# **3D Data Visualization**

# Vladimír (Vlado) Ulman

#### EMBO Course on Lightsheet Microscopy

#### 16<sup>th</sup> Aug 2022 CEITEC MUNI, Brno

# About me



#### Applied Computer Scientists & Open-source SW believer

- Image processing & analysis & vizu, big images in parallel
- Algorithms benchmarking (synth. data)
- Support for DL methods training (silver ground-truth)
- Central European Institute of Technology (CEITEC, Masaryk University, Brno)





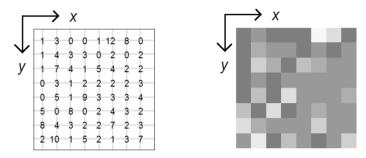


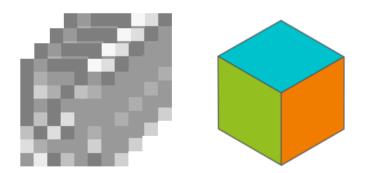




- Centre for Biomedical Image Processing (CBIA, Faculty of Informatics, MU, Brno)
- CellTrackingChallenge.net
- IT4Innovations National Supercomuting Center (IT4I, VSB – Technical University of Ostrava, Ostrava)
- HPC Workflow Manager (for Fiji) + DataStore

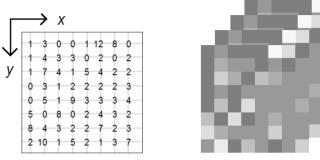
## About the talk


- Main theme:
  - 3D data vizu is actually mostly about
    - Some form of 3D-to-2D projection
    - Some form of information reduction
  - Principles used under the hood
- Outline:
  - Slice rendering
  - Volume rendering
  - Cartographic projections
  - Graphical representations




• Download: https://www.fi.muni.cz/~xulman/files/EMBO\_LS2022.pdf

# Terminology

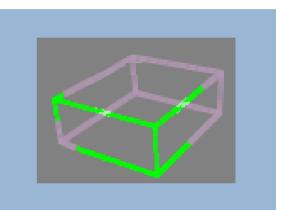

- 2D image
  - Regularly displaced (scalar) values on an orthogonal 2D grid
  - Aka. frame, slice or section
- 3D image
  - A sequence of 2D images  $\rightarrow$  3D grid
  - Aka. stack or volume
  - No triangles & textures (computer games)
  - Raw data
- Tabular data that include x,y,z coordinates
  - Processed data, e.g. Point cloud





# Terminology

- Dimensionality increases
  - By 1D when time-lapse
  - By 1D with every imaged channel
  - By 1D with every view angle
- Picture element → **Pixel**, Volumetric pixel → **Voxel**
- Pixel consumes memory:
  - 8 or 16 bits (1 or 2 Bytes, integers, 0-255 or 0-65535)
  - 32 or 64 bits (4 or 8 Bytes, floating-point, single or double precision)
- Pixel/Voxel represents a physical area/volume
  - "Microns per pixel" along each axis  $\rightarrow$  Resolution
  - Same sizes in all axes = **isotropic resolution**




Idea: Show the voxels at the intersection of an user-given plane with the Volume.

Orthogonal views are a special case of this.

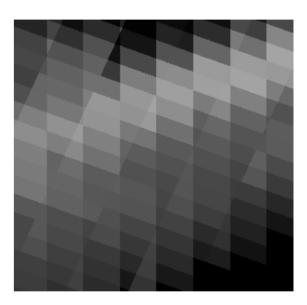
#### **Example SW**: BigDataViewer $\rightarrow$ **BDV**

| (Fiji Is Just) Im<br>File Edit Image Process Analyze Plugins<br>Q Q Q A A A Q M<br>Magnifying glass (or "+" and "-" keys; alt or long click for me | Shortcuts<br>Utilities<br>New<br>Compile and Pun                                                                                                                                       | - ^ ^ ^ ^ ^ *   |                                                                                                                                                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                    | SD Viewer<br>Analyze<br>BIJ<br>BigDataViewer                                                                                                                                           |                 | Big Warp                                                                                                                                                                                                                                                                     |
|                                                                                                                                                    | BigStitcher<br>Bio-Formats<br>Cluster                                                                                                                                                  | $\Delta \Delta$ | Big Warp Apply<br>Big Warp to Displacement field<br>N5 Viewer                                                                                                                                                                                                                |
|                                                                                                                                                    | Color Inspector SD<br>Examples<br>FRC-QE: 3D Image Quality Estimation<br>Feature Extraction<br>HDF5<br>ImageSD<br>Integral Image Filters<br>Janelia H265 Reader<br>LOCI<br>LSM Toolbox | <u> </u>        | Big Warp XML/HDF5<br>Browse BigDataServer<br>Deprecated<br>Export Current Image as XML/HDF5<br>Export Current Image as XML/N5<br>Export Current Image into DataStore<br>Export SPIM Data into DataStore<br>Open Current Image<br>Open Imaris (experimental)<br>Open XML/HDF5 |



#### ...available in Fiji



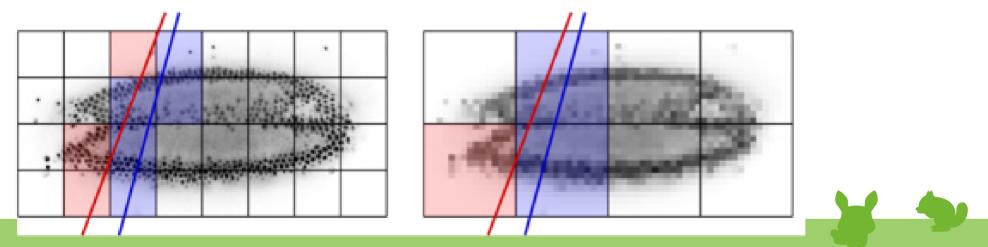

Idea: Show the voxels at the intersection of an user-given plane with the Volume.

BigDataViewer (BDV):

- Considers Voxels only (even for 2D images)
- Considers **16 bits** only!
- Fast to determine voxels that are hit by the plane
- Fast to compute (and display) their intersection polygons
- Fast to fetch their values

...when using an intelligent data storage: chunks + pyramids

• Since all is fast, BDV can afford displaying multiple images at once

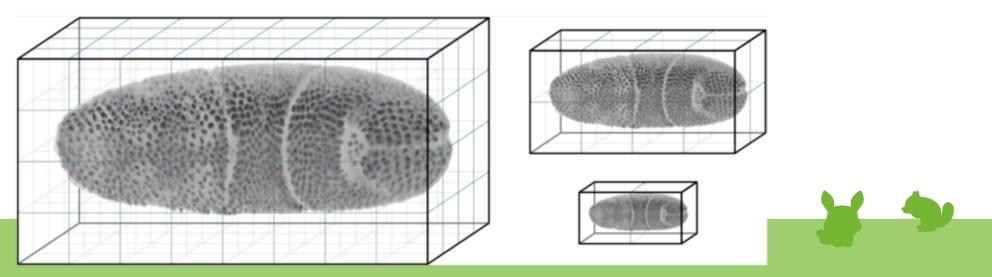



BigDataViewer:

• Fast to fetch their values

...when using an intelligent data storage: chunks + pyramids

- Chunks to read a voxel, only an including small chunk of Bytes needs to be loaded
- Pyramids small copies of the image at increasingly lower resolution are available




BigDataViewer:

• Fast to fetch their values

...when using an intelligent data storage: chunks + pyramids

- Chunks to read a voxel, only an including small chunk of Bytes needs to be loaded
- Pyramids small copies of the image at increasingly lower resolution are available



BigDataViewer:

• Fast to fetch their values

...when using an intelligent data storage: chunks + pyramids

- Chunks to read a voxel, only an including small chunk of Bytes needs to be loaded
- Pyramids small copies of the image at increasingly lower resolution are available
- Google Maps store (and show) maps in the same way
- Requires appropriate image file format
  - Baseline: BDV.HDF5
  - Rising star: OME.Zarr

(Dialect.GenericContainer)

#### BigDataViewer:

- Requires appropriate image file format
  - Baseline: BDV.HDF5
- Traditionally: **dataset.xml** plus some container(s)
- .xml holds conveniently metadata about the image
  - Small, human-readable, editable
  - Also includes a pointer on the container
- BDV "flattens" dimensionality to 4D: x, y, z, source = ViewSetup

| ED Udtaset_Hulp-52-00.H5  | 407.4 WID |
|---------------------------|-----------|
| — 🚾 dataset_hdf5-53-00.h5 | 458.8 MiB |
| — 📅 dataset_hdf5-54-00.h5 | 455.9 MiB |
| — 📅 dataset_hdf5-55-00.h5 | 458.0 MiB |
| — 🛅 dataset_hdf5-56-00.h5 | 461.8 MiB |
| — 🔚 dataset_hdf5-57-00.h5 | 463.5 MiB |
| — 📻 dataset_hdf5-58-00.h5 | 463.2 MiB |
| — 📻 dataset_hdf5-59-00.h5 | 462.0 MiB |
| — 📻 dataset_hdf5-60-00.h5 | 46.1 MiB  |
| — 🔚 dataset_hdf5.h5       | 4.6 MiB   |
| ─                         | 319.1 KiB |

#### <ViewSetups> <ViewSetup> <id>0</id> <size>700 660 113</size> <voxelSize> <unit>um</unit> <size>0.406 0.406 2.031</size> </voxelSize> <attributes> <illumination>0</illumination> <channel>0</channel> <angle>0</angle> </ViewSetup>

BigDataViewer:

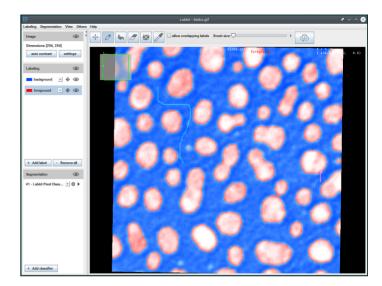
- Since all is fast, BDV can afford displaying multiple images at once
- Recall: BDV considers Voxels only (even for 2D images)
- Recall: Dimensionality increases
  - By 1D when time-lapse
  - By 1D with every imaged channel
  - By 1D with every view angle
- BDV "flattens" dimensionality to 4D: x, y, z, source = ViewSetup

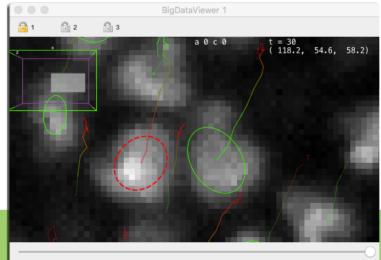
| Settings | Tools    | Help       |                        |                                         |             |              |          |       |                 |       |          |                |                |         |        |        |
|----------|----------|------------|------------------------|-----------------------------------------|-------------|--------------|----------|-------|-----------------|-------|----------|----------------|----------------|---------|--------|--------|
|          |          |            | Ar                     | ngle: 0, Cha                            | annel: 1    | ., t∨e=rs©ii | on: 0    | 00 1  | 150.0           |       | Disp     | olay Mo        | des            |         |        |        |
|          | <u> </u> |            |                        |                                         |             | ( 74.        | 0, 30    | ,0,1, | 150.0           |       |          | B              |                |         |        |        |
| '        |          |            |                        |                                         |             |              |          |       |                 | 5     | ingle    | Source         | Nearest        |         |        |        |
|          |          | <b>(</b>   |                        | ibility and gr                          |             |              |          |       |                 |       | Sou      |                | ame            | C.      | active | color  |
| ·        |          |            | VIS                    | ibility and gr                          | ouping      |              | <u>×</u> | ~ ′   | $\sim \diamond$ |       | nale: 0  |                | el: 0, Versior |         |        | 00101  |
|          |          | visibility |                        |                                         |             |              |          |       |                 |       |          |                | el: 1, Versior |         |        |        |
|          |          |            | source                 |                                         |             | active in    | fused    | visit | ble             |       |          |                | el: 0, Versior |         |        |        |
|          |          |            | Angle: 0, Channel      | 1 C C C C C C C C C C C C C C C C C C C | 0           |              |          |       |                 | A     | ngle: 0, | Chann          | el: 1, Versior | 1: mi 🥥 | ) 🖌    |        |
|          |          |            | Angle: 0, Channel      |                                         | ۲           | 2            |          | V     |                 |       |          |                |                |         |        |        |
|          |          | _          | 0, Channel: 0, Versior |                                         |             | 2            |          |       |                 |       |          |                |                |         |        |        |
|          |          | Angle:     | 0, Channel: 1, Versior | 1: mixedLatest                          | $\odot$     | V            |          |       |                 |       |          |                |                |         |        |        |
|          |          | r grouping |                        |                                         |             |              |          |       |                 |       |          |                |                |         |        |        |
|          |          | shortcut   | group name             | current ac                              | tive in fus | ed ass       | igned    | sourc | ces             | $\gg$ |          |                |                |         |        |        |
|          |          | 1          | group 1                | ۲                                       | ~           | ~            |          |       |                 |       |          |                |                |         |        | 1      |
|          |          | 2          | group 2                | $\bigcirc$                              | V           |              | V        |       |                 |       |          |                |                | -0      |        | .5 0   |
|          |          | 3          | group 3                | $\bigcirc$                              | V           |              |          | ~     |                 | W     | Gro      | ups            |                |         |        |        |
|          |          | 4          | group 4                | 0                                       | V           |              |          |       | ~               | 9     |          | group          |                |         |        |        |
|          |          | 5          | group 5                | 0                                       | ~           |              |          |       |                 |       |          | group          |                |         |        |        |
|          |          | 6          | group б                | 0                                       | ~           |              |          |       |                 | Į,    |          | group          |                |         |        |        |
|          |          | 7          | group 7                | 0                                       | ~           |              |          |       |                 |       |          | group          |                |         |        |        |
|          |          | 8          | group 8                | 0                                       | ~           |              |          |       |                 |       | -0 2     |                |                |         |        |        |
|          |          | 9          | group 9                | 0                                       | ~           |              |          |       |                 |       | - Ō 🗖    | group          | 8              |         |        |        |
|          |          | 10         | group 10               | 0                                       | V           |              |          |       |                 |       |          | group<br>group |                |         |        |        |
|          |          |            |                        | enable grou                             | inina       |              |          |       |                 |       |          | 1 ĝioup        | 10             |         |        |        |
|          |          |            |                        | enable fuse                             |             |              |          |       |                 |       |          |                |                |         |        |        |
|          |          |            |                        | enable fuse                             | a mode      |              |          |       |                 | }     |          |                | 0 -            | -0      |        | .5 - 1 |
|          |          |            |                        |                                         |             |              |          |       |                 |       |          |                |                |         |        | - 0    |

BigDataViewer inside other SWs:

- BDV "flattens" dimensionality to 4D: x, y, z, source = ViewSetup
- Example from BigStitcher

<ViewSetups> <ViewSetup> <id>0</id> <size>700 660 113</size> <voxelSize> <unit>um</unit> <size>0.406 0.406 2.031</size> </voxelSize> <attributes> <illumination>0</illumination> <channel>0</channel> <angle>0</angle> </attributes> </ViewSetup>



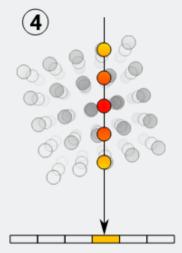


(Preibisch lab)

(Tischi EMBL)

BigDataViewer as a core image viewer inside other SWs:

- LabKit, LabelEditor (Jug lab)
- MaMuT, Mastodon (Pasteur + CBG)
- knip (KNIME image processing)
- Paintera, BigWarp, BigCAT (Saalfeld lab)
- BigStitcher
- BigDataProcessor2
- MoBIE (Tischi EMBL)
- Mostly by MPI-CBG alumni or friends
- We will exercise BDV later today...

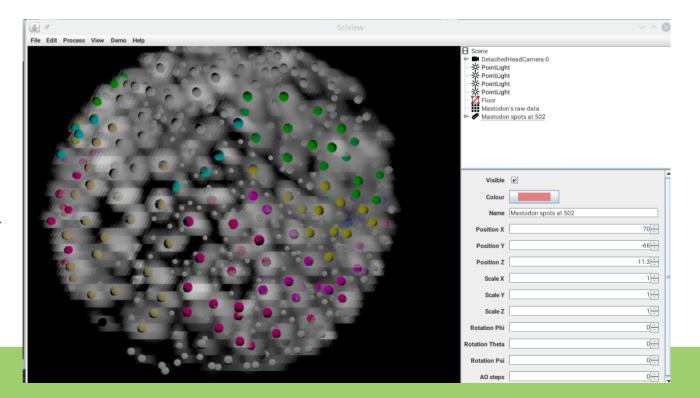





Idea: Collect voxels along lines of sight (rays), and show cummulated value. Maximum intensity projection is a special case of this.

Example SW freely in Fiji:

- **BigVolumeViewer** (BVV)  $\rightarrow$ 
  - Consumes the same dataset.xml
  - Similar to BDV
- SciView
  - Uses BVV
  - Future Fiji viewer(?)






**Idea:** Collect voxels along line**s** of sight (rays), and show cummulated value. Both available via the *SciView* update site...

#### Example SW freely in Fiji:

- BigVolumeViewer (BVV)
  - Consumes the same dataset.xml
  - Similar to BDV
- SciView  $\rightarrow$   $\rightarrow$   $\rightarrow$ 
  - Uses BVV
  - Future Fiji viewer(?)



Idea: Collect voxels along lines of sight, show cummulated value.

- 1) Cast ray to get value for every screen pixel
- 2) Fetch (off-grid) voxel values along the ray
- 3) Assign color considering coloring scheme, lighting conditions, transfer function
- 4) Composite colors to a final shown one

A true rendering is expensive:

- Large viewing window → more rays to be cast... and inspected
- Large volume  $\rightarrow$  each ray needs to visit more voxels to obtain the display value
- New camera position → recompute all over

A true rendering is expensive:

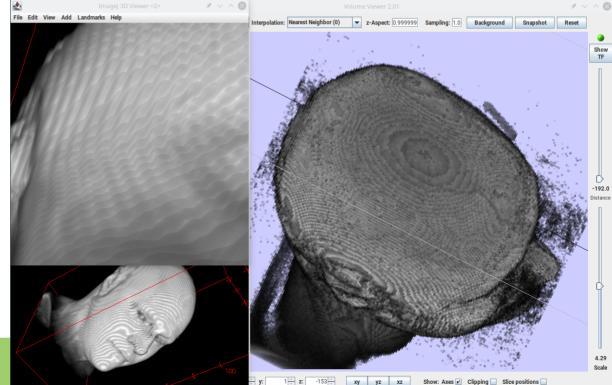
- Large viewing window → more rays to be cast... and inspected
- Large volume → each ray needs to visit more voxels to obtain the display value
- New camera position → **recompute all over**
- But requires no data understanding

Consider:

- Requesting smaller window to display the rendering
- Downscaling the displayed volume

**Idea B:** Decide what is foreground and background in the image, fit 3D surface mesh to the foreground, triangles take color from image, do standard rendering of triangles

• Actually, particularly popular solution...

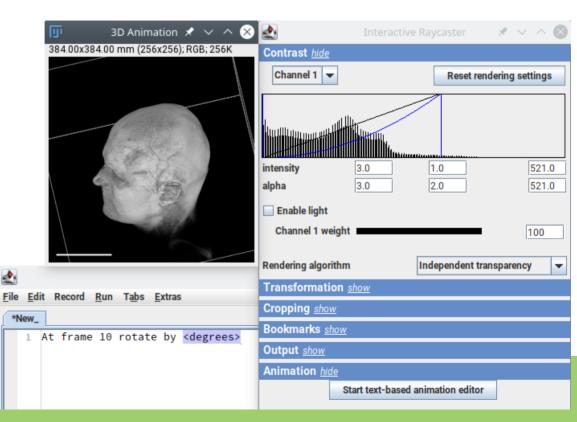


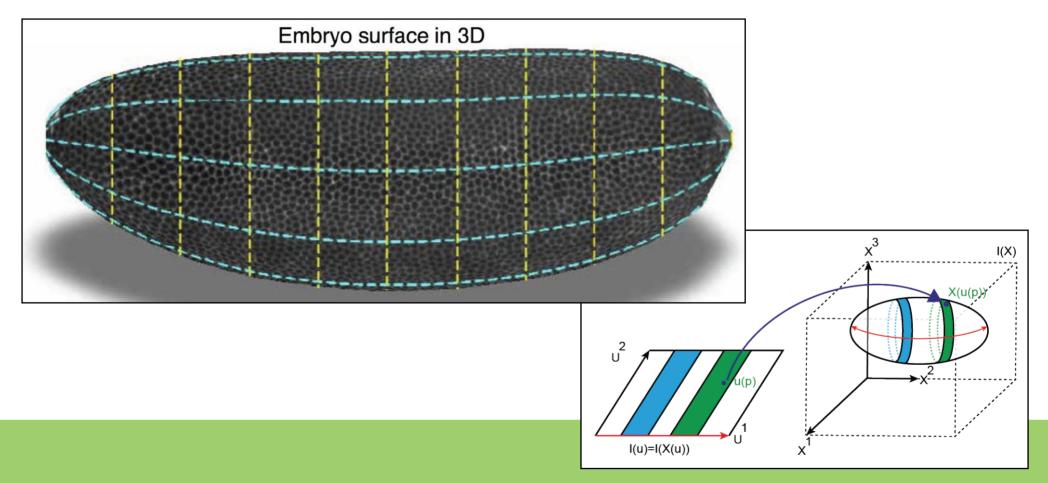

**Idea B:** Decide what is foreground and background in the image, fit 3D surface mesh to the foreground, triangles take color from image, standard rendering of triangles

• Actually, particularly popular solution...

#### Example SW freely in Fiji:

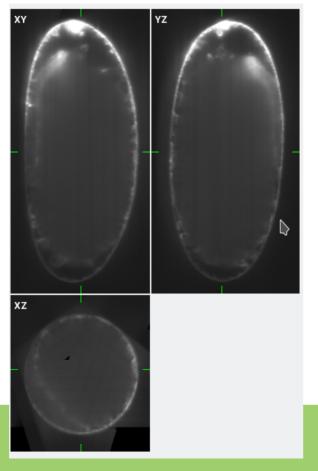
- 3D Viewer
- Volume Viewer
- 3D script
  - Rendering post-processed
  - Video exports
  - Friendly animation narrator

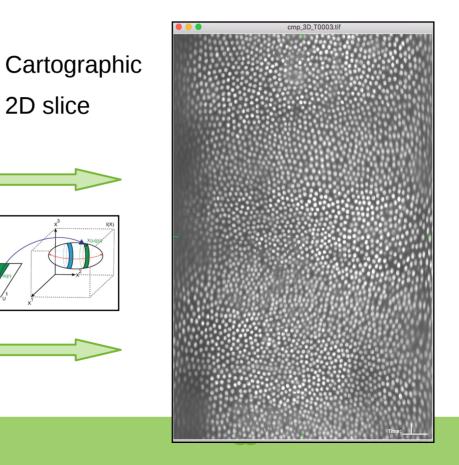




**Idea B:** Decide what is foreground and background in the image, fit 3D surface mesh to the foreground, triangles take color from image, standard rendering of triangles

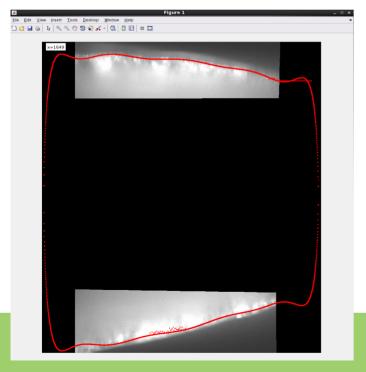
• Actually, particularly popular solution...

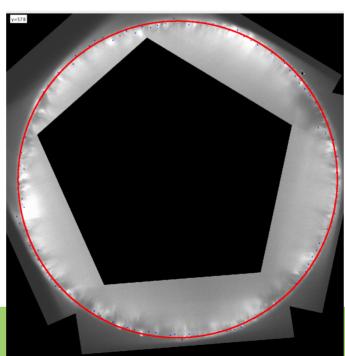
#### Example SW freely in Fiji:

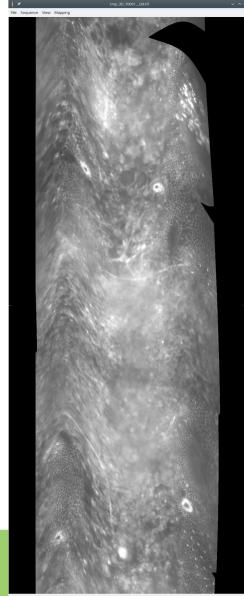

- 3D Viewer
- Volume Viewer
- 3D script  $\rightarrow$   $\rightarrow$   $\rightarrow$ 
  - Rendering post-processed
  - Video exports
  - Friendly animation narrator

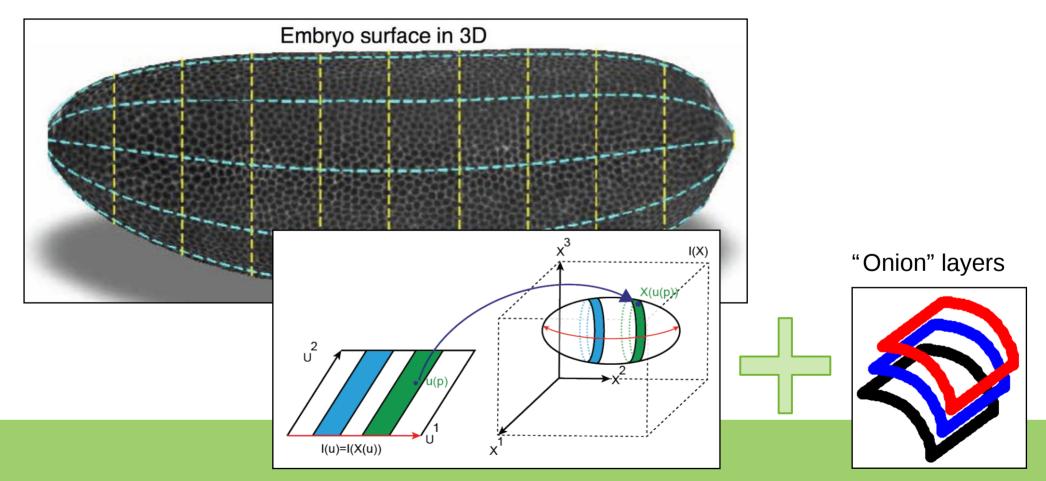






Idea: (Interesting) Data is mostly on a mathematical-ish object? Unfold!

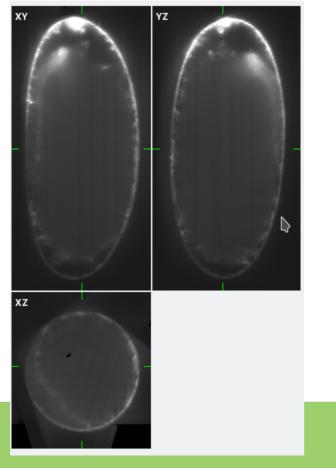

"Classical" 3D volume

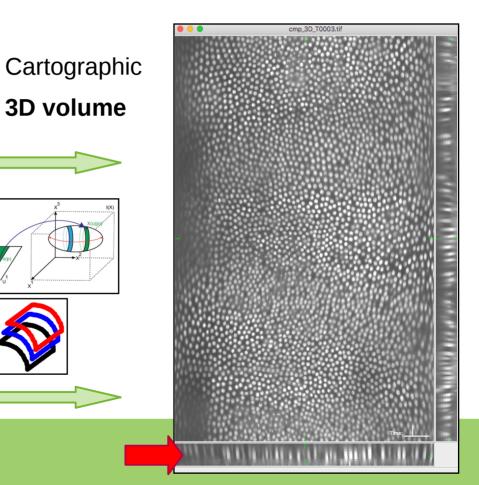



- Requires precise boundary detection...
- Reduces data, here to 1000x
  3D 42.5 GB (2990 x 2536 x 3011) → 2D 41.8 MB (2517 x 8716)

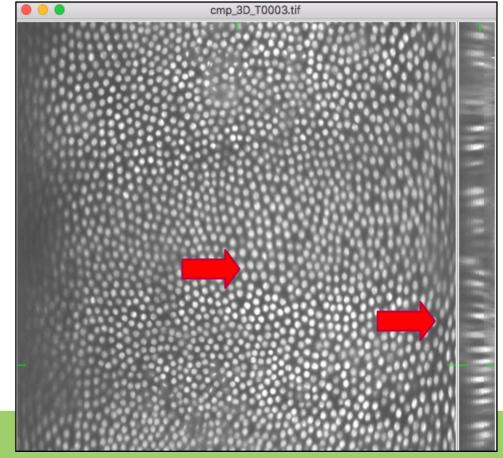




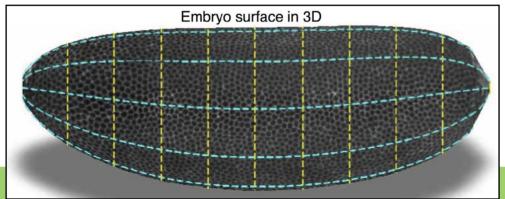



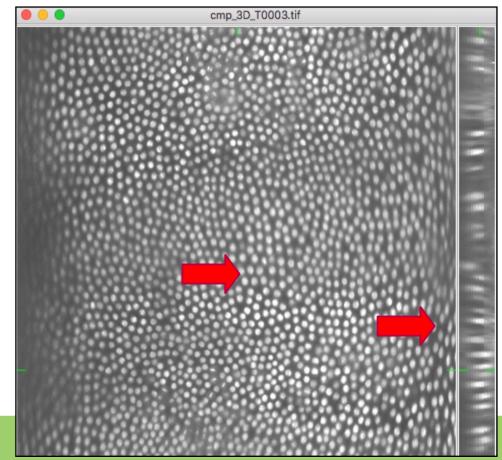



Idea: (Interesting) Data is mostly on a mathematical-ish object? Unfold!

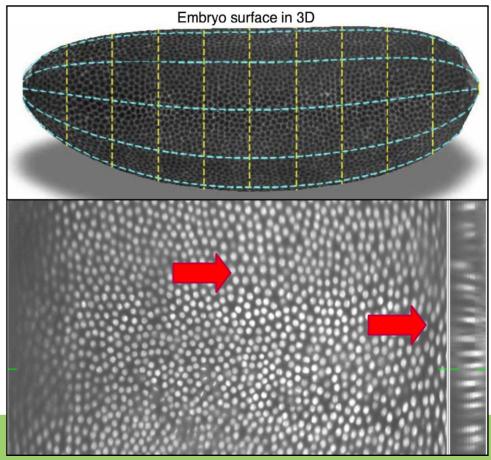

"Classical" 3D volume

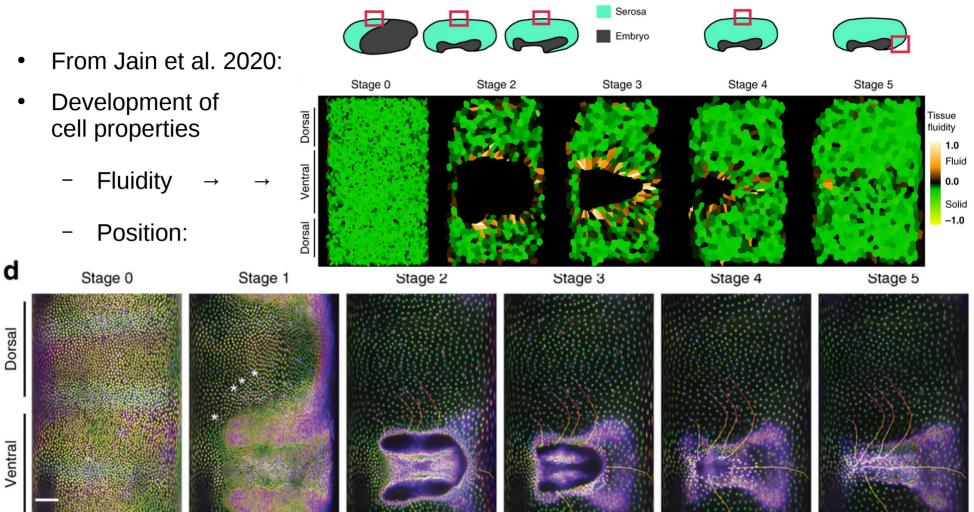






- Requires precise boundary detection...
- Reduces data...
- Distorts data Is the flight route  $EU \rightarrow US$  a direct line?





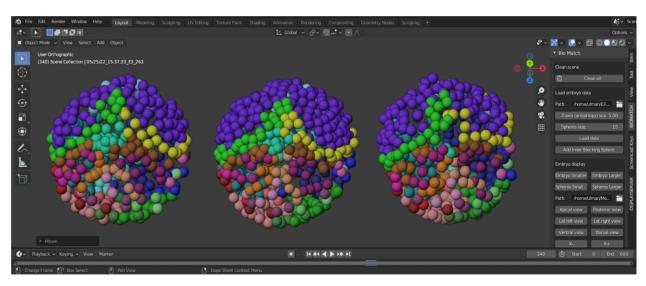


- Requires precise boundary detection...
- Reduces data...
- Distorts data (SW: ImSAnE, Matlab)
  - Maps to a "horizontal" cylinder
  - Voxels at poles are stretched





- Requires precise boundary detection...
- Reduces data...
- Distorts data (SW: ImSAnE, Matlab)
  - Maps to a "horizontal" cylinder
  - Voxels at poles are stretched
  - Spatially varies
    - Real dist. between carto-pixels
    - Real area a carto-pixel represents
  - Known surface provides correction maps
  - Adapted image processing routines





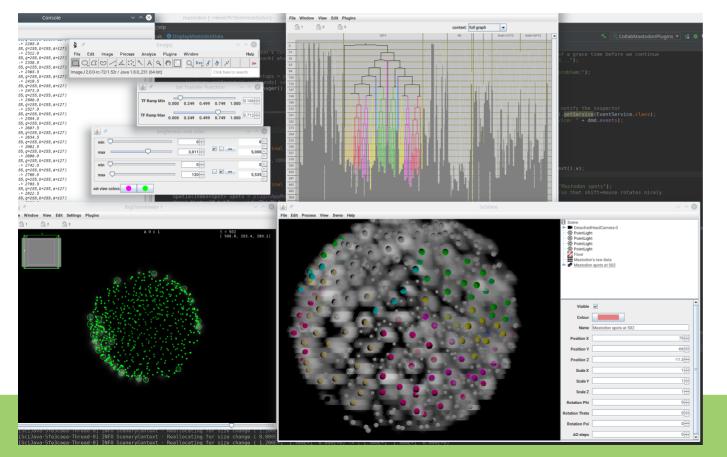

Idea: Show (3D) tabular data with computer graphics primitives.

• Suprissingly informative desptite tremendous information reduction.

#### Example SW

- SciView in Fiji
  - Uses BVV
  - Future Fiji viewer(?)
- Blender  $\rightarrow$   $\rightarrow$   $\rightarrow$ 
  - https://www.blender.org/




- "Blender is Free and Open Source software, forever."

Idea: Show (3D) tabular data with computer graphics primitives.

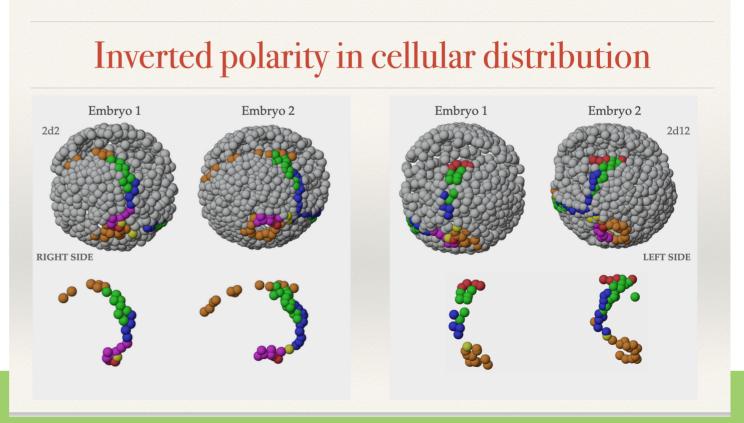
Suprissingly informative desptite tremendous information reduction.

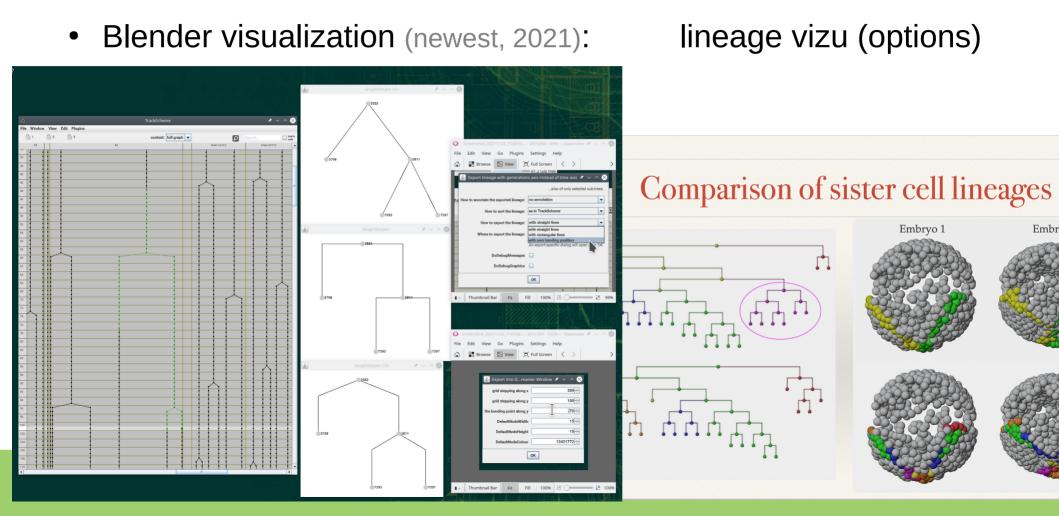
|                                 |                                                          |                                        | /ulman/aa<br>ACK_ID PARE                                                                                                                    |                                                     |                                                     |                                      |                                        | todon                                 |
|---------------------------------|----------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|--------------------------------------|----------------------------------------|---------------------------------------|
| #<br>#                          | one tree<br>1                                            | of tracks                              | :                                                                                                                                           |                                                     |                                                     |                                      |                                        |                                       |
| 0<br>1<br>2<br>3<br>4<br>5<br>6 | 365.4499<br>365.4499<br>365.4499<br>365.4499<br>365.4499 | 99999999999999999999999999999999999999 | 3      508.25        3      508.25        3      508.25        3      508.25        3      508.25        3      508.25        3      508.25 | 56.0000<br>56.0000<br>56.0000<br>56.0000<br>56.0000 | 0000000<br>0000000<br>0000000<br>0000000<br>0000000 | )002<br>)002<br>)002<br>)002<br>)002 | 1 0<br>1 0<br>1 0<br>1 0<br>1 0<br>1 0 | S<br>38<br>39<br>40<br>41<br>42<br>43 |
| 7                               | 365.4499                                                 | 999999999999                           | 3 508.25                                                                                                                                    |                                                     |                                                     |                                      |                                        | 44                                    |
| #<br>#<br>0<br>1<br>2           | 2<br>373.15<br>363.25                                    | 291.55                                 | 000000028 50<br>56.0000000                                                                                                                  | 0000001 2                                           | 0 24                                                | Ļ                                    | 0 N                                    |                                       |
| 3<br>4<br>5                     | 363.25<br>363.25<br>363.25<br>363.25<br>363.25           | 291.55<br>291.55                       | 56.0000000<br>56.0000000<br>56.0000000<br>56.0000000                                                                                        | 0000001 2<br>0000001 2                              | 0 26<br>0 27                                        | 5                                    |                                        |                                       |
| 6<br>7                          | 363.25<br>363.25                                         | 291.55<br>291.55                       | 56.0000000<br>56.0000000                                                                                                                    |                                                     |                                                     |                                      |                                        |                                       |

• SciView visualization (2020): featuring tag colors, vol. rendering,

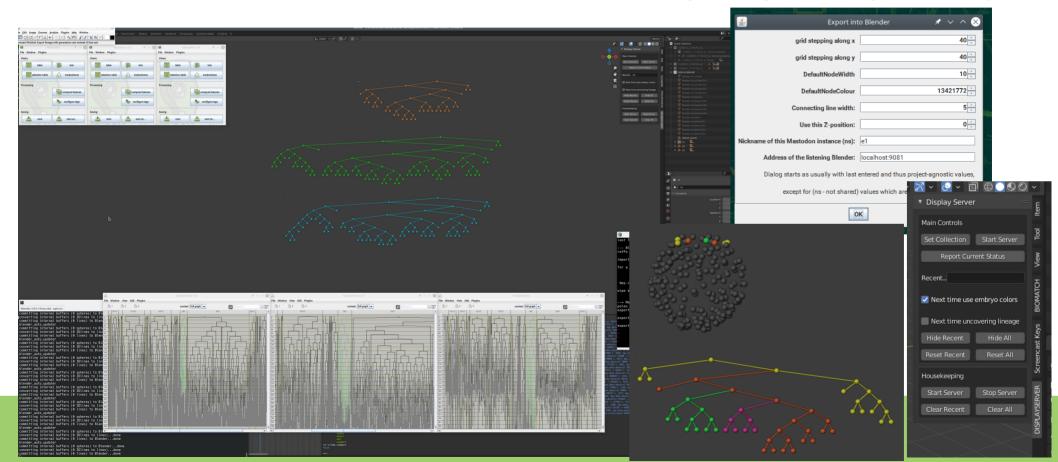


spots, trajectories, adjustable vizu, interconnected!

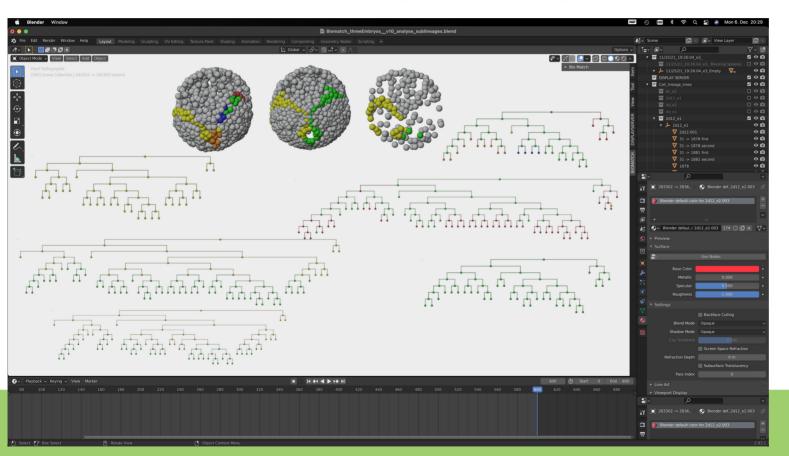

also: little fragile, HW heavy


• Blender visualization (newest, 2021):

stable, known, advanced...


overwhelming, google-able

capable, performant






• Blender visualization (newest, 2021): comparing trees (4K LCD)



• Blender visualization (newest, 2021):



flexibility, animations, interactivity,

ATM: <u>very</u> much a prototype

## THANK YOU

• I thank all my colleagues and supporters

- I'm available both weeks, full time
- I'm here to help ....and also to experiment ;-)
- Please, don't hesitate to approach me



Download: https://www.fi.muni.cz/~xulman/files/EMBO\_LS2022.pdf