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Abstract. We propose a new method for automatic generation of se-
crecy amplification protocols for wireless sensor networks, utilizing evo-
lutionary algorithms. We were able to rediscover all published protocols
for secrecy amplification we are aware of, and found a new protocol
that outperforms the existing ones. An alternative construction of se-
crecy amplification protocols with a comparable fraction of secure links
to that of the original “node-oriented” approach was also designed. This
new construction exhibits only linear (instead of exponential) increase
of necessary messages when the number of communication neighbours
grows. This efficient protocol can significantly reduce the sensor battery
power consumption because of the decreased message transmission rate.
We used a combination of linear genetic programming and a network
simulator in this work.

1 Introduction

Advances in miniaturization of electronics creates the opportunity to build de-
vices that are small in scale, can run autonomously using only battery power
and can communicate over short distances via wireless radio. These devices can
be used to form a new class of applications, Wireless Sensor Networks (WSNs).
WSNs are considered for and deployed in a multitude of different scenarios such
as emergency response information, energy management, medical monitoring,
wildlife monitoring or battlefield management. Resource-constrained nodes pose
new challenges for suitable routing, key distribution, and communication pro-
tocols. Security is often an important factor of WSN deployment, yet the ap-
plicability of some security approaches is often limited. Terminal sensor nodes
can have little or no physical protection and should therefore be assumed as
untrusted. Also, network topology knowledge is limited or unknown in advance.
Due to the limited battery power, communication traffic should be kept as low
as possible and most operations should be done locally, not involving the trusted
base stations (BS). We focus on the basic problem of secure link key establish-
ment, specifically on the strengthening of link security after an ordinary key
establishment scheme like probabilistic pre-distribution [10] or Key Infection [1]
in partially compromised networks.

This paper proposes a new method for automatic generation of secrecy am-
plification protocols [1] for WSNs, which utilizes linear genetic programming



(LGP) [4]. The proposed framework consists of a protocol generator realized by
LGP and a network simulator that computes the fitness value (quality metric)
for candidate protocols. The link keys established after the execution of a secrecy
amplification protocol might be then used as a building block for a broad range
of application security goals like multi-hop message secrecy and authentication
or secure aggregation.

The paper is organized as follows: the next section provides a short introduc-
tion to wireless sensor networks, highlights related security issues and provides
overview of related work. Section 3 describes the proposed framework for auto-
matic generation of secrecy amplification protocols and defines the elementary
rules used by evolutionary algorithms to build novel protocols. Our proposed
method and an example of a protocol evolved for a fixed number of parties is
presented in Section 4. Section 5 describes a different approach to the protocol
construction that significantly decreases the number of messages which has to
be produced. Conclusions are given in Section 7.

2 Wireless sensor networks and their security

Security protocols for WSNs deal with very large networks of very simple nodes.
Such networks are presumed to be deployed in large batches followed by a self-
organizing phase. The latter is automatically and autonomously executed after a
physical deployment of sensor nodes. Data sensed by nodes are collected and sent
to a base station and then presented to users. To protect the content of sensed
data and prevent insertion of fake information, mechanisms such as encryption
and message authentication are used. These techniques usually require secret key
material to be shared between communicating parties that must be kept secret
from an attacker. In this work, we focus on usage of symmetric cryptography, as
secrecy amplification protocols are usually based on this, even when a possibility
for combination with asymmetric cryptography (e.g., for initial key exchange)
exists.

A common attacker model (with respect to key management) used in the
network security arena is an extension of the classic Needham-Schroeder1 model
[17] called the node-compromise model [10], described by the following additional
assumptions: 1) The key pre-distribution site (if used) is trusted, i.e. before
deployment, nodes can be pre-loaded with secrets in a secure environment. 2)
The attacker is able to capture a fraction of deployed nodes because no physical
control over deployed nodes is assumed. 3) The attacker is able to extract all
keys from a captured node, i.e. no tamper resistance of nodes is assumed. The
attacker model is in some cases (Key Infection [1]) additionally weakened by the
assumption that 4) for a short interval the attacker is able to monitor only a
fraction of links and then it reverts to being a stronger attacker with ability to
eavesdrop all communication.

1 An intruder can interpose a computer on all communication paths, and can thus
alter or copy parts of messages, replay messages, or emit false material.



The assumption of no tamper resistance lowers the production cost and en-
ables the production of a high volume of nodes. On the other hand, it requires
novel approaches to security protocol design. The aim is to build a reasonably
secure network even in the presence of an attacker who can obtain secrets for
a part of the network by capturing some of the nodes or eavesdropping part of
the key exchanges. Note that different key distribution techniques have different
abilities to withstand such attacks.

2.1 Compromise patterns of key distributions

Secure link communication is the building block for most security services main-
tained by a WSN. Here, we focus on two types of initial key establishment.
First is probabilistic key pre-distribution introduced by Eschenauer and Gligor
[10] (referred to as the EG scheme) and extended later by [5, ?,?,?] and oth-
ers with improved node capture resilience. Second is a plaintext key exchange
called Key Infection with restricted attacker model introduced in [1]. Key dis-
tribution schemes behave differently when the network is attacked and partially
compromised. We will focus on two types of network compromise patterns:

Random compromise pattern This compromise pattern may arise when a
probabilistic key pre-distribution scheme [10] and later variants are used and an
attacker extracts keys from several randomly captured nodes. The EG scheme
is based on a simple but elegant idea. At first, a large key pool of random keys
is generated. For every node, randomly chosen keys from this pool are assigned
to its (limited) key ring, yet these assigned keys are not removed from the initial
pool. Due to the birthday paradox, the probability of sharing at least one common
key between two neighbours is surprisingly high even for a key ring of relatively
small size. That makes this EG scheme suitable for memory-constrained sensor
nodes.

When an attacker captures several nodes, links to nodes other than those
captured are potentially compromised as extracted keys from captured nodes
recover a proportion of the original key pool. The probability that a given link
secured by shared keys is compromised is almost independent of other links.
Especially, whether a link to a particular node is compromised should be al-
most independent of a compromise of other links to the same node. Note that
in the case of probabilistic pre-distribution, the compromise status of links from
a given node is still slightly correlated because if one link is compromised, other
links from the same node may be established using the same key(s) as the com-
promised one. This correlation quickly decreases with the size of key ring on
each node (e.g., it is negligible for 200 keys in the ring). It holds for links con-
structed from pre-distributed symmetric cryptography keys that if link A → B
is compromised, then also A ← B is compromised as the same set of keys is
used.

Key Infection pattern Compromised networks resulting from Key Infection
distribution [1] form the second inspected pattern. Here, link keys are exchanged



in plaintext (no keys are pre-distributed) and an attacker can compromise them
if the transmission can be recorded by an attacker’s eavesdropping device. The
weakened attacker model assumes that an attacker is not able to eavesdrop all
transmissions, yet has a limited number of restricted eavesdropping nodes in the
field. The closer the link transmission is to the listening node and the longer
the distance between link peers, the higher the probability of a compromise.
Typically, if the eavesdropping node is close to the legal node, most of the links
to the latter can be compromised. Note that there can be a difference between the
compromise status of the link A → B and the link A ← B as the eavesdropping
node positioned outside the virtual sphere of radio transmission range centered
on node A with diameter equal to distance between A and B will not be able
to compromise link A → B but still might be able to compromise link A ← B.
This is another difference from the Random compromise pattern.

2.2 Secrecy amplification

Substantial improvements in resilience against node capture or key exchange
eavesdropping can be achieved when a group of neighbouring nodes cooperates
in an additional secrecy amplification protocol after the initial key establishment
protocol. This concept was originally introduced in [1] for the Key Infection
plaintext key exchange, but can be also used for a partially compromised network
resulting from node capture in probabilistic pre-distribution schemes. Several
secrecy amplification protocols were published.

In multi-path key establishment, node A generates q different random values
and sends each one along a different path via node(s) Ci to node B, encrypted
with existing link keys. This operation will be denoted as the PUSH protocol.
All values combined together with the already existing key between A and B are
used to create the new key value. An attacker must eavesdrop all paths to com-
promise the new key value. A second method, called multi-hop key amplification,
is basically a 1-path version of the multi-path key establishment with more than
one intermediate node Ci. Simulations for attacker/legal nodes ratios of up to
5% in [1] show that plaintext key exchange followed by secrecy amplification is
sufficient to achieve a network with more than 90% of secure links within this
attacker model.

A variant of initial key exchange (denoted as COMODITY) without secrecy
amplification was presented in [12]. Node A sends the same key K1 to nodes B
and C in plaintext. Then, K1 is used to secure distribution of initial key material
EK1(B|K2) and EK1(C|K3) between (A,B) and (A,C)2. The final key between
(A,B) is constructed as K12 = hash(K3|hash(K2|K1))

A variant of the PUSH protocol, called the PULL protocol, was presented in
[8]. The initial key exchange is identical to the PUSH protocol. However, node
C decides to help improving the secrecy of the key between nodes A and B
instead of node A making such decisions as in the PUSH protocol. This in turn

2 Notation EK1(B|K2) stands for node identification (B) concatenated with value of
key K2 and resulting message encrypted (E) with key K1.



decreases the area affected by the attacker eavesdropping node and thus increases
the number of non-compromised link keys (valid for Key Infection distribution).

The impact of a key composition mechanism called mutual whispering on sub-
sequent amplification was also examined [8]. Mutual whispering is a key exchange
where a pairwise key between A and B is constructed simply as K12 = K1⊕K2,
where K1 is the key whispered 3 from A to B and K2 from B to A. Experimen-
tal results show that mutual whispering followed by the PUSH protocol gives us
the equivalent fraction of secure links as basic whispering followed by the PULL
protocol for Key Infection compromise pattern. Repeated iterations of the PULL
protocols lead to a strong majority of secure links even in networks where up to
20% of nodes are the attackers’ eavesdropping nodes. Note that the assumption
that an attacker controls only a fraction of nodes (e.g., 10%) is reasonable, as an
attacker must place his nodes before the network is deployed and therefore the
density of the deployed legal network can be set to achieve the desired ratio. A
detailed analysis of secrecy amplification protocols with respect to the network
density and number of eavesdropping nodes is presented in [20].

The impact of PUSH, PULL, mutual whispering and new automatically de-
rived protocols (as described in Sections 4 and 5) for Random and Key Infect
compromise patterns are compared in Figure 4 and 5. The PULL protocol pro-
vides better results than the PUSH protocol for the Key Infection pattern, but
has no advantage in the Random pattern. Mutual whispering improves security
in the Key Infection pattern, but no improvement is visible for the Random
pattern. A combination of mutual whispering with the PUSH protocol gives the
same results as the PULL protocol alone in the Key Infection pattern. See [8]
for a more detailed comparison of the protocols and the impact of repeated runs
of secrecy amplification (not shown here).

This short survey should demonstrate that amplification protocols may sig-
nificantly increase the fraction of secure links (e.g., from only 50% secure to more
than 90% secure) and can be combined together. But the impact of such com-
position is dependent on a particular compromise pattern and is not necessarily
beneficial. As each protocol requires a significant number of messages, their in-
efficient combination should be avoided. Moreover, a change in the compromise
pattern may render an existing secrecy amplification protocol inefficient. As a
result, a time-consuming analysis and some design effort are needed to find a
new protocol.

3 Proposed method

In this paper, we propose a method that enables the secrecy amplification pro-
tocols to be designed automatically (i.e., with a minimal effort from a human
designer) for an arbitrary compromise pattern.

3 Transmission is performed with the minimal radio strength necessary to communi-
cate between two nodes, therefore nodes more distant from the sending node are not
able to hear the transmission.



3.1 Composition of simple secure protocols

Designing new protocols is a time consuming process and any resulting flaws may
remain undetected for a long time. Various formal verification tools currently
exist to verify the correctness of a proposed protocol (see [15] for an exhaustive
review). Automatic protocol generation (APG) was proposed to automatically
generate new protocols with desired properties using a brute-force space search;
protocols’ correctness is then verified by formal tools [19]. Unfortunately, there
are still limits due to the rapid increase of possible configurations of non-trivial
protocols.

However, the formal verification approach can be avoided for APG if a new
protocol can be securely composed from simpler (secure) protocols. See [7] for
an a good overview of possible approaches to automatic protocol generation and
protocol composition. Fortunately, this is also the case for secrecy amplification
protocols because they specify the way in which fresh key values are propagated
and combined by the parties involved. Thus, a secrecy amplification protocol can
be viewed as a composition of a few simpler protocols. Namely, we need only
a protocol for secure message exchange between two nodes sharing a secret key
and a secure composition of two or more values.

This is an important difference to former approaches to APG. As the compo-
sition of selected secure protocols will be also secure (see [7] for such protocols;
note that a composition is not secure in general), we can skip the formal ver-
ification of the composite all together. Instead, we have to verify how many
keys from freshly generated secrets will be compromised by an attacker after a
secrecy amplification protocol execution. An attacker is able to eavesdrop the
content of some secrecy amplification messages as he knows some of the keys
used (a partially compromised network is assumed due to possibility of an at-
tacker capturing nodes or eavesdropping a fraction of all communications). This
is a deterministic process – if we know exactly which keys are known to the
attacker – and thus can be simulated. Even if we know only the expected frac-
tion of compromised keys and the average pattern of compromised links, we can
perform a probabilistic evaluation. As the number of nodes and links in WSNs
is expected to be high, such average case will be a reasonable approximation of
secure links after secrecy amplification execution in a real network.

By substituting a formal verification tool with a network simulator for faster
evaluation, we additionally obtain a smoother indication how good a candidate
protocol is. Instead of a binary indication “secure or flawed”, we will obtain the
number of links additionally secured by a particular protocol4. Hence we can use
some kind of informed search instead of an exhaustive search.

3.2 Evolutionary Algorithms

Evolutionary Algorithms (EAs) are stochastic search algorithms inspired by Dar-
win’s theory of evolution. Instead of working with one solution at a time (as

4 In degenerated case, this can still be only “0% or 100%” links secure.



Fig. 1. Automatic protocol generation process with fitness evaluation. The new popu-
lation is created using crossover and mutations. Genotypes are transcribed into candi-
date protocols. Using the network simulator and a given partially compromised network
(dotted links), the fitness value (fraction of secured links) is calculated for each candi-
date protocol.

random search, hill climbing and other search techniques do), these algorithms
operate with the population of candidate solutions (candidate secrecy amplifi-
cation protocols in our case). Every new population is formed by genetically
inspired operators such as crossover (a part of protocol’s instruction are taken
from one parent, the rest from another one) and mutation (the change of instruc-
tion type or one of its parameter(s)) and through a selection pressure, which
guides the evolution towards better areas of the search space. The EAs receive
this guidance by evaluating every candidate solution to define its fitness value.
The fitness value (in our analysis, the fraction of secure links), calculated by
the fitness function (network simulator), indicates how well the solution fulfills
the problem objective (improving network security). In addition to the classical
optimization, EAs have been utilized to create engineering designs in the recent
decade. For example, computer programs, electronic circuits, antennas or optical
systems are designed by genetic programming [13]. In contrast to conventional
design, the evolutionary method is based on the generate&test approach that
modifies properties of the target design in order to obtain the required behavior.
The most promising outcome of this approach is that an artificial evolution can
produce innovative designs that lie outside the scope of conventional methods.
In this work, we will use linear genetic programming (LGP) to generate the
protocols. LGP represents a candidate program as a sequence of instructions [2].

Primitive instructions set Each party (sensor node) in the protocol is mod-
eled as a computing unit with a limited number of memory slots, where all local
information is stored. The memory slot can be loaded with a) random value, b)



encryption key and c) message. The set of primitive instructions is defined in
such a way that each of the instructions has one or two parameters Nx indicating
the node(s) that will execute a given instruction (e.g., local generation of a ran-
dom value will have only one node parameter; sending a message between nodes
will have two parameters) and up to three parameters Rx for the identification
of used memory slots. These instructions were selected with the aim of describ-
ing all published secrecy amplification protocols and use only (cryptographic)
operations available on real nodes. A candidate secrecy amplification protocol
is represented as a program composed of these instructions and modeled as an
array of bytes. The instruction set is as follows:

– NOP – No operation is performed.
– RNG Na Ri – Generate a random value on node Na into slot Ri.
– CMB Na Ri Rj Rk – Combine values from slots Ri and Rj and store the

results in slot Rk. The combination function may vary on the application
needs (e.g., a cryptographic hash function such as SHA-1).

– SND Na Nb Ri Rj – Send a value from node Na to Nb. The message is taken
from Na’s slot Ri and stored in Nb’s slot Rj .

– ENC Na Ri Rj Rk – Encrypt a value from slot Ri using the key from slot
Rj and store encrypted result in slot Rk.

– DEC Na Ri Rj Rk – Decrypt a value from slot Ri using the key from slot
Rj and store decrypted result in slot Rk.

Each instruction has an additional boolean switch, which can turn the op-
eration off (to equivalent of NOP), without changing the instruction itself. This
allows the LGP to temporarily disable or enable some instructions. Node iden-
tifications Na and Nb can be either fixed (the index) in case of node-oriented
protocols or distance-related in a group-oriented protocol. These variants are
discussed later in Sections 4 and 5.

Using this set of primitive instructions, a simple plaintext key exchange can
be written as {RNG N1 R1; SND N1 N2 R1 R1;}5, a PUSH protocol as {RNG
N1 R1; SND N1 N3 R1 R1; SND N3 N2 R1 R1;}, a PULL protocol as {RNG N3

R1; SND N3 N1 R1 R1; SND N3 N2 R1 R1;} and a multi-hop version of PULL
as {RNG N3 R1; SND N3 N1 R1 R1; SND N3 N4 R1 R1; SND N4 N2 R1 R1;}.

Note that the protocol space is extremely large. Even for small protocols with
six instructions and four nodes (each with six memory slots only) there are more
than 1021 possible configurations6. Proper restrictions might limit the total space
size, but such limitation requires some knowledge about the target environment
and the relationship between protocol and compromise pattern. Our goal is to
create a method which requires only a description of the compromise pattern in
a form suitable for the simulator, with the remainder being done by our proposed
automated method.

5 New key is generated on node N1 into slot R1 and then send to node N2 and stored
in its slot R1.

6 (6× 4× 6× 6× 6)6



Genetic operators The mutation operator is applied at the level of integers
(bytes) that encode a protocol. Every resulting (mutated) instruction is always
valid. The instruction code is selected from the set of valid instruction codes;
the parameters always remain in the correct range. As the mutation operator is
applied with a given probability to every component of a primitive instruction
(such as instruction code, parameters, boolean execution switch) multiple com-
ponents of one instruction might, in principle, be modified during one mutation
of the genome (candidate protocol). The crossover operator is applied at the
level of instructions (no crossing point inside the instruction is allowed). The
resulting instruction always has a valid form.

Several invalid states might occur as a result of mutation or crossover oper-
ator:

– Reading from uninitialized memory slot occurs when the instruction
uses the value from a particular memory slot as an input and when no
value was stored in this slot previously. When the usage of uninitialized slot
is detected during protocol execution, the instruction is skipped and not
executed. Some cases of this invalid reading can be detected during protocol
postprocessing at design time. However, some uninitialized memory slots
might result from a message transmission error or node unreachability. A
practical implementation should initialize all memory slots using a predefined
value in order to detect this invalid state easily.

– Sending message to permanently unreachable node – actual layout
of nodes deployed in the field might make it impossible to send a message
defined in the protocol (SND instruction) to a permanently unreachable
target node. Such situations cannot be usually detected at the design time.
It results in missing an expected value in the memory slot of the target
node, which could potentially cause a reading of an uninitialized memory
slot. If the target node is permanently unreachable, such instruction will
not increase the fitness value during the protocol simulation/evolution. The
instruction is discarded from the resulting protocol during protocol post-
processing (pruning), as will be explained later.

– Combination of a new key value from different key subparts on
involved nodes – the resulting new key will be different on nodes involved
in the protocol and thus unusable for subsequent encryption. Such situation
might occur as a result of invalid sequence of instructions (detectable at
the design time) or as a result of failed message transmission that fails to
set a proper value to the target node memory slot. Some instances of such
invalid state are automatically removed during post-processing as such key
cannot contribute to overall protocol fitness value and is thus discarded. A
practical implementation should verify if key subparts are identical on the
communicating nodes before a new key is combined and used.

Network simulator Candidate protocols are evaluated using our own sim-
ulator that was developed specifically for security analyses of key distribution
protocols and message routing. We designed our own simulator, as the speed of



simulation is a critical factor in the automatic generation process with evolution-
ary algorithms, where hundreds of thousands of whole network simulations must
usually be conducted to obtain a secrecy amplification protocol that performs
reasonably well. Commonly used simulators like ns27 work with an unnecessary
level of details for our purposes, for example, with radio signal propagation or
MAC layer collisions. They are unable to simulate networks with 100+ nodes
in a matter of seconds. However, these common simulators might be used later
to further test the discovered secrecy amplification protocols found using the
method described in this work.

Our simulator is capable of performing:

– Random or patterned deployment of a network with up to 105 nodes together
with neighbour establishment, secure links establishment and simple routing
of messages.

– Evaluation of the number of secure links of probabilistic key pre-distribution
protocols as described in [6]. Deployment of attacker’s nodes and their eaves-
dropping impact on the network and evaluation of the number of secure links
of published protocols for secrecy amplification of Key Infection approach
(see [1] for details).

– A support for the evolutionary algorithms employed in an automatic gener-
ation of protocols. Protocols are described in the metalanguage of proposed
primitive instructions (see Section 3.2) and consequently simulated to get
the fraction of secure links as a fitness value (see Section 3.2). The imple-
mentation of the LGP is based on the GALib package8.

4 Node-oriented protocols

In this part, we focus on the automatic generation of amplification protocols
for a fixed number of k parties, i.e. the same scenario as used in [1, ?]. Such
protocol is executed for all possible k-tuples of neighbours in the network. Note
that the number of such k-tuples can be high9, especially for dense networks
(e.g. more than 10 direct neighbours) and resulting communication overhead is
then significant. However, this approach provides an upper bound on the success
rate of a given protocol as no k-tuple is omitted.

4.1 Overview of the method

Initially, five protocols were generated; each of them consisting of 200 randomly
selected primitive instructions. These candidate protocols form the initial pop-
ulation for the LGP. Every protocol is then simulated on our network simulator
and the number of secured links serves as a fitness value. The 2/3 best-ranking

7 http://nsnam.isi.edu/nsnam/index.php/Main Page
8 GALib – C++ Genetic Algorithms Library.
9 E.g., (total nodes ∗ avg neigh) ∗ (avg neigh− 1) ∗msg per protocol execution for a

three-party protocol, where avg neigh is the average number of neighbours.



protocols serve as parents for the next generation, which is created by applying
crossover and mutation operators. Protocols from the first generation are not
usually able to secure any additional link, but as evolution proceeds, there are
more and more secured links. The evolution can be stopped when a sufficiently
good protocol is found or the best fitness value has stagnated for some time.

We like to stress that the usage of evolutionary algorithms is not the only
possibility how to generate protocols. We chose evolutionary algorithms as they
have been already successfully used in WSN (although for a different purpose
like the optimal node placement [11]), usually exhibiting significantly faster con-
vergence towards solution than a brute-force search.

Fig. 2. Evolved node-oriented 4-party secrecy amplification protocol. This is a pruned
version of a 200 instruction protocol, no other post-processing was applied. A circle
denotes RNG instruction, an arrow denotes SND instruction and a box represents a
transmitted value. The values shared between N1 and N2 are of the same color and
hatching.

4.2 Parameters of experiments

The following reference setting of LGP and simulator was used: target plane was
3x3 units large with 100 deployed legal nodes. Each node has 0.5 unit maxi-
mum transmission range, which results in 8.2 legal neighbours on average. For
Key Infection scenario, there was 10 attacker’s eavesdropping nodes. For Ran-
dom compromise pattern, 50% of links were randomly marked as compromised.
In this settings, the average success of the PULL protocol is 93.70% for three
amplification iterations and 94.24% of secured links for ten iterations (assumed
as an upper bound). Each party has 8 memory slots for storing intermediate
values and a candidate protocol was limited by 200 elementary instructions.
Simulations were performed for three distinct network deployments, the average
fraction of secured links is used as the resulting fitness value. The number of
nodes was intentionally kept low to make the simulation as fast as possible. The
functionality of the evolved protocol was later verified on much larger network
with 4000 legal nodes.



4.3 Results for node-oriented protocols

The best performing 4-party protocol discovered by LGP was produced within
4 days on a 3GHz processor in the 62786th generation. The protocol consists of
the instructions shown in Figure 2. This is a “pruned” version of the original
200-instructions long protocol found by evolution. The importance of each in-
struction was tested10 by its temporal disabling (pruning) – if the instruction is
important, then the fitness decreases and the instruction is preserved; otherwise
it is discarded from the protocol. Typically, only 5-10% instructions contribute
to the fitness value (i.e., there is analogy to exons and junk DNA in the hu-
man genome). Figure 3 shows a typical graph of fitness values for one particular
run. This protocol can be further post-processed. Only three memory slots are
actually required on each node instead of eight slots that were available to LGP.
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Fig. 3. The typical progress of the fitness value and the number of effective instruc-
tions of the node-oriented protocol for one evolution run. Solid line shows fitness value
(fraction of secure links) for the best candidate protocol in the particular generation
and dotted line shows the number of effective protocol steps (after pruning) of the best
candidate.

All amplification protocols we were aware of at the beginning of our work
were re-discovered here by LGP. The simple key transfer between neighbours is
encoded in steps {4,8}. The PUSH protocol by [1] is encoded in steps {1,2,3}.
The PULL protocol by [8] is encoded in steps {0,6,9}. The multi-hop version [6]
of PULL amplification is encoded in steps {0,6,7,9}. Moreover, the new protocol
outperforms existing amplification protocols in fraction of secure links, as shown
in Figures 4 and 5.

The evolved protocol also exhibits an interesting feature of “polymorphic”
instruction. At first inspection, instruction 5 (RNG N4 R4) seems to be redun-
dant as a newly generated random value by node N4 stored in the slot R4 is
immediately overwritten by the instruction 6 (SND N3 N4 R1 R4). However, in

10 After the end of the LGP search as a post-processing, not impacting the evolution
itself.



the case when node N3 is not a direct neighbour of node N4, i.e. nodes N3 and
N4 cannot directly communicate via a radio link, the message in instruction 6
cannot be transmitted and R4 is not overwritten. The exact behavior of the con-
sequent instruction 7 will vary as R4 can be filled either with a newly generated
random value or the value received from node N3. Such kind of “polymorphic”
instructions enables the protocol execution even when only a limited number of
nodes is reachable. It would be hard for a human designer to propose such a
protocol as dependency between the instructions and neighbour layout is rather
complex, especially for group-oriented protocols (discussed later in Section 5).

Note that the automatic design of the node-oriented protocols with 5+ parties
(nodes that take part in single execution of the protocol, independent of the
network size) was not possible in the proposed framework because the number
of simulated messages grows exponentially with the number of parties involved.
The simulator is not able to evaluate such protocols fast enough to obtain a
fitness value. Slow evaluation prevents the evolution to proceed towards better
solutions in a reasonable time.

An interesting result is that despite the fact that encryption (ENC) and
decryption (DEC) is included in the set of primitive instructions, none of them
was used in the evolved protocols. There can be multiple reasons for this: At first,
a useful usage of the ENC and DEC instructions may exist, but the evolution was
not able to find it. Secondly, a more probable reason could have arisen from the
setting that we applied to speed up the evaluation of candidate protocols. If the
link already has some assigned key, this key is transparently used for encryption,
as it is obviously a useful thing to do (if the key is compromised we will obtain
the same result as sending message un-encrypted, but if the key is secure then
message secrecy will be protected). A series of LGP runs were performed for
the case when the transparent link encryption was not used. Evolution was
significantly slower in achieving the same fraction of secured links, but the link
encryption using existing keys was essentially developed anyway via the ENC
and DEC instructions.

5 Group-oriented protocols

As we have already mentioned, node-oriented protocols introduce a high commu-
nication overhead – all k-tuples of neighbours must be involved in the execution
of such protocols. Another issue is an unknown number of direct neighbours and
their exact placement. All neighbours can theoretically participate in the pro-
tocol and help to improve the fraction of secure links, but it is much harder to
design an efficient protocol for ten nodes without unnecessary message transmis-
sions instead of three or four nodes. Due to the broadcast nature of the wireless
transmission, nodes’ geographic positions also influence the result of a secrecy
amplification protocol. Finally, due to the random placement of nodes in the
sensor networks, the number of direct neighbours may vary significantly; a pro-
tocol constructed for a fixed number of parties can even fail due to there being
an insufficient number of participants.
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Fig. 4. An increase in the number of secured links after secrecy amplification protocols
in the Random compromise pattern. The PUSH and PULL protocols give the same
results; mutual whispering does not improve security at all. Evolved group-oriented
protocols will be described in Section 5. As can be seen, strong majority of secure links
(> 90%) can be obtained even when the initial network had one half of compromised
links.

5.1 Method

We present a different approach to the design of secrecy amplification protocols
with respect to established scenarios used in [1] and [8] (that are denoted as node-
oriented protocols in this work). Identification of the parties in the protocol is
no longer “absolute” (e.g., node number 1, 2, 3), but it is given by the relative
distance from other parties (we will use the distance from two distinct nodes).
It is assumed that each node knows the distance to its direct neighbours. This
distance can be approximated from the minimal transmission power needed to
communicate with a given neighbour. If the protocol has to express the fact that
two nodes Ni and Nj are exchanging a message over the intermediate node Nk,
only relative distances of such node Nk from Ni and Nj are indicated in the
protocol (e.g., N(0.3 0.7) is a node positioned 0.3 of the maximum transmission
range from Ni and 0.7 from Nj). In other words, LGP still operates the same
instructions of the protocol as in the case of node-oriented protocols, but with the
distance values to identify the nodes involved. Based on the actual distribution
of the neighbours in the field, the node closest to the indicated distance(s) is
chosen as the node Nk. There is no need to re-execute the protocol for all k-
tuples as the protocol can utilize all neighbours in a single execution and thus
significantly reduce the communication overhead. The relative position of nodes
can be expressed as well. The variation in an actual number of direct neighbours
poses no problem here – the protocol parties will always be found (but their
actual positions may be slightly different from relative distances indicated in the
protocol).

The evaluation process of a group protocol is more complex than for the
node-oriented protocols, but the total number of exchanged messages is signifi-
cantly lower. Note that the spared messages come from the change of the secrecy
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Fig. 5. Key Infection compromise pattern (8 legal neighbours on average). The PULL
protocol provides better results than the PUSH protocol. The combination of mutual
whispering with the PUSH protocol gives the same results as the PULL protocol alone.
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Fig. 6. Total number of messages per single node required to perform a 3-party, 4-
party node-oriented and group-oriented secrecy amplification protocol. Even when a
group-oriented protocol utilizes significantly more messages per single execution, the
total number of messages is smaller.

amplification evaluation rules, not the LGP itself. The role of LGP is to find a
protocol, which will operate in the restricted scenario with much less messages
(with respect to node-oriented protocols, where all k-tuples are executed). Yet
such protocol must still be able to perform comparably to the node-oriented
protocols in terms of the number of secure links. The evaluation is based on the
following rules:

1. Every node in the network is separately and independently processed once,
in the role of a central node NC for each amplification iteration. Only direct
neighbours of NC (group) are involved in the protocol execution.

2. A separate protocol execution is performed once for each direct neighbour
(node in the radio transmission range), this neighbour will have a special
role in this execution and will be denoted as NP (e.g., if there are 10 direct
neighbours around NC , then there will be only 10 protocol executions with



the same central node NC , each one with a different NP instead of 10
k for

node-oriented). This is a key difference from node-oriented protocols, and
cuts the communication overhead considerably.

3. The memory slots of the neighbours involved (for the same NC) are not
cleared between the protocol executions. This enables the evolution to find
a protocol that propagates values (keys) among a group of neighbours.

4. The node NP provides a list of distances from all its neighbours (as the
minimal transmission power needed to communicate with a given neighbour)
to node NC . Based on the actual deployment of nodes in the group, parties
of the protocol are replaced by real identification of the nodes which are
positioned as close as possible to the relative identification given by NC and
NP in the protocol.

5. When the next node is executed as a central node NC , the memory slots of
all direct neighbours are cleared (memory values cannot propagate between
executions with a different central node NC) as such process requires non-
trivial synchronization in real network.

Figure 6 compares the number of necessary messages for the three/four-
party node-oriented protocol and the group-oriented protocol constructed using
the above described process.

For the purpose of evolutionary speedup, we introduced the automatic actions
that do not have to be evolved as they are obviously beneficial:

– Each message transmission (SND instruction) is transparently encrypted
with an existing link key (which can be either secure or compromised by
eavesdropping) even when not stated explicitly in the protocol.

– The shared values later used for the creation of new link keys are automat-
ically found in memory slots of NC and its neighbours Nx at the end of
each execution for a fixed node NC . Again, this speeds up the search. In
the actual execution of the protocol, this can be achieved efficiently using
Bloom filters [3] without a transmission of the values or better by the post-
processing of an evolved protocol (re-order of memory slots and additional
CMB instructions).

As for node-oriented protocols, more iterations (amplification repeats) can
be executed. For the purpose of evaluation, the results within one iteration are
independent and may influence only the next iteration, not the current one (links
secured during an actual iteration will not help to secure other links during the
same iteration – the ordering of the actions of nodes in the simulator thus does
not impact the results). At the end of each iteration, the link security status is
evaluated and updated.

5.2 Results for group-oriented protocols

Efficient group-oriented protocols with a similar fraction of secure links com-
parable to node-oriented protocols were usually evolved in 105 generations (see
Figures 4 and 5 for the performance of evolved group-oriented protocols). An



Fig. 7. Example of an evolved group oriented secrecy amplification protocol. Selected
node-relative identification (distance from NC and NP ) of involved parties are displayed
as the geographically most probable areas, where such nodes will be positioned (right
part of the Figure). The number in brackets before each instruction gives the fitness
loss when the instruction is removed from the protocol. The formula at the bottom
is used to calculate deviation of the node in the field from the distance values stated
in the protocol, where NP1 is distance from the node NC and NP2 is the distance
from NP , respectively. Two probabilistic layouts for nodes positions are shown – upper
layout is when distance between NC and NP is 0.6 of maximum transmission range.
The lower layout is for maximum transmission range.

example of such an evolved protocol is presented in Figure 7. Such a protocol has
typically 10-15 important instructions and uses neighbours from 5-7 geograph-
ically different areas. The SND instruction is the most common one, forming
60-80% of instructions of discovered protocols. There is not only one “best”
protocol – instead, most LGP runs provide some useful amplification protocols
which differ in their instruction order.

In contrast to node-oriented protocols, instructions of the evolved protocols
are more difficult to understand as the parties are not directly specified any
more. Various techniques such as real-time visualization of message transmission,
analysis of memory store/load sequences or visualization of probable areas of
relatively identified parties (see Figure 8) can be used to recognize the actual
purpose and importance of the instructions (see Section 5.4 for more details).

Again, interesting and rather unexpected “tricks” were introduced through
evolution. Firstly, two SND instructions in an example protocol shown in Figure
7 may appear useless (no value is available in the memory slot 6 for the first run
of the protocol), but as the protocol is executed repeatedly for all nodes within
a group, this value can actually be present in memory slot 6 from a previous
execution as a result of the instruction 7 or 10 in example protocol. Evolution
was able to include such “overlapping executions” in the protocol even when not
explicitly designed to, while this might be difficult for a human designer.



Surprisingly, the most important intermediate node (node that is responsible
for the majority of newly secured links between nodes NC a NP ) is not positioned
in the center between these two nodes (i.e. in area A in Figure 8 b)) which
would reflect the assumption that shorter links have a smaller probability to be
compromised in Key Infection pattern. Instead, the most probable position for
that intermediate node is area C shown in Figure 8 b). Note that position of
area C (and so intermediate node) depends on the distance between nodes NC

and NP . When these two nodes are close to each other then C is “behind” node
NC . As the nodes move away from each other, area C moves around NC to the
position shown in Figure 8 b). When both nodes are very close to the maximum
transmission range then C is located in one third of the distance between NC

and NP , closer to the NC (Figure 8 c)).

Note that removal of a single instruction I from the pruned version (all in-
structions are necessary) of the protocol can not only decrease the overall fitness
value, but it can also increase the contribution to fitness value of other instruc-
tion(s) J . There are two reasons for this behavior: 1) Instruction I was really
harming the fitness gain from instruction J , but the caused harm is lower than
the fitness gain and thus I remains in the pruned protocol. 2) Instruction J
is able to compensate (at least partially) the loss caused by I’s removal and
it is able to secure some links originally secured by the instruction I. Analy-
sis of separate instructions shows that the second case is much more common.
Thus, an evolved protocol exhibits a “defense in depth” property, i.e. when some
instructions cannot be executed (due to missing, unreachable or compromised
party), other instructions are able to (partially) compensate for the decrease in
the number of secured links. Similar behavior was also observed for the evolved
node-oriented protocol. In this task, evolutionary design provides not only the
required functionality, but also robust solutions.

Fig. 8. Layout of areas for potential parties when the distance between the central
node NC and node NP is a) 0.1 of the maximum transmission range, b) 0.6 range and
c) the maximum transmission range.
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Fig. 9. The typical progress of the fitness value and the number of effective instructions
of the group-oriented protocol for one evolution run. Solid line shows fitness value
(fraction of secure links) for the best candidate protocol in the particular generation
and dotted line shows the number of effective protocol steps (after pruning) of the best
candidate.

5.3 Parameters used for LGP

This section summarizes the parameters and settings used for linear genetic
programming to generate candidate protocols.

Based on random sampling test, the fitness landscape11 for node-oriented
protocols seems to be highly rugged with only a few significant fitness values
in the search space. A small population with a rapid mutation is suitable for
solving such problems (similarly to evolution of digital circuits using Cartesian
Genetic Programming (CGP) [16]). The population size was fixed to 5 individ-
uals. The mutation operator is applied with 10% probability. Similarly to the
CGP, crossover is not used (series of experiments did not shown improvements
in evolution convergence when crossover was used).

The fitness landscape for group-oriented protocols seems to be smoother than
for node-oriented protocols. We utilized 20 individuals in the population and a
single point crossover operator12 applied with the probability 70%. Mutation
with a 5% rate was used. Fitness evaluation was significantly faster (as signifi-
cantly less messages had to be simulated) than for the node-oriented candidate
protocols. Therefore, significantly more generations could be used. Steady state
replacement rule (GASteadyStateGA in GALib) for the worst 1/3 of the actual
population is used to maintain population size for both types of the protocols.

11 The fitness values for each possible instance in the search space. Note that we cannot
compute the whole landscape in a reasonable time – if we could, then there would
not be any need for any EA – we could obtain the solution, i.e. the fitness maximum,
directly.

12 Crossover points allowed at the level of instructions only.



5.4 Methods for analysis of evolved protocols

Various techniques can be used to recognize actual purpose and importance of
the instructions:

– Real-time visualization of message transmission – Elementary proto-
col functionality can be obtained by observing the visual representation of
the protocol execution with a set of nodes with fixed positions. One limita-
tion of this approach is that only execution for a given distribution of nodes
is obtained and the behaviour of instructions for different node distributions
can be overlooked.

– Instructions cross-dependency using pruning-like process – The fit-
ness reduction effect can be studied to identify groups of instructions with
cross-dependent fitness values. As the protocol has already been pruned,
removing any single instruction I means a fitness decrease. An additional
pruning process over the reduced protocol (without I) gives us the differ-
ence in the fitness gain for each of remaining instruction (some instructions
may be completely removed if they have no function without I). The higher
the decrease in the fitness gain by a particular instruction J , the stronger
the dependency of J on the removed I.

– Analysis of memory store/load sequences – As described in section 3.2,
each party has a limited number of memory slots that are used to store inter-
mediate values. A chain of memory slots connected by the edges representing
a particular instruction can be established for graph-like visualization of this
process (see Figure 10 for example). More precisely, if there is instruction
I that reads from memory slot Mi and writes to memory slot Mj , we can
connect vertices Mi and Mj in the graph by an edge labeled by I. The result-
ing graph can then be analyzed to obtain an indication of paths the values
propagate during the protocol execution.

– Probable areas for parties identified by the relative distance – Vi-
sualization of the areas where nodes referenced in the protocol will, with a
high probability, be positioned, is an important source of information how a
given protocol works. Note that these areas are not static for all nodes NP ,
but differ significantly with the distance between the central node NC and
its special partner for protocol NP . A change of the position and the shape
of areas with distance between NC and NP also reveals the information how
the fresh key values are propagated in the group. Using this technique, we
can derive (see Figure 8 b)) that instruction 3 sends a value stored by the
instruction 9 in the previous run of the protocol when the position of NP is
around 0.6 of the maximum transmission range of NC and in the layout area
B. The reason is that in this distance the layout area B overlaps with the
position of node NP and these two parties of the protocol are most probably
mapped to the same physical node.
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Fig. 10. Memory chain for example group-oriented protocol from Figure 7. Circles
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register manipulation. The memory registers used for the final link key construction
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6 Future work

This work presents results for secrecy amplification protocols applied in environ-
ments with randomly compromised links or a localized compromising attacker.
Future work will cover the possibility of protocol generation for selective link
compromise patterns and performance of protocols evolved for the randomly
compromised links when applied to an environment with selective link compro-
mise patterns.

Additionally, investigation of the attacker’s compromise strategy is an inter-
esting and complex problem, especially when various properties of deployment
scenarios, including nodes relative positions, are to be considered. The protocols
automatically designed in our work exhibited increased tolerance for unreachable
nodes. Also, the group-oriented design requires significantly smaller numbers of
messages, but might be more vulnerable to a selective compromise strategy as a
relatively small number of possible paths are used for fresh secret propagation.
Automated design of an attacker strategy against existing secrecy amplification
protocols is another open research question.

The “tricks” found/discovered in EA generated protocols with good proper-
ties may be subsequently used for non-automatic design of new protocols. As EA
is limited only by the defined constraints (here an implementation in simulator),
building blocks in EA generated algorithm can be novel and surprising. But note
that really useful tricks are occurring rarely and obfuscated versions of already
known design principles/building blocks are much more often. A thorough anal-
ysis of evolved protocols is therefore necessary before any evolved building block
or perceived “trick” is used in non-automatic protocol design. Particular caution
must be taken when defining a set of rules for estimating protocol quality by a
simulator. Incomplete definition of the fitness function or simulated constraints
might result in a well-performing, but practically invalid protocol. While devel-
oping our simulator, we experienced several protocols securing suspiciously high
fraction of links. After deeper inspection of such protocol, we discovered either
our programming error or an incomplete specification of the fitness function that
was exploited by the EA in well-performing, but practically invalid protocol.

On the other side, a too restrictive set of simulator rules is not appropriate as
well as it is (possibly unnecessarily) limiting the search space for the EA. If the



novel “tricks” are of the main interest, one may start with a rather benevolent set
of rules giving the EA a large search space. New rules can be then be iteratively
added according to inspections of the evolved protocols, in order to restrict
violations of yet undefined practical constraints. We will focus on such methods
in our further work.

7 Conclusions

We examined the area of automatic design of secrecy amplification protocols
and their relation to the underlying key distribution protocol in wireless sensor
networks. Some secrecy amplification protocols may work well in networks with
randomly compromised links (e.g., resulting from node capture for probabilistic
pre-distribution), but may give a sub-optimal performance when applied to more
correlated compromise patterns arising from distribution approaches such as Key
Infection. Moreover, some steps in the secrecy amplification protocol may be
pointless for a given compromise pattern as they do not improve the secrecy of
any link – and thus impose only an unnecessary message overhead.

We have described a more flexible approach based on the fact that the effec-
tiveness of secrecy amplification protocols can be automatically evaluated using
a network simulator. Linear genetic programming was used to search for new
protocols. We were able to rediscover all published protocols for secrecy ampli-
fication we are aware of, and to find a new protocol that outperforms existing
protocols. The new protocol operates with four parties, but is able to operate
even when only three parties are available. A single iteration of the secrecy am-
plification protocol can increase secure links from 60% to more than 95% for the
Random and 88% for the Key Infection compromise pattern.

A significant disadvantage of existing secrecy amplification protocols is their
high communication overhead because the number of required messages grows
exponentially with the number of direct neighbours. By moving from node-
oriented protocols to group-oriented protocols and using an evolutionary design
approach, we were able to find protocols where the fraction of secured links is
comparable to node-oriented protocols, but with only a linear (instead of expo-
nential) increase in the required messages with respect to the increasing number
of neighbours. This is especially important for dense networks with more than
10 neighbours.
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20. P. Švenda and V. Matyáš. Key distribution and secrecy amplification in wireless
sensor networks. In Technical Report, FIMU-RS-2007-05, Masaryk University,
Brno, 2007.


