
Faculty of Informatics
Masaryk University Brno

Image composition
Master degree Thesis

Vladimı́r Ulman

2003

I declare this thesis to be my original work that I have written singly. All the sources
and literature that I have used I cite properly and provide full link to its source.

I would like to express thanks to my thesis supervisor Doc. Matyska for providing me
with basic literature and giving me this way very good point to start, also for helping
me organise my ideas when writing this thesis. Thanks belongs also to my co-supervisor
MUDr. Feit for testing the program and for all fruitful notes to it. And especially I must
thank my parents for supporting me during my entire study, I couldn’t get such far without
them.

1

Abstract

Image composition is a process in which small pictures are composed together into one
single picture. It is used whenever the sensor that is used for obtaining pictures is simply
not capable of producing final image of desired size. There are several reasons for this to
happen. Mainly it is the matter of physics, sometimes such adequate technology exists
but it is too expensive. Typical example of the latter is billboards. They look like a single
picture but in fact they are composition of smaller ones. These are easier to produce and
handle.

But how does a man compose picture from smaller ones? He should know at least
their relative positions so he knows which pictures should be composed together. He does
his job using a process called image registration. This is the basic of each composition.
Registration gives us important information how to align overlapping parts of images so
these two seems as one image. Images need not necessarily overlap. In special (and rare)
cases this information can be retrieved only by comparing pixels from left image with
corresponding adjacent pixels from right image.

In fact there exists lot of various techniques to match two images. In this paper we
will describe one approach how to compose images. This approach isn’t based on feature-
extracting and won’t need any pre-segmentation of images. It is working directly on the
image data using intensity values of pixels present in overlapping parts of both images.
Several known statistical methods will be presented here. The purpose of these methods is
to retrieve valid align information directly from the data. Images will be little overlapping
and won’t suffer from heavy distortions (just like in the billboard example), their relative
positions will be known in advance.

Finally we will briefly describe structure of program which is correctly composing given
input images into single one. Some optimisation techniques will be shown too as well as
some hints of image fusion when two images are not identical in their common overlap.

Keywords:
Image composition, Image fusion, Image matching, Pattern matching, Sum of absolute

valued differences, Stochastic sign change, Normalised correlation coefficient, Correlation
ratio, Mutual information, Uni-modal matching

2

Contents

1 Introduction 5

2 Overview of the thesis 7

3 Matching 8
3.1 Alignment and basic approaches . 8

3.1.1 Notation . 9
3.1.2 Transformations . 10
3.1.3 Basic principles of matching . 12
3.1.4 Examples of matching methods with various approach 14

3.2 The system in Brno Faculty Hospital — Bohunice 18
3.3 Matching evaluation methods . 19

3.3.1 Statistic-based approach, revisited 19
3.3.2 The stochastic sign change . 21
3.3.3 The sum of absolute valued differences 23
3.3.4 The normalised cross-correlation coefficient 23
3.3.5 The correlation ratio . 26
3.3.6 The mutual information . 28

3.4 The comparison of matching evaluation functions 38
3.4.1 The registering process visualising tool 38
3.4.2 Visualising the registration process 39
3.4.3 Time consumption comparison . 45

4 Refinements 47
4.1 Colour depth of matching data . 47
4.2 The speed, optimisation techniques . 48

4.2.1 The need for speed up . 48
4.2.2 Gradient descend and n-step technique 49
4.2.3 Two way optimisation . 52

4.3 Empty fusion . 55
4.3.1 The measure of suitability for registering 56
4.3.2 The order for registering in image composition 57

4.4 The order for establishing final image positions 59
4.5 Image stitching . 60

4.5.1 Possible problems when image stitching 60
4.5.2 The situation in Bohunice . 60

3

4.5.3 General converting function . 61
4.5.4 Sutura camouflage . 61

5 Conclusion 66

A Sample images 68

B Program documentation 71
B.1 Legal notes . 71
B.2 Input . 71
B.3 Output . 73
B.4 Limitations . 74

4

Chapter 1

Introduction

Preface

Computer graphics is one of the most studied subjects in information technologies. It’s
literally everywhere around us. It usually serves as an information channel from some
device or set of devices to human. This information is then graphically presented, it
doesn’t have to be only via some tables in windows on someone’s computer screen. As an
example we can state image processing in medicine where typically an image from inside
of human body is taken and then presented on doctor’s screen or somehow printed.

Important fact on this matter is that this information is often processed before it is
presented. The image composition occurs often in the process of graphical information
manipulation. It is used when ever the sensor that is used for obtaining images is simply
not capable of producing final image of desired size. And so the final image must be
composed from smaller ones which are scanned separately. Generally it can be said that
image composition as a part of computer graphics processing can be found mainly in
optical systems. In such systems the optical properties of lens don’t allow us to scan large
images. The problem is solved by scanning only that part of image in which the lens won’t
affect the scanning process much and hence the registering process too. The desired area
is then registered part after part and finally composed together.

Examples of image composition can be found in almost every industry, notably in
medicine. Example of everyday use around us might be in recent time the digital cameras
when taking panoramatic pictures. The latter is usually done by taking sequence of images
and then using computer software to stitch them together in one panoramatic shot.

Uni-modal and multi-modal compositions

Composition is often divided into two basic classes in accordance with the way in which
the individual images where scanned. There are uni-modal and multi-modal image com-
positions. Uni-modal image composition means that all images were obtained using the
same device or devices from the same class. Class of devices in this context contains all
such devices which have very similar properties important for image scanning, for instance
illumination, contrast, distortion, noise, etc.

Multi-modal image composition on the other hand means that some images in com-
position are scanned using some sensor and some are scanned using some other sensor.

5

Sensors in multi-modal image compositions are not from the same class. Therefore images
are obtained often in different scale. Contrast and brightness usually aren’t the same too,
most importantly in this case same objects are visualised differently and thus some colour
conversion should be performed. A classical example of multi-modal composition: Bones
are shown in dark colours in MR1 pictures while they are in light colours in CT2 pictures.

This automatically precludes use of matching straight the raw data. Registered image
is represented in computer as a sequence of pixels each holding light intensities of typically
red, green, and blue colours, very often it is enough to represent images only in grey-scale
(luminance of each pixel can be expressed in numbers ranging from 0 to 255, the more the
brighter). In this example we must therefore firstly find some conversion function. This
function should define correspondence between values of the same object from one modality
to the other one. This doesn’t have to be an easy task, mainly when full-automatic image
composition is desired.

But nothing is lost, there exist other approaches to this problem. Nevertheless these
usually make use of image segmentation which is again nothing easy. The purpose of
segmentation in this case is to extract objects which are present in both images (bones
in this example) with their positions, then somehow try to match images using gained
information. These images should have objects pictured likewise and shouldn’t probably
picture anything else. It is obvious that multi-modal image composition is sometimes
far more complicated then uni-modal image composition. Uni-modal image composition
doesn’t have to take care of notable differences between values representing same objects.

Matching

Composition could be well thought as of 2D pattern matching. Consider composition of
two images. Left is called the reference (sometimes it is also called model) image, right is
usually called the registered image. Images are typically overlapping. Composition means
firstly find some transformation of coordinates and secondly use this transformation when
creating the final image. The first stage, the correct-transformation searching, could be
imagined as pattern finding (the overlap of the registered image) in the data (the overlap
of the reference image). We will return to this later.

The desired property of transformation of coordinates is clear. It must uniformly
establish the bindings for every pixel from reference image with its counterpart in the
registered image. Very often two following facts are true when composing two images
(sadly even in uni-modal case): the values in gray-scale representation of same object aren’t
identical, images in their common overlap don’t correspond exactly. This is bad news both
for finding the correct transformation and for final stitching. The transformation search
process must be a little bit fuzzy. This means that it must not search for exact solution,
for exact transformation that will map given pixel onto its identical counterpart. When
final stitching is in progress special care must be taken of hiding the border where the first
image ends and where the second image continues. The sutura will be noticeable.

1Magnetic resonance
2Computed tomography

6

Chapter 2

Overview of the thesis

Chapter 1 presented the image composition problem. We have stated that it is a com-
puter graphics problem, when is it used and we gave some examples. Then we have
stated basic problems that follows this issue.

Chapter 2 is this chapter.

Chapter 3 goes more into detail about the matching principles. It will also introduce
notation that is used throughout this document. We will describe here given optical
system which was used for image scanning. Image composition problem was studied
and results published here were applied on this system.

We will also specify the alignment evaluation methods that were implemented and
tested. It will try to give some information regarding their ideas behind, complexity,
implementation help and range of cases where this method could be successfully
used.

Also in this chapter we will compare selected alignment evaluation methods, for this
purpose we will define tool which should describe the process of matching of given
two images. Then we will try to show the behaviour of these selected methods using
this tool. Finally in this chapter we will compare the speed of selected methods.

Chapter 4 is about some speed-up hints in process of image composition. Two optimi-
sation techniques will be shown here. These techniques will operate on the correct-
alignment search process. Then section about image fusion concerning hiding of
sutura after the transformation of coordinates is found.

Chapter 5 is conclusion.

7

Chapter 3

Matching

3.1 Alignment and basic approaches

In the introduction we have learnt that image composition is a fusion of given images into
one single image. This is done separately for each pair of images that have to be composed.
So for each pair the image composition consists of matching their common overlap and
then stitching them together according to the discovered transformation of coordinates.
The most important part is the first one, the matching. Matching is a process in which
we are trying to retrieve the correct alignment. We can do it in many possible ways, next
sections will cover this more. By now we will try to concentrate on the notation through
which the alignment is defined.

Alignment is defined by certain parameters values of transformation of coordinates.
This transformation depends on the kind of distortion that is present in the images. We
are interested only in spatial distortions, i.e. such distortions that actually move objects
in overlap or change their size or shape.

For instance suppose we are composing two images, the left and the right one. Suppose
these two images were obtained using one sensor (uni-modal composition). This sensor
will have some error on the left edge of its view port. Let us say that sensor is optical
microscope which has scratch on its lens or more likely the lens will be pour quality and so
it will not maintain same proportion on its left and right edge. This will lead, for example,
in a line in the overlap of left image (overlap will be at the right edge of image) that will
not look like a line in the overlap of the right image (this overlap will be at the left edge
and so it will be affected by mentioned error on sensor). It is probable that the line and
the curve which should represent the same object won’t even have the same length. The
scientists will certainly find some more realistic examples of spatial distortions from their
experience.

From this example it could be also noticed that we must first decide (or experimentally
find out) what type of distortion (or what mix of distortions) is present in the given
system. The reason is both obvious and important: According to the distortion we select
the transformation of coordinates. If spatial distortions are absent then it is enough
to describe alignments only with transformation which only shifts coordinates by some
constant. When multi-modal composition is employed it frequently happens that images
are scanned in different scales, then some linear transformation comes to play.

8

Obviously “constant-shift” transformation can be replaced with linear transformation
which can be again replaced with some more sophisticated one and so on. This way we can
use only some general transformation for describing every possible alignment. But there’s
a catch. The matching process is a search through given parameter space. The more
general transformation we employ the bigger parameter space we must search. For this
reason to keep matching process feasible we are trying to use the simplest transformation
possible and usable. This is important in order to develop successful system which is both
fast (parameter space is small) and reliable (selected transformation is usable). These
facts lead to contradictory requirements and the decision what transformation to use is
often a matter of compromise.

3.1.1 Notation

We will represent images with a function of two arguments. These two arguments will be
mapped to the specific gray-scale value. Arguments denote the position of some pixels in
the given image, we will use Cartesian coordinate system with top left corner of the image
at position [0, 0]. Obviously this function will be dedicated to some certain image and
will define for every valid combination of arguments its value conforming to the value of
pixel at the given position in the given image. The first argument will be the x coordinate
and the second argument will be the y coordinate. The range of both arguments will be
according to the dimension of the entire image. The reference image we will denote with
function A(x, y), the registered image we will denote with function B(x, y). Using this
notation while given I and T , alignment can be formulated

A(x, y) = I(B(T (x, y, P))) (3.1)

where I is the intensity conversion function and T is the transformation of coordinates.
Intensity conversion function is typical for multi-modal composition where same ob-

jects are displayed using different gray-scale values. Clearly we can assume I to be the
identity function in cases where intensity conversion is not needed. The transformation of
coordinates is clear, for given position in reference image it returns the corresponding po-
sition in the registered image according to the given P . Parameter P defines the alignment
and in fact the correct value of P is what we are searching for when performing the image
matching. During composition of one matrix of images the transformation is supposed to
be of the same type, denoted T (x, y, P). Assume the transformation formalism is some
formula with parameters (bundled in one complex parameter P) and two input variables
x and y.

For the sake of simplicity we will assume that arguments of variables x and y (respective
the position) will range only from the overlap. But the overlap is defined by certain
alignment, i.e. by P . This concludes that range intervals XA(P), YA(P), XB(P), YB(P)
are dependent on the P and we can therefore finish the definition of alignment with

T (x, y, P) : XA(P)× YA(P) → XB(P)× YB(P), (3.2)

card(XA(P)) = card(XB(P)),

card(YA(P)) = card(YB(P)).

This only states that transformation of coordinates is a function from Cartesian product
of two sets/ranges to another Cartesian product of two sets/ranges where sets for x co-

9

ordinate respective for y coordinate are exactly the same size (the number of pixels from
each image in their common overlap must be obviously the same).

Valid pixel coordinates are discrete (natural numbers). Depending on the transforma-
tion of coordinates it may occur that for certain positions in reference image the computed
position won’t be natural number. In such cases the value of pixel at computed position
cannot be retrieved directly from the image. Image re-sampling method must be used.
In image re-sampling in general three different approaches can be applied, namely: The
nearest neighbourhood, the bilinear interpolation and the cubic convolution. They possess
their own characteristics but mainly vary in computational time and precision.

3.1.2 Transformations

The type (or class) of transformation of coordinates is closely related to the spatial distor-
tion present during image acquisition. See [5] or preferably [3] for more detailed discussion
about transformation of coordinates and its use in image composition.

We will mention here only the so-called global transformations. The property of this
transformation is that there is exactly one transformation formalism for every point in the
overlap. Local transformation on the other hand have separate transformation formalisms
for each local area in the overlap. For example lower part of the overlap is spatially
distorted differently than the upper part. It is impossible to describe such behaviour
using only one formalism without any if conditions present in the underlying formula.
Hence it can be stated that global transformations of coordinates have no if conditions in
their formalisms. The most used global transformations in 2D are linear, affine, projective
and polynomial.

Linear and affine transformation

Transformation of coordinates T is linear if and only if

T (x1, y1, P) + T (x2, y2, P) = T (x1 + x2, y1 + y2, P) (3.3)

c · T (x1, y1, P) = T (c · x1, c · y1, P) (3.4)

and T is affine if T (x, y, P)− T (0, 0, P) is linear. Affine transformation for equation

(xB, yB) = T (xA, yA, {c11, c12, c13, c21, c22, c23}) (3.5)

can be rewritten as (
xB

yB

)
=

(
c11 c12

c21 c22

) (
xA

yA

)
+

(
c13

c23

)
. (3.6)

This transformation contains all basic 2D operations such as shift the position by constant
c13 at x coordinate, by constant c23 at y coordinate and s-times longer the distance of
given point from the origin while turning this point anti-clockwise around the origin by
angle φ. The latter is encoded in the following equations

c11 = s · cos(φ), c12 = −s · sin(φ),
c21 = s · sin(φ), c22 = s · cos(φ).

All geometric shapes are preserved, for example triangles remain triangles after the affine
transformation.

10

We will skip rewriting the formal notation for all next transformation of coordinates.
They all will be similar to the equation 3.5 except the number of constants in parameter
P . We will only describe equations which define the result of T (x, y, P).

Projective transformation

The projective transformation is designed to “turn” the plane of registered image such
way that both planes of registered and reference images face the same direction. This
often happens when scanning same objects from different view ports, it is a special case
of image composition. Typical case of image composition is stitching images into a single
one. Hence this transformation is employed in converse cases when scanning adjacent
images from the very same point. This situation can be imagined as taking pictures of a
sphere from its centre. Manipulation of image planes either reference and/or registered is
called rectification. When creating a composition of more than 2 images then all images
should be rectified so their image planes are tilted the same direction. This is necessary
both for searching the correct alignment and for final image stitching. For more details
about this topic, please refer to [3, 7, 21] or alternatively [10].

The projective transformation is a 3D thing in spite of the fact that images are 2D
themselves. We must therefore know in advance (or find it out, see [21]) the relation
between these two images in term of Euler angles. Euler angles are three angles α, β and
γ each corresponding to its axis x, y and z, resp. This says turn the given plane by α
degrees around the x axis and then do the similar thing around the y and z axis. This
behaviour can be well summed up in the following rotation matrix

x2

y2

z2

 =

c11 c12 c13

c21 c22 c23

c31 c32 c33

x1

y1

z1

 (3.7)

in which the following equations hold

c11 = cos(β) cos(γ), c13 = sin(β),
c12 = − cos(β) sin(γ),

c21 = sin(α) sin(β) cos(γ) + cos(α) sin(γ), c23 = − sin(α) cos(β),
c22 = − sin(α) sin(β) sin(γ) + cos(α) cos(γ),

c31 = − cos(α) sin(β) cos(γ) + sin(α) sin(γ), c33 = cos(α) cos(β),
c32 = cos(α) sin(β) sin(γ) + sin(α) cos(γ).

In the given scanned image it is assumed that all points in it are in equal distance from the
camera. Hence we can expand the image coordinates into 3D by putting the z1 coordinate
equal to 1 in the equation 3.7. Imagine we are in 3D space. The camera sensor is in the
origin and the image is in plane perpendicular to axis z at the distance of 1. We want to
be in the very same situation in 3D space but this time with the new sensor in the origin
(with that sensor for which the rectification is processed). The rotation matrix will turn
the image plane so it is tilted the requested direction. To get the final image we must deal
with perspective. That will bring the coordinates back to 2D by fixing the z coordinate

11

to 1 and recomputing the x and y coordinates according to the scheme

x2

y2

z2

 →

x3

y3

1

by setting x3 =
x2

z2
, y3 =

y2

z2
.

The projective transformation is computed using these two equations

xB =
c11xA + c12yA + c13

c31xA + c32yA + c33
, (3.8)

yB =
c21xA + c22yA + c23

c31xA + c32yA + c33
. (3.9)

Polynomial transformation

The last case, polynomial transformation of coordinates, is used for static spatial distor-
tions where a general transformation is needed. It is usually formalised using bivariate
polynomial transformation

xB =
m∑

i=0

i∑

j=0

cijx
i
Ayj−i

A , (3.10)

yB =
m∑

i=0

i∑

j=0

dijx
i
Ayj−i

A (3.11)

where cij and dij are constants defining certain transformation. As can be seen from the
equations the capability to model the distortion is controlled by the order of polynomial
m. The higher m the more precise such transformation can be and also more complex to
compute. Not to mention how to construct such transformation (define constants) while
polynomials in higher orders can be sometimes too tricky to handle.

There exists also others more complicated transformations of coordinates. These are
mostly designed for particular distortions. They differ in their expressibility power, com-
putation burden and mainly in parameter space (it is the size of structure which is behind
the letter P in our notation). Generally holds that the more complicated distortion the
given transformation can handle the bigger parameter space it has. Next section will cover
basic approaches for searching the parameter space.

3.1.3 Basic principles of matching

There exists several matching techniques. These can be divided into two groups. The first
group we will call for convenience the feature-based techniques while the second group we
will call the statistic-based techniques. Both groups are searching the parameter space of
an a-priory known transformation of coordinates although it may not seem to.

The feature-based techniques group represents a heuristic approach. These techniques
are trying to find the alignment straight from the data using some known property. The
input is overlap of reference and registered images, it is pre-processed trying to extract

12

or emphasise some feature which should be common to both images. This feature is
then mapped from the reference image to the registered. The mapping is described with
alignment (transformation with given P) which is the result. In this group the image
preprocessing is nothing rare, sometimes even special marks are inserted into the images.

The techniques found in the second group usually can work straight on the raw data.
This group represents a statistical approach. These techniques are trying all possible
alignments, each alignment is then evaluated. Evaluations are compared while trying all
possible alignments, this is performed until the best alignment is found. The evaluation
should describe how appropriate this alignment is, so the resulting alignment is the one
which describes the most appropriate case. The definition of alignment evaluation will be
described later in section 3.3.

Feature-based techniques

Each approach has its own pitfalls. Feature-based techniques are usually two step pro-
cesses. First such technique must extract some feature from the raw data. It is usually
not an easy task, mainly when contrast of image is low. The image resolution is also a
crucial factor in this case. When for example control points are inserted into a scanned
sample then low resolution scan may picture each control point using a few pixels. This
point can easily get lost among the information presented and expressed in surrounding
pixels. A solution may be in enlarging the control point in the sample or changing its
colour so it becomes more different even in the pour contrast scan. Pour contrast is bad
for segmentation methods where extracting given feature may become impossible for re-
liable automatic image composition. In such cases a human interaction may help. The
human operator will show the computer the feature in the image and the computer will
continue with extracting the feature or continue directly with the second step.

Either way the information extracted should be accurate because the second step will
continue with this information and eventual errors will accumulate. For example if the
second step is computing the gravity centres of segmented control points then accuracy
in segmentation should be high. It depends very much on the borders of points. If
the segmentation process failed to extract these control points exactly with their borders
then the variation present in the shape of points (the difference between segmented points
against their original shape) would have unpleasant impact on the resulting gravity centre.
This would result in slightly different alignment than the appropriate one.

The second step in feature-based techniques is estimating the alignment. This is man-
aged depending on the kind of information extracted or on the image pre-processing made
on the data from the first step. The second step algorithm should cope with little impre-
cision, sometimes it may happen due to this imprecision that there will exist more then
one solutions. Program may log them for human operator leaving him/her to make the
final decision. Usually the first step is more complicated than the second one.

These methods are usually aimed against the difficult distortions where the parameter
space is very large to search it. Or sometimes adequate alignment valuation cannot be
found and so the comparison between two alignment for which one is more suitable cannot
be determined. Often approach is in re-sampling the whole data into smaller sizes (half
dimension can be big help) where the extracted feature is clearly significant in the image
and is the main object that should be aligned (the rest is background and is unimportant).

13

Statistic-based techniques

The statistic-based techniques can operate directly on the raw data. The operation in this
context means computing some statistics of data (of the overlap) typically sample mean,
variance or histogram. These statistics of the overlap from the reference image and of the
overlap from the registered image are compared and the result is numerically expressed.
These numbers serve as valuations of given alignment. The matching is then done through
evaluating all possible alignments and the result is the alignment with the best (usually
the highest) valuation.

These methods depend only on the valuation method employed. It doesn’t have to be
only the statistics of overlaps separately, it can be of course (and mostly is) the statistic
computed from both overlaps together. Example: Evaluation of alignment expressed as
the mean from differences in values of corresponding pixels. The trend is to create such
statistics in which adjacent alignments have similar valuation and for which holds (without
losing of generality) the higher valuation the better is the alignment.

This is good for optimisation techniques. Their task is to find the optimal alignment
(represented by global maximum valuation) without going through the whole parameter
space. They usually manage this as the next level processes which call the evaluation
methods and then make decisions, sometimes they make use of special forms of given eval-
uation method to get results faster. For instance when optimising using a gradient descend
technique (well, when higher valuation is the better one then this technique should be im-
plemented and called gradient ascend) then we do not need to compute several valuations
and from their differences decide the next step (estimating the value of derivation) but
instead we can (if possible) compute directly the value of derivation of the given method.

These statistic-based techniques have good results for various image composing appli-
cations. They can handle low contrast as well as spatial distortions. They are mostly
usable only on such distortions which can be handled by affine transformation of coor-
dinates. Sometimes the image pre-processing is needed, for instance in cases where the
background fools the evaluation. In such cases it also might help switching to different
evaluation method. Significant help can be again achieved by re-sampling input images
into smaller ones. The reason is simple, even if evaluation methods are often computa-
tionly simple the major factor influencing the speed of matching is the amount of data that
has to be processed. When image matching is done in opposite to classic pattern searching
the problem of data volume becomes more obtrusive while the bigger is the overlay the
bigger is the amount of data that has to be evaluated and the bigger is the amount of
possible alignments. So there is something like quasi-quadratic slow-down.

3.1.4 Examples of matching methods with various approach

Matching using control points

This technique finds distinctive points in the common overlap in both images and store
them in two sets of points, each set corresponding to one image. These points can be either
artificial (intrinsic), i.e. manually inserted into pictures acting as markers, or these can
be extrinsic — relevant to the data itself. In the first case the shape of points is selected
to be unique in the whole image and also the coordinates of these points should be easily
extracted. Typical examples are wholes drilled into a scanned sample or in medical imaging

14

we can mention fudicial markers like plastic “N” shaped tube filled with CuSO4 in MR
scans. In the case of extrinsic markers these are selected to be again easily determined in
the scan, to be rigid and stationary. Usually these are identifiable landmarks, anatomical
structures or mainly easier objects like line intersections, corners or centres of gravity of
closed-boundary objects.

The markers should generally be invariant to the distortions, for example having control
points as small dark markers in distortion in which dark noise is present isn’t probably
the best choice. Sometimes artificial markers are placed on the sensor itself. Thus the
matching process becomes closer to the calibration process. But markers should be still
reasonably selected. Finally after creating two sets of control points these should contain
similar number of elements.

Now when we have two sets of coordinates of control points we must find the certain
values of P (find the certain alignment) at given transformation of coordinates. We assume
that the given transformation is capable of describing the spatial distortion that is present
during image scan. The following example algorithm for points mapping will be functional
only for affine transformations.

We will need two-dimensional array, one dimension will represent points from one set
and the second dimension will represent points from the remaining set. This array we
will call the accumulator array and for this purpose we must number the control points
in each set to make it a classical number indexed array. The first step is zero the whole
accumulator array and then create every possible triangle from points from the first set and
simultaneously from the second set. Compare each pair of triangles using the circularity
measure. The circularity measure K is invariant to rotation, scaling and also to translation.
It is defined as

K =
2|c11 · c22 − c12 · c21|
c2

11 + c2
12 + c2

21 + c2
22

(3.12)

where c11, c12, c21 and c22 are constants from given affine transformation which can be
determined from the coordinates of points which are creating measured triangle pair. One
triangle defines a circle, the circle will be inscribed into this triangle. This measure should
describe how easily one can inscribe the very same circle into the second triangle. As the
K gets closer to 1 the easier it is. Value of 1 means complete conformity.

Every element in the accumulator array increment by 1 if and only if its position in the
accumulator array represents some pair of corresponding vertices of the triangle pair which
in addition has K > 0.9. When this is done for all possible triangle pairs the next step
is go through the accumulator array and zero all such elements which value is less then
predefined threshold. The value of threshold should be first experimentally determined.
This step should eliminate the possibility of mismatched pairing of control points. After
this again scan through the accumulator array this time row by row zeroing all elements
in the row except the one with the highest value, then do the same thing but column by
column. The algorithm is finished leaving non-zero elements in the accumulator array at
the coordinates which define control points that correspond one another.

This approach is typical representative of the feature-based group of matching tech-
niques. The control points can be determined differently, that was very briefly explained
in the paragraph beginning at the page 13.

15

Matching using correspondence of borders

This method begins with segmentation of objects from input images, the segmentation
from common overlap. We must extract the frontiers of objects which are distortion
invariant and present in both images. This frontiers must be remembered somehow and
from this information we will get the certain values of parameter P (certain alignment).

One solution is to use the general Hough transformation for isolating the border.
Usually each pixel is stored in Cartesian coordinates but this method requires to recompute
them into polar coordinates, i.e. coordinate is defined through distance and angle from
the given reference point and the axis. In image composition we can use the origin of
coordinates as the reference point and the x axis as the reference axis/direction. The
border in the reference image is stored pixel by pixel in dependence on the reference point,
in the reference image this point is the origin. This way we get characteristic of given object
in reference image. For the sake of this explanation let’s assume that this characteristic is
ordered somehow (usually by angle), thus we can number each pair (distance and angle)
describing each pixel from that object.

Now we will use this characteristic from reference image and apply it on every pixel
(respective its coordinate) in the border of the same object in registered image. This
means for given pixel in registered image and for every element (distance and angle) of
this characteristic compute the reference point in the registered image such that from this
reference point we can get to the given pixel coordinate using given distance and angle.
The positions of computed reference points are then used in accumulator array (which had
to be initialised beforehand).

The accumulator array is two-dimensional, the position in accumulator array corre-
sponds uniquely to some position in the registered image. So every computed reference
point will increase some element in the accumulator array. The transformation of coordi-
nates is in this example translation (every coordinate is shifted by some constant). The
optimal alignment is expected to be that one which translates the origin from the reference
image into the reference point in the registered image with the highest accumulated value.

There exist several other methods using similar principle, for instance the active con-
tour models (also called snakes). Model can be a line that can curve itself depending on
its parameters, splines are very popular in this context. This line is initiated inside some
object and it is trying to get alongside this object. The shaping of the line is controlled
via some equations. These equations preserve the smoothness of the line but these equa-
tions are under influence of the object. When the equality holds, the line is alongside the
object as tight as its smoothness will permit. Advantage is in the reduction of information
while each line (respectively the object in the image) can be well described using a few
parameters. Few objects are described this way and finally some parameter comparison
takes place returning the alignment.

Matching using Fourier transformation

Fourier methods pose different approach to solution of matching problem but still with
similar characteristics. They do kind of statistical investigation of data (that’s the similar
characteristics) but they do it in the frequency domain (and that’s something new). The
idea comes from facts that spatial translation, rotation, scale or reflection have their
counterparts in frequency domain.

16

Advantage is also in the speed when using fast Fourier transform and mainly in ro-
bustness against frequency dependent noise. Imagine satellite scanning of Earth and then
transmitting analog data signal back to ground where secondary data processing is held
including image composition. During transmission it can happen that some periodic noise
will interfere the transmitted signal and introduce this way a frequency dependent noise
in the retrieved image.

Favourite example for image matching using Fourier transform is phase correlation.
This matching process can find parameters of translation as a transformation of coordi-
nates. It relies on the translation property often called the shift theorem. Let us as-
sume we have two overlaps of images. Following the established notation we will denote
them A(xA, yA) and B(xB, yB) where xA ranges from XA(P) and similarly yA ∈ YA(P),
xB ∈ XB(P) and yB ∈ YB(P). Remember overlap is dependent on the alignment which is
defined via parameter P . For both functions A and B we have their Fourier counterparts
FA(ωx, ωy) and FB(ωx, ωy). The shift theorem declares that the following two equations
are equivalent

A(x, y) = B(x + c1, y + c2), (3.13)

FA(ωx, ωy) = e−i(ωxc1+ωyc2)FB(ωx, ωy). (3.14)

The equation 3.13 is almost the equation 3.1 (on page 9) with the difference that the
transformation of coordinates symbol T was substituted with the translation in which the
shift is done with vector (c1, c2). The second and final difference is the removal of intensity
mapping function I. Under certain circumstances the I function could be left there, the
phase correlation can be successfully applied on matching images which were obtained
from different sensors (multi-modal image composition). The symbol i in equation 3.14 is
the complex unit (i2 = −1).

Equation 3.14 states that two images translated by some constant vector have the same
magnitude but differ in the phase. The normalised cross power spectrum is hence given
by

FA(ωx, ωy) · F ∗
B(ωx, ωy)

|FA(ωx, ωy) · F ∗
B(ωx, ωy)| = e−i(ωxc1+ωyc2) (3.15)

where upper index ∗ denotes the complex conjugate (when z = a + ib then conjugate is
z∗ = a− ib). Now compute the inverse Fourier transform on left side of equation 3.15 and
we get the Dirac δ-function.

Well, this with a few assumptions about integrability and so on is not applicable on
images. That is to say images are discrete. Never mind we can still use discrete Fourier
transforms with further assumptions, notably periodic extension of images outside their
support sets XA(P), . . . , YB(P). The Dirac δ-function then becomes a unit pulse. That
should be localised at the coordinates (c1, c2). This is how we can determine the optimal
alignment using Fourier transform.

Previous paragraphs were a small excursion into a whole variety of matching ap-
proaches and algorithms. All of the algorithms presented here are mostly extensible into
more complicated transformations of coordinates. Nevertheless with speed penalty and
also more complicated implementation. We have omitted typical members from statistic-
based family of matching algorithms. We will mention the optical system in the following

17

section which was used for testing and then in the following section we will explain five
matching methods that were implemented. The program which is part of this master
degree thesis was constructed at first to fulfil the matching process which is outlined in
the next section. It was decided to use statistic-based methods and so we will describe
them later a little bit more detailed.

3.2 The system in Brno Faculty Hospital — Bohunice

The practical part of this master degree thesis is to develop a program that will successfully
compose images. The test data were obtained at Department of pathological anatomy
which is located at Brno Faculty Hospital — Bohunice. The department belongs to Faculty
of Medicine, Masaryk University in Brno.

The images are scanned using the Lucia DI system (provided by Laboratory Imaging
Ltd., Prague). This system controls the digital camera Nikon DXM 1200, microscope
Leica DMLB with lens HC PIApo 10/0.4, HC PIApo 20/0.7, HCX PIApo 40/0.85 CORR,
HCX PIApo 100/1.35 Oil Imm and finally the scanning table Märzhäuser 2D. The high
resolution images are first scanned part after part in meanderic manner, i.e. begin with left
top image, scan it, move right, . . . , scan the rightmost image, move down, scan it, move
left, . . . , scan the leftmost image, move down, scan it, move right and so on. Images are
scanned with overlap, its volume can be roughly controlled via the percentage of overlap
from the whole image. The Lucia DI system automatically takes care of focusing each
image. When 3D reconstruction is needed then this system takes a few images at different
focus distances, then compose them together using mainly contrast parts from images.
This way after “a longer while” we receive serie of images, each image is typically 1232×972
pixels in 24-bit colour depth. Image file format is TIFF not-compressed, i.e. the size of
one file is approximately 3.4MB. The scan batch is then described using configuration file
and composed together. The routine of image composition in Bohunice is also described
in [6], input file formats are described in [15, 9].

From this characterisation it is clear that the problem of composing given images is
uni-modal. The system is not much influenced by the ambient light, furthermore the
system is situated in special room which is without windows and hence dark during the
scanning process. Thus the illumination variation is very low if any. The problem arise
with contrast. The cause is the strength of scanned sample which is not constant in the
whole sample. There exist several peaks depending on the kind and texture of the sample.
The system tends from time to time to focus on these peaks resulting in pour quality
image (the rest of image is majority of image and it is not focused). The system tries to
recognise such situations and asks the operator whether it should start the mentioned 3D
reconstruction. There are usually a few images in each image composition with slightly
different focus distance, so the contrast in images is variating. One won’t usually notice
it when looking at the zoom out composition. For these reasons the intensity conversion
function was supposed to be identity and therefore was excluded from any computations.

The scanning table is very accurate. Hence the translation was good enough to serve
as the transformation of coordinates. The accuracy of scanning table was a big help when
employing the optimisation techniques in the final level of program development.

Spatial distortions are present mainly due to lens properties. When two images are

18

aligned by the upper part of their common overlap then the lower part is misaligned by
a few (less then ten) pixels. The overlap is very large, usually from 5% to 10%, i.e. in
horizontal matching the overlap dimension is from 61 × 972 to 123 × 972 pixels. Such
amount gives enough information for optimal alignment even when the ideal alignment
isn’t possible. The misalignment and sometimes the contrast difference cause the sutura
to be noticeable. The problem is solved using the sutura camouflaging routines which is
run when the image stitching is in progress.

It was decided to use statistic-based matching methods because of the nature of
biomedical images. These contain tiny parts of human skin or organs, lots of cell with
different textures and plenty of inter-cell space filled differently. We believe that any kind
of segmentation when fully automatic composition is requested won’t be at least manage-
able if possible. The probability of misbehaving of matching method which makes use
of segmentation was too high. In addition the spatial distortion isn’t too bad and the
variance in illumination and contrast is acceptable for computing basic statistics directly
on raw data. Latter in Chapter 4 we will see that this approach paid off.

3.3 Matching evaluation methods

3.3.1 Statistic-based approach, revisited

In the previous section we have learnt about the specification of given image composition
problem. We have learnt that the transformation of coordinates T (x, y, P) will be simply
the translation and that the intensity conversion function is the identity. Thus the basic
equation for alignment 3.1 (on page 9) will be rewritten into

A(x, y) = B(x + c1, y + c2). (3.16)

We have dropped the I function because we’ve assigned it to be the identity function and
the semantics of the identity function allow us to do that. Just to make clear, under the
term identity function we mean the following scheme for any arbitrary set Set:

I : Set → Set,

I(s) = s, ∀s ∈ Set.

We are aiming to use the matching methods from the statistic-based family. According
to its definition we must firstly define the alignment evaluation function. This function
will accept the shift constants c1 and c2 as its input and will result in some number val.
The domain of val will be various but always it will be some basic mathematical set of
numbers (or its sub-set), mainly it will be natural or real numbers. This have the property
that we can always compare two such numbers and we can always say which one is larger,
that is very important for our purpose. We will define some certain valuation functions
in this section and denote them according to their names. But for these paragraphs we
will denote them with some general symbol V (abbreviation for term valuation). Let the
symbols Align1 denote the alignment given by c1 and c2 and similarly Align2 for c′1 and
c′2.

The equation 3.17 is crucial for the matching process

V (c1, c2) > V (c′1, c
′
2) ⇐⇒ Align1 is closer to the optimal then Align2 (3.17)

19

and must be held for every valuation V in order to let the matching process be successful.
Whenever the alignment evaluation function returns higher number then the more suitable
alignment we have found. Hence the optimal alignment written as a pair (C1, C2) should
satisfy the property

(C1, C2) = max
(c1,c2)∈P ′

V (c1, c2). (3.18)

The P ′ denotes the parameter space of all possible alignments.
We use here a quite general notation because behind the symbolics there is a lot of

work and also lot of relations. For example we state here that the matching is just finding
the maximum evaluation. Obviously we can stitch two images using only one alignment
(i.e. using only one transformation of coordinates), because we are reasoning about the
global transformations of coordinates. Hence we preclude stitching the upper part of two
images using some alignment and simultaneously stitching the lower part using some other
alignment. But what shall we do when there will be two (or more) alignments having both
the maximum valuation? In practical solutions we will probably also have to work out the
P ′ searching for the maximum/optimal.

For the sake of explanation and introducing the notation we had to simplify. There
are some relations behind the property 3.18. The first and the most remarkable is that
virtually everything is depending on the two matching images, the reference image A(x, y)
and the registered one B(x, y). These two define the general parameter space for P (P is
an element from that space) in general matching problem and the translation parameter
space P ′ in Bohunice’s case. That’s a little bit tricky while in fact there are two things
behind the term overlap.

The image composition was introduced as an image matching and then an image
stitching process. The matching mostly implies the overlap of images. The system in
Bohunice can control how much the overlap will be in percentage from the whole image.
This is the first meaning of overlap and in fact it defines the largest possible overlap of
images, the optimal one can be (and usually is) smaller. We use this information for
creating the P ′ — the space of all possible alignments regarding given two images. But
images can generally be of different dimensions (even the reference and registered images
need not to have the same dimensions). This is why the P ′ is dependent on the images
A(x, y) and B(x, y).

Then the second meaning of overlap is the actual overlap when some alignment is given.
This means such part of reference image in which every pixel has its own counterpart in
the registered image (and vice versa). This is dependent on the exact values of P and the
given transformation of coordinates as outlined on page 9.

So it looks like the overlaps and alignments are related in a circle-definition, overlap
depend on given alignment P which is from all alignments space P ′ which is again de-
pendent on the overlap. But that’s not true because of the duality of the term overlap in
our context. We will use the ranges XA(P), YA(P), XB(P), and YB(P) which define the
intervals for the actual overlap at given alignment. From this point on we will note the
alignment by pair/vector (cx, cy). This defines some certain alignment from the space of
all possible alignments P ′, but we won’t need the notation for space P ′.

Finally the valuation V is dependent on the given alignment and the given images
because it needs to compute the actual overlap and estimate the “optimality” of it. Exact
notation would require function nesting resulting in plenty of parentheses or indices not

20

mentioning the definitions of domains which are again dependent.
It is not hard to figure out how to compute all possible overlaps (the second meaning)

from given two images (respective their dimensions) and the overlap (the first meaning)
in percentage. For review of 3.16 the pixels at alignment (cx, cy) are in correspondence

A(x, y) = B(x + cx, y + cy) (3.19)

where x ∈ XA(cx, cy), y ∈ YA(cx, cy) (3.20)

and x + cx ∈ XB(cx, cy), y + cy ∈ YB(cx, cy). (3.21)

The pair (cx, cy) replaces the general alignment defined previously by parameter P .
Acknowledgements at this point belong to [4, 14] for good help at remainding me the

basics of statistics. The summary of selected valuation methods can be also found in [5].
The n-pass test is every such test that needs for its evaluation exactly n-times examine

all the data from given overlap.

3.3.2 The stochastic sign change

The stochastic sign change (abbreviated to SSC) is the first and the easiest test for simi-
larity. It works on the raw data without any pre-computations. It is simply one-pass test
which is counting the changes of sign in the series. The design of this method presumes
that the more sign changes there’ll be the more similar these two images are in their
common (tested) overlap.

The series consists of differences from values of corresponding pixels. The sign change
is considered as every such situation in series in which the sign of predecessor turns into
the sign of successor in one of the following manners:

1. change from strictly positive (above zero) to zero or less,

2. change from strictly negative (bellow zero) to zero or more,

3. “change” from zero to zero.

These situations don’t correspond exactly to the name of the test, foremost because of the
third option. The reason for this is the situation in which we are evaluating two exactly
same overlaps. In this situation the difference from values of corresponding pixels will
be always equal to 0. How much sign changes will be there? Obviously there will be no
sign change but in most others alignments there will be at least one pair of corresponding
pixels that will differ more or equally to 1, except the matching of two exactly one-coloured
images. This would imply that mostly every non-optimal alignment will yield more sign
changes then the optimal one. Thus the optimal alignment will never be found in such
situations. For situations like this the SSC was enhanced preserving the situations in series
where the exact sign change occur.

The “enhanced” SSC is defined using the help series ssc(i, cx, cy) for given alignment
(cx, cy) as

ssc(i, cx, cy) = A(x, y)−B(x + cx, y + cy), i = 1 . . . N, (3.22)

where x = i % card(XA(cx, cy)) + min(XA(cx, cy)), (3.23)

y = i÷ card(XA(cx, cy)) + min(YA(cx, cy)), (3.24)

N = card(XA(cx, cy)) · card(YA(cx, cy)). (3.25)

21

The N is the total amount of pixels in overlap of images A(x, y) and B(x, y) at given
alignment (cx, cy). It is computed from the cardinality (size) of range intervals of permitted
(or equivalently of presented) coordinates in overlap. The % stands for modulo operation
(the reminder after dividing) and the ÷ stands for dividing without reminder.

The equations 3.23 and 3.24 summarise few implicit facts. First the range interval
either for x or y coordinate is “discretely continuous,” i.e. for example in range of natural
numbers from 1 to 10 there are no numbers missing (no holes), the sequence is complete.
Secondly the numbers in range interval can be linearly ordered and therefore we can
determine the minimal number in every such interval. In these equations we have presented
that we can uniquely number all pixels present in overlap, start from bottom left corner
of the overlap and assigning increasing numbers while moving “as we read” but up.

The series ssc(i, cx, cy) can be created variously, it really doesn’t matter in what order
we are inserting the values of pixel pairs into the series. It doesn’t even matter in what
order we are computing the differences, we can even switch the order during evaluation of
given alignment. Important is when image matching that orders either of inserting values
or computing differences are preserved and therefore the very same for every valuated
alignment.

Next equation will be finally the definition of the stochastic sign change measure of
similarity

V (cx, cy) ≡ SSC(cx, cy) =
1
N

card({i| ssc(i− 1, cx, cy) · ssc(i, cx, cy) ≤ 0, i = 2 . . . N}).
(3.26)

From this point we will drop the obvious prefix V (cx, cy) ≡.
In the definition of SSC there is denominator (the fraction 1

N) which provides kind
of normalisation. The reason for that is again simple. The bigger is the overlap then it
can possible more often occur a sign change. If the optimal alignment represents small
overlap then misalignment can easily happen and in fact in practical testing pretty often
happened. Denominator proved himself to be a good solution. Disadvantage of this
solution is in extremely small overlaps where the strength is less then 5 pixels (recall that
the system in Bohunice creates overlaps with the strength usually more than 50 pixels). At
these small overlaps the number of sign changes in combination with denominator smaller
then usual tends to raise the evaluation. Put in other way, at large overlaps the number
of sign changes in combination with significantly higher denominator tends to lower the
evaluation. In praxis the result was always misalignment until the small overlaps were
simply forbidden (such alignments were excluded from the searched alignment space).

The domain of possible evaluations is 〈0, 1〉. This method presumes that the reference
and registered images are identical except for non-correlated, additive noise with the zero
mean value and symmetric probability density function. This is clear assumption when
looking at the definition of SSC. Moreover the bigger difference in brightness of matching
pictures the less sign changes will occur (provided the order when computing the differences
is not alternating) because the values of paired pixels will draw apart. This way the sign
changes will occur sparsely and their expressibility in term of similarity will become more
poor. Finally at some level of difference in brightness the SSC will lose completely the
ability to point out optimal alignment. The similar will happen when the noise won’t be
centred at zero value.

22

3.3.3 The sum of absolute valued differences

This evaluation (abbreviation is SAVD) seems to have its root in the least-square criterion.
The similarity will be more distinct after the definition. The definition of SAVD is

SAV D(cx, cy) = MAX − 1
N

N∑

i=1

|A(x, y)−B(x + cx, y + cy)|. (3.27)

The definition of variables x, y and N holds from equations 3.23, 3.24, and 3.25.
The MAX value is here only for “cosmetic” purposes. The subtrahend is the core

of SAVD method. To match our definition for matching as finding the alignment with
maximum evaluation we had to equip the SAVD valuation core (the subtrahend) with the
minus sign. The best alignment is then achieved when the sum is equal to value 0. Any
sub-optimal alignment will differ at some point (pixel pair) resulting in strictly above zero
value of the sum. In the end “after minus sign” the SAVD will behave the way we want
to. Constant MAX is then simply the shift to positive values of valuation and should be
set to the maximal possible value of pixels (typically to number 255 for 8-bit colours).

As mentioned the SAV D suggests the least-square criterion which is very popular
measure of similarity in computer science. The square function which purpose is in fact to
turn the negative values into positive ones is substituted with the absolute value function.
The advantage after this exchange is less sensitivity to outliers — corresponding pixel
pairs which differ notably more then the rest. This improves the similarity evaluation
when the noise is present provided the noise won’t over-buzz the image itself (the image
won’t be over-much noisy). The noise won’t affect the total sum as much as it would affect
in least-square criterion leaving this way the noise-free pixels to control the total value of
the sum. This is in correspondence with our expectation that the ratio “pixels influenced
by noise against the noise-free ones” is far less than one. The subtract is again divided
by the overlap size for the same reasons as in the stochastic sign change criterion. The
narrow overlap restriction holds.

This method’s domain of possible evaluations is 〈0,MAX〉. It is slightly faster than
SSC and more reliable too. In the meantime it is the main method used in Bohunice
because its speed, desirable properties for further optimisation techniques and reliability.
The matched images should be identical, small variance in brightness and noise is accept-
able, i.e. the matching shouldn’t fail. The tested amount of noise wasn’t really much but
it was enough to consider these images to be useless, see Appendix for example pictures.

3.3.4 The normalised cross-correlation coefficient

Also known as Pearson r-coefficient sometimes also referred as linear or product-moment
correlation. It is also very basic similarity measure which can be found in every literature
about statistics, helpful was [4], the “alias” terms come from [14], technical help came
from [2]. This is a two-pass evaluation.

The definition is

A∗(cx, cy) =
1
N

N∑

i=0

A(x, y), (3.28)

23

B∗(cx, cy) =
1
N

N∑

i=0

B(x + cx, y + cy), (3.29)

NCC ′(cx, cy) =
100

∑N
i=0(A(x, y)−A∗(cx, cy))(B(x + cx, y + cy)−B∗(cx, cy))√∑N

i=0(A(x, y)−A∗(cx, cy))2
∑N

i=0(B(x + cx, y + cy)−B∗(cx, cy))2
.

(3.30)

A little confusing but yet the equations 3.23, 3.24, and 3.25 hold, definition 3.28 and 3.29
specify the sample means (average) from the given overlap. The number 100 is there only
to enlarge the domain of possible evaluations.

Nevertheless there is an apostrophe in the name NCC ′ which means that this is not the
final definition. Given definition involves two-pass computation, in the first pass we must
compute the average values and then in the second pass we can estimate the optimality of
alignment. This takes time. There exists one-pass variant which allows us to save time for
computation, on the other hand it also introduces some computation inaccuracy. Probably
depending on the implementation but the announced inaccuracy hasn’t shown us to be a
crucial problem. There was some but the differences it created were very decent and for
the matching and optimising unimportant.

How to get one-pass algorithm? First notice that A∗(cx, cy) and B∗(cx, cy) are con-
stants in equation 3.30, using this information we can rewrite similar sums

N∑

j=1

(aj −A)(bj −B) =
N∑

j=1

(ajbj − ajB −Abj + AB) =

=
N∑

j=1

ajbj −
N∑

j=1

ajB −
N∑

j=1

Abj +
N∑

j=1

AB =

=
N∑

j=1

ajbj −B
N∑

j=1

aj −A
N∑

j=1

bj + ABN, (3.31)

N∑

j=1

(aj −A)2 =
N∑

j=1

(a2
j − 2ajA + A2) =

N∑

j=1

a2
j −

N∑

j=1

2ajA +
N∑

j=1

A2 =

=
N∑

j=1

a2
j − 2A

N∑

j=1

aj + NA2 (3.32)

where the A,B are constants and aj ,bj are variables. Constants represents the averages
from both sides (images) of overlap, hence for averages hold

A =

∑N
j=1 aj

N
, B =

∑N
j=1 bj

N
.

These two equations put into the equations 3.31 and 3.32, we get

N∑

j=1

(aj −A)(bj −B) =
N∑

j=1

ajbj −B
N∑

j=1

aj −A
N∑

j=1

bj + A

∑N
j=1 bj

N
N =

=
N∑

j=1

ajbj −B
N∑

j=1

aj =
N∑

j=1

ajbj −A
N∑

j=1

bj , (3.33)

24

N∑

j=1

(aj −A)2 =
N∑

j=1

a2
j − 2A

N∑

j=1

aj + N

∑N
j=1 aj

N
A =

N∑

j=1

a2
j −A

N∑

j=1

aj .

(3.34)

In equation 3.33 we can choose one from two equal forms of numerator of the final nor-
malised correlation coefficient. We expect the similar image quality at both sides of overlap
and therefore we can make choice arbitrary.

Now the one-pass algorithm for NCC must compute following five sums

S1 =
N∑

i=0

A(x, y)B(x + cx, y + cy), S2 =
N∑

i=0

A(x, y), S3 =
N∑

i=0

B(x + cx, y + cy),

S4 =
N∑

i=0

A(x, y)2, S5 =
N∑

i=0

B(x + cx, y + cy)2.

The averages can be computed from A∗(cx, cy) = S2/N and B∗(cx, cy) = S3/N , then

NCC(cx, cy) = (S1 −B∗(cx, cy)S2) /

√
S4 −A∗(cx, cy)S2

10
·

√
S5 −B∗(cx, cy)S3

10

 .

(3.35)
This is the definition of one-pass NCC, the range of possible evaluations is 〈−100, 100〉.

The optimal alignment is reached for the 100.
This evaluation measures the extent to which the values of corresponding pixels are

“proportional” to one another. The term proportional in this context means linearly
related. The higher is the NCC the better can be every pixel pair from overlap described
with equation

A(x, y) = d1 ·B(x + cx, y + cy) + d2. (3.36)

while using only single value for each constant d1 and d2 (constants are independent on
the position in the overlap). This means that the NCC should work when additive noise is
present with expectation of d2 and symmetric probability density function. Multiplicative
noise with expectation of d1 should cause no problems too. In Bohunice we have the
situation d1 ≈ 1 and d2 ≈ 0, i.e. image brightness is roughly identical. Nevertheless when
for example the left side of sensor brings more brightness into images than the right part,
the result is the different brightness when image matching. The NCC evaluation should
still find the optimal alignment in such cases.

The previous three evaluation methods were “exact-colour sensitive.” These were
estimating their view of similarity at given overlap by strictly comparing corresponding
pixel pairs from given overlap. Images therefore had to be colour similar in the first place.
This means that some object from overlap had to have the same texture in term of its relief
and colour design. Selected three methods perfectly present three steps of accepting the
difference in image illumination. The SSC must have identical both images which should
be matched, low noise and no difference in brightness. The SAVD accepts low noise and
small difference in brightness. By the difference in brightness we mean that there is some
difference in values of pixel pairs and that this difference remains constant in the whole

25

overlap, pixel values from one image are all shifted constantly. In other words the pixel
value mapping function from values in A(x, y) into values from B(x + cx, y + cy) should
be simply the constant shift. The NCC may have than similar certificate as SAVD except
the difference in pixel pairs which doesn’t have to be necessary the same but still the pixel
value mapping function must be linear. This features pre-determine the SSC, SAVD and
NCC for uni-modal image composition respective uni-modal matching when the intensity
conversion function I (see equation 3.1 on page 9) is considered to be the identity.

3.3.5 The correlation ratio

The correlation ratio (abbreviation is CR) is the first representative of statistic-based
approach which is indeed computing the basic statistics variables during evaluation. This
concept will allow us to use such evaluation methods for multi-modal image composition
without the need for estimating the intensity conversion function. In addition to previous
paragraph this evaluation method further extends the possibility of NCC. While the NCC
can detect only linear dependency of pixel values from overlap, the CR is capable to detect
arbitrary functional dependency, i.e. the mentioned pixel value mapping function can be
arbitrary.

The correlation ratio evaluation is the main theme of [13], it is there compared to the
Woods criterion and also to the mutual information measure which will be described in the
next subsection. The [12] is in fact a report of the [13] concerning the image registration,
this report suggests the CR straight for multi-modal problems.

The idea behind this alignment evaluation function is firstly estimate the “dependence”
of the registered image on the reference image and then secondly quantify this dependence.
The term dependence means in fact the pixel value mapping function. We would like to
find the function ψ∗ which satisfies the formula

ψ∗ = min
ψ

V ar[B(x + cx, y + cy)− ψ(A(x, y))] (3.37)

in which ψ is the pixel value mapping function, the variables x and y ranges from XA(cx, cy)
and YA(cx, cy) (see 3.2 on page 9) in dependence on the given alignment (cx, cy), V ar is
symbol for statistic variance (the second order central moment). The minimum goes over
all possible pixel value mapping functions.

Let’s denote with J the set of only all possible pixel values, typically J = {1, . . . , 255}.
Then for the function ψ it holds ψ : J → J . The theory gives us the result such that

ψ∗(J) = E[B(x + cx, y + cy)|A(x, y)], (3.38)

ψ∗(j) =
∑

i∈J

(i · p(i|j)) (3.39)

where E is the conditional expectation statistics (the first order initial moment) and p()
is the conditional probability function. Variables x and y range again over the entire
overlap area. Equation 3.38 states what’s the meaning/idea of equation 3.39. The pixel
value mapping function which represents the best dependency is the expectation of the
conditional probability function. The argument of ψ∗(j) is the condition at which the
probability is given. It is the value of the pixel in the reference image.

26

So this is the first part, we have the dependency estimate. Now we must quantify how
appropriate it is in term of optimality of alignment. We already know that the ψ∗ is the
best dependency estimate for the current alignment situation. We will start with the total
variance theorem

V ar[Y] = V ar[E[Y |X]] + EX [V ar[Y |X = x]] (3.40)

where ∀(φ : J → J) : EX [φ] =
∑

j∈J

(φ(j) · p(j)). (3.41)

Symbols Y and X are the discrete random variables ranging from J and representing both
sides of overlap, EX is just help operator.

We can think of the total variance theorem (equation 3.40 is the theorem, 3.41 is help to
support the theorem) as of the energy conservation function. The first term V ar[E[Y |X]]
measures the part of Y which is predicted by X, the second term measures the part of
Y which is functionally independent of X. The total variance theorem is similar to the
orthogonality principle

V ar[Y] = V ar[E[Y |X]] + V ar[Y −E[Y |X]]. (3.42)

The second term in the right hand side from equal sign is equal to the “functional inde-
pendent” energy and is also a part of the equation 3.37. This should clarify the connection
between the first and the second part of the idea behind the CR evaluation.

The correlation ratio is defined as the comparison between the “total energy” and the
“explained energy” of Y . It could possibly be also defined only as the “explained energy”
but this concept would introduce similar problems as were before the normalisation of
SSC and SAVD.

From the orthogonality principle we can notice that V ar[Y − E[Y |X]] can be low for
two reasons. Firstly the Y is well “explained” by X and therefore there is not much left
for this term to fill up the V ar[Y]. Or secondly Y itself gives little information, i.e. V ar[Y]
is low. The second reason is a problem, V ar[Y] may be arbitrary low depending on the
overlap volume. The “normalisation” helped us again and hence we define the correlation
ratio for two random variables X and Y as

η(Y |X) =
V ar[E[Y |X]]

V ar[Y]
(3.43)

or equivalently

1− η(Y |X) =
EX [V ar[Y |X = x]]

V ar[Y]
. (3.44)

Notice that the correlation ratio is not symmetric. Because of the role of functional
dependency in the concept of CR. Simply imagine we have the pixel value mapping function
in which two distinct values of pixels from the reference image are mapped onto one single
value of pixel from registered image. How will the inverse function look like? There won’t
exist any but the expectation of variance of Y through values of X = x will overcome
this, the penalty is the higher variance which may result in different evaluation of given
alignment. Therefore when matching two images the “dependency direction” must be
preserved for all tested alignments.

27

The correlation ratio can be computed in one-and-one pass, which means firstly scan
once the whole overlap area and compute the conditional variance and the total variance
of the pixel values of registered image B(x, y), the second pass is for evaluation of the
EX operator using conditional statistics. We have explicitly mentioned this second step
to highlight the difference of this final step between NCC and CR. The NCC have also a
final computation after scanning the entire overlap but this computation is rather simple
and does not consume a lot of time. The CR on the other hand needs to compute with
every possible pixel value (resulting in a cycle when programming), we have denoted a set
J containing only all possible pixel values.

We will choose the definition 3.44 for implementing the CR valuation method. We
will implement the right hand side from equal sign, the fraction. This represents the
“one minus CR,” so in order to get the CR we must compute “again” the “one minus”
operation. We will also use similar trick with variance as we did when implementing the
NCC. First step is to compute

S3 =
N∑

i=0

B(x + cx, y + cy), S5 =
N∑

i=0

B(x + cx, y + cy)2, (3.45)

S3j =
∑

i=0...N,A(x,y)=j

B(x + cx, y + cy), (3.46)

S5j =
∑

i=0...N,A(x,y)=j

B(x + cx, y + cy)2, (3.47)

Nj = card({i|A(x, y) = j, i = 0 . . . N}), (3.48)

these represent the first pass over the entire overlap. Sums S3 and S5 can compute the total
variance of B(x, y) in one pass, similarly S3j and S5j can do the same job for conditional
variances. The latter ones are computed from all such pixels in the registered image which
are counterparts of all pixels from the reference image that have its value equal to j. The
notation i = 0 . . . N,A(x, y) = j should capture that as the x and y are functions of i. Do
not forget that the equations 3.23–3.25 (on page 21) still hold for variables x, y and N
regarding given alignment (cx, cy). Finally the definition of the correlation ratio is

CR(cx, cy) = 100− 100

∑
j∈J(S5j − S3

2
j/Nj)

S5 − S2
3/N

. (3.49)

The range of possible evaluations is 〈0, 100〉 with the higher valuation the more optimal
alignment. When the ideal alignment is tested (both sides of overlap fit exactly) then the
variance in numerator will be always equal to 0. Hence the whole numerator will be equal
to 0 and so CR = 100. The method is still rather fast and robust. Because of the CR
evaluation is considered to be an extension of NCC in term of more complicated functional
dependency it can find, the restrictions regarding the noise volume hold as for NCC.

3.3.6 The mutual information

The mutual information (abbreviation MI) as a criterion of similarity measure is based on
the information theory. It also uses probabilities to estimate the optimality of alignment,
probabilities are also compared among each other. This time the comparison is not in

28

term of functional dependency but instead in term of statistical independence. The basic
literature about MI can be considered [18]. Then there are few short explanations of the
method regarding the image registration [16, 17], technical reports [19] and notably [8].
The idea of estimating probabilities using their joint histogram in this evaluation method
we have learnt from [20].

We can think of the image data from their common overlap as of a sequence of trials.
All possible trial results will be numbered, the set J will again contain only all possible
trial numbers, these would be the all possible pixel values. This way we can imagine the
U to be the discrete random variable with the probability density function PU . Similarly
the V will be discrete random variable with PV given by the overlap of registered image.
U is given by the reference image. The goal is to estimate their joint probability density
function PW so that PU and PV are the marginal ones. W is the discrete random vector
W = (U, V).

For the sake of simplicity we will again drop from writing indices which should denote
that U , V , and W are alignment dependent. It is also clear from their definitions (defined
by overlap, overlap is defined by alignment).

The measure of optimality of alignment is based on the following two ideas. Two
random variables are statistical independent when the equation 3.50 holds,

∀u, v ∈ J : PU [U = u] · PV [V = v] = PW [U = u ∧ V = v]. (3.50)

And also two random variables are statistically maximum dependent when the equation
3.51 holds,

∀u, v ∈ J : PU [U = u] = PV [V = v] = PW [U = u ∧ V = v]. (3.51)

The mentioned literature defines the mutual information between random variables U
and V according to the theory of information the way we are used to, that is

MI(U, V) = I ′(U |V) = I ′(V |U) = H(U) + H(V)−H(U, V). (3.52)

The I ′(U |V) denotes the information measure from theory of information where the
amount of information that V has about U is expressed as the Shannon entropy of U
subtracted by the conditional Shannon entropy of U provided V .

In [5] on pages 24, 25 we can find another definition of mutual information

MI(U, V) =
∑

u,v∈J

PW [U = u ∧ V = v] log
PW [U = u ∧ V = v]

PU [U = u] · PV [V = v]
. (3.53)

This measures the mutual information between U and V via the degree of dependency
using the Kullback-Leibler distance between the numerator and denominator of the loga-
rithm fraction. Which is in correspondence with the idea explained by equations 3.50 and
3.51.

Both definitions of MI are equivalent, i.e. equation 3.52 can be converted into 3.53
and vice versa. If we rewrite the formula in 3.53 (the part with logarithm) and apply the
Bayes rules for conditional probability, we will receive the Shannon entropies as in 3.52.
The opposite direction is available too.

29

The base of logarithms should be the same. The value of base doesn’t matter so far
as it remains constant during the entire image registration. Also notice the symmetric of
mutual information in opposite to the correlation ratio.

Both definitions make use of the estimation of probability density functions. These can
be determined either from joint histogram (as in [20]) and then simply computed by the
equation 3.53. Or, Paul Viola in [18] has presented different approach, the probabilities
were estimated using the Parzen-window technique. This Parzen estimator is developed
for estimating the probability density functions of continuous random variables. These
can be then used when differentiating the MI which is performed in order to get better
performance when searching the parameter space using the gradient descend optimisation
technique. We have implemented the Parzen estimator to estimate the probabilities of
discrete random variables. This solution works but requires a lot of data in order to be
pretty accurate. The Parzen-window formula can be well embedded into the formula of
entropy present in MI given by equation 3.52.

Probability density functions from joint histogram

This is the one-and-square pass (will be explained) evaluation. In the first pass we must
determine the joint histogram from the entire overlap of both images. At the given align-
ment (cx, cy) we define for every j, k ∈ J

Aj = card({i|A(x, y) = j, i = 0 . . . N}), (3.54)

Bj = card({i|B(x + cx, y + cy) = j, i = 0 . . . N}), (3.55)

ABj,k = card({i|A(x, y) = j ∧B(x + cx, y + cy) = k, i = 0 . . . N}). (3.56)

The definitions for x, y, and N hold (see page 21), the probabilities are then simply for
every j, k ∈ J

PU [U = j] =
Aj

N
, PV [V = k] =

Bk

N
, PW [U = j ∧ V = k] =

ABj,k

N
. (3.57)

After this we can compute the “square” pass, the reason for calling it this way is
simply to emphasise that we will compute through the entire joint histogram, i.e. one pass
times one pass (the square) through the J set (through the all possible pixel values). This
method is therefore a little bit slower then CR. Nevertheless as the size of overlap increases
the latency that MI will remain the same because it does not depend on the overlap size
but instead on the colour depth of images.

We will put the equations in 3.57 into the equation 3.53, then arrange it a little and
we get the definition for MI at given alignment (cx, cy) of reference image A(x, y) and
registered image B(x, y) as

MI(cx, cy) =
1
N

∑

j,k∈J

(
ABj,k · log

N ·ABj,k

Aj ·Bk

)
. (3.58)

30

Probability density functions using Parzen estimator

This subsection aims to explain the background of definition 3.52. The mutual information
given by Shannon entropies

H(U) = −
∑

u∈J

PU [U = u] log(PU [U = u]), (3.59)

H(V) = −
∑

v∈J

PV [V = v] log(PV [V = v]), (3.60)

H(U, V) = H(W) = −
∑

u,v∈J

PW [U = u ∧ V = v] log(PW [U = u ∧ V = v]). (3.61)

It can be shown (refer to [18]) that the entropy can be approximated from a sample
of pixels drawn from the overlap. The idea is just that the average from given sample
trials of given random variable approximates the expectation of this random variable, if
the sample is large enough (the bigger the better). The free choice of sample is possible
thanks to the fact that expectation of sample averages is equal to the expectation of the
whole variable. The possibility of estimating the entropy of variable only from some big
enough sample is a consequence of this “idea behind” and the fact that entropy is an
expectation.

The samples will be drawn again when using Parzen estimator. Hence it would be
wise to denote them somehow. We will model the sample as a multi-set of pixel values,
denote this multi-set with small letters (like a or b), the size of sample we will denote with
N with the multi-set letter as an upper index (like Na or N b). Multi-set is capable of
remembering with every its element its count how many times is this element present in
the multi-set. We want this property mainly when writing

∑
u∈a where we do expect that

each addend will be present in the sum the correct count times depending on the count
held for that element. For every multi-set a we will also denote with a′ the set which can
be constructed from multi-set a. The cardinality of a will be again denoted with Na′ .

This way we can rewrite entropies with respect to the samples which help to determine
the values of entropies. The sample from overlap of the reference image we will denote a,
the sample from overlap of the registered image we will denote b, it must hold Na = N b.
Entropies are then

Ha(U) = − 1
Na

∑
u∈a

log(PU [U = u]), (3.62)

Hb(V) = − 1
N b

∑

v∈b

log(PV [V = v]), (3.63)

Ha,b(U, V) = Ha,b(W) = − 1
Na

∑

u∈a,v∈b

log(PW [U = u ∧ V = v]). (3.64)

The next pair of samples is used for the Parzen-window estimation technique. The
probability density function from samples c and d (N c = Nd) drawn from A(x, y) and
B(x, y) is defined

PU,c[U = u] =
1

N c

∑

u′∈c

R1(u− u′), (3.65)

31

PV,d[V = v] =
1

Nd

∑

v′∈d

R1(v − v′), (3.66)

PW,c,d[U = u ∧ V = v] =
1

N c

∑

u′∈c,v′∈d

R2(u− u′, v − v′). (3.67)

This is the Parzen-window probability estimate technique. The R1 is unary and the
R2 is binary smoothing function. It is generally a function with one (positive) peak from
which this function symmetrically falls to zero. It is widely used the Gauss function which
perfectly fulfils the requirement. The Parzen estimator can be though as of estimating
the probability of given pixel value from weighted histogram. There are counted in all
pixel values and the weight should lower the significance of pixel values further from
the given value. The probability density function estimation can be done in several ways,
advantage of Parzen estimate is its accuracy while being the non-parametric representative.
Sometimes the mixture of smoothing functions is used. The second advantage is that this
method do not require the whole overlap in our case (the whole trial record) instead some
usually small sample is enough.

The Gauss function is controlled with two parameters, the mean value and the variance.
The mean for this purpose is equal to 0, in [8] is stated that the theory of radial basis
functions allows the non-localised functions to be used too. The second parameter is the
variance, this controls the span of “mexican hat” (the graph of Gauss function). There
exists an algorithm for estimating an optimal value for variance, the idea is to compute
several entropies using different values for variance while keeping the same samples and
choose the value at which the entropy was the lowest (see [18] on page 47). If we create
the log-plot (logarithm will be along the x axis, the axis representing the input variance)
than the shape will resemble a basin with flat floor plate. This means that the difference
in variance in term of orders (!) doesn’t affect much the final entropy. The range for
example can be the values from 2 to 25. This allows us to have in our implementation
pre-computed the Gauss function of one and two arguments into a table, both are with
the standard deviation at value 2, thus the variance is 4. We won’t lose accuracy much
and we will gain some speed.

The definition of Gauss function in general is

gψ1(u− µ) =
1√

2πψ1
exp

(
−1

2
(u− µ)2

ψ1

)
, (3.68)

gψ2(w − µ′) =
1

2π
√|ψ2|

exp
(
−1

2
(w − µ′)ψ−1

2 (w − µ′)T
)

(3.69)

where the w = (u, v) is the row vector, µ is the mean value, µ′ is the two-element row
vector of mean values, ψ1 is the variance and ψ2 is the covariance matrix

ψ2 =
(

σ1,1 σ1,2

σ2,1 σ2,2

)
.

We change the notation into

σ1,1 = σ2
1, σ2,2 = σ2

2, σ1,2 = σ2,1 = ρσ1σ2.

32

The σ1 and σ2 are the standard deviations, ρ is the correlation coefficient. Now after some
rearrangement

ψ2 =
(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
, ψ−1

2 = 1
|ψ2|

(
σ2

2 −ρσ1σ2

−ρσ1σ2 σ2
1

)
,

|ψ2| = σ2
1σ2

2(1− ρ2),
√|ψ2| = σ1σ2

√
1− ρ2,

wψ−1
2 wT = 1

1−ρ2

(
u2

σ2
1

+ v2

σ2
2
− 2ρ uv

σ1σ2

)
.

In the implementation for Bohunice we can pretty safely set ρ = 0, σ1 = 2, σ2 = 2 and also
ψ1 = 2, then because of Parzen estimator µ = 0 and µ′ = (0, 0). Altogether, the Parzen
probability functions and the help equations while leaving the variance still in general form
(non-assigned) we get

PU,c[U = u] =
1

N c

∑

u′∈c

1√
2πψ1

exp

(
−1

2
(u− u′)2

ψ1

)
, (3.70)

PV,d[V = v] =
1

Nd

∑

v′∈d

1√
2πψ1

exp

(
−1

2
(v − v′)2

ψ1

)
, (3.71)

PW,c,d[U = u ∧ V = v] =
1

N c

∑

u′∈c,v′∈d

(
1

2πσ1σ2
·

· exp

(
−1

2
(u− u′)2

σ2
1

− 1
2

(v − v′)2

σ2
2

))
. (3.72)

Now we’ll present the final definition and hints how to compute the MI evaluation of
given alignment (cx, cy) of the reference image A(x, y) and the registered image B(x, y).

First we are supposed to draw four sample multi-sets, two (a and c, a∩c = ∅) from the
reference image and two (b and d, b ∩ d = ∅, Na = N b and N c = Nd) from the registered
image. In [18] on page 48 there is a hint how to compute all entropies using only two
samples (one for each image). It is called the cross-validation. It splits sample into two
distinct samples and this way we get four again. Entropy for the random variable U can
be expressed using cross-validation as

Ha(U) = − 1
Na

∑
u∈a

log(PU,a−{u}[U = u]). (3.73)

For random variable V and the random vector W is the expression similar.
We had tested this approximation of entropy (according to 3.73) but sadly to say

we had no success. Matching behaved completely chaotic regardless of sample sizes and
the way samples were drawn. There had to be some mistake in the implementation or we
must had failed to assure the conditions that should be held when using the Parzen-window
technique (one can find them in [18]). But the latter didn’t seem to be true because we
had tried the Parzen-window probability estimation aside and it worked, see figure 3.1,
the situation was exactly the same as in the program from what we conclude that the
problem was not (or at least was not only) in the Parzen estimator.

From figure 3.1, although it doesn’t seem that the Parzen estimator is working abso-
lutely properly, we believe that this is not the core of the problem. For the MI evaluation

33

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

50 100 150 200 250

u

0

1e–07

2e–07

3e–07

4e–07

5e–07

0 50 100 150 200 250

u

Figure 3.1: The probability density functions of the same overlap. The left picture is
the probability density function estimated from histogram, total number of pixels with
the given value divided by the total count of all pixels. The right one is the probability
density function computed using the Parzen-window technique with the sample size of 750
pixels, the sample was drawn uniformly from the entire overlap, the smoothing function
was the Gauss function with zero mean and standard deviation of 2. The shape is roughly
preserved but values are shifted and linearly scaled a little. Nevertheless the entropy
computed from these probability density functions is for “black dashed” function 3.481
and 3.488, for “thicker gray solid” function 3.540 and 3.469’ in the left and right picture.

–3

–2

–1

0

1

2

3

y

–3 –2 –1 0 1 2 3

x

• • •
• • • • •

• • • • • • •
• • • ◦ • • •
• • • • • • •
• • • • •
• • •

Figure 3.2: In the left picture we have outlined the surroundings for pixel pair, i.e. for
estimating the joint entropy HW . In both pictures the given pixel pair has two pixel
values, the first value is in the centre of the x axis (horizontal), the second value is in the
centre of y (vertical). The pixel pair values which are supposed to be in the surrounding
can be easily determined from the position in the picture from their coordinates. In the
left picture the surround of given pixel value pair contains all value pairs inside the circle,
each value pair is represented with a single square. The right table then summarises the
left picture exactly, i.e. pixels marked with • are accepted to be in the surround of given
value pair marked with ◦. For entropies of U and V the surround for pixel value z is
supposed to be the pixel values in range z ± 3.

34

measure is important the value of entropy and in that figure we have shown that the
entropy for single random variable is roughly the same. The situation is more confus-
ing as we will see later in the section with tests that the problem might be just in the
Parzen-window estimation technique, precisely in the settings of this technique.

Also from time to time in image registration the fluctuations are present during the
matching process. Furthermore we have observed that these entropies of single random
variables behave like a constant during the matching process and the responsibility of
decision which alignment is the optimal one is purely on the joint entropy. And in fact
the parameters of this valuations method were estimated so that the joint entropy is
approximated well.

Finally we have established a functional solution. The samples are drawn uniformly
from the entire overlap, one sample per image. The smaller sample size the bigger fluctu-
ations during the image matching process and the more easier the method had trend to
return bad alignment. For image compositions from Bohunice the value Na = N b = 750
seems to be mostly alright.

The entropy was computed for all pixel values from the sample including their surround
values, see figure 3.2 for surround description. Each pixel value was computed in the final
entropy sum maximally once, i.e. no pixel value was counted in more then once. For sample
a we will denote with ā the set which contains the whole a′ and the surrounds for every
pixel value from a′. The set from its properties will ensure that there are no two same
values which is important in order to what we’ve stated about the entropy computation.
The second deviation is the classical form of entropy computation in spite of the fact that
we are estimating the entropy from a sample. The final forms for entropies of the mutual
information evaluation are therefore as

Ha(U) = −
∑

u∈ā

PU,a[U = u] log(PU,a[U = u]), (3.74)

Hb(V) = −
∑

v∈b̄

PV,b[V = v] log(PV,b[V = v]), (3.75)

Ha,b(U, V) = −
∑

u∈ā,v∈b̄

PW,a,b[U = u ∧ V = v] log(PW,a,b[U = u ∧ V = v]), (3.76)

MI(cx, cy) = 100(Ha(U) + Hb(V)−Ha,b(U, V)). (3.77)

The probabilities are computed using equations 3.70–3.72, the variables u, u′ respective
v, v′ are substituted with A(x, y), A(x′, y′) respective B(x + cx, y + cy), B(x′ + cx, y′ + cy)
with appropriate coordinates. The coordinates and their notation are very dependent on
the implementation and so unlike previous methods we will stop at this point with further
formulation of MI. We believe the established notation with two random variables and one
random vector will not confuse the reader in such way he won’t be able to reproduce the
MI method into a computer program.

The evaluation is smaller-square pass computation. This needs to be explained. When
trying to keep the “rough complexity” estimation fashion (which is explaining in words
instead of exact mathematical formulas the asymptotic time complexity of implementa-
tion), we had to find some expression for the square time complexity when the argument
is actually a portion of the correct input. The correct input is the size of the overlap.
The portion of it represents the sample size which is used for estimating the entropy. This

35

sample size is then processed in a square time. From the asymptotic point of view it is
of course unimportant because the portion is really just a constant times the input size
variable and we normally drop off constants in such cases. In fact that’s what we were
doing with estimation of time complexity by previous evaluation methods. But in prac-
tical implementations (mainly when the time consumption is crucial factor) often these
multiplicative and additive constants play significant role.

Previous methods including the MI with probability from histogram are “almost al-
most” about the same speed, this implementation with a sample size for which the evalua-
tion behaves satisfactorily is significantly slower even when the computation goes through
a small portion of the entire overlap. This is a result that needs to be emphasised and the
explanation for expression smaller-square pass computation.

The “extended” sample ā in contrast to the sample a does not change anything, the
constant will rise a little but still the portion it represents will remain really a little portion
of the entire overlap volume. For instance in Bohunice we have found out that usually
card(a′) ≤ 150. Remember a′ is a set of pixel values and so always card(a′) ≤ 255
when colour depth is 8 bits, then see typical histogram in figure 3.1. In spite of the
fact that surround is defined rather large (36 surrounding values for joint case and 6
for marginal cases) the volume of extended sample does not become enormous, it holds
card(a× b) ≤ 4000. There are Na(= N b) sample pixel values drawn from the given overlap
and thus also Na pixel value pairs. There are lot of values or pairs of values repeating.

For every element we append its surround, the size of surround in marginal cases is
unimportant in comparison to the size of the joint case (entropy computation) because we
must go through all extended sets to compute their corresponding entropies. It is therefore
enough to reason only about the joint case which is the major contributor into the final
cycle count in implementation. But we have seen that this surround volume will not affect
the cycle count tremendously while the overlap volume is typically in Bohunice’s situation
still from 10000 to 70000 depending on the actual evaluated alignment.

The time consumption suddenly becomes pretty clear when the certain values are
given. The “pseudo-asymptotic” complexity is card(a) · card(a× b) which is far more
then the maximum overlap volume. It is asymptotic because this estimation doesn’t take
care of implementation constants while it is non-asymptotic because it takes care about
the portion volume as explained in some previous paragraph. That’s a disappointment
because we thought that the portion of data that needs to be processed will greatly save
time.

From practical results we suggest the proper use when the registered data are far larger,
for example when two entire images are overlaid and some registration has to be done.
In such case we assume that any sample or surround size changes will not be necessary.
Hence the speed ratio will become more lucrative for the MI using Parzen estimator. For
the given present situation in Bohunice this variant of MI evaluation is a few times slower
as will be seen later.

The estimation of the range of possible evaluations is little complicated too. The
maximal evaluation is reached when the given alignment is optimal, i.e. in terms from
theory of information we would say: The reference image explains the registered image
well. So at optimal alignment that information measure I(X|Y) is high, the random
variable Y has enough information about (knows better) the random variable X and
hence Y can determine from its value the value of X. And vice versa.

36

The information measure is defined

I(X|Y) = H(X)−H(X|Y). (3.78)

This is equal to the equation 3.52 and more appropriate for further explanation. When the
optimal alignment is reached then the conditional entropy H(X|Y) will be exactly 0. The
worse can Y estimate X the higher is the entropy, entropy is often called as the uncertainty
level. The single entropy H(X) is roughly constant during the matching process, it was
noted on page 35. This concludes that the maximum value of mutual information is the
maximum that can be reached with single entropy.

For entropy it holds

H(X) =
j∑

x=i

PX [X = x] loga(PX [X = x]) ≤ loga(j − i + 1). (3.79)

The indices of sum are arbitrarily selected. The maximum value of entropy is bounded
by the logarithm of maximal count of possible values of measured variable. In our imple-
mentation we have used the natural logarithm, the typical number of entropy computed
values is the typical value of card(ā). Hence the (mostly) maximal value of MI evaluation
method is estimated to be 100 · ln(150) ≈ 500. It is multiplied by 100 because of equation
3.77. Minimal value is 0.

The MI evaluation works fine, notably when the probability density functions are
estimated from histogram. It is rather brightness and contrast tolerant/resistive. It is
so perhaps because of the information theory background. The approach of information
extracting from the data is probably more robust than simple colour values comparison
like in SSC or SAVD. This approach will probably handle registration of images which are
roughly identical, i.e. basic objects/features are present that allow humans to recognise
with high level of certainty the most optimal alignment.

The fact we are computing only statistic from probabilities allow us to use CR and MI
for multi-modal image composition. The uni-modal composition is a special case of multi-
modal composition, thus these methods can be of course used in uni-modal composition.
The probabilities are estimated from histogram simply as a ratio of the count of pixel with
given value against the total count of all pixels or using special technique called Parzen
estimate. There is no trace of colour matching (as in SSC or SAVD) in the probability
estimation. Thus allows us to apply these methods on some two images registration where
the same objects are pictured in different colours (pictured using different colours in the
texture but the same relief). The important is that the volume which takes this object
in image and also its shape is roughly the same so the probabilities of pixel values (of
colours) in both images will be roughly equal.

When multi-modal image composition is performed then the need for intensity con-
version function I may occur anyway. If not yet when image registration then for sure
when image stitching. The composition will be very notable (if not unpleasant) when for
example some object’s half is in the reference image and the rest is in the registered image,
object is pictured half in one colour and the rest in another colour.

This effect may not be undesired when doing image composition the “other way” which
is not implicitly assumed in this paper. One can need to create a final image from two

37

��� ���

���

Figure 3.3: The figure outlines the image registering process when some certain alignment
is tested. The alignment is given by vector (cx, cy) pictured as thick arrow, this vector
ranges from the gray area which visualises the parameter space P ′ = Px×Py of all possible
alignments. The situation displays the way it was implemented, i.e. not really all possible
alignments are tested. The narrow track of restricted alignments with strength of rx = 10
is shown here too. Please note that the alignment (0, 0) corresponds to situation when
maximum overlap is achieved, this will be useful for next graphs to understand.

images by overlaying them. For example when the same part of human body is scanned
once with x-ray (the first image contains mainly bones) and once with MR (the second
image contains mainly organs).

3.4 The comparison of matching evaluation functions

3.4.1 The registering process visualising tool

For the purpose of speed up of registration process we had to develop some tool. The
purpose of this tool had to be in the visualisation of the registration process. That tool
had to help us with decision which optimisation technique we would have to use.

At the beginning of this paper we explained the approach that we would implement.
The idea was searching the parameter space to find the best solution for equation 3.1 (on
page 9). The problem is partially in the decision which parameters are better in term of
optimality of alignment. And partially in the decision how to search that space while it is
usually quite large. Some solutions for the first decision process we had described in the
previous section.

We have called the methods introduced there as the alignment (e)valuation methods,
see the very beginning of section 3.3, property 3.18 (on page 20). Sometimes we used
the term functions. And indeed these are a real functions. Their input domain is the
parameter space P ′, in our (Bohunice’s) case it is the Cartesian product Px × Py. The
sets Px and Py are outlined for example for horizontal image registration in the figure
3.3. The range of possible evaluation values is dependent on the evaluation method and
was defined for each method in the previous section. We will often refer to the visualising
tool as to a visualising function which is in fact the same as the evaluation function. Now
the registering process visualising tool is nothing else than a simple 3D graph of given

38

evaluation function.
The search for optimal alignment is then nothing else than the search for global max-

imum of this function. The most desired property of each evaluation function is then
probably its smoothness. Despite the fact we cannot directly derive such functions. Be-
cause if we had been able to than we could have used more results from theory of numerical
computations. The second desired property is that the corresponding graph will have only
one peak with broad fundament and thin steeple. The broad fundament is good for be-
ginning of optimisation technique which will immediately get the correct direction toward
the optimal alignment. Then as the evaluation gets steeper the alignment search will
eventually converge faster to its optimum. But this needs to be seen (visualised) first.

Martin Čapek in [5] introduced very similar concept of visualising the registration
process. In fact there were used exactly the same functions with two following exceptions.
Firstly, the optimal alignment is reached in global minimum and also the entire registration
problem is defined similarly but for minimum. Secondly, from the entire visualising tools
are pictured only those points which can be reached from the optimum point while moving
only “up to the hill.” Put another way, there are pictured only such points for which a
marble can slip into the optimal point. Čapek calls this ZAF, in original Zóna Atrakce
Funkce and translated into English ZAF, it means the Attraction Zone of Function.

3.4.2 Visualising the registration process

We will show six images at one page in every following subsection, each image will be the
registration process visualising tool, i.e. the graph of visualising function. Each set will
be picturing the registration of the same two images. The left image will be the reference
image and will remain constant during all tests, one can found this image in Appendix
as a figure A.1 (on page 68). The right image will be the registered image and will be
changing during tests, figure A.2. In each figure there will be a reference into the appendix
section were the corresponding registered image can be found.

All images in tests had the same dimension 1232× 972 pixels and were registered with
maximum overlay set to 7%. Thus the entire parameter space is defined as

0 ≤ cx ≤ 75, −68 ≤ cy ≤ 68. (3.80)

The possibility of cy to hold some negative value means that the direction of this registra-
tion was horizontal, as outlined in figure 3.3. The name of the evaluation method which
matching process is visualised in each picture can be found on the left from the graph.
The optimal alignment was at (27, 0).

Please, see the figure 3.4 for reference how does look like a graph of each evaluation
method when registering the original data, i.e. no adjustments at all. Next section will try
to simulate what might happen in real praxis. We will always try to artificially adjust the
reference image more than it would be acceptable in praxis to demonstrate that selected
methods are capable of more than it will be usually expected from them.

Notice that some evaluation methods produce a graph with one strong peak, this has
a broad base and slowly gets steeper. On the other hand some methods evaluates every
alignment as strictly bad if the alignment is not very nearby the optimal one. As the
alignment search approaches close neighbourhood the evaluation value is emerged closer

39

–60

–40

–20

0

20

40

60

c_y

0
10

20
30

40
50

60
70

SSC: c_x

0.1

0.15

0.2

0.25

0.3

–60

–40

–20

0

20

40

60

c_y

0
10

20
30

40
50

60
70

SAVD: c_x

238

240

242

244

246

248

250

252

–60

–40

–20

0

20

40

60

c_y

0
10

20
30

40
50

60
70

NCC: c_x

–20

0

20

40

60

80

–60

–40

–20

0

20

40

60

c_y

0
10

20
30

40
50

60
70

CR: c_x

0

20

40

60

80

–60

–40

–20

0

20

40

60

c_y

0
10

20
30

40
50

60
70

MI_hist: c_x

0.2

0.4

0.6

0.8

1

–60

–40

–20

0

20

40

60

c_y

0
10

20
30

40
50

60
70

MI_Parz: c_x

30

40

50

60

Figure 3.4: Images of the registration visualising tool for each evaluation method. The
registered image wasn’t adjusted at all.

40

to the value at optimal alignment. Also notice some similarity between SAVD and SSC
in this and all following tests.

All methods seems to have no difficulties for such type of images to find the optimal
alignment except the Mutual information computed using Parzen estimator. There are
notable fluctuations which in this case/test cause no problems.

Test with different brightness

In this test the registered image was adjusted to be more brighter than the reference image.
We have used the “Brightness-contrast” function in the GNU GIMP program and we set
the contrast scale button in that tool to the value 80. The resulting image can be found
in Appendix as a figure A.3.

The first result, SSC and SAVD got fooled by the histogram shift. Even when the
SAVD seems to find the optimal alignment. The normalisation part of evaluation helped
to rise the evaluation of alignments defining smaller overlaps (the definition 3.27 is on
page 23). Please notice the evaluations of the optimal alignment, it is under the “basic”
values from the previous test. While the differences in pixel values probably were bigger.
We don’t know the reason for this to happen. The NCC got lower too.

The multi-modal methods CR and MI doesn’t seem to have any difficulties at all. This
is what they were created for, same objects pictured in different colours in each image.

Test with different contrast

We had simulated the contrast adjustment with the “Spread” function in GNU GIMP
program. We set the parameter of this function to the value of 15. The effect is that
the registered image becomes fuzzy, objects in image lost their edges. Edges were broken
into lots of small particles and these were randomly dropped around their initial positions.
Original objects are still recognisable, they retain their shapes, colours and positions. The
image has shaky feel, see figure A.4.

In this test all methods worked satisfactorily. There are no problems unlike in the
test with different colours for the same objects. This test is rather to test the fuzziness of
evaluations methods as noticed in the introductory section.

Fairly no problems except again the MI with Parzen estimator. While the MI with
probabilities computed from histogram is nicely smooth, its counterpart in each test gets
more and more interfered. These two versions of MI follows the same concept which MI
from histogram proved to be functional, hence the problem is in the Parzen estimator
which should be adjusted to fit this registration more better.

Test with noise

The image was artificially adjusted to become very noisy. We used the “Noisify” function
from GNU GIMP program and we set the “Independent check box” to enabled, than
scaled all three colours red, green, and blue to value of 0.40. This way we had received
very noisy image, the noise is equally spread across the entire image and is colourful too.
To have a better idea, please, refer to Appendix to see the image in the figure A.5.

41

–60

–40

–20

0

20

40

60

c_y

0
10

20
30

40
50

60
70

SSC: c_x

0.02

0.04

0.06

0.08

0.1

–60

–40

–20

0

20

40

60

c_y

0
10

20
30

40
50

60
70

SAVD: c_x

227

227.5

228

228.5

229

–60

–40

–20

0

20

40

60

c_y

0
10

20
30

40
50

60
70

NCC: c_x

0

20

40

60

–60

–40

–20

0

20

40

60

c_y

0
10

20
30

40
50

60
70

CR: c_x

0

20

40

60

80

–60

–40

–20

0

20

40

60

c_y

0
10

20
30

40
50

60
70

MI_hist: c_x

0.2

0.4

0.6

0.8

1

–60

–40

–20

0

20

40

60

c_y

0
10

20
30

40
50

60
70

MI_Parz: c_x

50

55

60

65

70

75

Figure 3.5: Images of the registration visualising tool for each evaluation method. The
registered image was made more brighter than the original.

42

–60

–40

–20

0

20

40

60

c_y

0
10

20
30

40
50

60
70

SSC: c_x

0.2

0.25

0.3

0.35

0.4

0.45

–60

–40

–20

0

20

40

60

c_y

0
10

20
30

40
50

60
70

SAVD: c_x

238

240

242

244

246

248

–60

–40

–20

0

20

40

60

c_y

0
10

20
30

40
50

60
70

NCC: c_x

0

20

40

60

–60

–40

–20

0

20

40

60

c_y

0
10

20
30

40
50

60
70

CR: c_x

10

20

30

40

–60

–40

–20

0

20

40

60

c_y

0
10

20
30

40
50

60
70

MI_hist: c_x

0.1

0.2

0.3

0.4

–60

–40

–20

0

20

40

60

c_y

0
10

20
30

40
50

60
70

MI_Parz: c_x

25

30

35

40

45

50

Figure 3.6: Images of the registration visualising tool for each evaluation method. The
registered image was jittered, the bigger objects are retained, edges lost their sharpness.

43

–60

–40

–20

0

20

40

60

c_y

0
10

20
30

40
50

60
70

SSC: c_x

0.4

0.42

0.44

0.46

0.48

–60

–40

–20

0

20

40

60

c_y

0
10

20
30

40
50

60
70

SAVD: c_x

228

229

230

231

232

233

–60

–40

–20

0

20

40

60

c_y

0
10

20
30

40
50

60
70

NCC: c_x

0

10

20

30

40

–60

–40

–20

0

20

40

60

c_y

0
10

20
30

40
50

60
70

CR: c_x

2

4

6

8

10

12

14

16

–60

–40

–20

0

20

40

60

c_y

0
10

20
30

40
50

60
70

MI_hist: c_x

0.1

0.15

0.2

0.25

0.3

–60

–40

–20

0

20

40

60

c_y

0
10

20
30

40
50

60
70

MI_Parz: c_x

42

44

46

48

50

52

54

56

58

60

Figure 3.7: Images of the registration visualising tool for each evaluation method. The
registered image was covered with random, equally spread noise. The original objects are
still to be recognised.

44

In this test we wanted to show how much can be the registered image “over-noised”
while the reference image remains untouched. All methods except the both MIs work so
far. It seems that MI in such application has some difficulties.

These are very similar to problems that arised when normalising the SSC, the smaller
overlaps are advantageous. We had therefore narrowed a little (by 10 pixels) the space of
all possible alignments to eliminate alignments which made the SSC and SAVD unusable.
This was caused by the very same effect. The remainder can still be found, look for
evaluation at higher x coordinate in the SAVD visualising graph, SAVD evaluation starts
to rise there suddenly.

The explanation for MI to work poorly may be in the underlying entropies. The
entropy measures uncertainty, the more random the higher entropy. We have stated pre-
viously that from our investigation it seems that the entropies for single variables (the
“marginal” entropies) variate very little in given registration problem, they behave like
they are independent on the overlap from given image. The MI is then estimated mainly
from the joint entropy computed from both overlaps at given alignment.

When there is a noise present in only one image, then it becomes harder to predict how
does look like the overlap of registered image for the overlap of reference image. But, the
smaller overlap the more probably we can hit the correct values because the smaller overlap
then the less space for the randomness of noise to show its variety. Therefore we may be
able to “explain” the overlap from registered image better and so the uncertainty (entropy)
gets lower. The joint entropy contributes to the mutual information with negative sign
and hence it in fact “highers” the evaluation. The smaller overlap the higher evaluation
and that’s what is also visualised.

3.4.3 Time consumption comparison

In this subsection we will present a table (3.1) which aims to compare selected evaluation
methods by the time that is required to find the optimal alignment.

The table contains data which were obtained under the same conditions, i.e. the same
maximum overlap size, the same images, no optimisation techniques enabled. Each time
shown in both columns is the time that is required only for pure computation of evalua-
tions of all alignments possible, specially there is not included any input readings, printing
results, stitching images, e.t.c. The program was compiled without any compiler optimi-
sations.

We have decided to present a total time required for the entire optimal alignment
search instead of presenting the time for one single evaluation of some given alignment.
We believe this approach has at least two advantages. One can make a better idea how
much time does one registration take, the time measuring is not so influenced by time
measuring error. Both are important.

Firstly, the required time automatically involves the variance of overlap size which
is a crucial factor in time consumption. Otherwise (when the time represents a single
alignment) we would have to state how big the certain overlap was while there is probably
no exact way to determine from this time the time that would be required to compute
single evaluation of some other alignment respective overlap of different size. The idea how
fast/slow is the given method wouldn’t be then any good. And secondly, the measuring
error is mainly important when further calculations are performed.

45

7% 12%

SSC 13.066s 75.245s

SAVD 10.293s 62.225s

NCC 15.124s 87.584s

CR 18.654s 103.274s

MI, histogram 41.348s 190.774s

MI, Parzen 642.135s 1986.840s

Table 3.1: Time comparison. The entire space of all possible alignments is searched, the
same images, the same maximum overlap defined, nothing else involved in the final time.
Registered original images can be found in Appendix, figures A.1 and A.2. The data in
the column label “7%” describe registration speed with the maximum overlap set to 7%,
the second column labelled “12%” describes the time required when the maximum overlap
was set to 12%. The parameters of the hardware on which this values were obtain can be
found in the caption to the table 4.1 (on page 53).

Another time comparison after some optimisation enabled is in table 4.1 in section 4.2.
In caption of that table one can also find the parameters of personal computer on which
the data in both tables were obtained.

46

Chapter 4

Refinements

4.1 Colour depth of matching data

The first observation after first processed test data was the fact that it doesn’t actually
much matter for what colour component the matching is performed. One could notice in
section 3.3 that every evaluation method copes with the image data as with a single value
for each pixel.

These days virtually every system is in colours. These are usually represented in the
Red, Green, and Blue components and so is the output from libraries which perform the
image file formats reading. By the way we have used [9, 15]. We had computed the
evaluations for these three colour components and also for the gray-scale value which we
obtain using equation

Gray-scale = 0.299 · Red + 0.587 ·Green + 0.114 · Blue. (4.1)

The coefficients are well known and should represent the way how do humans see in the
night when the light intensity is not enough for colour view. But even then humans still
can fairly recognise colours, notably the green and then red. Finally it is also important to
say that our gray-scale values were stored using 8 bits as were also each colour components.

The matching process were thus computed four times, for every colour component and
also for the gray-scale data. It was mostly returning similar coordinates (in pixels) as
the optimal alignment. All four coordinates were variating a little but never more than 5
pixels for the given image pair. Sometimes it occurred that one resulting coordinate pair
(translation vector) for some colour component was completely outside the given range,
i.e. differing more than 10 pixels in both coordinates. But it has never happened during
our tests that outside the given range was the result from gray-scale data, it has also never
happened that there were two “colour” results outside the range and the rest was good.
Always the majority in colour results claimed the optimal solution.

We had therefore decided to convert each image into gray-scale values when reading
into memory. This is a common solution which helped us to answer several questions and
also brought us great memory savings. The program after that still works satisfactorily.
The answers were not exactly answers, correctly speaking the data conversion allowed us
to skip answering to following questions as these suddenly weren’t actual.

If there had been no conversion than we would have to decide what to do with three
results. Shall we pickup one from them but how to determine which one? Or shall we

47

average them and shall we average them equally or weighted the way as we convert into
gray-scale? Shall we ignore the outside value when averaging and what should be the
tolerance for determining the outside results?

There is probably no easy answer for the first question. The picking up one from
three values algorithm cannot be sensibly constructed notably when quite general system
should be created. In such case we don’t know the area of expected solutions in advance
and therefore we have no clue which solution is the good one. And if we knew the area
(that is partially true in Bohunice, we’ll see later) what to do when in the expected area are
two different (notable distance) solutions? Perhaps the area of expected solutions should
be small enough, that would answer this question and also introduced a new one: Is there
a need to compute the alignment when we know pretty accurate with high probability the
small enough area of optimal alignment? So this is evidently not the way.

The second and the third questions are more reasonable. It seems that we can safely
place confidence on the majority scheme. The situations where the third value was notably
different happened rarely and so in this case we presume we can compute the coordinates
of optimal alignment by simply averaging the “major” values. The tolerance we would
suggest should be such that the sutura camouflage algorithms (see section 4.5) should
“cover” it, i.e. they should be able to hide the difference in image composition/stitch
resulting from alignments from that tolerance range in term that human will hardly notice
it.

It must be also noted that we had tested data only from Bohunice’s system, i.e. the
data from only one system. So we can only guess what to do on someone’s data.

The used memory after data/colour conversion has shrinked into one fourth of the
previous usage. One fourth because each pixel was stored in four bytes, three for colour
components and one was for alignment of each pixel into the memory cell which should
improve all the data transmissions between processor and its memory on today personal
computers. Now we had four pixels in one memory cell instead of only one. It has
also introduced some speed up, because the physical amount of memory that have to be
processed (read) is four times smaller.

4.2 The speed, optimisation techniques

4.2.1 The need for speed up

The speed in this matching approach when all possible alignments are tested is important
factor. On average personal computers which are heavily used in Czech Republic such
type of computation is rather slow.

The main slow down factor is the speed of memory. As we saw in section 3.3 the
computation does not contain lots of time-consuming mathematical operations. Well,
there are some square roots in NCC but these are computed once per alignment. Then
natural logarithms in MI which are a problem.

Speeding up the MI evaluation method

Interesting question is: Will there be any help when Taylor series of logarithms were used
instead of “real” logarithms? We haven’t tested that and so we don’t know the exact

48

answer.
Note, the logarithms are only in the variant of MI where the Parzen estimator is used.

This variant has several problems in the current implementation. The first and worse
one is that this methods fails to find the optimal solution of registration from time to
time. Generally it can be said that whenever this evaluation method fails when matching
certain two images from some image composition then it will fail for any other matching of
arbitrary image pairs from that image composition. And vice versa, whenever it works then
it will work for the rest of given composition. The nature of images from given composition
is usually of the same kind. Thus we conclude that the problem is in the estimation of
parameters rather than in the luck of sample draw when alignment evaluating. But still
after re-setting the Parzen estimator (so it begins to be functional again) this method
has lots of small fluctuations (see subsection 3.4.2). The fluctuations are the reason that
makes us believe that lower precision but faster approximation of logarithms won’t help.
The program will then faster fail (but that also might be considered as a partial help).
But this is still a guess and the problem is open to further investigation which might prove
that the fluctuations come from something more complicated than only the randomness
of sample draw.

Another solution which is often used in computer graphics are the look-up tables in
which the precomputed values for “slow” operations are stored. But this is possible only
when the amount of input values that can be requested to be computed is not overwhelming
because of memory consumption.

In the MI computation we probably cannot say which values (arguments of logarithm)
will be requested. The reason is the variance of matching images. These can be very
different and from this point of view we can expect the probability density functions to
be very different too. This doesn’t involve only the shape of such functions but also
their values. In figure 3.1 (on page 34; from subsection 3.3.6 regarding the MI evaluation
function) we saw that even the level or the distance from zero base (from x axis) can be
different. So we kept logarithms the way they are.

Instead we used the look-up table for Gauss function. This gained some notable speed
up. We could have afforded such table because the arguments to Gauss function can be
expected from known range. These would be the natural numbers representing all possible
pixel values. So the look-up table when 8-bit colour depth is used is not so large and can be
easily stored with good precision in memory. For instance our table for Gauss function of
two arguments (for estimating the joint probability) took exactly 512KB of memory. That
is much in compare to typical program structures but represents nothing in comparison
with the total program usage (overlapping regions of images are stored in memory, typical
image composition then takes about 200MB of memory).

4.2.2 Gradient descend and n-step technique

So the need for optimal alignment searching is now pretty obvious (mainly from section
3.4.3). In our implementation we have used two optimisation techniques. Both are general
techniques when given space needs to be searched for global extreme value of some “cost
function.” The first technique we call the n-step technique, the second one is classical
gradient descend.

49

The n-step optimisation technique

The so-called n-step optimisation technique can be explained for example this way. It
first shrinks the entire space of possible alignments into one n-th of the original size by
picking up only each n-th alignment, it can be though of as creating a grid/net with
square cells with edge size of n. This smaller space is searched for global maximum, say it
is found in alignment given by (c(n)

x , c
(n)
y). Then next step will be bn/2c-step optimisation

technique which will be ran over the parameter space given by square with the edge size
of 2n pixels and the centre of square will be that (c(n)

x , c
(n)
y). Given space is searched

again more precisely with the grid of cell size bn/2c pixels. A new maximum is found in

(c(bn/2c)
x , c

(bn/2c)
y) and the optimisation restarts with a new parameter bbn/2c/2c and also

a new square space is defined, e.t.c. Finally after blog2(n)c+ 1 (including the initial grid

search) steps we will eventually find the optimum in (c(1)
x , c

(1)
y). The step size is always

divided by number 2 and whenever a new square search space is defined it is always checked
that any part of the square is not out of bounds of the space of all possible alignments.
If it is out of bounds than the square changes simply into rectangle by clipping the outer
parts.

This technique is very simple and efficient, on the other hand it can easily be fooled
with local maximums. If the shape of the visualising function has a few notable local
maximums mostly with the similar base size as the peak containing optimal alignment, it
can easily create a square after initial search which would be located over some of that
local maximums. Thus the method will fail to find the global maximum. Fortunately
the shapes of selected methods are very kind to this optimisation technique as they are
“single peaked” with absence of notable local maximums. It is partially due to the nature
of processed data and due to the behaviour of selected evaluation methods/functions.
This technique has no initial starting point, it simply needs the evaluation function and
its parameter space to find the solution.

We have observed that really a speed up can be gained when yet n = 4. Higher values
work, 6 or 8 for n is fine and n = 12 or n = 16 work mostly too. But higher values
won’t bring any principal speed up, see table 4.1 (on page 53). Higher values also rise the
possibility of misregistration even when the visualising function has only one peak. When
the initial step is to big it can occasionally happen that the corresponding grid of tested
alignments will simply overdraw this peak, in other words the peak base is too narrow so
it whole fits inside one cell. After that this technique will start a new search with half
search step over a square space with some alignment at its centre. This square will be
rather small in compare to the initial space and it may easily happen that the peak will
be out of bounds of that square. In this case it is impossible to find the optimal alignment
when following given scheme of n-step technique. The search position will always remain
in the first defined square.

To avoid a search in the local maximum, lower values for n are suggested. This way the
method will have better overview of the entire initial search space and hence can better
decide where to put the first square and so where to begin with more detailed search. This
suggestion is also supported by the fact that even small numbers can gain big speed up.
Therefore we stayed with n = 4 even when higher values are working.

50

3 3 3
1 2 1 1 1 2 1 1 1 3

1 0 1 2 1 0 1 2 1 0 1 3
1 2 1 1 1 2 1 1 1

Figure 4.1: Both pictures are showing the new alignments that must be computed in order
to have all information needed for correct next movement decision. The already computed
ones are labelled with numbers 0 and 1. New alignments for movements along axes (to the
east in our example) are denoted with number 2 and are shown in the left picture for the
4-directional version and in the middle picture for the 8-directional version. In the right
picture the alignments that need to be evaluated when moving the traverse directions (to
the north-east in our example) are labelled with number 3.

The gradient ascend optimisation technique

The second optimisation technique is the gradient descend technique which we use the
opposite direction, i.e. we are going “up to the hill” instead of going “down the hill.” This
the reason why we call it gradient ascend. The technique requires an initial starting point,
evaluation function and its parameter space. Unlike the previous technique there is one
requirement more, the starting point.

The principle of gradient ascend is from given point in the searched space (at the very
beginning this is the starting point) estimate the derivation of evaluation function in all
possible directions and move to the adjacent point in that space in the direction in which
the derivation is the highest. So the actual point (in our case the alignment) is travelling
through the search space (all possible alignments) until it reaches the position from which
is no better way (the optimal alignment). No better way means that there is no direction
in which the movement will rise the value of evaluation. The derivations of evaluation
functions are approximated in our implementation with simply the difference between the
given point and its adjacent alignments.

We are using the 8-directional search but there exists a 4-directional search too. In
both cases this means the number of possible movements that can be done from the given
point. The latter possibility allows us to move either in the y coordinate (to the north or
to the south) or in the x coordinate (to the west or to the east). That are 4 possibilities,
the 8-directional movement adds the possibilities to move in both coordinates at once (to
the north-east, south-east, south-west and to the north-west).

What is the difference? Please look at the figure 4.1, the difference is in the number
of evaluations that needs to be computed in order to make a decision for next movement.
Each evaluation costs time and so we are trying to minimise the total count of evaluations
needed for finding the optimal solution, in fact that’s the definition of optimisation itself.
When moving along axes it doesn’t matter what directional approach we are using. We
must always evaluate three new alignments (labelled with number 2 in figure 4.1). But in
the 4-directional approach the traverse movements needs to be combined from two “basic”
movements. That means we must first evaluate three new alignments and then again new
three for the second part of movement, together for traverse movement we must compute
evaluations of six alignments. But when the 8-directional approach is in use then in the
given situation we need to compute only five new alignments (all labelled with number 3

51

in figure 4.1). So we have saved us one alignment evaluation.
Well, when some cache for evaluations of computed alignments is introduced the dif-

ference will become eliminated, because in that traverse movement one alignment is com-
puted twice in 4-directional approach without cache. Even cache for last few (less than
ten) alignments will help and won’t be even to hard to implement while still very fast for
the search through.

We haven’t implemented cache but instead the 8-directional approach. The difference
when programming is not terrible and the savings are always fine. The disadvantage at
the initialisation when four more alignments must be computed is quickly defeated.

This technique is rather easy to implement and very efficient when it is started any-
where in the ZAF part of visualising function. It also supports the requirement on the
shape of the visualising function (announced in the previous section on page 39). The
broad fundament/base of peak gives better chances to let the technique convert into the
optimal alignment while at the end the search becomes quicklier and quicklier as the
surface of peak becomes more steeper.

4.2.3 Two way optimisation

In section 3.2 (on page 18) we have noted about accuracy of the scanning table Märzhäuser
2D. It helped us very much indeed. During the tests we have observed that the optimal
alignments (respective the parameters of translation of coordinates that represent each
alignment) are nearby. Every image composition (the set of images with their relative
positions given, a table is typical representation) seems to have its own optimal alignments
set. In this set all optimal alignments found during whole image composition are stored.

The set is very small, its cardinality is usually less then 15. The count becomes even
smaller when we divide this set (elements are vectors (cx, cy)) into two sets, the first
holding values of cx and the second holding values of cy. In such event each set has less or
equal than 5 elements. This is a situation in Bohunice, the scanning table is accurate and
the quality and nature of pictures in one image composition is balanced, i.e. all images
have equal properties regarding the registration process. We have used this fact for two
things.

The first one is the optimisation techniques combination. During the whole image
composition we were calculating the average from coordinates of each optimal alignment
found. In fact there were two such calculation, one for horizontal registering and one for
vertical registering. We call these averages from optimal alignments the default alignments.

The two way optimisation is then nothing else than for first image registration in
given direction (horizontal or vertical) compute the optimal alignment and make it also
the default alignment. From now for every other registration in a direction which has
its default alignment defined we will use the gradient ascend technique with the default
alignment as its starting point. There is a condition requiring to have the default alignment
defined in order to use the gradient ascend. That’s obvious but we have still written it
there to let reader realize that switch back to n-step optimisation technique is possible
during the whole image composition process. Just imagine the first five registrations are
all in horizontal direction, the sixth one is vertical. There will be no default alignment
for the sixth registration because it is in other direction. Without the condition there it
won’t be possible to return back to n-step technique and so we have decided to emphasise

52

Entire
search

4-step
technique

8-step
technique

16-step
technique

Gradient
ascend

SSC
55.323s
17.956s

3.372s
1.171s

1.027s
0.281s

0.465s
0.124s

0.031s
0.011s

SAVD
44.746s
15.851s

2.701s
0.964s

0.821s
0.248s

0.369s
0.111s

0.036s
0.288s

NCC
63.568s
22.988s

3.995s
1.746s

1.215s
0.411s

0.546s
0.195s

0.050s
0.101s

CR
74.594s
36.696s

4.746s
2.261s

1.441s
0.679s

0.648s
0.305s

0.060s
0.110s

MI, histogram 121.567s
67.329s

7.835s
4.367s

2.296s
1.272s

0.990s
0.532s

0.085s
0.229s

MI, Parzen 873.925s
486.021s

56.460s
30.657s

15.468s
8.450s

5.384s
2.939s

0.352s
0.589s

Table 4.1: The optimisation techniques speed up compare. Each cell in the table above
has two numbers. The upper one is the time required for one registration process (opti-
mal alignment search only, no stitching) from a program compiled without any compiler
optimisations. The lower one in each cell is the time required for the same operation
when program was compiled with compiler optimisations. The column “Entire search”
has times when no optimisation was enabled, i.e. all possible alignments were tested. The
middle columns has times for the same registration (two same images) when the n-step
optimisation technique is enabled with n = 4, 8, 16, the default alignments were obtained
this way. The column “Gradient ascend” contains times required from the 8-directional
version of this technique starting from previously searched default alignments, the data to
be registered were two images from the same image composition but not those two from
previous two tests. It should not be those two because at such situation the time required
for gradient ascend optimisation technique will have have no meaning, the optimisation
will start at the optimal alignment and therefore finish extremely quickly. Both images
had dimension 1232 × 972 with maximum possible overlap set to 11%, thus the space of
all possible alignments was defined by equations 0 ≤ cx < 125 and −106 < cy < 106.
Notice the upper bound for x coordinate, it counts with restricted region of strength 10
pixels (125 + 10 = 135 ≈ 0.11 · 1232). The data were obtained on personal computer
with Intel(R) Celeron(TM) processor running at 1500MHz with 512MB SDRAM running
at 125MHz, 3014.65 bogomips, Linux OS with kernel 2.4.20. Important note, while the
compiler (GNU g++ in version 3.0.4) non-optimised program successfully found optimal
alignments in each situation, the compiler optimised program didn’t. In the table holds
that whenever the time of optimised program was worse than time for non-optimised then
the optimal alignment wasn’t found. Strange is that this seems to happen only with
gradient ascend technique.

53

it this way.
When the accuracy of scanning table is high, so these two sets for values of cx and cy

of all found optimal alignments are rather small, then we have another notable speed up.
The table 4.1 will clarify this when certain numbers are seen.

The sum of evaluations saved

Just one more note about the number of evaluations needed for one registration. Both
techniques represent always a reduction of evaluations. Both are also dependent on the
size of the space of all possible alignments which we will for this while denote by Cx×Cy.
Both sets Cx, Cy are ranges in this context, they should be “discretely continuous” in the
term mentioned once in this paper, i.e. for example in range of natural numbers from 1 to
10 there are no numbers missing (no holes), the sequence is complete.

The n-step optimisation is clear, its work is strictly prescribed and there are no pos-
sibilities to function other way. Hence the count of evaluations required for finding the
optimal solution can be precisely formulated as

Sn ≤ b|Cx|/nc · b|Cy|/nc+
blog2(n)c∑

i=1

2 · bn/2i−1c
b bn/2i−1c

2 c

2

. (4.2)

The equality holds whenever the first square established fits whole in the space of all
possible alignments.

The first summand represents the initial grid search, the b and c are alternative. There
should be some kind of rounding to natural numbers as the count naturally is a natural
number. But the choice how to round is arbitrary, it depends on the implementation. If
we decide always to test the boundary of possible alignments space then the d and e should
be used. We have implemented the initial search as starting the grid search at alignment
(min(Cx), min(Cy)) and test every n-th alignment in both directions (along axes) as long
as we are inside the searched space. If the size is not divisible by n than alignments lying
on half of boundary aren’t evaluated in this initial grid search.

The second summand represents the count of evaluations performed until the step size
is equal to 1, at this last level optimal alignment is determined. There are blog2(n)c levels,
searched squares are always decreased to one fourth of the previous size (edges are shorten
to one half of previous length). After the initial search when first square is established
and from this moment on it holds that the edge size is 2j and the corresponding square is
searched with step bj/2c. Hence the number of performed evaluations is b2j/bj/2cc2. The
determination of edge size in i-th level of optimisation relies on the statement that both
sequences ak+1 = bak/2c and bk = bm/2k−1c starting with a1 = b1 = m are the same.

An example from Bohunice. We use n = 4, then for situation from table 4.1 we have
Cx = 〈0, 124〉, Cy = 〈−105, 105〉. The Sn can be therefore rewritten as

S4 = 31 · 211 +
(

2 · 4
4/2

)2

+
(

2 · 2
2/2

)2

= 6573. (4.3)

Compare it to |Cx| · |Cy| = 26735 needed for the entire space search.
Don’t be mistaken that the ratio of expected evaluations and the ratio of required time

is not the same. The reason for this is that the size of the actual overlap given by certain

54

right-now-evaluated alignment is variating. The bigger overlap the more time it takes
to process all of it but not proportionally, the size ratio of big versus small overlaps do
not exactly follow the ratio of time spent when evaluating alignments which define given
overlaps.

The gradient ascend optimisation technique cannot be predicted as accurate as the n-
step optimisation. In our situation we are expecting the shape of the space of all possible
alignments to be a rectangle. The worst case estimation can be seen from next example.

To let the technique travel the longest possible way it is enough to imagine that the
evaluation of alignments in the space is arranged in the following manner. Thus we can
imagine that the starting point will be in bottom left corner. The evaluation of alignments
will be “arranged” in horizontal lines. The first, the fifth, the ninth (and so on) lines will
contain evaluations growing from left to right, the third, the seventh, the eleventh (and so
on) lines will contain evaluations growing the opposite direction. Even lines will be zero
except for some their endings. Right endings of the second, of the sixth (and so on) lines
will contain evaluation value between their upper and lower neighbourhood. Similarly for
the fourth, the eighth (and so on) lines with their left endings. Now we believe the reader
has got the idea. The gradient ascend technique will move on the “evaluation ranges”
across the entire space, odd lines are the ranges and the endings on even lines act as
bridges to over-pass the valley. Bridges must be up to the hill to prevent the algorithm
of this technique from stopping at this point. This ranges will be defined as long as they
will be part of the searched space, the alignment with highest evaluation will on the end
of the path.

The worst count required to find the maximum value in such artificial example is also
the general worst count Sgrad. Hence it holds

Sgrad ≤ 1
2
|Cx| · |Cy|. (4.4)

In real application similar artificial evaluations of parameter space is hardly to expect.
We do not expect such specialities as the even lines in the given example which task is just
to prevent the algorithm from going straight to the optimum. Instead smooth visualising
functions are to be found.

The expected worst case we believe is therefore equal to the count of evaluations

required to travel relatively straight across the space, thus the value of
√
|Cx|2 + |Cy|2 can

be (we believe) safely considered to be the expected worst case.
In Bohunice we have gained great speed up with this technique. Due to the behaviour

of the imaging system we can predict where the most probably will be the next optimal
alignment. The time required for registration is really a minimum. From tests we found
out that to reach the optimal alignment less than 10 evaluations must be computed.

4.3 Empty fusion

During the tests we have also observed that there are problems when registering pictures
which have in their common overlap mostly or solely the background. This is such kind
of images where even human cannot for sure say what is the correct alignment. The
evaluation methods behave differently but always decide some bad alignment to be the

55

optimal one. The idea how to solve this problem was surprisingly simple. We have used
in such cases the default alignments. So this is the second thing for which the accuracy
of scanning table helped us very much. This concept is pretty nice but requires a few
non-trivial decisions to make.

We must first somehow find out that currently we are registering two images which
contain mostly the background. And when we find such images we must decide what to do
with them. The answer for the latter is already answered, we use the default alignments.
But this introduces a new question: How do we find the default alignment; what shall
we do, when the very first registered images in the given image composition will be those
with majority of background in their overlap (so we cannot use the default alignment)?
The answers will be in order in which the implemented program solves such problem.

4.3.1 The measure of suitability for registering

When images are read into the memory (well, only overlaps from them), they are converted
into gray-scale. After that they are measured. The measure should be fast and should
describe the suitability for image registration, the higher value the better and as we will
see later the better to start registration with this image. We will use the information
from this measure to establish the order in which will be registered images from the whole
image composition. The goal is not to point out images with background but conversely
point out the image with the best suitability because this image (and its neighbourhoods)
will define the defaults alignments.

The measure we have implemented is simply a sum over the entire overlap of given
image, the sum is counting all differences between values of neighbourhooding pixels, every
neighbourhooding pair only once of course. The idea behind is that the difference in pixel
intensities is the key that helps human brain to establish the optimal alignment.

Imagine following situation, we have two white sheets and we want them to match
somehow. When both or even one sheet is absolutely empty then we have no chance
to decide the optimal alignment. When we draw a single dot on each sheet we learn
something. We can align these sheets in the manner in which the first dot is above the
second one. But we still don’t know the rotation of sheets (in general, in Bohunice we
don’t have to take care). If we put another dot pair on both sheets we can establish the
rotation. So it seems the more changes (and dot is a change of values) in that white
space on the sheet the more we know about the alignment, except the situations in which
these dot pairs don’t align and then the second dot pair confused us instead of helping
us. So let’s presume every object pair will be matching for next reading. Let’s continue,
imagine we’ll write a line on both sheets, will it be more help? Sure, dots can easily be
overlooked or the scanning system can create a new one (the dark noise present in CCD
cameras for example, but obviously in different situation, not the white sheet). The lines
theoretically don’t necessary bring us more information for determining the alignment but
still it can help when some noise is present around. Then we can write another line or
begin with some more complicated objects. For human brain, and that term human brain
is important to emphasise, these added objects help to improve the capability to find
optimal alignments. Now try to use our measure on all that intermediate levels of drawing
on two white sheets. As we were trying to explain the more perceptible objects are on the
sheets the better it is for registration. The measure will give us the same result because

56

each object represents on its boundary some change in pixel values, the more objects on
the sheet the more differences in values of pixels representing that sheet.

Challenging question is whether the higher certainty for humans when registering will
also mean the higher probability for evaluation methods to “point out” the optimal align-
ment. We don’t know the answer unfortunately. We can only say from our results in
Bohunice that it seems so, the reader is encouraged to see the figure 4.2.

4.3.2 The order for registering in image composition

So now, after measuring all overlaps of each image present in the given image composition,
these (overlaps) have assigned some number. The very first image that will be used for
the first registration and also for the definition of the default alignments will be that one
which has the highest sum from assigned numbers of its overlaps.

The rest of order is determined using the following algorithm which is almost the Prim
algorithm for determining the minimal spanning tree. That is to say we can imagine the
images as a nodes of a graph with valuation of its edges, edges “will be” overlaps of images.
Edges will not be oriented and will exist only and only if the given two nodes (images)
are adjacent in the horizontal or vertical direction. The valuation of edge is simply the
number assigned to one side of overlap plus the number assigned to the counterpart side
of overlap. The difference in the following algorithm is in the fact that it is not trying
to create a minimum (well, if we had to create then maximum) spanning tree but we are
interested in the order in which we would add nodes into the maximum spanning tree.

The notation will be Im for the set of all images, for i ∈ Im the Pr[i] is the array
which determines whether given image i would be in the spanning tree. And V al[i] is the
number which is assigned to every overlap, it is the already best number “under” which
one would get into this node from the spanning tree at that moment. The values of edges
between the nodes i and j will be denoted by Mes[i ↔ j], for j it holds and also introduces
new notation j ∈ Sur[i] where Sur[i] is the set of all images which are to the right, down,
left or up from the i, i.e. the set of images which must be registrated with i.

1. Initiation: for every i ∈ Im : Pr[i] := 0 and V al[i] := −∞
2. Starting point: i′ := maxi∈Im(

∑
j∈Sur[i] Mes[i ↔ j])

3. Iteration starts: while ∃i ∈ Im : Pr[i] = 0 do

4. forall j ∈ Sur[i′] : Pr[j] = 0 ∧ V al[j] < Mes[i ↔ j] do V al[j] := Mes[i ↔ j]

5. Pr[i′] := 1, print(i′)

6. i′ := maxi∈Im:Pr[i]=0(V al[i])

7. Iteration ends: end while

The final order in which are images processed in the given image composition is the order
in which images are printed in step 5.

Now we know how do we create the order in which we register the images. We have
learnt that for this purpose we had developed some measure. We also know that when

57

Figure 4.2: This is some image composition of 90 images. Each image is labelled with
its position and the order number. The image number 1 is at position [1, 1]. This figure
should show the reader how does work the measurement combined with algorithm for
creating order for registration. The first one third of all images in established order are
designated with their labels in lighten frames. Notice the “empty fusions” have the highest
numbers, thus these are “embedded” inside at the end of registering process like filling the
gap (using the default alignments).

58

we detect an image with the majority of background in its overlap we will align it using
the default alignment. Finally we know the whole answer for question at the beginning
of this section and that is from where we decide the values for default alignment(s) —
horizontal and vertical. Each default alignment comes from the very first registration
result in the whole image composition in the given direction. We know that previous
measure in combination with the modified Prim algorithm ensure the property that the
very first registration is perhaps the most suitable (we didn’t prove that) and hence (we
hope) the least inclinable to misalignment. During the following image registrations we
still administrate the default alignments so it holds that default alignment is the average
from all previously computed alignments all in given direction.

Final debt is how do we recognise the image with “empty fusion.” We find such image
when the computed alignment is outside the given threshold. When the default alignment
is (Cx, Cy) and the right-now computed alignment (cx, cy) than it is considered to be
misalignment when |Cx − cx| > T or |Cy − cy| > T . We make use of the benefit of the
accuracy of scanning table and hence we use that table as the detector of images with
background, in Bohunice is the T = 10 more than enough. We actually solve the problem
of potential misalignment after the misalignment occurs unlike trying to avoid it. For
example avoid it by detecting the nature of image and according to the detection result,
then make decision what algorithm will be used.

4.4 The order for establishing final image positions

The modified Prim algorithm from previous subsection ensures a property which is very
useful for efficiency of implemented program. Before that we will allow ourselves small
technical note.

The easiest approach to keep the program design as simple as possible is to perform
the image composition in three steps. In the first step one has to decide the parameters
of transformation of coordinates, that’s obvious. In the preceding text we have seen a
few hints how to do that. The second step is to determine the final position of top left
corner of every image in the composition using the pre-computed parameters of coordinates
transformations. In the third step we make use of positions and somehow compose the final
big image. When we notice the property of the mentioned order creating algorithm, we can
perform the first and the second step at once. As stated it is the modified Prim algorithm
for creating the minimal spanning tree of given connected graph. The modification is
in the fact that actually were not building any real spanning tree when performing the
algorithm.

The graph consist of images from composition in our case. The idea of Prim algorithm
is to begin with some node, it doesn’t matter which one it will be because in the spanning
tree must be every node present. We are constructing a set of nodes which holds all nodes
that are already in the rising spanning tree, at the beginning there is only one point. The
iteration process adds one point in every cycle, it adds such point which is reachable from
that set with the lowest valuated edge. The iteration stops when the set has all nodes
from given graph. The order in which we are computing the registration is the order in
which images (nodes) are added into that set during the iteration process.

Two facts were emphasised in the previous paragraph. Both are saying the same

59

thing, for every image but the first one in our registration order it holds that it must
have at least one its neighbourhood somewhere before in the order. We start the modified
Prim algorithm with the most appropriate image (the step 2) and and that’s it. The
very first image in the registration order can receive arbitrary position, we have set it the
centre of coordinates [0, 0]. As the registration process is performed each image after the
registrations with all its neighbours can receive its final position. Because of there must
exists at least one of its neighbourhoods that have the final position already determined,
then one has to simply use the information from found alignment.

4.5 Image stitching

4.5.1 Possible problems when image stitching

We have finally got in this paper to the second part of every image composition, we finally
got to the image stitching. Let’s consider the horizontal stitch of two images during this
section.

There can be perhaps lot of different approaches, the most simple is to overlay one
image over the another one. Depending on the situation and demands but mostly this
solution won’t be acceptable because the overlay will be noticeable. It will be noticeable
because of image incompatibility which is present in virtually every imaging system. The
incompatibility is mostly the displacement of same objects even at the optimal alignment.
Well, optimal in term that there isn’t any better alignment. Sometimes the colour tint
can happen.

When colour adjustment should be performed, we may use the intensity conversion
function I introduced in 3.1 (on page 9). It will simply repair the colours by mapping
the correspondence between them and applying this information on one image. The I
function must be beforehand determined manually and our implementation didn’t make
use of this function.

When misplacement of objects occurs there is no easy help. The registered image can
be for example broken down into a few smaller pictures and the whole image composition
process can be applied on the reference image and each part of registered image separately.
After all parts are processed the final composition will take place. But sadly even when
we’ve used this solution as an example, we don’t predict it good results. It is rather
complex, and it becomes yet more complex when fully automatics is demanded. There
are also some experiments when morfing images but we haven’t studied that.

Instead we had concentrated on the image data conversion, i.e. we are not trying
to move the data so the overlap will be less noticeable but we are trying to over-pass
from the first image data onto the second image data. We call that with the term sutura
camouflaging because of the fact that we are actually trying to hide the conversion of data.

4.5.2 The situation in Bohunice

In Bohunice the misplacement occurs. When objects are perfectly aligned in the upper
part of overlap, the objects from lower part need to be shifted by few pixels — usually
less then 10 pixels.

60

After the final positions are established, we know perfectly how broad will be the
overlap and where it will be positioned. Overlaps are very broad (usually around 50
pixels), this can be also seen from the visualising tool. In horizontal case it is the distance
in x coordinate from the top of the peak (from the optimal alignment) to the maximum
value of cx of every possible alignment. And plus 10 pixels because this is the narrow strip
of alignments that excluded from searching. So we have plenty of room to convert from
one data onto another one.

4.5.3 General converting function

We have implemented the simplest method, when stitching we are trying to smoothly
traverse from data from the first image onto the data from the second image. This is
performed for every pixel in common overlap using the weighted sum of corresponding
pixel pair values. The weights are controlled by the position in the overlap. This way
we have a very general framework for implementing the stitch process because in fact the
weight functions can be arbitrary.

Suppose for given two images we have their final positions and so we have their common
overlap defined as a rectangle with its width W = card(XA) and height H = card(YA).
Recapitulate XA and YA will be the coordinates from overlap for the reference image
A(x, y), XB and YB will be the coordinates from overlap for the registered image B(x, y),
T ′(x, y) will be the optimal alignment transformation of coordinates. Finally C(x, y) will
be the new merged overlap which will be in the end embedded between the rests of the
reference and registered images, the definition will be

∀x ∈ XA, y ∈ YA : C(x, y) := w1(x, y) ·A(x, y) + w2(x, y) ·B(T ′(x, y)). (4.5)

The property of weights should be met, i.e. ∀x, y : w1(x, y) + w2(x, y) = 1. We will call
the A(x, y) and B(x, y) the original pixel values, the C(x, y) will be simply the computed
or resulting values.

Often approach when performing the stitch in horizontal direction (we have left and
right images) is to fix the weight function at each y coordinate, hence it holds ∀x, y :
w1(x, y) = weight(x) = 1 − w2(x, y). The weights can be than defined only through the
weight(x) function which defines the value for the whole column y. This function describes
how to merge one pixel row from the overlap by defining both general functions for every
row at once. In this text we will refer to the weight(x) function as to the one-row weight
function.

4.5.4 Sutura camouflage

For the purpose of sutura camouflage we had set more requirements on the general weight
function. These also should be held for one-row weight function. It might be better first
to overview the figure 4.3 before reading on.

Firstly, the function should be smooth. We are trying to overcome from one overlap
data to the other overlap data. If both overlaps are identical than it doesn’t matter how
we manage that. The property for weights will ensure that the resulting pixel value will
be the same as both original pixel values from which we compute given one. When images
are not identical, the changes will occur. These will be changes from both original pixel

61

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

x

Figure 4.3: Several one-row weights functions weight(x). The horizontal dashed line in
gray on top is the representative for overlay of one image over the another one. The gray
dotted is a linear, the gray solid is cosine function 0.5 + (cos(π · x)/2). The thin black
solid line is the 2nd order polynomial while the thick is the 4th order polynomial. Both
polynomials are made up from two parts. The first part is actually 1 − pn(x) where the
pn(x) function is polynomial 1/2 · (2x)n, x = 0 . . . 0.5. The second part is the first part
rotated by 180 degrees around the point [1/2, 1/2].

values, these might be noticeable. The smoothness aims against the rapid changes. The
weight should slowly changing its value so the eye will get used to the resulting changes.
When the appropriate length in which the weight changes its values is set the over-pass
will be less noticeable.

Secondly and not surprisingly, we demand that the weight function w1(x, y) at fixed y
coordinate will start with value of 1 and converge into 0. Hence the second weight w2(x, y)
at the same y coordinate will behave exactly conversely.

These two requirement are the core of our merging/sutura camouflaging algorithm.
The figure 4.3 shows functions weight(x) that were tested. Not mentioning the weight
representing overlaying one image above the other one, there are linear, cosine and polyno-
mials (of 2nd and 4th order) curves. The interval in which the weight gets from its initial
value to its final value is exactly 1. Hence allowing us to stretch this interval into an
arbitrary length. Let’s denote some one-row weight function from figure 4.3 as Weight(x)
where x ∈ 〈0, 1〉. The overlap can be then defined as

∀x ∈ XA, y ∈ YA : C(x, y) := Weight

(
x−min(XA)

card(XA)

)
·A(x, y)

+
(

1−Weight

(
x−min(XA)

card(XA)

))
·B(T ′(x, y)). (4.6)

This solution is fast and acceptable. The disadvantage is its dependency on the width
of overlap which makes it harder to find the optimal curve for weight function. The slope
of weight function is important because it defines the distance in which we will over-pass
from the first data onto the second data.

62

When the slope is too slow than the distance gets longer leaving us large space where
the over-pass was performed. In large space it is more likely to notice something, usually
the “double effect” occurs. The merit of this effect is the fact that for pixels which defines
values of x ≈ 0.5 it holds Weight(x) ≈ 1−Weight(x), the weight function for data from
the reference image and the weight function for data from the registered image are roughly
equal. Result is that when same objects in such area of overlap are not exactly aligned
than they are pictured twice nearby with half intensity, they look like they are vibrating.

On the other hand when the slope is too fast than the distance will be short and notable
changes will occur. If the area splits some object in the image and the left part and right
part of this object aren’t aligned very tight, then for example the edges of this object as
we follow them from left part to right part will suddenly “turn” to meet its counterpart in
the area where the weight function for the registered image is in full strength, i.e. is equal
or almost the 1. This will almost look like a step in the edge which we will immediately
notice.

We believe there exists always some distance in which the over-pass will be the least
noticeable. If data are not too incompatible than it is possible to perform an over-pass
which will be hardly noticeable. In our test we have found that the curve constructed
from two 2nd order polynomials works fine for smaller overlaps, typically given by 6% or
less. For bigger overlaps the same weight function but created from 4th order polynomial
is used instead. See figure 4.4 for their comparison.

Notice the behaviour of each weight function in that figure. The overlay image demon-
strates the incompatibility at given alignment. Linear weights demonstrates the “double
effect” as this weight is changing its values very slowly while the overlap was pretty wide.
The 2nd order polynomial weight seems to have some difficulties with this kind of data,
such effect happened only in this part of entire overlap. The rest of overlap was the interior
of pictured cell and the stitch was there quite good unlike in the shown part. The 4th
order polynomial weight exhibited pretty good sutura camouflage. The length in which
the weight function changes its values is notably short than in the linear weight function.
Nevertheless the double effect is still noticeable as long as the image is zoomed in. The
optimal distance is still shorter as we will see in the next paragraph.

The “zig-zag” method

We had firstly used the approach of one-row weight function, later after some remarks we
made the decision to use the method suggested by MUDr. Feit. We have implemented
the “zig-zag” camouflaging method which is the general weight function. This method
has its roots in the 2nd order polynomial curve. The curve remained but the distance in
which this curve is computed became constant, for all tested images the most appropriate
distance seemed to us to be the distance of 20 pixels.

This improves the feel from the stitch, from the camouflage. Better results still can be
yield. What does help us to recognise the stitch? When we use the one-row weigh function,
even in the narrow strip of 20 pixels, we still have over-pass in each row aligned one above
another one. For example we wouldn’t normally notice an over-pass in some certain row
if there weren’t similar row with more noticeable over-pass. This second over-pass might
not be good, it might attract our attention and after that we might also notice the first
row. The idea of “zig-zag” method is now clear, we will simply prevent neighbourhooding

63

Overlay: Linear: 2nd order polynomial:

4th order polynomial: “Zig-zag”: “Zig-zag” visualised:

Figure 4.4: The figure shows six different parts of two images composition. All examples
are part of two images stitched at always the same alignment. In each case different
weight functions were used, see the text above each picture. The “Zig-zag visualised” is
the ordinary zig-zag method with the exception that each pixel in the area where weight
functions are strictly less than 1 is the inverted resulting pixel value, i.e. we are using
8-bits per one pixel and so when p ∈ 〈0, 255〉 than p inverted is 255 − p. This way the
bottom right image demonstrates sample pass of the zig-zag method, it emphasise only
such pixels where the camouflage was actually performed. The overlap was 101 pixels
wide, each image is a copy of constant rectangle from constant position from that overlap.

64

over-passes to be aligned into a column as they would normally be. One request arisen,
the zig-zag line along which the over-passes are performed should be continuous/smooth.
The reason for that is to avoid performing over-pass on the left edge of overlap while the
next over-pass will be in the right edge. The effect of hiding the place of over-pass will
be lost as there will be suddenly change of data source (part of row from the reference
image, next row at the same column from the registered image, next row again from the
reference image) thanks to image incompatibility.

The formalism for this method. The 2nd order polynomial presented in figure 4.3 we
will denote with poly(i), i ∈ 〈0, 1〉. The zig-zag line will be represented with some contin-
uous function x = line(y), x ∈ 〈min(XA), max(XA) − 20〉 and y ∈ YA. The counterpart
weight w2(x, y) will be to meet the weight property as w2(x, y) = 1−w1(x, y). The general
weight function w1 simulating the “zig-zag” method is as

∀x ∈ XA, y ∈ YA : w1(x, y) =

1 x < line(y)
poly(x−line(y)

20) line(y) ≤ x ≤ line(y) + 19
0 x > line(y) + 19

. (4.7)

65

Chapter 5

Conclusion

This thesis was all about the image composition problem. It was written perhaps more
as a manual which should help when implementing a solution regarding this problem. We
believe that every creator of a system which purpose is to compose images will be able
after reading this text to create a new system, with prior decision what matching methods
to use and why to use them. He/she has also learnt some hints that may help him/her with
development of fast, reliable, and accurate system in term of quality of final composed
image.

We have tested major algorithms for evaluating the optimality of given alignment.
These algorithms are representatives of the so-called statistic-based family, i.e. they com-
pute various statistics directly on the raw image data instead of extracting features from
images in order to discover the optimal alignment from these features. The image pre-
processing can be of course performed in this case but our results prove that it is not
necessary.

We have also shown that pre-processing is not required even when registered images are
not exactly identical. The selected algorithms mostly did their job when the registered
image was significantly brighter, the texture of registered image wasn’t sharp or when
one image was disturbed by equally spread noise. The correlation ratio algorithm for
estimating the optimality of alignments using basic statistics have passed all tests and
therefore we would suggest it as the most general algorithm for registration.

The time consumption of the entire image composition problem is closely related to
the registration process. The registration is the time most demanding step in image
composition. The reason for that is in the amount of data that must be processed during
the evaluation of every alignment. We have published two tables in this thesis which
are comparing selected matching methods by time. One can from these also imagine
the amount of time that is required. The first table shows times for pure search of the
entire space of all possible alignments, the second table shows times when optimisation
techniques were enabled.

The second table brings encouraging news. Up to three orders of magnitude speed
up can be achieved for the composition problem. This result makes use of special two
level optimisation which in addition make use of some property of given image scanning
system. Unfortunately this optimisation is probably not applicable in general because of
that property. The property is high accuracy of scanning table which for example cannot
be expected when composing arbitrary images without prior knowledge of their source.

66

Finally we have found a satisfactory solution for image stitching when these are almost
identical. Our solution is fast and accurate in term that it preserve the information found
in the data. That means for example that it preserves shapes and colours of objects. The
innovation of this method is in its uniqueness where the stitching is actually performed
rather than the way it is performed.

All results in this thesis come from a program that was developed for this purpose. Data
were used from the Brno Faculty Hospital — Bohunice. The nature of images produced
by the scanning system in Bohunice are described here, two rather typical images are also
shown in the Appendix.

In the Appendix one can also find the documentation for this program which is de-
scribing its usage as well as its capabilities. It is programmed in C++ and it provides
interfaces for further extensions of matching or sutura camouflaging methods. The match-
ing methods do not necessary belong to the statistical-based family.

Image composition is a complex problem, mainly because it contains an image registra-
tion as its sub-problem. We have observed some difficulties with the mutual information
matching method. Mainly with version which uses the Parzen-window technique for esti-
mating probabilities.

This method is interesting in two things. Firstly it uses the theory of information which
we believe is powerful tool. Secondly the Parzen estimator does not require the entire
overlap data to estimate the evaluation of corresponding alignment. This will probably
induce another speed up. The speed up probably won’t happen in the application described
in this thesis. It may occur when larger images are used or when the image composition
becomes the image merging, in this application the overlaps will enlarge to the whole size
of images.

When image merging or comparing should take place, from results of this thesis we
presume that concern should be directed on some parameters estimation for the mutual
information evaluation or some more efficient optimisation technique which will handle
very general shapes of visualising function.

67

Appendix A

Sample images

Figure A.1: This is the reference (the left) image which was used in all the tests found
in subsection 3.4.2 starting at page 39. The stripe on the right side/edge of width of 85
pixels coming from top to bottom will be the maximum overlap in the registration.

68

Figure A.2: This is the registered (the right) image without any adjustments. In all tests
this image was adjusted somehow before the registration. The overlap is located at the
left edge. Its width is again 85 pixels. Notice the nature of image, contrast and brightness
are pretty the same as in the reference image. For discussion and figure with visualising
tool, please refer to subsection 3.4.2 (on page 39).

Figure A.3: This is the registered image, adjusted to become more brighter then the
original. No artificial noise added. For discussion and figure with visualising tool, please
refer to subsection 3.4.2 (on page 41).

69

Figure A.4: This is the registered image, adjusted to lost its sharpness. No artificial noise
added. For discussion and figure with visualising tool, please refer to subsection 3.4.2 (on
page 41).

Figure A.5: This is the registered image, the original image with random noise. No
brightness or sharpness adjustments. For discussion and figure with visualising tool, please
refer to subsection 3.4.2 (on page 41).

70

Appendix B

Program documentation

B.1 Legal notes

This program uses two file formats libraries. The first one ([15]) is used for reading and
writing TIFF files, it is a part of the implemented program and therefore we are obligated
to copy here the following two lines.

Copyright (c) 1988-1997 Sam Leffler

Copyright (c) 1991-1997 Silicon Graphics, Inc.

The second library ([9]) is used for reading JFIF JPEG file formats. It is also a part of
implemented program and therefore we must write here following two lines.

This software is copyright (C) 1991-1998, Thomas G. Lane.

All Rights Reserved except as specified in the README file provided with the Independent
JPEG Group’s software.

B.2 Input

The input to the program is a configuration file in which the images are specified as well
as parameters to the program. Parameters can also be specified in the command line (at
the prompt line). The configuration file has two parts.

The first part represents a table in which each cell is exactly one image that should be
composed into the final whole image composition. The size of the table is restricted not to
exceed the total count of 900 images in composition while there can be maximally 30 rows
and maximally 30 columns. The dimension of images is not restricted anyhow, i.e. images
can be as big as demanded by user, they also don’t have to have the same dimensions. Each
row is represented with one line in configuration file or with few immediately following
lines each except the last one is ended with whitespace and backslash symbol in this order.
Images in a row are represented with their corresponding file names, path can be included,
white spaces in names or paths are not allowed. There are no delimiters between files in
one row except at least one whitespace. Left images in a row are closer to the start of a
table row definition. Upper rows in a table have their definitions closer to the beginning
of the configuration file.

71

The second part of configuration file is the parameter definition part. We will also
parallel describe the parameters accepted in command line, these will always begin with
(the minus sign). Parameters in configuration file are recognised only at the beginning

of each line. After the parameter is parsed in the given line, the rest of line is ignored.
Parameters in command line are given the usual way. There is no order of parameters
specified. If the same parameter is given both in the configuration file and in the command
line, the value from command line will be used — it will override the configuration file
setting.

-h, --help

Whenever this parameter is found, all other parameters are ignored, program will
show help and exit. No composition is performed.

-c, --config

Requires the path/name to the configuration file. If omitted than it is searched for
the configuration file zdroje.cfg in the current directory. There is a note below
regarding this parameter.

-l, --log, LOG=

Requires the path/name to the file which will be written with information regarding
the image composition process during this run. If this file exists, it will be first
truncated to zero length (erased) and than the information written. We call this file
the log file. See note at the end of this section about the default names behaviour.

-a, --pripsat

This option will preserve the content of log file if such file exists, new information
will be appended.

-o, --output, TIF=

Requires the path/name to the file which will (re)written with final image composi-
tion. This file will in TIFF file format. See note at the end of this section about the
default names behaviour.

-p, --prekryti, PREKRYTI=

Requires (only) number. It is the maximum overlap possible given in percents. The
percent mark (%) should be not appended to the number.

-k, --krok, KROK=

Requires number. This is the value for n in n-step optimisation technique, see
subsection 4.2.2 (on page 50).

-v, --vyhledavani, VYHLEDAVANI=

Requires number. This way the evaluation function is selected. There are accepted:
0 for SSC, 1 for SAVD, 2 for NCC, 3 for CR, 4 for MI (the version depends on the
special compiler parameter value), 5 for NONE. The NONE method simply defines
the optimal alignment to be the one right in the middle of the space of all possible
alignments.

72

-r, --korekce, LIMIT KOREKCE=

Requires number. This number defines the threshold for determining the “empty
fusion,” see the end of the section 4.3 for explanation of the T parameter (on page
59).

-s, --prolinani, PROLINANI=

Requires number. The number defines which weight functions pair will be used when
sutura camouflaging. Accepted values are: 0 for overlay, 1 for linear, 2 for cosine, 3
for 2nd order polynomial, 4 for 4th oder polynomial weight functions, 5 for “zig-zag”
method. See section 4.5 for explanation.

Please note, under Microsoft(R) environment are accepted all parameters in configu-
ration file without any change. Parameters on the command line are limited only to the
-h and -c. In Unix, Linux environments all described parameters (both in configuration
file and in command line) are supported.

There are several default values which can be summarised using the command line
style as -p 11 -k 4 -v 1 -r 10 -s 5.

The default name behaviour. If no parameters specified than it is expected to read
the configuration file in the current directory under the name zdroje.cfg, to write (and
first erase if such exists) the log file in the current directory under the name spojeni.log

and to write (and first erase if such exists) the final whole composition image into the
file spojeni.tif. If the -c or --config is specified, than the default names of log and
final image files are changed to be in the same directory where the configuration file is
to be found, the file names are the same as the configuration file name but the extension
.cfg is substituted with .log and .tif. This behaviour can be overridden using the LOG=
respectively TIF= parameter in the configuration file or yet more when using the -l or
--log respectively the -o or --output in the command line.

The first part is always preceding the second part. The pass from the first part into
the second part is denoted with a line beginning with the @ (the at-sign) symbol. The
rest of this line is ignored.

In both parts the whitespace is considered to be the space of exactly one symbol
(usually produced by space bar key) or the tabulator symbol. Commentaries are allowed,
commentary is every line beginning with # (the hash sign) until its end. Empty lines are
allowed.

B.3 Output

Program has in fact three outputs. It is the whole composition image, the log file and the
text produced on the screen (on terminal in Unix terminology).

The final image composition file stores the rectangular image. In rectangle the area
where is no input image the blue background is inserted.

After reading this thesis the log file content and also the text produced on terminal will
be self explanatory. On the terminal minimal information is presented, there is only the
current state of image composition process maintained so the user can guess how long will it
take until the composition is done. There are also some information regarding the “empty
fusion” checking, for every registration the parameters of transformation of coordinates

73

are printed as well as the time required to find these parameters, also the position in
the order for registering is shown. This we believe is enough to help experienced user to
discover any potential misalignments when good knowledge of scanning system and the
nature of data is provided, such user need not to wait until the final composition is created
to discover that something went wrong.

The log file contains the same information as is printed on the screen, the formatting is
also preserved. Depending on compilation time parameters something more can be found
in the log file. But still it holds that this thesis will help to explain information found in
the log file. Next section will show tiny example, that will make it all more clear.

B.4 Limitations

There are limitation mainly of the hardware kind but as always some software ones will
be there too.

The program can run on every system on which somebody managed to compile it.
Except the function for retrieving current time and the file formats libraries all is written
in C++ and thus well supported under different environments.

The hardware limitation is only the memory and disk space, fortunately both can be
predicted. The memory requirements have two major contributors. Firstly all overlaps
stored in gray-scale from all images present in composition are read into the memory.
Therefore when the ordinary image dimension is say Ix × Iy and the maximum overlap is
set to o percent, the composition will be table with Tr rows and Tc columns then the first
memory requirement is

Usage1 < 4 · Tc · Tr · o · Ix · Iy

100
B. (B.1)

Because of the overlap will be always o · Ix · Iy/100 (regardless horizontal or vertical
direction), each registration (image pair) has two overlaps. Secondly when image stitching
there are always maximally two entire rows of table read into memory at given moment.
We are using 4B for one pixel then

Usage2 ≈ 4 · 2Tc · Ix · IyB. (B.2)

It is not estimated exactly because it depends on the alignments of images, for example
if one row produces after alignment the stair effect of images then bounding box must
be allocated in memory. Be also aware of the memory consumption from the file format
library which is usually less than 100MB.

The disk space is limitation for two reasons. When not enough memory, swap file
managed by operating system may be used. The images are usually large. Hence the
final composition will be large too, this file must stored somewhere. The swap should be
therefore of the same size as computed in the previous paragraph if not enough memory is
accessible. The disk space left should be maximally the size that is required for all images
in the composition together.

74

Bibliography

[1] R. Bednář. Latex. Web pages. reference manual, URL http://www.cstug.cz/

latex/lm/frames.html (January 2004).

[2] P. Bourke. Cross correlation. Web pages, September 1996. Document can be
found at URL http://astronomy.swin.edu.au/~pbourke/analysis/correlate/

index.html (March 2003).

[3] L. G. Brown. A survey of image registration techniques. Technical report, Columbia
University, January 1992.

[4] M. Bud́ıková, Š. Mikoláš, and P. Osecký. Teorie pravděpodobnosti a matematická
statistika. Masarykova univerzita v Brně, 1998. Druhé, přepracované vydáńı, ISBN 80-
210-1832-1.

[5] M. Čapek. Registrace sńımk̊u z konfokálńıho mikroskopu. Disertačńı práce, České
vysoké učeńı technické v Praze, 1999.

[6] J. Feit, V. Ulman, W. Kempf, and H. Jedličková. Pořizováńı obraz̊u o velmi vysokém
rozlǐseńı metodou skládáńı. Česko-Slovenská patologie a soudńı lékařstv́ı, 40/49(1),
2004.

[7] A. Fusiello. Tutorial on rectification of stereo images. Technical report, Dipar-
timento di Matematica e Informatica, Università di Udine, 1998. Document can
be found at URL http://www.dai.ed.ac.uk/CVonline/LOCAL COPIES/FUSIELLO/

tutorial.html (December 2003).

[8] S. Gilles. Description and experimentation of image matching using mutual informa-
tion. Technical report, Oxford University, 1996.

[9] E. Hamilton. JPEG File Interchange Format, September 1992. Version 1.02, URL
http://www.ijg.org/files.

[10] A. Junghanns. The matrix and quaternions faq. Web presentation. Document can be
found at URL http://www.j3d.org/matrix faq/matrfaq latest.html (December
2003).

[11] J. Kučera. PB161 Programováńı v jazyku C++. Web pages. Supplementary web to
course PB161 held at FI MU, URL http://www.fi.muni.cz/usr/jkucera/pb161/.

75

[12] A. Roche, G. Malandain, X. Pennec, and N. Ayache. The correlation ratio as a new
similarity measure for multimodal image registration. In Proceedings MICCAI’98,
volume 1496 of LNCS. Springer Verlag, 1998.

[13] A. Roche, G. Malandain, X. Pennec, and N. Ayache. Multimodal image registration
by maximization of the correlation ratio. Technical report, INSTITUT NATIONAL
DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE, 1998. URL
ftp://ftp.inria.fr/INRIA/publication/RR/RR-3378.ps.gz (November 2003).

[14] Electronic statistics textbook. Web presentation. URL http://www.statsoft.com/

textbook/stathome.html (April 2003).

[15] TIFF 6.0 Specification, June 1992. URL http://www.libtiff.org.

[16] P. Viola and W. M. Wells III. Alignment by maximization of mutual infor-
mation. International Journal of Computer Vision, pages 137–154, 1997. Doc-
ument can be found at URL http://www.ai.mit.edu/people/viola/research/

publications/IJCV-97.ps.gz (March 2003).

[17] P. Viola, W. M. Wells III, H. Atsumi, S. Nakajima, and R. Kikinis. Multi-
modal volume registration by maximization of mutual information. In Medical
Image Analysis. Oxford University Press, 1995. URL http://www.ai.mit.edu/

people/viola/research/publications/MIA-95.ps.gz (March 2003).

[18] P. A. Viola. Alignment by Maximization Of Mutual Information. PhD thesis,
Massachuttes Institute of Technology, June 1995. URL http://www.ai.mit.edu/

people/viola/research/publications/PHD-thesis.pdf (March 2003).

[19] P. A. Viola and W. M. Wells III. Alignment by maximization of mutual information.
In International Conference on Computer Vision 1995, 1995.

[20] M. Zaffalon and M. Hutter. Robust feature selection by mutual information distribu-
tions. Technical report, IDSIA Switzerland, June 2002.

[21] A. Zisserman. Geometric framework for vision i: Single view and two-view geome-
try. Technical report, University of Oxford, 1997. URL http://www.dai.ed.ac.uk/

CVonline/LOCAL COPIES/EPSRC SSAZ/epsrc ssaz.html (December 2003).

76

