications in more
detail.

The first publication [P1] “Arbitrarily-Oriented Anisotropic 3D Gaussian Filtering
Computed with 1D Convolutions without Interpolation” proposes a way to convolve with
a general anisotropic Gaussian filter. The solution introduces a new coordinate system
given with a set of base vectors with the following two main features: the base vectors
define convolution directions that can’t fall off the pixel grid and the set of such vectors is
over-determined in the sense that the base vectors are not mutually linearly independent.
The notation should be understood as purely a technical one with only a certain parallel
in the usual terms in mathematics. Since there are more vectors defining the coordinate
system, the solution contains inherently some redundancy and, as such, it is not optimal
in terms of required ops/px. But it is stable, i.e., position-invariant, and slightly more
accurate. The solution is general for nD filtering, Table 4.4 on page 78, however, it is
tested and presented for the 3D case in the publication.

The second publication [P2] “Filtering with Anisotropic 3D Gabor Filter Bank Ef-
ficiently Computed with 1D Convolutions without Interpolation” follows on the results
of the first one. It deals with complex Gabor bank filtering approached in the staged
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manner. It shows that if a bank fulfills some constraints on its structure, the inherent
redundancy of underlying Gaussian filtering can be diminished. The main result is that
certain quadruples of complex Gabor filters can be computed with optimal consumption
of ops/px even when the redundant but otherwise stable and more accurate Gaussian
filtering is employed.

The third publication [P3] “Boundary Treatment for Young–van Vliet Recursive Zero-
Mean Gabor Filtering” proposes a correct and effective initialization of 1D recursive fil-
tering based on the Young et al. family of filters, eqs. (4.13),(4.14). It also gives a formula
on how to easily compute the scaling coefficient for, so called, zero-mean correction of the
filter [143, 148, 145]. We believe that correct use of popular Young et al. recursive filtering
is now described completely in the literature, see Table 4.3 on page 68. This publication
is currently subject to final minor revision.

The fourth publication [P4] “Improving Accuracy of Optical Flow of Heeger’s Orig-
inal Method on Biomedical Images” proposes two major changes to the acknowledged
and recognized energy-based method for optical flow computation by David Heeger [106],
which was already briefly explained in Section 3.3.4 on page 53. The method’s framework
was kept, only filtering and weighting “subsystems” were changed. The changes led to
greatly improved performance on “set1” and slightly improved performance on “set2”,
both sets consisted of time-lapse fluorescence microscope images. All test images were
from artificially generated ground-truth datasets (will be explained in the next chapter).

4.3 Additional notes to the original publications

4.3.1 On Gabor filter symmetries

This section is related to our second publication [P2], which deals with Gabor filtering
banks. Details are given in the publication. We only remind here that the banks consist of
3D complex Gabor filters. Each is given with six tripples of the form (~bi, σi, wi), i = 1, . . . , 6
where ~bi = (ai,1, ai,2, ai,3)T is an integer base vector along which a 1D convolution should
happen with Gabor filter with σi and frequency wi. The tripples are computed using
our developed methods [P1, P2]. The input filters are given with the steering angles, as
in Fig. 3.5 on page 44, and other parameters for which refer to the original publication
Section 2.

We would like to show proof of the statement that given a filter with α (and the other
parameters, e.g., σ̄1,2,3) whose six tripples are (~bi, σi, wi), the same filter but with π − α

will have tripples (~b′i, σi, wi) with ~b′i = (−ai,1, ai,2, ai,3)T . In order to do that we need to
see the content of the matrix C, which is the Gaussian symmetric matrix and the envelope
of the Gabor filter:

C =




c11 c12 c13

c12 c22 c23

c13 c23 c33


 (4.36)
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where

c11 = cos2α cos2β σ̄2
1 + sin2α σ̄2

2 + cos2α sin2β σ̄2
3, (4.37)

c12 = cosα cos2β sinβ σ̄2
1 − sinα cosα σ̄2

2 + sin α cosα sin2β σ̄2
3, (4.38)

c13 = cosα cosβ sinβ (σ̄2
1 − σ̄2

3), (4.39)
c22 = cos2β sin2α σ̄2

1 + cos2α σ̄2
2 + (sin2β − cos2α sin2β )σ̄2

3, (4.40)
c23 = sinα cosβ sinβ (σ̄2

1 − σ̄2
3), (4.41)

c33 = sin2β σ̄2
1 + cos2β σ̄2

3. (4.42)

The matrix C ′, which is the Gaussian matrix for the second filter with π−α, has the same
form but with c′ij . Note that cos(π − α) = − cosα and sin(π − α) = sin α. We substitute
that into C ′ and observe that:

c′11 = c11, (4.43)
c′12 = −c12, (4.44)
c′13 = −c13, (4.45)
c′22 = c22, (4.46)
c′23 = c23, (4.47)
c′33 = c33. (4.48)

The matrix for the second filter differs from the matrix for the first filter only in sign
of the two elements. We now turn our attention to eq. (9) and, especially, to equivalent
eq. (10) in the publication [P2]. Comparing the systems in eq. (10) for the first and the
second filter, it is easy to see that if we change sign of all ai,1 and consequently in the two
elements c12 and c13 in the system of the first filter, we arrive to the system for the second
filter. The solution to both systems, the column matrix with σi, is the same, i.e., σi are
kept. In the same fashion, the matrix W , which is given in eq. (3) in the publication as

W = [cosαS cosβS , sinαS cosβS , sinβS ] (4.49)

where αS and βS is the orientation of the filter carrier, differs for the two filters only in the
sign of its first element. Denote W ′ as the W with the changed sign. The frequencies wi in
both tripples are (the same) results of multiplications W~bi respective W ′~b′i. To conclude,
we see that by changing sign of the first element in all base vectors for the first filter with
α, we obtain the tripples for the second filter with π − α.

This result is then used to provide a mask of base vectors that can be used in the
computation of both filters [P2]. This enables to share some 1D convolutions between the
two filters and to save some computation time as well. The other symmetries suggested
in the publication can proved similarly.

4.3.2 Note on bank filtering efficiency

Considering Fig. 9, The histogram of filtering efficiency, in the publication [P2], we see
that the 100% efficiency has never been reached. That may indicate that there is actually
no adequate filtering quadruple that would score the 504ops/px (like it does the competing
approach by Lampert and Wirjadi [32] for four Gabor filters). Problem with Fig. 9 is that
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it computes efficiency for all convolutions with a whole bank. The tests in the publication
[P2] were designed such that every bank contained also a pair with α = 0 and α = π/2,
which we treated separately as only a pair. According to the publication, the optimal
convolution efficiency can’t be reached in practice for only a pair of filters. We have,
therefore, never achieved the (overall) optimal efficiency for any bank in the tests in the
publication. Despite that, the efficiency is on average very good.

4.3.3 Zero-mean Gabor filters

Following Section V from our last publication [P3] we realize that when conducting 1D
complex Gabor filtering, the real part of the filter may offset its responses, see Fig. 7 in
the publication. This is because [121] the real part of Gabor filter is even whereas the
imaginary part is odd. Averaging impulse response values of the imaginary part of any
1D Gabor filter, we always obtain zero. This is where the term zero-mean has come from.
Averaging impulse response values of the real part of any 1D Gabor filter, we actually
compute its discrete Fourier transform for the “zero” frequency, the DC response. This
value is not always guaranteed to be zero as well. Note that this property of Gabor
filtering is important for the filtering-based optical flow computation methods because
both approaches base their velocity estimations directly on real and imaginary responses
of the filtering. If the real component would dominate, as a result of (artificially) increased
values by the offset, estimations would be biased.

The offset depends solely on parameters of the filter used. This includes not only
the shape of the filter, i.e., its Gaussian’s envelope parameters and frequency tuning. If
approximation to the filter is used, such as the recursive filters, the offset also depends
on particular filter coefficients as different variants of the recursive filter behave slightly
differently producing different Fourier DC responses. Clearly, the offset is present in
arbitrary nD Gabor filtering.

In order to remove this offset from a filtering result, we have adopted the method of Lee
[121]. For a given nD complex Gabor filtering, the method requires to additionally filter
input image with the Gaussian envelope of the Gabor filter. The result after this additional
filtering is multiplied with a scale constant and subtracted from the Gabor filtering result.
Since Gaussian filtering is a real filtering, the subtraction modifies only the real part of the
complex Gabor filtering result. The scale constant/coefficient is directly the DC response
of the Gabor filter [121, 148].

This solution works beautifully for FIR filters. If IIR (recursive) filters are used then
any formula for Fourier transform of a Gabor filter, such as eq. (3.26) on page 45, cannot
be used. For 1D IIR filters from the Young’s et al. family [126], i.e., those based on
eqs. (4.13),(4.14), closed form formulae for the scale coefficients have been devised recently
[145] and [P3]. They can extended to nD filtering only if the given Gabor filter is separable
along the coordinate system axes [145]. For any filtering (FIR or IIR) with general nD
Gabor we propose to compute the scale coefficient from an experiment.

Our experience with 3D IIR filtering shows that it suffices to use an image of size
50×50×50 pixels filled with constant value. We apply once the given Gabor filtering
as well as the additional Gaussian filtering on this image. Taking the two results from
centre of both images and dividing them, we obtain the scale coefficient. Note that both
filtering is expected to produce constant responses on constant inputs. The centre value is
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Figure 4.13: From left to right: Twelve measured responses of the original method on real data in
region with no motion; ideal responses of the same filters for velocity (-2,0) that best “matches”
the measured ones according to the original weighting scheme; ideal responses of the same filters
for correct velocity (0,0) that should have been determined in this case. The axes show filter tuning
to velocities (v − 1)px/frame (if the filter belongs to vth filtering bank) in the spatial direction:
0→0°, 1→45°, 2→90°and 3→135°.

advantageous for recursive filters as it is sufficiently far from borders should the IIR filter
produce spurious responses after reaching the border.

4.3.4 Energy-based optical flow method

In this section we would like to comment on our application of the fast spatial anisotropic
filtering in the optical flow energy-based computation method [P4]. We would like to stress
that the presented results are only preliminary. The topic currently lacks deeper analysis
of filter responses on real and tested images that would discover optimal filter tuning.

The original energy-based method aims to mimic the human visual system [25] by
utilizing a collection of bandpass filters. Their purpose is to provide a coarse preview,
by means of a collection of energy responses, of the Fourier spectra present in the visual
input (the image sequence) based on which the dominant motion is estimated. We remind
that the method, for every pixel, basically seeks optimal velocity by seeking a collection of
ideal responses, which is a function of velocity, that matches a collection of the measured
responses.

We have tried to increase the size of the filter collection as well as to optimize the
filter tuning to obtain a denser and a more selective preview of the Fourier spectra. The
distribution of Fourier images of the proposed filtering ensemble is shown in Fig. 3 in
the publication [P4]. The filters were tuned to examine 4 spatial directions (0°, 45°, 90°
or 135°) and 9 velocity magnitudes (-4px/frame, . . . , -1px/frame, 0px/frame, 1px/frame,
. . . , 4px/frame). In order to make good use of the proposed collection of filters, we had
to modify the weighting scheme of the original method. The original method focused
to minimize the overall error. We propose to favour collection of ideal responses whose
strongests peaks correspond with strongests peaks in the measured collection, see Fig. 4.13.

Note that this work has been an early attempt, to the best of our knowledge, in fully
employing the anisotropic shape of filters for optical flow. In spite of it, the filtering
collection managed to achieve two promising results: it managed to distinguish between
velocities faster than 1px/frame (example given in Fig. 4.14) and it managed to extract
relatively correct velocities inside a poorly textured region of motion (right-most column
in Fig. 4 in the publication and obtained flow fields in Fig. 6 in the publication [P4]). The
former result deserves two more comments. Firstly, recalling the coarse-to-fine processing
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Figure 4.14: Examples of measured, in the left, and ideal, in the right, responses of the proposed
collection of 9×4 filters. The measured responses were obtained on real data translating at velocity
(0,-2)px/frame. The ideal responses were computed for the same velocity. Filter tuning is given
as in Fig. 4.13, velocity is given as (v − 4)px/frame.

framework from Section 3.2 we realize that we may decrease the number of levels in
the underlying pyramid as well as the number of warping steps if we can handle greater
velocities at single level. Secondly, we suggest to conduct further analysis to discover why
in Fig. 4.14 there is no such strong distinction between responses on real data translating at
velocity of magnitude 2px/frame while there is a single strong peak in the ideal responses
of exactly the same filter collection.

Afterall, the proposed method managed to improve the average accuracy from 35.9° to
13.8°, a dropdown by 61%, on the test dataset “set1”. We read this as a clear indication
that the proposed method has potential to provide accurate flow fields.
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Chapter 5

Generator for evaluation
of optical flow

Once we have implemented an optical flow computing method, we may be interested in
the following three questions. Firstly, how good does the method perform compared to
other methods, e.g., to the state-of-the-art methods or simply to other variants of the
same approach. This immediately raises another question. Secondly, on what type of
motions or displayed situations in image sequences the method works better or worse.
For instance, can it also handle splitting of cells or only a simple movement of these?
Or possibly a more low level question is on what type of image data is the method still
applicable? For instance, how much of noise can the method stand up? Thirdly and last
but not least, we should ask about reliability and accuracy of the method. This is an
important question to answer before one is about to use the method in real applications.
For instance, if the method is to be applied to provide data for some velocity measurement,
it is vital to understand its accuracy. If the method should provide data for some detection
of movements, it is good to understand its reliability in discovering motion, and so on.

We address these topics in the following sections. We will provide an overview of the
current solutions to the topic by other authors and give some rationale to introduce our
own solution, which is presented in the second half of this chapter.

5.1 Evaluation of optical flow methods

5.1.1 Evaluation against ground-truth dataset

Seeking a way to answer these questions, we realize that we are seeking a tractable, re-
peatable, undenyable, quantitative, representative and objective evaluation of an error
of an optical flow computation method. As for a quantitative assessment of error rates,
the most popular approach is to measure accuracy of computed flow vectors by means
of angular error measure function, eq. (5.1), of computed and expected vectors [83]. The
expected vectors are often called the ground-truth vectors to signal that they are repre-
senting a correct solution. Consequently, the ground-truth flow field is a flow field with
ground-truth vectors. Thus, a complete ground-truth dataset for evaluation consists of a
test image sequence with associated ground-truth flow fields for every pair of consecutive
images in the sequence. An average from computed angular errors is then computed.
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This was the approach to compare between methods, besides dealing with qualitative
properties, in acknowledged survey publications [72, 81, 96, 97]. And it is still a com-
mon approach to validate quality of proposed methods in many individual publications
nowadays [153, 94, 73, 154, 103] (citation list is not ment to be complete).

Such ground-truth benchmark datasets also enable us to perform repeatable, un-
denyable and quantitative evaluation. In order to meet the remaining requirements on
evaluation as well, the benchmark images must closely represent the type of real images
for which the performance measurements of a tested method are actually desired to be
obtained [96, 155, 156, 154, 157]. In other words, one should test a method ideally on data
on which the method is expected to be applied. Finally, obtaining or preparing benchmark
datasets for given application should also be relatively easy and error-prone.

5.1.2 Error measures

Aside from the “classical” angular error measure,

AE(v, vgt) = arccos
(

(x, y, 1) · (xgt, ygt, 1)
|(x, y, 1)| · |(xgt, ygt, 1)|

)
, (5.1)

for a computed flow vector v = (x, y) and a ground-truth vector vgt = (xgt, ygt), the
another widely adopted measure since Otte and Nagel [158] is the endpoint error measure:

EP (v, vgt) = |v − vgt|. (5.2)

The u · v is a dot product of vectors u and v and the |v| is the L2-norm of a vector v.
The angular measure is sometimes denoted as a relative measure since it measures angular
deviation of the computed flow from the correct/expected one regardless the magnitude of
vectors (due to the normalization in the denumerator). The constant element is appended
to avoid divisions by zero when zero-length vectors are used, what has enabled the measure
to be defined for any two flow vectors. It also allows to distinguish between collinear
computed and ground-truth vectors. Although relativization is often welcomed, in this
case it was critized [158] because the same (absolute) deviation yields higher penalization
for vectors of smaller magnitude. This was the reason to establish the measure of absolute
error in flow endpoint, the endpoint measure, eq. (5.2). In fact, both measures are used
together nowadays as exemplified in the recent publications [155, 97, 154, 103]. However,
even the endpoint measure suffers from similar deficiency when normalized. McCane et
al. [96], for example, suggests to correct both measures with appropriately tuned thresholds
δ and T :

AE(v, vgt) = arccos
(

(x, y, δ) · (xgt, ygt, δ)
|(x, y, δ)| · |(xgt, ygt, δ)|

)
, (5.3)

EP (v, vgt) =





|v−vgt|
|vgt| if |vgt| ≥ T,

∣∣∣ |v|−T
T

∣∣∣ if |vgt| < T and |v| ≥ T,

0 if |vgt| < T and |v| < T.

(5.4)

The values of δ and T depend on how much one is not interested in measuring errors of
small vectors because the greater the thresholds are, the less small vectors contribute to
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the overall error, and vice versa. Occasionally, one comes accross a different flow error
measure to evaluate results of some optical flow method, e.g., Galvin et al. [81] introduced
the error normal to gradient,

EPvs.G(v, vgt,∇I1st) =
|(v − vgt) · ∇I⊥1st|

|∇I1st| , (5.5)

to see how effectively a method compensates for the aperture problem. The ∇I⊥1st is a
vector perpendicular to the image gradient at the (common) origin of the computed and
ground-truth vectors. Note that the component flow, i.e., vector collinear with image
gradient, is often considered as a correct solution in situations with strong aperture effect.

Another way to accent evaluation of certain feature of an optical flow computation is
to restrict evaluation spatially and temporally in the input sequence such as to regions of
motion discontinuities or textureless regions [97]. Clearly, the default is to use the whole
image. However, some methods, sort of, assign a confidence indicator to every computed
flow vector. The purpose is to discount flow vectors from an evaluation that were, so to
say, more guessed than computed. Thus, portions of more confident flow is only taken
into consideration [72].

To complete the overview of possible approaches, we briefly mention the last two eval-
uation measures. An attempt by Baker et al. [97] was made just recently to establish a
set of ground-truth benchmark sequences from vision, this is also called [103] the “Mid-
dlebury flow dataset”1. Four different aspects of movements were incorporated into the
dataset. Besides the angular and endpoint angular error measures, they used cumulative
histograms of errors for both measures as well as values at 50th, 75th and 95th percentile.
Another aspect they focused on was the ability of computed flow fields to assist during
interpolation between frames, in other words, the ability of computed flow field to predict
intermediate frames. The ground-truth was not a flow field but this time it was an inter-
mediate image that was originally part of the sequence and was omitted from it before an
optical flow computation took place. A simple sum of squared differences was then ap-
plied on the flow-predicted and original intermediate frame. This is becoming increasingly
interesting test for the next generation of view-based motion-compensated compression
techniques [97]. Exactly the same idea was studied earlier by Lin and Barron [159] who
were exploring the error associated with forward (the 1st frame is transformed onto the
2nd frame) and backward (the 2nd frame is transformed onto the 1st frame) transfor-
mations according to a given flow field. Their aim was to evaluate performance of given
optical flow method on real data (with no ground-truth information) by transforming one
input image according to the computed flow field and compare the transformation with
the other input image using the RMS.

5.1.3 Obtaining appropriate ground-truth datasets

As most of the optical flow methods are originating traditionally from the field of com-
puter vision, benchmark datasets from vision are still serving as a kind of “standartized”
common ground to all researchers [96, 97]. The clear evidence for this is the popularity of

1http://vision.middlebury.edu/flow/
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the Middlebury flow dataset2, the popularity of the now-famous benchmarking sequences
first used by Barron et al. [72] such as the Yosemite sequence (performance of modern
techniques studied on this sequence even in 2005 [160]), or the translating and diverging
tree as well as popularity of the cubes sequence by Otte and Nagel [158]. We have also
occasionally used the well-known Hamburg taxi sequence, others did it as well [133]. De-
spite, researchers apply methods in different fields, e.g., for the cardiac motion estimation
from 2D sequences as in [161], from 3D sequences as in [79] or for measurement of mi-
tochondrial transport [162], to give only a few examples. And despite, they even further
develop methods based on experience gained in their field [102]. This source of ground-
truth datasets is useful especially when novel optical flow method is developed and should
be introduced to the “optical flow” comunity.

However, it is clear that appropriate ground-truth dataset from the domain of live cell
imaginery is required in order to responsibly select, develop, study and test applicability
of any optical flow method for this field. This brings us to the question of how can we
obtain such datasets. Naturally, the real acquired images do not have the ground-truth
information included.

We reviewed, therefore, known solutions on obtaining ground-truth datasets and com-
pared their main features in two tables. The fundamental difference between the tables
is whether a method processes an existing real sequence and only adds the ground-truth
flow field possibly in some automatic and unsupervised manner, see Table 5.1, or whether
a method artificially creates a new image, in fact a sequence of such images, accompanied
with the ground-truth flow field, see Table 5.2.

The first approach, Table 5.1, is typical for objects undergoing simple motions because
complex motions are more difficult to recover. The process typically exploits certain
special knowledge about the input real data which can’t be generarily incorporated into
any optical flow computation method. Note that to precisely recover motion is also the
task of evaluated optical flow method. The scenario is such that the optical flow methods
recover motion only to some certain extent because they are lacking this extra knowledge.
Otherwise, if the process of ground-truth motion recovery would make it without the extra
knowledge on any real input data, we don’t have to search for another solution anymore.

We may always take the direct way, which is to prepare the ground-truth flow field
manually. This is tedious, has low degree of reproducibility and is also rather errorneous
[168]. The prepared flow field is even more unreliable when two 3D image stacks are paired.
In fact, the 3D images must be paired at voxel level as a consequence of assigning a ground-
truth flow vector to every voxel. This is extremly laboured and aggravated by inspection of
3D volumetric image on a 2D flat screen. A possible alleviation may be achieved by pairing
only a few points and incorporating some, possibly elastic, transformation to compute
smooth flow field, similarily to what McCane et al. [96] does. Theoretical possibility is
to use a flow field computed by some other method as a ground-truth flow field. This,
however, enables only to “tune” the developed method to work as good as the other
method does leaving no room for improvement. However, Liu et al. [163] shows that for
assessing ground-truth optical flow fields in vision images humans actually quantitatively
achieve better results than state-of-the-art algorithms often do. As a consequence, their
software offers means to correct computed flow field in order to turn it into a ground-

2Starting with only 5 compared methods in 2007, the quantitative comparison has already been made
over 40 methods at the time of writing.
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Authors Method & Images Year
- – pair of images is manually pixel-wise paired

– slow, tedious, unreliable
Otte and – camera moves around a few cubes 1994
Nagel [158] – camera mounted on calibrated robot arm which

provides precise camera coordinates and orientation
– static scene, only camera movements

McCane et al. [96] – camera moves around a few cubes 2001
– utilizes properties of projective geometry and

few manually established inter-frame correspondences
– objects can only be planar polyhedral
– limitations on configuration of objects in a scene
– static scene, only camera movements

Baker et al. [97] – indoor scenes with solid deformable (rubber) materials 2007
– objects in a scene painted with fluorescent pattern
– test images captured in visible light
– flow field extracted from images captured in UV light
– dynamic scene, nonrigid motions, camera movements

Liu et al. [163] – semi-automatic annotation of any video sequence 2008
– based on layered motion segmentation
– limited support for nonrigid motions

Liu et al. [154] – approximated GT only for road scenes 2009
– expects zero roll and constant tilt of ego-vehicle

Table 5.1: Overview of approaches to obtain ground-truth datasets with real images
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Authors Method & Images Year
Barron et al. [72] – picture of a tree transformed as a whole 1994

– simulate camera movement normal/along to its line of
sight resulting in translation of/“zoom” into the image

– the displayed reality is fixed in the sequences
– only smooth flow fields, no sensor noise

Galvin et al. [81] – man-made scenes: office and car on the street 1998
– rendering scenes with modified ray-tracer Mirage
– ray-tracing allowed for discontinuities in the flow fields
– rigid motion, no sensor noise

Mason et al. [164] – present details on the approach of Galvin et al. 1999

McCane et al. [96] – man-made scenes: car in the city 2001
– follows up on the approach of Galvin et al.
– limited rendering (no storage for highly detailed texture

and models, approximated simulation of physical lighting
effects) due to capabilities of computes at that time

– rigid motion, no sensor noise
Baker et al. [97] – natural scenes: rocks with bush or tress, motion blur 2007

– advanced rendering utilizing ray-tracer mental rayT M [165]
– image sequences show occlusion and large motions
– rigid motion, no sensor noise

Baker et al. [166] – natural and man-made scenes: a tree and city 2009
– advanced rendering utilizing 3Delight renderer [167]
– nonrigid motion, occlusion, no sensor noise

Hedborg and – present details on generating synthetic scenes 2008
Forssén [156] with advanced lighting effects

Table 5.2: Overview of approaches to obtain ground-truth datasets with synthetic or simulated-real
images
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truth flow field. They use the well-established and high-ranking [97] method of Bruhn
et al. [100]. Anyway, still the main drawback remains. And that is the fact that we are
only annotating an existing real sequence. The first approach simply do not generate an
artifical previously non-existing image sequence. For example, one can’t test her method
on image data showing an anticipated biological phenomenon.

The second approach, Table 5.2, is characteristic with evidently synthethic image se-
quences. In fact, the sequences display visually rather compelling content in the recent
publications [166] but it still easily distinguishable from real images. We believe that the
source of apparent deficiencies is in the demand for complex models. The world around us
is complex, complex models are, therefore, necessary. But they are also too complicated
to control resulting in incorporation of model simplifications. These are the clues that
prevent generated images from perfection. Positive on this approach, however, is that it
shoud be easy to generate as many and as long sequences as it is required. This aids in
developing accurate and reliable statistics on behaviour of evaluated method. We refer to
the first approach as to the generating pseudo-real image sequences.

Note on the subtle difference in terminology. It had been dealt with earlier in Sec-
tion 3.1.3. In order to create pseudo-real image sequence, the ideas from computer graphics
are always employed [81, 164, 156, 166]. In the computer graphics we often build up a
virtual 3D scene with somehow placed objects. The situation is almost always represented
with some 3D vector model of the scene with associated textures to faces that emerge in
the model. This is where the overwhelming amount of parameters come from. A rendering
algorithm is used to, let us say, convert the 3D vector model into 2D raster plane. The
algorithm captures a snapshot of the scene at certain time instant. The situation in the
scene slowly evolves meanwhile it is being regularily captured (rendered) by means of a
sequence of 2D raster images, refer to Mason et al. [164] for nice illustrations. The motions
in the 3D space between two consecutive time instants is represented with the motion flow
field. The projection of the 3D space onto 2D imaging plane doesn’t immediately yield
the optical flow field. This is especially true when specular light is used in the scene. As
noted in [164], the optical flow is a velocity field which transforms one image on the other,
it is sensitive to apparent motion of brightness patterns. Contrast it to the motion flow
field which truly represents the motion of objects regardless of lighting conditions in the
scene. The computation of ground-truth optical datasets, therefore, introduce some bias
in ground-truth flow fields. Since the dataset is generated by a machine, we expect the
bias to be predictable. Despite that, the ground-truth flow field generally correspond with
the displayed scene perfectly, even at sub-pixel accuracy.

5.2 On generating ground-truth datasets for microscopy

In the following text, we will focus on the approach of generating artificial pseudo-real
ground-truth datasets for evaluation of optical flow methods on live cell images. The
ground-truth flow fields should describe motion in test image sequences with sub-pixel
accuracy. The approach should be able to generate 3D time-lapse sequences.

Unfortunately, we can’t use any method of those summarized in the previous chapter
exactly as it is. There are several reasons for it. First of all, none of the methods is directly
capable of producing sequence of 3D images. But we may think of generalisation of some.
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Anyway, aside of methods’ technical limitations or incompatible assumptions as it is the
case of robot arm [158], of painted objects [97], of the expectation of road [154] or just of
the inherent simplicity of generated images [72], there exist a significant obstacle. It is the
different understanding of the observed scene. In the computer graphics we usually assume
that displayed scene is physically far greater than is the imaging device and, therefore, we
assume the scene is also relatively distant in order to fit into a field of view. It is enough
to look at the sort of generated objects in both tables. This assumption leaves a room
for objects to appear at different physical distances from the imaging device, what, in
turn, allows for occlusion or motion towards the imaging device. But more importantly, it
leaves room for the difference between the motion flow and optical flow as it was discussed
earlier.

If we greatly simplify the situation such that we could expect uniform ambient light
with no specular reflections, that we could expect all objects in the field of view to be
aligned at the same distance from the imaging device and, even more, that we could expect
this distance to be so close and objects so small that we could assume parallel casting of
rays from all the objects towards the imaging device, instead of the usual perspective
geometry, then the motion and optical flows would be the same. In other words, the scene
would be flat in depth with its normal parallel to the viewing direction, only objects’ front
faces would be visible without any reflections or shadows. In the microscope, as it was
described in Section 2.1.2, the imaged objects are really tiny. Consider, for example, the
one in Fig. 2.8 whose lateral diagonal is only 27.5µm long and axial dimension is not more
than 5.0µm. It is very shallow in depth and, in fact, it is also very close to the microscope
objective. Only stained objects, ideally, produce light that reaches imaging device, no
considerable reflections occur. We finaly realize that, in this type of microscopy imaging,
we may actually assume that motion and optical flow fields are identical. In the case of 3D
images, which are essentially only stacks of 2D images, the situation is the same except
that the third coordinate is added. Indeed, every 2D slice in the 3D stack represents
content of single thin optical section whose normal is parallel to the optical path, i.e., the
normal is in the axial direction. Sections are numbered and identified exactly with this
third coordinate.

This finding, however, disqualifies any renderer designed for the computer graphics for
our needs in microscopy. As a consequence, it also disqualifies all the remaining approaches
in Table 5.2. It has only remained, from the methods in both tables, the approach of semi-
automatic or manual annotation of time-lapse sequences. This is always a possibility. But,
as mentioned earlier, this approach is limited only to existing sequences and is very tedious.

Another great issue is the generation of texture. The live cell microscopy images
are characterstic with low SNR (signal-to-noise ratio), low contrast, they are rather faint
monochromatic (without colours) typically with absence of sharp edges. These microscopy
images are in all aspects in contrast to many man-made scenes or artificially generated
natural sceneries — images for which most of the pseudo-real generators are designed to.
In the same fashion, it may be rather difficult to construct sufficiently complex yet easy to
control model for biomedical structures. For instance, when considering a model for the
brighter (foreground) patches in Fig. 2.8 we may think of using spheres or ellipsoids until
we notice the C-like shaped patch in the middle of Fig. 2.8B. The situation is again bit in
contrast to scenes, for instance, with buildings or trees with many but still rather similar
leaves. Fortunatelly, first solutions have already appeared [169, 170, 53, 171] and more is
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expected to come. In our approach we have opted to, sort of, learn from given sample real
image in order to mimic its texture. The learning is supported by layered segmentation
(explained in the next paragraph). But to tell the truth, this learing is again based on some
model of texture determined apriory and, therefore, its usage is limited. Theoretically, it
should work well whenever the background object is displayed with intensities obeying
unimodal distribution.

Moreover, it is not only to model shapes and textures when generating a sequence, we
must also develop a model for motion. At least, this one seems to be easy because when
displaying image from fluorescence microscopy we are actually displaying, again only in
the ideal case, only the stained cellular structures. We refer to them as to the foreground
objects. These displayed structures typically serve the same function and so undergo
similar type of motion, e.g., translation, rotation, shrinking, splitting, joining, even no
motion, or combination of some of them, etc. These movements are, however, relative to a
cell as such. But the cell may move as well. If the staining of structures worked perfectly,
we would see only them in the images without any contour of a cell. Unfortunatelly,
this is rarely the case due to, so called, non-specific staining, see Section 2.2.1. The
staining typically has the ability to delineate a cell contour creating effectively a mask
of the cell in this way. We refer to this mask as to the mask of a background object, a
mask for background. Its purpose is to define region on which to perform the movement
of background, i.e., the motion of the whole cell. In the case of non-specificic staining
missing in the image, we consider the background mask to spread over the whole image.
Similarily, the foreground objects are identified in the image with mask for foreground.
A two-layered segmentation is established in this way in which the background performs
some global motion and in which the foreground objects perform exactly the same global
motion plus their additional individual intracellular local motions. In the vision field, this
could have been simulated with camera motion representing the global motion and with
dynamic scene representing the additional foreground motions.

Towards this end, in order to create a new generator for ground-truth datasets in the
field of live cell fluorescence microscopy we need to use different rendering technology and
adjust models for shape and texture. In fact, no renderer is required because the motion
and optical flows are the same. According to the recent publication by Svoboda et al. [171],
the process of generating microscopy images can be splitted into three phases each being
fairly complex. As a result, to control the whole process of generating image of particular
cell, which is to apply the shape model and to generate the texture, is to supply it with
many parameters. Many of these are related to the shape of the cell and its structures
and to the way it is imaged in a microscope. Instead, we focus only on the control of
both “background” and “foreground” motions. In our approach, the omitted parameters
are replaced by supplying a sample real image. The generator then “tears” the image
according to the background and foreground layers and forces the pieces to move in the
image sequence. Of course, ground-truth flow fields are generated during the process as
well.
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5.3 The original publications

Now that we have explained motivation and presented background information on the
process of automated generation of optical flow test images with ground-truth flow fields,
we will briefly describe our related original publications [P5, P6]. The rest of this chapter
will then cover selected topics from the publications in more detail as well as a more
general concept for generating ground-truth test data (primarily) for live cell studies.

The first two publications are focused on the way to artificially generate a sequence
of images, which are visually very close to given input (possibly real) image, and on
the way to make its content appear moving. The first publication [P5] “On Generating
Ground-truth Time-lapse Image Sequences and Flow Fields” is merely focused on some
technical details regarding the creation of high fidelity images. The second publication [P6]
“Pseudo-real Image Sequence Generator for Optical Flow Computations”, on the other
hand, is mainly focused on some technical details regarding the rendering of a sequence of
such images while maintaing their high quality. Despite we regard the second publication
as a continuation of the topic of the first publication, they both had to treated as, say,
stand-alone documents and as such they have certain overlap in common.

The third publication [P7] “Estimating large local motion in live-cell imaging using
variational optical flow” demonstrates rather good performance of modern differential
methods on live cell time-lapse images. In spite of that the optical flow computation is the
main topic of the publication, we have included it into this chapter because the accuracy
measurements in the publication were conducted on artificially generated ground-truth
datasets. In fact, the existence of the generator was crucial for this publication and also
for the other one [P4].

5.4 Additional notes to the original publications

5.4.1 Forward versus backward transformation

The key element in our approach that performs motion of image regions is the image
warping, in particular the backward transformation.

In ground-truth datasets we have typically several frames, i.e., images captured at
consecutive time instants, with flow field associated to every pair of consecutive frames,
one field to one pair. Considering a pair, we talk about the first (earlier) and the second
(latter) frame. Using this terminology, every flow field vector vgt(x) at position x describe
the shift of intensity I(x, t), found at coordinate x in the first image captured at time
instant t, to the new coordinate x + vgt(x) in the second image, i.e., it should hold

I(x, t) = I(x + vgt(x), t + 1). (5.6)

Naturally, one would probably preferr to construct the second image at t + 1 from the
first one at t, i.e., in the forward direction. It really seems easy: all we need is to grab a
pixel value from the first image and put it at appropriate position (a vector’s end) in the
second image. But the opposite is true, especially when flow vectors contain elements from
the real domain. In the case that vgt(x) containes real-valued elements, the coordinate
x + vgt(x) will fall off the pixel grid. Some interpolation technique must be used to
interpolate on (nearest?) integer-valued coordinate. In fact, the forward transformation

98



A B C

Figure 5.1: Illustration of the principle of the forward and backward transformations in A and
B, respectively, when interpolation must be used. During the forward transformation, vectors
originating from pixels G,F,H and I had to be sought out to enable computation of pixel B. Notice
that vectors contributing in the interpolation may be originated from relatively distant coordinates
when a flow field is not smooth enough. In the same fashion, two or more vectors originating from
relatively distant coordinates may “fetch” the same value in the backward transformation in B.
In C, example of colour-coded flow field showing clockwise rotation of the background object/cell.
Every flow vector is described with colour pixel; the colour codes direction whereas the intensity
codes magnitude of a vector. Figures A and B reprinted from Ulman and Hubený [P6].

is approached by processing every pixel, i.e., iterating over all valid pixel coordinates,
of the second image. For each pixel, several vectors that end nearest to the processed
coordinate are sought out. A pixel value in the second image is interpolated from the first
image’s values at beginnings of the respective vectors, see Fig. 5.1. This introduces time
complexity of O(n2) of the forward transformation where n is the number of pixels in an
image. We may only modify the “implementation constant” by changing the interpolation
technique, which changes the number of nearest vectors that must be sought out, and by
narrowing the search region, which changes the number of vectors that must be evaluated
during the seek for nearest ones and also which changes the limit on maximum length
of detectable/usable vector. If a vector is long enough, it’s beginning will never be close
enough to any given coordinate and the vector will be always disqualified from the seek.
Consider, for instance, a flow field for 2D rotation around centre of image, see Fig. 5.1C,
where vectors further from the centre are longer than vector closer to the centre. To keep
the transformation general, no assumption on the flow fields must be made. This enforces,
above all, to keep the search region rather large what renders the method considerably
slow.

The backward transformation creates the first image at t from the second one at t+1,
i.e., in the backward direction. To establish a value at coordinate x in the first image,
one has to look into the second image for pixel value at coordinate x + vgt(x). In case
of real-valued flow vector, some interpolation technique is used on values from the second
image. The time complexity is asymptotically linear. The “implementation constant” now
depends only on the number of coordinates one has to visit during the interpolation.

It is noteworthy that any of the two transformations don’t perform without errors.
The problem is intrinsically in the use of real-valued flow vectors that push pixel values off
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the pixel grid. Interpolation techniques must be used in both cases to find values at the
integer-valued grid coordinates. This essentially influences the computed value. Based on
results of Lin and Barron [159], it appears that the best solution with smallest RMS errors
is to use the backward transformation with bicubic spline interpolation. It performed
equally well as the forward transformation with forward displacement interpolation with
the exception in that the forward version has worse time complexity as discussed above.
We have opted, therefore, for the faster backward transformation. In addition, as the RMS
error rates reported in their publication for the backward versions were rather balanced,
i.e., the difference in performance between interpolation techniques used with the backward
transformation was not greater than 1.3 of intensity points, we have opted to use simplier
and a bit faster bilinear (for 2D and bicubic for 3D frames) interpolation technique in our
generator. The level of noise or of disturbing non-specific background staining is typically
higher than 1.3 of intensity points, see the magnitude of variations in intensity profiles in
Fig. 2.8A,D. On top of it, our approach assures that sample input image is transformed
exactly one time to create a image/frame in the generated sequence. The amount of error
due to transformations is kept as low as possible in this way.

Also note that Lin and Barron call these the reconstruction techniques whereas we call
them the tranformation techniques. This difference in names is due to the difference in
the way we use the techniques. While their original aim was to warp, say, the first image
with the forward reconstruction technique according to a computed flow field so that the
warped image should, in the event of correct or close-to-correct field, resemble the second
image. They measured the difference between the reconstructed and the original one to
judge on quality of the computed flow field. Our aim is to change the sample input image
according to some flow field simply to create a next new image in the sequence rather than
approximating some existing one. Hence the label transformation was adopted.

5.4.2 Piece-wise smooth flow fields

The use of interpolation in the backward transformation has introduced a few issues into
the process of generating image sequence. When generating, the sample input image
should be, sort of, iteratively transformed to produce next frames in the sequence. In our
generator, the iterative transformation of frames is replaced with iterative concatenations
of some helper flow field. This field describes how to change the sample input image
to create currently processed one with the least number of transformations possible, i.e.,
with only one. Figure 5.2 demonstrates the rate of degradation of transformed image after
only a few iterations. The degradation is a result of the bilinear interpolation, which is
essentially nothing but the weighted average of four neigboring pixel values. The more
different the four pixel values are, the more prominent the averaging becomes with every
next iteration — until the transformed image is considerably smoothed. On the other
hand, if the four pixel values were all the same, the interpolation would perform well.
Clearly, we can’t insist on, at least piece-wise, smoothness of input images. We rather
demand it for the created flow fields.

The demand for piece-wise smooth flow fields that would be used with the backward
transformation is twofold. Firstly, we use the backward transformation during the concate-
nation of two flow fields and so we would like to limit errors produced by the interpolation.
Secondly, as it was demonstrated in our publications, flow field with motion boundaries
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Figure 5.2: Degradation of a region of an original input image with artificial white cross added, in
D, after it is iteratively transformed with flow field corresponding to the translation of (1.3,0.5).
Images “translate” to the right and slightly down. Note that the image in A, which is after the
3 transformations, actually starts this 4 frames long sequence. This is a feature of the backward
transformation which “generates from the end”. The line width of the cross is 1px in the original
image. All images were enhanced for printing purposes.

produces artifacts irrelevant of whether backward or forward transformation is used and
of what interpolation technique is used.

Why do we need the backward transformation for concatenation of two flow fields?
In the forward sense, we would like to transform given image first according to flow field
v1(x), where x is coordinate within the image, and afterwards the result further transform
according to v2(x′),x′ = x + v1(x). We aim to compute flow field v(x) that produces
the same final transformed image, see Fig. 5.3. The same thing said but in the backward
sense, the v(x) should fetch pixel intensity from the same coordinate x+ v(x) from which
it would be fetched by (in the backward sense) the first transformation v2(x′) and stored
temporarily at coordinate x′, from which it would be fetched by the second transformation
v1(x). We resolve:

x + v(x) = x′ + v2(x′) and x + v1(x) = x′, (5.7)
x + v(x) = x + v1(x) + v2(x + v1(x)), (5.8)

v(x) = v1(x) + v
BackTbyv1(x)
2 (x), (5.9)

from which we see that concatenation can really be conducted as sum of the v1(x) and
backward-transformed v2(x). The v

BackTbyv1(x)
2 (x) is the vector v2(x′) backward fetched

by the vector v1(x) so that it appears at the coordinate x. As Fig. 5.3 suggests, if a
flow field is smooth enough (to avoid interpolation effects) and is backward transformed
according to another smooth enough flow field (to avoid transformation artifacts), the
transformation error shouldn’t be much in effect. For instance, flow field showing some
translation is constant, i.e., all flow vectors from the field are the same. Concatening two
such flow fields can’t produce any error. Currently, we provide the generator only with
flow fields that represent translational and rotational motions.

The use of smooth flow fields prevents from artifacts in transformed images such as
the “copy” effect, examples were given in our publications. In order to be able to provide
ground-truth datasets with motion boundaries, i.e., with distinct flow patches of sharp
border as in Fig. 5.1C or as in Fig. 5.4C without the “copy” effect, we have proposed
to split the simulated motion into two layers: the (bottom) layer with (global) motion
of the background object and the (upper) layer with (global+local) additional motions
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a) b)

Figure 5.3: The principle of concatenation of two flow fields, a case study. Note that in our
generator we are using the backward transformation which, basically, fetches pixel from vector’s
end to vector’s beginning. In b), the first image transformation would be according to the vector
v2(x′), drawn with the blue arrow, whose result would be transformed according to the vector
v1(x), drawn with the green arrow. The result of concatenation is the red vector, v(x), which is
a result of addition of the green and blue one, if the blue one would be translated to the green’s
beginning. In a), the blue vector is fetched to the origin of the green one’s beginning which is similar
to what the backward transformation does with pixel values. If the green vector is real-valued, we
need to interpolate. The four gray vectors would be involved in this case.

of foreground objects. We utilize separate helper smooth flow fields for the background
and for each foreground object, Fig. 5.4B, that are updated before generation of every
next image/frame. For example, the current background flow, the one relevant to the
currently processed pair of the generated sequence, is concatenated with every helper
foreground flow field to yield a new helper flow field. The sample real input image is
then transformed individually to give images of foreground objects at updated positions,
foreground objects are extracted and inserted into the generated background. Note that
these helper foreground flow fields are kept as small as possible in order to keep the
memory consumption low, Fig. 5.4A. This is especially critical when generating ground-
truth datasets with 3D frames. Similar process happens with the ground-truth flow field
relevant to the currently processed pair.

5.4.3 Supporting simulated coherent motions

Based on our observation of real time-lapse image sequences, cells or their intracellular
structures tend to change velocity or direction of motion rather slowly provided the se-
quence was acquired with reasonable temporal delays. This can be accounted for the
purpose with which biologists acquire such sequences because they typically take some ac-
tion on a cell, mostly some infection, and they want to observe its reaction. The reaction
then appears as a, sort of, controlled or preprogrammed motion, e.g., increased synthetica-
tion and transport of some proteins. But if one is to display motion trajectories, the lines
typically exhibit small perturbations. This is also evidenced in various publications on
tracking in time-lapse microscopy [15, 172, 173, 17, 174] and recently by Jan Hubený [47]
who was comparing tracking results on real sequences and sequences artificially generated
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A B C

Figure 5.4: Example of local foreground 2D flow fields. Minimum local foreground region, denoted
as c) in A, is determined to contain the whole local foreground flow field of given component.
Basically, the mask of possible positions is split into connected components, a), and these are
iteratively transformed according to the given background flow, b). In this particular case the
rotation was used. The foreground flow fields, in B, are inserted into a given ground-truth flow
field, in C. Clearly, only the portions corresponding to foreground objects are inserted. The colour
encodes flow vector: hue tells direction and higher intensity signifies greater magnitude.

from these with our generator, Fig. 5.5.
We have, therefore, tried to implement this kind of motion, during which an foreground

object seems to travel from point A to B while its route is not exactly straightforward.
This means that any foreground object, based on its mask of possible positions, randomly
chooses some direction and velocity at the beginning which it then tries to follow in a
few consecutive frames in the generated sequence. Meanwhile, devitations in both terms
are allowed. Sometimes greater deviation is forced by the mask of possible positions, e.g.,
when an object moves into a corner.

Technically, this is driven by two parameters of the generator. The first one is the
maximum travelled inter-frame distance, given as a number of pixels per frame. One
number is valid for all foreground objects. The second parameter is a mask of possible
positions, which is expected to always include the mask of foreground objects. It is further
expected that the foreground objects will always remain within this mask. In other words,
an inversion of the mask of possible positions defines pixels, respective pixel coordinates,
which are prohibited to become part of any foreground object throughout the generated
sequence.

For the implementation, we make use of probabilistic decision maps. It is simply a
square image (for 2D frames and a cube for 3D frames) whose edge is twice the maximum
travelled distance number, Fig 5.6C. Every pixel coordinate in such image defines particu-
lar direction vector after subtracting the coordinate of image centre. Every pixel intensity
defines chances of the associated vector to define direction of the upcoming movement.
Example of its performance is given in Fig. 5.6.

It must be noted that the decision maps are used only for the local additional transla-
tional movement of foreground objects. The support for rotation, which was implemented
just recently, is rigously driven by values found in the mask of possible positions, no
fluctuations are allowed. This will be covered in the next section.

The generator, at the time of writing, also does not incorporate zero-mean Gaussian
fluctuations in any of the global movements. For instance, if a cell is supposed to rotate by
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Figure 5.5: The visualization of trajectories of selected intracellular structures, HP-1 protein,
within the same type of cells, HL-60 cells. The left image shows trajectories detected in real data,
only 9 frames were available. The right image shows trajectories detected in a generated sequence,
50 frames were generated. No motion of the background object, i.e., the cell, was simulated.
All images were enhanced for printing purposes. Reprinted with permission from Jan Hubený’s
dissertation [47].

A B C

Figure 5.6: An example of development of positions (in green) of selected 2 foreground regions
within the mask of possible positions (in dark blue) after only 3 frames, in A, and after 13 frames,
in B, were generated. The brighter the green colour is, the more recent the position is. The three
rows in C show maps for decision support of a direction of next movement of some foreground
object after the 3rd frame was generated, i.e., the situation in A. Left (right) column is valid for
the left broader (right narrower) region. Each pixel in the map determines a unique movement
vector, pixel intensity determines the probability of this vector to be chosen, lighter means more
probable. The determination starts off the top row where possible movements are outlined. The
decision maps are changed, in the middle row, after involving the length of possible vectors and
after taking into account the previous direction, in the bottom row.
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some constant angle from frame to frame, it rotates exactly this angle from frame to frame
without any random devations. Anyway, it is a simple matter to additionally change this
behaviour. The generator, however, supports for additive zero-mean small-sigma Gaussian
noise on flow fields. The rotation can then become a bit nonrigidly distracted in this way.
Currently, the selection for this feature is driven at compile time.

5.4.4 Controlling the generator

We have noted earlier our aim to equip the generator with simplified control over the way
it generates ground-truth datasets. One such action taken towards this aim was to design
the generator to make use of user-supplied sample real image instead of many quantitative
parameters describing what should appear in the generated sequence. This concept has
pulled in the use of foreground and background mask images. Introducing another mask
image, that simply shows where the foreground objects are allowed to appear while they
are moving in the sequence, was a next straightforward logical step towards the given aim.

Allow us to summarize all controls the generator understands at the time of writing,
they all can be either 2D or 3D:

A, sample real input image

B, (global) inter-frame translational vector for the background object

C, coordinate of centre of (global) rotation of the background object

D, angle of (global) inter-frame rotation around the z axis of the background object

E, mask image showing where the background object is in the sample input image

F, maximum allowed (local) inter-frame distance of any foreground object

G, mask image showing where the foreground objects are in the sample input image

H, mask of possible positions of the foreground objects

I, multiplier used when reading (local) orientation angles

J, length of the sequence to be generated

Many of the controls have been introduced earlier in the text. Still, we will allow our
selves to summarize and provide a brief comment on these. The sample real input image,
A, is expected to be a real acquired time-lapse fluorescent microscopy image. It is this
image that is subject to separation into two motion layers and that should appear moving
in the generated sequence. The content of the two layers is given with the mask images,
E and G. It is expected that one mask, E, delineates a cell while the other mask, G,
delineates stained intracellular structures, hence G shoud be subset of E. The content
of the cell mask, E, is artificially generated based on values found in the sample real
image, A. The content of the structure mask, G, is always a transformed copy from the
sample real image, A. Unfortunatelly, the structures, let us say, hide the cell underneath
them. We must be able to fill in the hole that appeared after a (foreground) structure has
moved elsewhere. That is why the (background) cell is generated while the (foreground)
structures don’t have to be. This easily assures high fidelity of the foreground layer in the
generated sequence.

The motion of a whole cell, we call it the (global) motion of the background object,
is given as a composition of translation, B, with rotation around z axis, C and D (even
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in the 3D, see Section 2.2.2 on page 17 for discussion). As mentioned earlier, this is
an exact motion regularily occuring between any two consecutive frames in the generated
sequence. The cell structures, denoted as the (local) foreground objects, undergo the same
global movement between two frames. During which the mask of possible positions, H, is
moved as well so that its relative establisment within a cell is kept fixed all the time. The
foreground objects are allowed to undergo additional composition of translational motion
up to some constant number of pixels per frame, F, with additional rotational movement.
The direction of translations is driven by the probabilistic decision maps explained in the
previous section as well as by the mask of possible positions, H.

The additional rotational movement of foreground objects is determined from a pixel
values in the mask of possible positions, H. Every foreground object exactly as it is found
in the original real image is said to be at its local orientation 0°. When a new frame is
generated, the centre of mass of the foreground object at its current position is computed
and a pixel value from the mask of possible positions is read at this particular coordinate.
The obtained pixel value encodes new orientation that we desire for the foreground object
to show over here. If there is a difference between the desired and current orientation, the
object is rotated. If we were to wish to simulate a forward movement of some intracellular
structure along an arc, we would split the arc into several passages. Each passage would
encode orientation under which the structure orientation would appear tangential to its
motion, Fig. 5.7A–C. The desired local orientation is encoded as (O − R) ∗ I where R is
a reference value for orientation 0°, I is the multiplier to fine control and O is the pixel
value found in the mask image. This was adopted only for the reason that we use mask
images with 8bit pixel depth. Thus, they have only 255 useable pixel values (values from
1 to 255 indicate an interior of a mask, 0 indicates outside a mask) to map an interval
of orientations 〈−180°, 180°). We use R = 100 and I = 1.0 to easily construct the mask
images and since we think the interval 〈−90°, 90°〉 for inter-frame rotation sufficies. By
setting I = 0.0 we may disable the additional rotations. In the feature, we can adopt
the similar idea and define a certain pixel value that would mark a centre of rotation in
the mask of every foreground object. Currently, we feel that the centre of mass of an
foregound object is an anticipated point to rotate around.

A shortcomming of the current design is that it does not support a constant rotation
throughout the generated sequence of otherwise stationary, non-translating, foreground
objects. When a foreground object can’t change position of its centre of mass, it then
can’t read other rotation angle from the mask of possible foreground positions other than
the one it currently reads. It is a question of design or, perhaps, of the way we may
interpret the foreground rotation angle that we extract from the mask image. We may
easily assume that the angle would actually tell by what angle shall we further rotate
the foreground structure from the orientation it poses at the time, the angle acts as a
command “always rotate by”. Current assumption is that the angle tells what the local
orientation should be, the angle acts as a command “assure the orientation is”.

The generator was designed to require only a basic information of what is where and
how it should look like, refer to Fig. 5.8 for some simple yet powerful masks. It then
creates ground-truth datasets autonomously with random simulated motions based on
our observations and experience. However, we may always take over the control and
rather precisly specify what, when and where is going to be simulated in the generated
sequence. Note that this also includes a bit more of “labour” preparation.
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Figure 5.7: Illustration of how to setup the mask of possible positions so that it enables an appealing
forward movement along some curvature. Suppose we have the foreground object at position A
with its local orientation Ω. The object translates up along the arc until it reaches position B where
it is pictured with dotted line. At this position we, as designers, decide that if the translation along
the arc would continue with the same local orientation, the movement would look less naturaly.
Hence, a new passage is started here when local orientation is forced to be Ω + α. The generator
rotates the object by α, shown with solid line, when its centre of mass reaches this passage. We
proceed similarily at the position C. In D, a preliminary mask of possible positions is being created
by composing together mask of the foreground object at positions where we wish it would appear.
We also take into account its local orientation. In E, such manually created mask was automatically
prepared for the generator. The middle brighter passage encodes new local orientation.
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Figure 5.8: Examples of masks of possible positions (darker) overlaid with masks of foreground
objects (lighter). A copy of the mask of background object was simply partitioned, in A. Though
this only prevents objects from mutual collisions, moving out of a cell or moving into other cell
organs (the four black spots), this often give rise to nice ground-truth datasets. Simple nearly
geometric shapes were used to push foreground objects to move within a cell, in B. A method of
copying and composing together the masks of foreground objects can be used as well, in C.

Returning to Fig. 5.7, we may wish to simulate movement along certain path. We give
here a short suggestion on how to achieve it by means of creating the mask of possible
positions for this object. Every foreground object has to be treated separately. We start
with its mask, G, which outlines the object, and we compute its centre of mass and,
perhaps, draw a line from it in arbitrary direction, just like in Fig. 5.7A. We then make
copies of the mask and compose them together along the direction the object is supposed
to move. We may reach some corner point and rotate the object there. We note the
position (coordinate) of the centre of mass and the angle, by which the object was rotated,
every time we reach such corner point. The line may be advantageous for measuring
the rotation angle. Eventually, we arrive to a composition of masks, may be similar to
the one in Fig. 5.7D. Problem with this mask is that it is too tight to let the object
move. Recall that we are constructing a mask of possible positions. Hence the foreground
object must always appear within this mask. But the mask shall not be too loose. The
object movement could otherwise be disturbed by many various possible directions other
than the expected one. In fact, we aim to smooth the boundary of the composition.
Many solutions may be applicable. For instance, one may split the composition into
many direct segments, compute convex hulls of them and compose them together. For
the figure, we opted to compute morphological sceleton and dilated it with a circular
element of appropriate radius. The dilation slightly widened, by 3–5 pixels, the original
composition. Once we arrive to the smoothed composition, we colour-code the angles of
local orientation, Fig. 5.7. Note that this can currently be done only with foreground
objects. The background object undergoes regular motion, defined with parameters B, C
and D, during the whole sequence.

5.4.5 Examples of generated sequences from the live cell imaging

We present here three examples of generated sequences: 2D and 3D examples and an
example of controlled simulation.

In Fig. 5.9, a case study of a 2D generated ground-truth dataset is present. Eleven
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frames were generated while only the 1st, 4th, 7th and 10th are shown, in E, F, G and H,
respectively. The generator was supplied with the sample real image, in A, and the three
masks, shown in overlay in B. The dark gray, light gray and white represent the mask
of background object, of possible positions and of foreground objects, respectively. The
sequence underwent 3° per frame global counter-clockwise rotation with additional local
movements of up to 5 pixels per frame. A grid, undergoing the same global motion, was
overlaid on the images so that local movements can be observed better. Local movements
are also demonstrated with the composition of positions of foreground objects throughout
the sequence, in C. The lighter the mask is, the earlier position it represents. A ground-
truth flow field, shown in D, associated with the 10th frame is colour-coded, the legend is
given in the inset. In this sequence, we tried, by appropriately adjusting mask of possible
positions in the circle in B, to push the two foreground patches to move along each other
and disjoin later. The two patches appear to move together in the early frames, in E and
F, until they started, in G, to move apart.

For the 3D case, only a comparison of two consequent frames is present to illustrate
local foreground movements in space, Fig. 5.10.

And finally, an example of controlled simulation of a movement of two cells is given
in Fig. 5.11. This last example is particullary interesting in that it simply degraded the
two-layered concept because it set a dark empty whole image as the background object
(the degraded layer) and used the whole cells as the foreground objects. As a result,
additional local movement of intracellular structures were not possible. However, our aim
in this study was to generate dataset where two cells move close to each other and touch.
We also observe in real data, Fig. 5.12, that in this particular case the local movements are
very small compared to the motion of the whole cell and, as such, need not be simulated
explicitly.

5.5 Summary and future directions

5.5.1 The developed generator

We will summarize the main features of the developed generator in this section. In the
next section, we will present the concept of, what we call, the universal generator of optical
flow ground-truth datasets for live cell studies. Since the later is merely an extension of
the former, i.e., the current implementation, in the following we will often refer to Fig. 5.13
as well in order to easily identify the extensions later.

We believe there are several good points on the current approach. Above all, it is the
utilization of the backward transformation that changes image data based on a given flow
field. From the definition of the transformation we see that the flow field immediately
becomes a ground-truth flow field, eq. (5.6). It also easily fulfills the constant brightness
assumption, eq. (3.8) on page 27. Regarding the backward transform, we have developed
a solution that transforms the original input data exactly once, allowing for preservation
of its original resolution as much as possible.

This is achieved by utilizing several flow fields, shown with dashed rectangles in
Fig. 5.13, that link the sample real image with the currently created frame, by devel-
oping a concatenation scheme for flow fields and by insisting on smoothness of these flow
fields, which, in turn, allows us to keep the resolution of flow fields reasonably high even
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Figure 5.9: Case study on control and generated ground-truth dataset. The caption is given in the
text. All images were enhanced for printing purposes.
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Figure 5.10: Sample cross-section of two consequent frames of a 3D example sequence, in A and
B. In C, composition of two consequent frames, the former is displayed in the red colour channel
while the latter is in the green channel. Visualisation of local movements can be achieved in this
way. A 3D sample real image, on which the sequence was based, is shown in D. All images were
enhanced for printing purposes.
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Figure 5.11: Example of tightly controlled grund-truth dataset generation. Every 4th frame of the
first 13 frames from an original sequence is shown, in A, with artificially added white contours,
darker image is earlier image in the sequence, and with associated flow fields, in B. Note that some
flow fields are constant, i.e., the same colour is over the whole cell, denoting purely translational
motion. The others describe composition of translation and rotation. The mask of possible posi-
tions alone and with overlaid contours is shown in C and D, respectively, so that we can see why
the cell got rotated at certain frame. All images were enhanced for printing purposes.
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Figure 5.12: Illustration of movements of intracellular structures (dots) in the top-most cell in
Fig. 2.9 on page 19. The same frames A,B,C and D as in that earlier figure are used here.
The global movement of the cell was suppressed by manual registration (alignment based on cell
contour) in which only translations and rotations were used. The square boxes are registered as
well. They illustrate the magnitude of dot movements. Notice that many dots appear stationary
within the cell, only a few are moving between frames. Box edge is 10px, the diameter of brighter
dots is on average 5px. All images were enhanced for printing purposes.
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for long sequences. We have tested the generator for various magnitudes of motion and
for sequences with even 100 frames, which are approximately 8 times longer than typical
real acquired sequences, and have noticed no degradation of flow fields and/or image qual-
ity. Motion boundaries in a generated dataset are supported by utilizing smooth motion
in two independent layers. Since one layer is defined to be below the other, composing
them together has turned into overlaing the one over the other allowing for sharp motion
boundaries to appear in the data.

The bottom layer, denoted with BG in Fig. 5.13, is supposed to conduct a global
motion, with respect to the frame coordinate system, whereas the top layer, denoted with
FG, is supposed to contain an additional independent local motion, i.e., motion relative
to the moving background. Hence, the flow field induced by the top layer, FG i FF, must
be concatenated to the global flow field, BG FF, to obtain a fully defined independent
local motion, BG+FG i FF, with respect to the frame coordinate system. In fact, there
is one such foreground layer associated with every foreground objects, marked with its
foreground mask FG i Mask. That is why the “subscript” i is used. Theoretically, there
can more layers added but it seems to us that two are sufficient for simulating motion
of cells together with motion of its intracellular structures. Additional layers would be
welcomed if we would allow, for example, for occlusion of objects in the sequences.

The control is simplified by using images instead of numerical values, at least for the
case of the foreground layer where mask of objects as such, FG Mask, and mask of possible
positions, FG MoPP, are used.

The generated inter-frame motion supports for motion coherency both in magnitude
and direction of motion. This enables us to control the motion not only in space, by
means of defining where an object is allowed to appear, but also in time. We can, sort of,
programm two cells to meet at certain point in space and time (Fig. 5.11). We conclude
the summary where we stared. Important aspect of the generated motion is that it is
encoded directly with the flow fields, the BG FF and FG i FF.

We consider the generator presented in this work as a solid foundation prepared for
further extensions. These may be well arbitrary, e.g., the control over generated sequences
may be extended or completely changed. Valuable is the core of the generator where
inner states are represented and where content of a static reference image is “made to
move”. We have implemented the generator for 2D and 3D time-lapse sequences. That is,
it can be used for testing optical flow computation methods on simulated wide-field (2D)
or confocal (3D) microscopy data.

5.5.2 Concept of universal generator

In this section we present a concept of, what we call, the universal generator for live cell
studies. It must be stressed that currently it is a vision to some extent of a generator
that we haven’t fully implemented and tested yet. Nevertheless, we base the concept on
our experience and on approaches that have proved good in the current implementation
so far.

The concept is outlined in Fig. 5.13. In fact, it is, to some extent, an extension of the
successful and proven concept with highly specific and non-trivial modules. The scheme
consists of the input and output area, in light and dark blue, respectively, of the generator
itself, in the green areas, and of the Modules section, in yellow. As a matter of fact, the
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Figure 5.13: An overview of the universal generator concept. The rectangles represent images
(sometimes shortened to Im.) and flow fields, denoted as FF. The rectangles with round cor-
ners represent operations such as the backward tranformation or concatenation of two flow fields.
Comments are given in the text.
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current implementation of generator is depicted in the green section. The Modules section,
on the other hand, is subject to the proposed extensions.

Following the summary on the current generator from the previous section, the uni-
versal generator starts with generating the last frame of the sequence. Say, this would be
the Nth frame. The input images, be it the masks (input area) or the pseudo-real image
(the BG Image and the BG+FG i Im.), must be, therefore, compatible with the situation
in the Nth frame. It then proceeds from every (n+1)th to create a new frame, the nth. It
modifies the mask images to comply with the current, n+1, situation in the pre-process
stage. This allows for the Modules to accomodate for the current situation when gener-
ating images and flow fields. Once the inter-frame fields are ready, they are processed in
the generator core. The flow fields linking the new situation, n, with the reference, N, are
updated. These are the BG FF (n→N) and the BG+FF i FF (n→N). Using the updated
fields, the reference mask and image data are transformed and composed together. Also
the current inter-frame fields are composed. The linking fields represent an inner state of
the generator. They are kept for the next iteration, what is denoted with the thick dashed
gray lines in the scheme. Before the first frame is created, they are initialized with zero
vectors.

We propose to use the mask images together with the frame number to drive the
Modules. As we have achieved good results with our Module for creating autonomous
coherency-preserving movements for foreground objects, we suggest its use also for the
background object. Hence, the mask of possible positions was introduced even for the
background object. Such masks may still provide additional information such as the
orientation angle, Fig. 5.7. We may increase the number of masks to increase the number
of position-dependent parameters to improve the control. In this way, we could have
obtained a vector of parameters for any position within the frame coordinate system. On
the other hand, many parameters may disturb the nature-simulating variability.

Regarding the Modules for generating inter-frame motion of either the background or
the foreground objects, virtually any motion can be simulated provided its flow field is
smooth enough such that the “copy” effect is avoided. The other two Modules for creation
of the reference background and foreground images are the tough ones. Their purpose is
it provide with pseudo-real reference image which the generator will use in the sequence.
For this reason, the generator requires to have an image of solely the background object,
which is typically the image with non-specific staining outlining a cell and/or noise in the
fluorescence microscopy images, and an image of the foreground objects, which is typically
the stained intracellular structures. Owing to the properties of the backward transform
on maintaing high quality transformed images, FG i Im. at n, it is important that the
reference image, FG i Im. at N, contains also the context of the foreground objects. This
explains why the current implementation uses a sample real image for the foreground
objects, as it trivially fullfils this requirement, and that it generates a new artificial image
of background, as the real one can’t be used because of the displayed foreground objects.

Anyway, based on the recent publication by Svoboda et al. [171] and also on the survey
part of it, we see that first attempts on generating artificial high-fidelity images from the
field of fluorescence microscopy have been already made. For instance, cell populations
were investigated by Lehmussola et al. [169, 170] and the HL-60 cell line and granulocytes
were investigated by Svoboda et al. [175, 171]. We envision that the image-generating
modules based on the above publications would work in one of the two modes. They can
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either generate an image only once at the beginning of generating of the ground-truth
dataset and for every new frame they modify the image by addding some random noise.
Or, they can generate a new image for every new frame but it would exactly repeat the
privous run with only a few appropriately adjusted small random deviations, which would
eventuelly produce the same image with decent variations in it.

Our current implementation differs from the proposed one in that it misses the gray
rectangles and uses the pink ones in addition. In particular, it lacks the support for mask
of possible positions of a background object. Instead, it only generates (background) flow
fields on a regular basis, the pink BG FF, based on the fixed input parameters. A cell
motion is then regular as noted at the end of Section 5.4.3. It uses a real sample image,
the pink BG+FG i Im., as a reference one for tranforming the foreground objects to given
positions when creating a new frame. At last, a simple model is used for the creation of
the reference background image.

In the end, we give an example of a preliminary result of the universal generator. The
example aims to show that, despite our generator is targeted for live cell microscopy, it
can also provide datasets one would expect to emanate from the field of computer vision.
At the same time, the example also shows two shortcommings of the generator in the
view of computer vision needs. In Fig. 5.14, a few artificially generated frames of the
well-known Hamburg taxi sequence are shown, for which we simply changed the Module
for creation of background images in the generator to always provide the same background
image with no cars, Fig. 5.14D. The van is moving a bit up and down during its reversing,
which is manifested with different colour in the flow field, due to the unchanged Module
for foreground motion. The white taxi cab is only translating during its turn. We cannot
turn the car naturaly with respect to the camera view because, in the context of our
generator, this would require to have another sample real image where the car is shown at
appropriate position. But this is not expected to happen in live cell microscopy. Note that
the cars are actually going backward in our simulation. This is because we have intiated
it with the original first frame, which is where the generating should end up (since the
generator proceeds from the last to the first synthetic frame).
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Figure 5.14: Example of the artificially generated Hamburg taxi sequence with the used sample
real image, mask of foreground objects and of possible positions in A, B and C, respectively. In D,
the image used for the background is shown. The last four frames of the generated sequence and
associated flow fields are shown in E and F, respectively. The earlier the frame is, the more right
in its row it is. All images were enhanced for printing purposes.
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Chapter 6

Summary of the thesis

In this thesis we have focused on computing optical flow and on designing a tool for the
evaluation of optical flow methods both in the context of live cell studies.

In live cell studies we typically deal with sequences of images that are acquired peri-
odically over time, the time-lapse sequences. This work, specifically, concerns the image
sequences acquired using the time-lapse fluorescence light microscopy. The time-lapse ob-
servation opens new views on cells to explore, e.g., we may study the growth of cells or,
generally, any parameter as a function of time. In order to do this in an automatic way,
we need to solve segmentation and tracking of objects in the image sequences. In this
work, we aim only towards the tracking alone.

After introducing the principles of fluorescence image acquisition together with main
components of modern automated fluorescence microscopes and their properties and limits,
we presented a case study of the type of image data we should expect to deal with in this
field of science. We then surveyed approaches to tracking in general and in the time-lapse
microscopy. We have found that the predominantly used techniques can be classified either
as image registration, optical flow or combination of both. As a result, we inspected the
image registration and optical flow more closely. We concluded this theme with reasoning
why we think it is worth using the optical flow for tracking. Note that an optical flow
estimates a flow field in which a vector is assigned to every pixel in an image. The vector
represents the difference in position of the same pixel content between two images. The
idea is to track a given position in the image by simply following flow vectors. Finally,
we presented a theory on representation of motion in both space-time images as well as in
the Fourier domain. We discussed some of its aspects with respect to the human visual
system as well as with respect to motion estimation based on Gabor filtering.

We have opted to use the optical flow computation methods based on spatial filter-
ing. These methods rely on intensive use of orientation-selective Gabor filters, which is
a concept evidenced in the early stages of human visual system. The filtering in humans
seems to work in quadrature pairs. We have modelled it with complex Gabor filters. The
parallel with human visual system and also the good results of filtering-based optical flow
methods in earlier comparison studies were the main motivating factors to choose these
methods. In particular, we focused on the energy-based method by David Heeger as it
appears to model the human visual system plausibly.

The intensive use of the complex filtering seems to us to be also the bottleneck of the
approach. We have, therefore, put emphasis on efficient and accurate image filtering for
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optical flow. The complex Gabor filters were studied as well as Gaussian filters because
the Gabor filtering can be efficiently computed as modulation, Gaussian filtering and de-
modulation. Firstly, we analyzed recursive 1D filtering to show it is very fast, efficient and
accurate. On the other hand, handling of boundary conditions is somewhat complicated
but we demonstrated that it is feasible. Secondly, we investigated separability of Gaussian
and Gabor filters. As a result, we introduced a framework which utilizes many recursive
1D image filtering tasks along generally oriented axes. The framework allows for filtering
with general Gaussian and Gabor filters, that is even with anisotropic filter, which man-
ifests itself with elliptical kernel shape with distinguished main axis. Important achieved
result is that this axis can be arbitrarily oriented. The framework is more accurate but
slightly less efficient compared to an optimal solution available. Nonetheless, for the target
case of Gabor bank filtering we presented a scheme that is shown to give an almost-optimal
efficiency. To sum it up, we managed to find a way to conduct position-invariant filtering
with bank(s) of anisotropic complex 3D Gabor filters very efficiently and accurately. We
have also demonstrated that the anisotropy allows for increased orientation-sensitivy of
the filters, what is expected to lead to an improvement in the filtering-based optical flow
methods. Our results were demonstrated with measurements.

Unfortunatelly, at the time of writing we have only preliminary results on the energy-
based optical flow computation with our advanced filtering employed. The results show
some improvement over the original method but we admit that it currently can’t compete
with results achieved with state-of-the-art optical flow methods. This shall be the subject
of our future work.

In the last part of the thesis we have focused on a tool for the evaluation of any op-
tical flow method for the popular field of biomedical image processing. While there exist
attempts to establish benchmark datasets for optical flow evaluation focused on issues
from general computer vision field, no one, to the best of our knowledge, has provided
benchmark datasets for biomedical images. We started by identifing goals for such per-
formace evaluation followed by an introduction to accuracy measurements. In the survey
part we overviewed and discussed the available approaches in the context of biomedical
imaging. In the practical part we described our solution: the generator of sequences of
test images with associated ground-truth flow fields. We also presented detailed discussion
on important aspects of the generating procedure. Owing to the diversity and specificity
of visual appearance in biomedical images, we have opted to design a generator rather
than establishing set of selected images. Our generator works with one global motion
layer to move the whole cell and several independent local motion layers to additionally
move selected interior cell structures. Movements are described using flow fields, which
allows to simulate complex processes in the cell. Our solution requires an input sample
image which is “set to motion”. The similarity with real images is kept in this way. We
conclude this part with directions to future work on this topic. Results were exemplified
with generated sequences.

Selected author’s original publications are reprinted at the end of the thesis. All
algorithms were implemented in C++ and are available under the GNUv3 licence as part
of the OpticalFlow library at the web pages of the Centre for Biomedical Image Analysis:
http://cbia.fi.muni.cz.
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[20] C. Cédras and M. A. Shah, “Motion based recognition: A survey.,” Image and Vision
Computing, vol. 13, no. 2, pp. 129–155, 1995.

[21] D. S. Zhang and G. Lu, “Segmentation of moving objects in image sequence: a re-
view,” Circuits, Systems and Signal Processing (Special Issue on Multimedia Com-
munication Services), vol. 20, pp. 143–183, 2001.

[22] A. B. Watson and A. J. Ahumada, “A look at motion in the frequency domain,” in
Motion83, pp. 1–10, 1983.

[23] A. B. Watson and J. A. J. Ahumada, “Model of human visual-motion sensing,” J.
Opt. Soc. Am. A, vol. 2, no. 2, pp. 322–341, 1985.

[24] E. H. Adelson and J. R. Bergen, “Spatiotemporal energy models for the perception
of motion,” journal of the optical society of America A, vol. 2, no. 2, pp. 284–299,
1985.

[25] D. J. Heeger, Models for Motion Perception. Dissertation thesis, University of Penn-
sylvania, 1987.

[26] R. L. D. Valois and K. K. D. Valois, Spatial Vision. Oxford Univ. press, 1988.

[27] E. P. Simoncelli and D. J. Heeger, “A model of neuronal responses in visual area
MT,” Vision Research, vol. 38, no. 5, pp. 743 – 761, 1998.

[28] L. K. Cormack, Handbook of Image and Video Processing, ch. Computational Models
of Early Human Vision, pp. 325–345. Elsevier, Academic Press, 2005.

122



[29] S. Marat, T. H. Phuoc, L. Granjon, N. Guyader, D. Pellerin, and A. Guérin-Dugué,
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[62] D. Cremers and C. Schnörr, “Statistical shape knowledge in variational motion seg-
mentation,” Image and Vision Computing, vol. 21, no. 1, pp. 77–86, 2003.

[63] K. Rangarajan and M. Shah, “Establishing motion correspondence,” CVGIP: Image
Underst., vol. 54, pp. 56–73, jun 1991.
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simulating 3D fluorescent microscope images,” in Computer Analysis of Images and
Patterns (W. Kropatsch, M. Kampel, and A. Hanbury, eds.), vol. 4673 of Lecture
Notes in Computer Science, pp. 309–316, Springer Berlin / Heidelberg, 2007.

133



Publication P1

Reprinted with kind permission from WSEAS:

V. Ulman, “Arbitrarily-oriented anisotropic 3D Gaussian filtering computed with 1D con-
volutions without interpolation,” in Proceedings of 8th WSEAS International Conference
on Signal Processing, Computational Geometry and Artificial Vision, (Athens), pp. 56–62,
2008. ISSN 1792-4618.

© WSEAS 2008.



Publication P2

Reprinted with kind permission from IASTED and ACTA Press:

V. Ulman, “Filtering with anisotropic 3D Gabor filter bank efficiently computed with 1D
convolutions without interpolation,” in Proceedings of the Seventh IASTED International
Conference on Signal Processing, Pattern Recognition and Applications, (Calgary), pp. 33–
42, 2010.

© IASTED and ACTA Press 2010.



Publication P3

This publication is an open-access publication available on the web pages of the Journal
on Advances in Signal Processing, http://www.hindawi.com/journals/asp/:

V. Ulman, “Boundary treatment for Young–van Vliet recursive zero-mean gabor filtering,”
EURASIP Journal on Advances in Signal Processing, 2011. Ready to be published after
minor changes.

© HINDAWI 2011.



Publication P4

Reprinted with kind permission from Springer Science + Business Media:

V. Ulman, “Improving accuracy of optical flow of Heeger’s original method on biomed-
ical images,” in Proceedings of the 7th International Conference on Image Analysis and
Recognition, ICIAR 2010, pp. 263–273, 2010. LNCS 6111.

© Springer Science + Business Media 2010.



Publication P5

Reprinted with kind permission from INSTICC:
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