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ek�labri.frAbstra
t. We 
onsider the veri�
ation problem of a 
lass of in�nite-state systems 
alled wPAD. These systems 
an be used to model pro-grams with (possibly re
ursive) pro
edure 
alls and dynami
 
reation ofparallel pro
esses. They 
orrespond to PAD models extended with ana
y
li
 �nite-state 
ontrol unit, where PAD models 
an be seen as 
om-binations of pre�x rewrite systems (pushdown systems) with 
ontext-freemultiset rewrite systems (syn
hronization-free Petri nets). Re
ently, wehave presented symboli
 rea
hability te
hniques for the 
lass of PADbased on the use of a 
lass of unranked tree automata. In this paper, wegeneralize our previous work to the 
lass wPAD whi
h is stri
tly largerthan PAD. This generalization brings a positive answer to an open ques-tion on de
idability of the model 
he
king problem for wPAD against EFlogi
. Moreover, we show how symboli
 rea
hability analysis of wPAD 
anbe used in (under) approximate analysis of Syn
hronized PAD, a (Turing)powerful model for multithreaded programs (with unrestri
ted syn
hro-nization between parallel pro
esses). This leads to a pragmati
 approa
hfor dete
ting the presen
e of erroneous behaviors in these models basedon the bounded rea
hability paradigm where the notion of bound 
on-sidered here is the number of syn
hronization a
tions.1 Introdu
tionReasoning about software systems requires the 
onsideration of powerful mod-els whi
h are in general in�nite-state, i.e., they may have an in�nite numberof rea
hable 
on�gurations. Sour
es of 
omplexity, and of in�nity of the statespa
e, may be related to either data manipulation su
h as the use of variablesover in�nite data domains, dynami
 and unbounded-size data stru
tures, et
,or to 
omplex 
ontrol primitives su
h as pro
edures 
alls, (unbounded) dynami

reation of 
on
urrent pro
esses, et
. One popular approa
h to handle this 
om-plexity is to 
ombine abstra
tion methods with model-
he
king. Te
hniques su
has predi
ate abstra
tion allows to deal with aspe
ts su
h as data manipulationand to generate abstra
t models over �nite data domains. Then, the so obtainedabstra
t models 
an be analyzed automati
ally using model 
he
king algorithms,provided that su
h algorithms exist for the 
onsidered 
lass of abstra
t models.? The se
ond author is partly supported by the resear
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This is the 
ase obviously when abstra
t models are �nite-state. However, assaid above, in order to take into a

ount 
omplex 
ontrol primitives su
h as pro-
edure 
alls and pro
ess 
reation, �nite state models are not expressive enough.For instan
e, in the 
ase of sequential programs with re
ursive pro
edure 
alls,the needed abstra
t models are (unbounded-sta
k) pushdown systems, and forprograms with dynami
 
reation of 
ommuni
ating �nite-state pro
esses, naturalmodels are (unbounded) Petri nets. Fortunately, there exist several algorithmi
te
hniques (e.g., rea
hability analysis, model-
he
king) whi
h have been devel-oped for the analysis and the veri�
ation of these in�nite-state models.In this paper, we 
onsider the 
ase of programs whi
h may 
ontain both (re-
ursive) pro
edure 
alls and dynami
 
reation of pro
esses (threads). One possi-ble approa
h to model su
h systems is to 
ombine pushdown systems with Petrinets. This 
orresponds to the use of Pro
ess Rewrite Systems (PRS) introdu
edin [May00℄. These models 
an be seen indeed as 
ombinations of pre�x rewritesystems and multiset rewrite systems. The relevan
e of PRS in programmodelinghave been dis
ussed for instan
e in [EK99,EP00,Esp02,BT03,BT05℄. Sub
lassesof PRS whi
h are of parti
ular interest for program modeling are for instan
e the
lass of PA pro
esses, and the larger 
lass of PAD pro
esses generalizing both PAand pushdown pro
esses and 
orresponding to syn
hronization-free PRS (i.e.,models where parallel 
omposition is not allowed in the left-hand-side of therewrite rules). Pro
esses in these 
lasses allow indeed to model systems withpro
edure 
alls and parbegin-parend blo
ks (i.e., laun
hing a number of par-allel threads, and wait for their termination before pro
eeding). PAD allow inaddition return values from sequential pro
edure 
alls.Ri
hard Mayr has shown that the rea
hability problem (whether a given stateis rea
hable from another given state) for PRS is de
idable using a redu
tion tothe rea
hability problem of Petri nets [May00℄. To get pra
ti
al veri�
ation al-gorithms, symboli
 rea
hability algorithms have been investigated for signi�
antsub
lasses of PRS su
h as PA [LS98,EP00℄ and PAD [BT03,BT05℄. These algo-rithms use (various kinds of) tree automata to represent (regular) in�nite sets of
on�gurations (i.e., pro
ess terms). In parti
ular, we have provided in [BT05℄ ageneri
 
onstru
tion allowing to 
ompute the set of (forward or ba
kward) rea
h-able 
on�gurations of any sub
lass of PRS built from the 
ombination of pre�xrewrite systems with an e�e
tively semilinear 
lass of multiset rewrite systems(i.e., a 
lass of systems for whi
h rea
hability sets are always semilinear and ef-fe
tively 
omputable). We have shown that this leads to a symboli
 rea
habilityanalysis algorithm for PAD pro
esses in a 
ertain normal form.The PRS formalism is not Turing powerful due to a subtle restri
tion onthe way syn
hronization is done between parallel pro
esses. Roughly speaking,the semanti
s of PRS implies that syn
hronization 
an only be allowed betweenparallel pro
esses with empty sta
ks.In order to extend the modeling power of PRS, one approa
h is to addsyn
hronization by rendez-vous (�a la CCS), whi
h leads to a Turing powerfulmodel 
alled syn
hronized PRS [Tou05℄. Similarly, PAD 
an be extended tosyn
hronized PAD (whi
h is also a Turing powerful model). Approximate analy-



sis algorithms for these models using abstra
tion te
hniques have been proposedin [Tou05℄.Another approa
h for enhan
ing the modeling power of PRS (and PAD) 
on-sists in adding global 
ontrol states. The new models, 
alled sePRS [JKM01℄,
an be seen as parallel produ
t of a PRS with a �nite-state automaton repre-senting a global 
ontrol. Obviously, sePRS are Turing powerful sin
e they allow
ommuni
ation between re
ursive parallel pro
esses through the global 
ontrolstate. However, if the stru
ture of the 
ontrol automaton is weak, whi
h meansthat all its loops are self-loops, then it 
an be proved that the obtained mod-els, 
alled wPRS, have a de
idable rea
hability problem [K�RS04a℄ (the proofemploys de
idability of the rea
hability problem for Petri nets). Similarly, if weadd 
ontrol states to PAD pro
esses, we obtain Turing powerful models, but theextension of PAD with weak 
ontrol automata leads to models, 
alled wPAD,having a de
idable rea
hability problem, and interestingly, whi
h 
an be provento be stri
tly more powerful (w.r.t. strong bisimulation) than PAD [K�RS04b℄.In this paper we extend the results on symboli
 rea
hability analysis pre-sented in [BT05℄. While [BT05℄ deals only with PAD pro
esses in a 
ertain nor-mal form (now 
alled 
anoni
 PAD), here we show that the set of rea
habilitystates are 
omputable and e�e
tively representable even for (general) wPADsystems. To do this, we employ symboli
 representations based on so-
alled
ommutative-hedge automata (CH-automata), allowing to de�ne sets of pro
essterms modulo the asso
iativity of sequential 
omposition, and the asso
iativity-
ommutativity of the parallel 
omposition. We show that these representationsare e�e
tively 
losed under the 
omputation of the post� and pre� images (i.e.,
omputation of all su

essors and all prede
essors) for wPAD, as well as underthe post and pre images (i.e., 
omputation of immediate su

essors and prede-
essors) for the whole 
lass of wPRS.Further, we solve the global model-
he
king problem of wPAD against the EFlogi
. We 
onsider a variant of EF logi
 whi
h generalizes the standard a
tion-based EF logi
 by the use of atomi
 propositions 
orresponding to (potentiallyin�nite) sets of 
on�gurations whi
h are de�nable using CH-automata. We provethat for every formula in this logi
, it is possible to 
onstru
t a (CH-automatabased) representation of the set of all 
on�gurations (in a given wPAD) satisfyingthis formula. This result 
loses an open problem formulated in [K�RS05℄ 
on
ern-ing the model-
he
king problem of wPAD. Noti
e that global model-
he
king isa more general problem than de
iding whether a given 
on�guration satis�es agiven formula.Finally, we show that our results 
on
erning symboli
 rea
hability analy-sis of wPAD 
an be used in the analysis of syn
hronized PAD (SPAD) witha bounded number of syn
hronizations. This leads to an approximate analysispro
edure for SPAD based on 
omputing under approximations of their rea
ha-bility sets by 
onsidering only rea
hable 
on�gurations up to some �xed numberof syn
hronizations. Su
h approximate analysis method for SPAD 
an be usedin pra
ti
e to establish the existen
e of erroneous behaviors, following the ap-proa
h advo
ated in [QR05℄. It 
onstitutes a 
omplementary approa
h to the



abstra
t analysis (provided for the same models in [Tou05℄), whi
h is based on
onsidering upper approximations of the set of possible behaviors and whi
h isuseful for establishing the absen
e of erroneous behaviors.2 Preliminaries2.1 Pro
ess termsLet Const = fX; : : :g be a set of pro
ess 
onstants. For every C � Const , the setTC of pro
ess terms over C is de�ned by the abstra
t syntax t ::= 0 jX j t�t j tkt,where 0 is the idle term, X 2 C is a pro
ess 
onstant; and � and k meansequential and parallel 
ompositions respe
tively.We use ! to denote in a generi
 way � or k. We denote by ! the operator �(resp. k) if ! = k (resp. ! = �). Pro
ess terms are 
onsidered modulo the fol-lowing algebrai
 properties: asso
iativity of �, asso
iativity and 
ommutativityof k, and neutrality of 0 w.r.t. both � and k, i.e. 0� t = t� 0 = tk0 = t. Let 'be the equivalen
e relation on T indu
ed by these properties.We distinguish four 
lasses of pro
ess terms as:1 { terms 
onsisting of a single pro
ess 
onstant only, in parti
ular 0 62 1,S { sequential terms - terms without parallel 
omposition, e.g. X � Y � Z,P { parallel terms - terms without sequential 
omposition, e.g. XkY kZ,G { general terms - terms without any restri
tions, e.g. (X � (Y kZ))kW .Pro
ess terms in 
anoni
al form are terms t de�ned by:t ::= 0 j s j ps ::= X j p1 � p2 � : : :� pn; n � 2p ::= X j s1ks2k : : : ksn; n � 2It 
an easily be seen that every term has an '-equivalent term in 
anoni
al form.In the following we work with terms in 
anoni
al form.Term t is 
alled seq-term if t = 0, or t = X for a 
onstant X , or t =p1 � p2 � : : :� pn where n � 2. In the last 
ase, the term is also 
alled �-rootedterm. Further, t is 
alled 
at seq-term if t = X1 � X2 � : : : � Xn for n � 0(the 
ase n = 0 
orresponds to the term 0, and the 
ase n = 1 
orresponds toa pro
ess 
onstant X). By analogy we de�ne par-terms, k-rooted terms, and 
atpar-terms.2.2 Pro
ess Rewrite Systems and weak extensionLet M = fo; p; q; : : :g be an ordered set of 
ontrol states and A
t = fa; b; 
; : : :gbe a set of a
tions. Let �; � 2 f1; S; P;Gg be 
lasses of pro
ess terms su
h that� � �. An (�; �)-wPRS (weakly extended pro
ess rewrite system) R is a �niteset of rewrite rules of the form (p; t1) a,! (q; t2), where t1 2 �, t1 6= 0, t2 2 �,



p; q 2 M , p � q, and a 2 A
t . By M(R), Const(R), and A
t(R) we denote setsof 
ontrol states, pro
ess 
onstants, and a
tions o

urring in rewrite rules of R.An (�; �)-wPRS R indu
es a labelled transition system the states of whi
hare pairs (p; t) su
h that p 2M(R) is a 
ontrol state and t 2 � is a pro
ess termover Const(R). The transition relation !R is the least relation satisfying thefollowing inferen
e rules:((p; t1) a,! (q; t2)) 2 R(p; t1) a!R (q; t2) (p; t1) a!R (q; t2)(p; t1kt) a!R (q; t2kt) (p; t1) a!R (q; t2)(p; t1 � t) a!R (q; t2 � t)We extend the transition relation to �nite words over A
t in a standard way.The re
exive and transitive 
losure of !R is denoted by �!R. To shorten ournotation we write pt in lieu of (p; t).An (�; �)-wPRS where M(R) is a singleton is 
alled (�; �)-PRS (pro
essrewrite system). In su
h systems we omit the single 
ontrol state from rules andstates.Instead of (S;G)-PRS, (S;G)-wPRS, (G;G)-PRS, and (G;G)-wPRS we usemore readable names PAD, wPAD, PRS, and wPRS respe
tively. Let us notethat the 
lasses PAD and wPAD subsume widely known models of in�nite-state systems as pushdown pro
esses (PDA), basi
 parallel pro
esses (BPP), andpro
ess algebras (PA). The 
lasses PRS and wPRS subsume also Petri nets (PN).More information about expressiveness of (�; �)-wPRS and (�; �)-wPRS 
an befound in [K�RS04b,K�RS04a℄.Given a state pt of a wPRS R, we de�nePostR(pt) = fp0t0 j pt a!R p0t0 for some ag Post�R(pt) = fp0t0 j pt �!R p0t0gPreR(pt) = fp0t0 j p0t0 a!R pt for some ag Pre�R(pt) = fp0t0 j p0t0 �!R ptgThe sets Post�R(pt) and Pre�R(pt) are 
alled (forward and ba
kward) rea
habilitysets. The sets PostR(pt) and PreR(pt) are 
alled 1-step (forward and ba
kward)rea
hability sets. These de�nitions and notations 
an be extended to sets of statesin the obvious manner.2.3 Canoni
 PRSA 
anoni
 PRS R is a set of rewrite rules of the forms:X1 �X2 � : : :�Xn a,! Y1 � Y2 � : : :� Ym (1)X1kX2k : : : kXn a,! Y1kY2k : : : kYm (2)where n;m � 0. Rules of the form (1) and (2) are 
alled �-rules and k-rulesrespe
tively. By R! we denote the set of all !-rules of R. Note that the setsRk and R� do not have to be disjoint as some rules (e.g. X a,! Y ) are of bothtypes. Let �; � 2 f1; S; P;Gg be 
lasses of pro
ess terms. A 
anoni
 PRS is 
alled
anoni
 (�; �)-PRS if every rule t1 a,! t2 of R satis�es t1 2 � and t2 2 �. Finally,
anoni
 PAD stands for 
anoni
 (S;G)-PRS.



Note that a 
anoni
 PRS does not have to be a PRS as we allow rules with0 on the left-hand side. Further, the de�nition of 
anoni
 (�; �)-PRS does notrequire that � � �. The meaning of Const(R);!R;PostR;PreR; : : : remains thesame.Given a 
anoni
 (�; �)-PRS R, by R�1 we denote the 
anoni
 (�; �)-PRSwith rules obtained by swapping the left-hand and right-hand sides of the rulesof R. Noti
e that for every set of pro
ess terms L, PreR(L) = PostR�1(L) andPre�R(L) = Post�R�1(L).The problem of 
omputing rea
hability sets of PRS systems 
an be trans-formed into the same problem for 
anoni
 PRS using the following theorem.The proof of this theorem employs a variant of the standard 
onstru
tion givenin [May00℄. However, our theorem di�ers from the one of [May00℄ in several as-pe
ts. In parti
ular, (1) we transform an (�; �)-PRS into a 
anoni
 (�; �)-PRS,whi
h is not the 
ase of Mayr's transformation, and (2) in 
ontrast to the origi-nal theorem in [May00℄, our theorem states that the same transformation of Rworks for all terms over a given set of pro
ess 
onstants.A term substitution h is a fun
tion on pro
ess terms satisfying h(0) = 0 andh(t1 ! : : : ! tn) = h(t1)! : : : ! h(tn) for all �nite sequen
es t1; : : : ; tn of termsand for both ! = �; k. In other words, a term substitution is fully spe
i�ed byits values on pro
ess 
onstants. We say that a term subsitution h is �nite if theset fX j h(X) 6= Xg of pro
ess 
onstants is �nite.Theorem 1. For every (�; �)-PRS system R and every set of pro
ess 
onstantsC we 
an 
onstru
t a 
anoni
 (�; �)-PRS system R0 and a �nite term substitu-tion h, su
h that for every t1; t2 over C [ Const(R) and every a 2 A
t(R) wehave:1. t1 a!R t2 i� there exists t01; t02 satisfying h(t01) = t1, h(t02) = t2, and t01 a!R0 t02,2. t1 �!R t2 i� there exists t01; t02 satisfying h(t01) = t1, h(t02) = t2, and t01 �!R0 t02.Proof. Let size(t a,! t0) be the number of o

urren
es of � and k in terms t andt0. Given any PRS R, let ki be the number of rules r 2 R that are neither �-rulesnor k-rules and size(r) = i. Thus, R is 
anoni
 PRS i� ki = 0 for every i. In this
ase, let n = 0. Otherwise, let n be the largest i su
h that ki 6= 0 (n exists asthe set of rules is �nite). We de�ne norm(R) to be the pair (n; kn).First we des
ribe a pro
edure transforming an (�; �)-PRS R into an (�; �)-PRS R0 and de�ning �nite term substitution h su
h that norm(R0) < norm(R)(with respe
t to the lexi
ographi
al ordering) and for every terms t1; t2 overC [ Const(R) and every a 2 A
t(R) the following equivalen
es hold:1. t1 a!R t2 () there exists t01; t02 satisfying h(t0i) = ti and t01 a!R0 t022. t1 �!R t2 () there exists t01; t02 satisfying h(t0i) = ti and t01 �!R0 t02In this proof we assume that � is left-asso
iative. It means that the termX �Y �Z is seen as (X �Y )�Z and so its subterms are X , Y , Z, and X �Y ,but not Y � Z. Let us assume that R is not 
anoni
 PRS. Let � 62 A
t(R) bea fresh a
tion. We set h(X) = X for every X 2 C [ Const(R) and R0 = R.



Let r = (s1 a,! s2) be a rule of R0 that is neither �-rule nor k-rule and has themaximal size . There are three 
ases:1. s1 is !-rooted and s2 is !-rooted. In R0 we repla
e the rule r by rules s1 �,! Z,Z a,! s2, where Z 62 C [ Const(R) is a fresh pro
ess 
onstant. We seth(Z) = s1. Clearly, the 
onsidered equivalen
es holds.2. s1; s2 are par-terms and at least one of them is not 
at. Let t be an �-rooted subterm of s1 or s2. We modify R0 in two steps. First, in all left-handand right-hand sides of all rules, we repla
e every o

urren
e of t by a freshpro
ess 
onstant Z 62 C [ Const(R). Further, we add the rule Z �,! t and ift 2 � then we add also the rule t �,! Z. We set h(Z) = t.We say that an o

urren
e of subterm t of term s is a
tive, if a rule t �,! Z
an be applied on s su
h that the o

urren
e of t is repla
ed by Z. Theo

urren
e is ina
tive otherwise. Note that an o

urren
e of t in s is ina
tivei� it is a subterm of the right 
omponent of some sequential 
omposition.Clearly, the �rst equivalen
e and the impli
ation \(=" of the se
ond equiv-alen
e hold. In order to prove the remaining impli
ation, we show that everytransition l1 a!R l2 (where l1; l2 are terms over C [ Const(R)) 
orrespondsto a transition sequen
e l01 ��a��! R0 l02, where l01; l02 are l1; l2 with all ina
tiveo

urren
es of t repla
ed by Z. Let us assume that the transition l1 a!R l2 isgenerated by a rule l a,! l0. Ea
h o

urren
e of t in l1 modi�ed by the rule iseither a
tive, or it is ina
tive (and thus repla
ed by Z in l01) and 
ompletely
ontained in l (due to the left-asso
iativity of �). Hen
e, we 
an apply therule t �,! Z to all o

urren
es of t in l01 whi
h are going to be modi�ed by therule of R0 
orresponding to l a,! l0 (i.e. the same rule with all o

urren
es oft repla
ed by Z). This 
orresponding rule is applied afterwards.The situation with o

urren
es of t appearing in l2 after the appli
ation ofthe 
onsidered rule is similar. Ea
h o

urren
e of t in l2 
reated by the ruleis either a
tive, or it is ina
tive and 
ompletely 
ontained in l. Hen
e, afterappli
ation of the 
orresponding rule of R0, we apply the rule Z �,! t to alla
tive o

urren
es of Z to rea
h l02.3. s1; s2 are seq-terms and at least one of them is not 
at. This 
ase is a dire
tanalogy of the previous one.Note that norm(R0) < norm(R) and R0 belongs to (�; �)-PRS 
lass. After�nitely many (say n) appli
ations of this pro
edure, a given (�; �)-PRS R istransformed into a 
anoni
 (�; �)-PRS R0. Let hi be the �nite term substitutionde�ned in i-th appli
ation of the pro
edure. We set h = h1 Æ h2 Æ : : : Æ hn. It isnow easy to see that this 
anoni
 PRS R0 and �nite term substitution h satisfythe equivalen
es formulated in the theorem. ut3 Automata-based symboli
 representationsIn order to perform rea
hability analysis of PRS, we need representation stru
-tures for (in�nite) sets of pro
ess terms. For this purpose, we use a 
lass of



tree-automata, 
alled 
ommutative hedge automata [BT05℄, whi
h re
ognize setsof trees modulo asso
iativity / asso
iativity-
ommutativity. These automata ex-tend both (1) bottom-up tree automata over ranked alphabets [CDG+97℄, and(2) hedge automata re
ognizing sets of undounded width trees [BKMW01℄.3.1 PreliminariesPresburger arithmeti
 is the �rst order logi
 of integers with addition and linearordering. Given a formula ', we denote by FV (') the set of its free variables. LetFV (') = fx1; : : : ; xng. Then, a ve
tor u = (u1; : : : ; un) 2 Zn satis�es ', writtenu j= ', if '(u) = '[xi  ui℄ is true. Ea
h formula ' de�nes a set of integerve
tors [['℄℄ = fu 2 Zn j u j= 'g. Presburger formulas de�ne semilinear setsof integer ve
tors, i.e., �nite union of sets of the form fx 2 Zn j 9k1; : : : ; kn 2Z;x= v0 + k1v1 � � �+ knvmg, where vi 2 Zn, for 1 � i � m (see [Har78℄).Given a word w over an alphabet � = fa1; : : : ; ang, the Parikh image ofw, denoted Parikh(w), is the ve
tor (jwja1 ; : : : ; jwjan). This de�nition 
an begeneralized to sets of words (languages) over � in the obvious manner.As usual, a set of words is regular if it is de�nable by a �nite-state automaton.The notion of regularity 
an be transfered straightforwardly to sets of 
at seq-terms. Similarly, the notion of semilinearity 
an be transfered to sets of 
atpar-term by asso
iating with a term X1k � � � kXn the ve
tor Parikh(X1 � � �Xn).In the sequel, we will represent by 
 a 
onstraint whi
h is either a regularlanguage or a Presburger formula. We say that a word w = a1a2 : : : an satis�esthe 
onstraint 
 if w 2 
 (resp. Parikh(w) j= 
) when 
 is a language (resp. aformula).3.2 Commutative Hedge AutomataLet � = �0 [ �A be a �nite alphabet, where �0 is a ranked alphabet, and �Ais a �nite set of asso
iative operators. We assume that �0 and �A are disjoint.For k � 0, let �k denote the set of elements of �0 of rank k.�-Terms: Let X be a �xed 
ountable set of variables fx1; x2; : : :g. The setT�[X ℄ of �-terms over X is the smallest set su
h that:{ �0 [ X � T� [X ℄,{ for k � 1, if f 2 �k and t1; : : : ; tk 2 T�[X ℄, then f(t1; : : : ; tk) 2 T�[X ℄,{ if f 2 �A, t1; : : : ; tn 2 T�[X ℄ for some n � 1, and root(ti) 6= f for every1 � i � n, then f(t1; : : : ; tn) 2 T� [X ℄, where root(�) = � if � 2 �0 [X , androot�g(u1; : : : ; um)� = g.Note that if f 2 �A, we only 
onsider terms of the form f(t1; : : : ; tn)su
h that for every i, the root of ti is di�erent from f . Indeed, sin
e f isasso
iative, f�t1; : : : ; ti�1; f(u1; : : : ; um); ti+1; : : : ; tn� is equivalent to the termf(t1; : : : ; ti�1; u1; : : : ; um; ti+1; : : : ; tn).



Terms without variables are 
alled ground terms. Let T� be the set of groundterms of T� [X ℄. A term t in T�[X ℄ is linear if ea
h variable o

urs at most on
ein t. A 
ontext C is a linear term of T� [X ℄. Let t1; : : : ; tn be terms of T� ,then C[t1; : : : ; tn℄ denotes the term obtained by repla
ing in the 
ontext C theo

urren
e of the variable xi by the term ti, for ea
h 1 � i � n.De�nition of CH-automata: Let us 
onsider that �A = �0A [ �0AC where�0AC is a set of asso
iative and 
ommutative operators. We assume that �0A and�0AC are disjoint. Then, a CH-automaton is a tuple A = (Q;�; F;�) where:{ Q is a union of disjoint �nite sets of states Q0 [Sf2�A Qf ,{ F � Q is a set of �nal states,{ � is a set of rules of the form:1. a! q, where q 2 Q0; a 2 �0,2. f(q1; : : : ; qk)! q, where f 2 �k; q 2 Q0, and qi 2 Q,3. q ! q0, where (q; q0) 2 Q0 �Q0 [Sf2�A Qf �Qf ,4. f(Reg)! q, where f 2 �0A, Reg � (Q nQf )� is a regular language givenby a �nite-state automaton, and q 2 Qf ,5. f(') ! q, where f 2 �0AC , q 2 Qf , and ' is a Presburger formula su
hthat FV (') = fxq j q 2 Q nQfg.We de�ne a move relation !� between ground terms in T�[Q as follows: forevery two terms t and t0, we have t!� t0 i� there exist a 
ontext C and a ruler 2 � su
h that t = C[s℄, t0 = C[s0℄, and:{ r = a! q, with s = a and s0 = q, or{ r = q ! q0, with s = q and s0 = q0, or{ r = f(q1; : : : ; qk)! q, with s = f(q1; : : : ; qk) and s0 = q, or{ r = f(Reg) ! q, with f 2 �0A, s = f(q1; : : : ; qn), q1 � � � qn 2 Reg , ands0 = q, or{ r = f(') ! q, with f 2 �0AC , s = f(q1; : : : ; qn), Parikh(q1 � � � qn) j= ',and s0 = q.Let �!� denote the re
exive-transitive 
losure of !�. A ground term t 2 T� isa

epted by a state q if t �!� q. Let Lq = ft 2 T� j t �!� qg. A ground termt 2 T� is a

epted by the automaton A if it is a

epted by some �nal state q 2 F .The CH-language of A, denoted by L(A), is the set of all ground terms a

eptedby A.We have the following fa
t [Col02,Lug03,SSM03,Tou03,BT05℄:Theorem 2. The 
lass of languages re
ognized by CH-automata is e�e
tively
losed under boolean operations, term substitutions and inverse of �nite termsubstitutions. Moreover, the emptiness problem of CH-automata is de
idable.



3.3 CH-automata for PRS pro
ess termsWe 
onsider pro
ess terms as trees and use CH-automata to represent sets ofsu
h trees. Indeed, for any �nite set C � Const , the set TC of pro
ess terms
an be seen as the set of �-terms T� where �0 = f0g [ C, �0A = f�g, and�0AC = fkg.Sets of pro
ess terms are re
ognized by CH-automata A = (Q;�; F;�) su
hthat (1) Q is the disjoint union Q = Q0 [Q� [Qk where Q0 is itself the disjointunion Q0 = Q0 [ Q�, and (2) the rules in � are of the form: (a) X ! q, whereq 2 Q�, X 2 Const, (b) 0 ! q, where q 2 Q0, (
) q ! q0, where (q; q0) 2(Q0)2 [ (Q�)2 [ (Q�)2 [ (Qk)2, (d) �(Reg)! q, where Reg � �Q n (Q� [Q0)��is a regular language and q 2 Q�, and (e) k(') ! q, where q 2 Qk and ' is aPresburger formula su
h that FV (') = fxq j q 2 Q n (Qk [Q0)g.In other words, the states in Q� (resp. Qk) re
ognize trees whose root is� (resp. k). The states in Q� re
ognize 
onstants in C, and the states in Q0re
ognize 0.4 Computing 1-step rea
hability sets for 
anoni
 PRSLet us 
onsider a 
anoni
 PRS R = R� [Rk and let A = (Q;�; F;�) be a CH-automaton re
ognizing a set L of pro
ess terms. We show that the sets PostR(L)and PreR(L) are e�e
tively representable and 
omputable by CH-automata.For a given 
anoni
 PRS R0 and a given set of terms L1, we write R0(L1)as an abbreviation for PostR0(L1). In the following we use the fa
t that givena regular set L2 of 
at seq-terms, the set R0�(L2) is again regular and easily
onstru
tible. The same holds for any semilinear sets L3 of 
at par-terms andR0k(L3).We 
onstru
t a CH-automaton A0 = ( eQ;�; eF; e�) whi
h re
ognizes R(L),where eQ is the set of states, eF is the set of �nal states, and e� is the set of rules.Let C be a �nite set of pro
ess 
onstants su
h that C � Const(R) and L � TC .4.1 The set of statesThe set of states eQ in
ludes the set of states Q of A and 
ontains new states qX ,whi
h are assumed to a

ept pre
isely the singletons fXg (i.e., LqX = fXg), forea
h X 2 C. Let QR be the set of states QR = fqX j X 2 Cg. In addition, theset eQ 
ontains states whi
h re
ognize the set R(Lq) of immediate su

essors ofterms in Lq for ea
h q 2 Q [ QR. In order to ensure (during the 
onstru
tion)that the re
ognized trees are always in 
anoni
al form, we need to partition thesets of re
ognized trees a

ording to their types (given by their root).We asso
iate with ea
h q 2 Q [ QR di�erent states (q;�); (q; 0); (q;�), and(q; k) re
ognizing immediate su

essors of terms in Lq whi
h are respe
tively
onstants in C, null (equal to 0), �-rooted terms, and k-rooted terms.Let Q = Q0 [ Q� [ Q� [ Qk. We 
onsider that the set eQ is equal to theunion of the following sets: (1) eQ0 = Q0 [ f(q; 0) j q 2 Q [ QRg, (2) eQ� =



Q� [QR [ f(q;�) j q 2 Q [QRg, and (3) eQ! = Q! [ f(q; !) j q 2 Q[QRg, for! 2 f�; kg. Moreover, we 
onsider that eF = f(q;�); (q; 0); (q;�); (q; k) j q 2 Fg.4.2 Rewrite system over the alphabet of statesRules in CH-automata (of the forms !(
)! q) involve 
onstraints on sequen
esof states, whereas the systemsR� and Rk are de�ned over the alphabet of pro
ess
onstants. Therefore, we de�ne the systems S� = �(R�) and Sk = �(Rk) where� is the substitution su
h that �(X) = qX , for every X 2 C (extended in thestandard way to terms, rules, and sets of rules).4.3 The set of transition rulesThe set e� is de�ned as the smallest set of transition rules whi
h (1) 
ontains �,(2) 
ontains the set of rules X ! qX for every X 2 Const , and (3) is su
h that:(�1) Closure rules: su

essors of pro
ess 
onstants and 0:(a) If X �!� q, then !�S!(qX)�! (q; !) 2 e�,(b) If 0 �!� q, then !�S!(0)�! (q; !) 2 e�.The rule (a) says that if X is in Lq, then all its immediate !-su

essorsobtained by applying on
e the system R! are also immediate su

essors ofLq. The rule (b) says the same thing for su

essors of 0.(�2) Closure rule: su

essors of !-rooted terms: If !(
) ! p 2 �, then!�S!(�(
))� ! (p; !) 2 e�, where � is the substitution su
h that 8q 2Q [QR, �(q) = fqg [ fqX j X �!� qg [ f0 j 0 �!� qg.This rule says that if !(X1; : : : ; Xn) 2 Lp and !(X 01; : : : ; X 0m) 2R!�!(X1; : : : ; Xn)�, then !(X 01; : : : ; X 0m) is a !-su

essor of Lp.(�3) Propagation rule: If !(
) ! p 2 �, then !�E!(
)� ! (p; !) 2 e�, whereE is a 
anoni
 PRS de�ned as E = fq ,! (q;�); q ,! (q;�); q ,! (q; k)g.The rule says that if �(t1; : : : ; tn) 2 Lp and t01 is a su

essor of t1, then�(t01; : : : ; tn) is a su

essor of Lp. Moreover, if k(t1; : : : ; tn) 2 Lp and t0i is asu

essor of ti, then k(t1; : : : ; t0i; : : : ; tn) is a su

essor of Lp.Note that we need to distinguish between Ek(
) and E�(
) to ensure thatthe pre�x-rewrite strategy of the � is 
orre
tly taken into a

ount.(�4) Term 
attening rules:(a) If !(
) ! (q; !) 2 e� and q0 2 
, then q0 ! (q;�) 2 e� if q0 2 eQ�, andq0 ! (q; !) 2 e� if q0 2 eQ!.(b) If !(
)! (q; !) 2 e� and 0 2 
, then 0! (q; 0) 2 e�.The rules say that if !(t) is a su

essor of Lq, then t is also a su

essorof Lq.Now we prove that the 
onstru
tion is 
orre
t.Lemma 3. For every pro
ess term t, and every q 2 Q [QR we have:



(1) t �! e� (q; 0) i� t 2 PostR(Lq) and t = 0,(2) t �! e� (q;�) i� t 2 PostR(Lq) and t 2 C,(3) t �! e� (q; !) i� t 2 PostR(Lq) and root(t) = !, for ! 2 f�; kg.Proof. We 
onsider the (more 
ompli
ated) left-to-right dire
tion. The proof isby stru
tural indu
tion on t:{ t = X �! e� (q;�) (the 
ase where t = 0 �! e� (q; 0) is similar). Note that therules of e� do not allow derivations of the form X �! e� (q; 0) or X �! e� (q; w).Su
h a derivation has ne
essarily the following form:X! e�qX! e�(q;�)where the rule qX! e�(q;�) is a �4-rule. There are three 
ases:1. There exists w 2 f�; jjg, su
h that w(
)!� q, !�S!(�(
))�! (q; !) isin e�, and qX 2 S!(�(
)). Suppose that ! = �, the other 
ase where ! =jj is analogous. This means that there exists qX1 � � � qXn 2 �(
) su
h thatqX 2 S�(qX1 � � � qXn). This means that X 2 R��� (X1; : : : ; Xn)�. Sin
eqX1 � � � qXn 2 �(
) and �(
) !� q, it follows that �(X1; : : : ; Xn) 2 Lq.Therefore, X 2 R�(Lq), i.e., X 2 PostR(Lq).2. There exists a 
onstant Y su
h that Y �!� q, !�S!(qY )� ! (q; !) is ine�, and qX 2 S!(qY ). Suppose here also that w = �, the other 
ase wherew = jj is analogous. This means that qX 2 S�(qY ), and thatX 2 R�(Y ).Sin
e Y 2 Lq, it follows that X 2 R�(Lq), i.e., X 2 PostR(Lq).3. 0 �!� q, !�S!(0)� ! (q; !) is in e�,and qX 2 S!(0). Suppose here alsothat w = �, the other 
ase where w = jj is analogous. This meansthat qX 2 S�(0), and that X 2 R�(0). Sin
e 0 2 Lq, it follows thatX 2 R�(Lq), i.e., X 2 PostR(Lq).{ t = �(t1; : : : ; tn) �! e� (q;�). The 
ase where t = jj(t1; : : : ; tn) �! e� (q; jj) issimilar. There are three 
ases:1. There exist n 
onstants X1; : : : ; Xn su
h thatt = �(t1; : : : ; tn) �! e� �(qX1 ; : : : ; qXn)! e�(q;�):In this 
ase, every ti is ne
essarily equal to the 
onstant Xi. Then,the e�-rule �(Reg) ! (q;�), where qX1 � � � qXn 2 Reg is either a �1or a �2 rule. Let us 
onsider the 
ase where it is a �1-rule, the other
ase being similar. Let then X be a 
onstant su
h that X �!� qand Reg = S�(qX ). Sin
e qX1 � � � qXn 2 Reg , this means as previouslythat �(X1; : : : ; Xn) 2 R�(X), i.e., sin
e X 2 Lq that �(t1; : : : ; tn) =�(X1; : : : ; Xn) 2 PostR(Lq).2. There exist k 
onstants X1; : : : ; Xk and n � k states qk+1; : : : ; qn in Qsu
h thatt = �(t1; : : : ; tn) �! e� �(qX1 ; : : : ; qXk ; qk+1; : : : ; qn)! e�(q;�):



In this 
ase, for every i, 1 � i � k, ti is ne
essarily equal tothe 
onstant Xi, and for every i, k + 1 � i � n, ti 2 Lqi .Then, the e�-rule �(Reg) ! (q;�), where qX1 � � � qXkqk+1 � � � qn 2Reg is ne
essarily a �2 rule. Let then �(Reg 0) ! q be a rulein � su
h that Reg = S�(�(Reg 0)). Sin
e qX1 � � � qXkqk+1 � � � qn 2Reg , it follows that there exists qY1 � � � qYmqk+1 � � � qn 2 �(Reg 0) su
hthat qX1 � � � qXkqk+1 � � � qn 2 S�(qY1 � � � qYmqk+1 � � � qn), and thereforethat qX1 � � � qXk 2 S�(qY1 � � � qYm), and hen
e that �(X1; : : : ; Xk) 2R�� � (Y1; : : : ; Ym)�, and that �(X1; : : : ; Xk; tk+1; : : : ; tn) 2 R�� �(Y1; : : : ; Ym; tk+1; : : : ; tn)�.Sin
e qY1 � � � qYmqk+1 � � � qn 2 �(Reg 0), we getthat �(Y1; : : : ; Ym; tk+1; : : : ; tn) 2 Lq , and sin
e�(X1; : : : ; Xk; tk+1; : : : ; tn) 2 R�� � (Y1; : : : ; Ym; tk+1; : : : ; tn)�, itfollows that �(X1; : : : ; Xk; tk+1; : : : ; tn) 2 PostR(Lq). Thereforet = �(t1; : : : ; tn) = �(X1; : : : ; Xk; tk+1; : : : ; tn) 2 PostR(Lq)3. There exist n states q1; : : : ; qn where at least one qi is of the form (p; jj)or (p;�) wheret = �(t1; : : : ; tn) �! e� �(q1; : : : ; qn)! e� (q;�)In this 
ase, the last rule that is applied during the derivation is ne
es-sarily a �3-rule. Then, �3 implies that for every i, 2 � i � n, qi 2 Q,and that it is the state q1 that is of the form (p1; jj) (the 
ase where it isof the form (p1;�) is similar). More pre
isely, it implies that there exista rule �(Reg) ! q in � and a rule �(Reg 0) ! (q;�) in e� su
h thatp1q2 � � � qn 2 Reg and (p1; jj)q2 � � � qn 2 Reg 0.By stru
tural indu
tion, it follows that t1 2 PostR(Lp1). Let then t01 2Lp1 be su
h that t1 2 PostR(t01). It follows that �(t1; : : : ; tn) 2 PostR��(t01; : : : ; tn)�, and sin
e for i, 2 � i � n, ti 2 Lqi we have:�(t01; : : : ; tn) �!� �(p1; q2; : : : ; qn)!�qIt follows then that t = �(t1; : : : ; tn) 2 PostR(Lq). utTherefore, we have:Theorem 4. For every 
anoni
 PRS R and every CH-automaton A, we havePostR�L(A)� = L(A0).As PreR(L) = PostR�1(L), the previous 
onstru
tion 
an also be used to
ompute 1-step ba
kward rea
hability sets.5 Computing rea
hability sets for PAD and wPADIn this se
tion, we solve the problem of 
omputing both rea
hability sets and 1-step rea
hability sets for PAD and wPAD systems. Computing rea
hability sets



is diÆ
ult for PRS in general. One of the reasons is that already the rea
habilitysets of Petri nets are not semilinear. In [BT05℄ we show that the rea
habilitysets of a given 
anoni
 PRS system R 
an be e�e
tively 
omputed providedthe underlying multiset rewrite system Rk is e�e
tively semilinear. This is, forexample, the 
ase of 
anoni
 PAD systems due to the result of [Esp97℄ 
on
erning
ontext-free multiset rewrite systems (BPP pro
esses).Theorem 5 ([BT05℄). Let A be a CH-automaton re
ognizing a set of pro
essterms and R be a 
anoni
 PAD. Then the sets Post�R(L(A)) and Pre�R(L(A))are 
omputable and e�e
tively representable by CH-automata.Using this theorem and the results of the previous se
tion, we get the following.Theorem 6. For every PAD R and every CH-automaton A, the setsPostR(L(A)), PreR(L(A)), Post�R(L(A)), and Pre�R(L(A)) are 
omputable ande�e
tively representable by CH-automata.Proof. Theorem 1 implies that for every PAD R and every set of terms L,there exists a 
anoni
 PAD R0 and a �nite term substitution h su
h thatPost�R(L) = h(Post�R0(h�1(L))) and PostR(L) = h(PostR00(h�1(L))), where R00is the set R0 restri
ted to rules labelled with a
tions of A
t(R). Hen
e, CH-automata representing the sets Post�R(L(A)) and PostR(L(A)) are 
onstru
tibledue to 
losure properties of CH-automata and Theorems 5 and 4. The proof forPre�R(L(A)) and PreR(L(A)) is analogous. utNow we show that the previous theorem holds for wPAD as well. Re
all thatstates of wPAD are pairs pt of a 
ontrol state p and a term t. The sets of su
hstates 
an be represented by CHA-mappings.De�nition 7. Let R be a wPRS. A CHA-mapping � is a mapping assigningto ea
h 
ontrol state p 2 M(R) a CH-automaton �(p). A CHA-mapping �represents the set of states L(�) = fpt j p 2M(R); t 2 L(�(p))g.Theorem 8. For every wPAD R and every CHA-mapping �, the setsPostR(L(�)), PreR(L(�)), Post�R(L(�)), and Pre�R(L(�)) are 
omputable ande�e
tively representable by CHA-mappings.Proof. Let R be a wPAD. For ea
h pair of 
ontrol states p; q 2 M(R) we setRp;q = ft1 a,! t2 j pt1 a,! qt2 is a rule of Rg. Note that ea
h Rp;q is a PADsystem.CHA-mapping �1 representing PostR(L(�)) is de�ned as follows. For ea
hq 2M(R), �1(q) is an CH-automaton satisfyingL(�1(q)) = [p2M(R)PostRp;q�L(�(p))�:CHA-mapping �2 representing Post�R(L(�)) is de�ned indu
tively with re-spe
t to ordering < on set M(R) of 
ontrol states. For every minimal element



r of M(R), �2(r) is a CH-automaton satisfying L(�2(r)) = Post�Rr;r�L(�(r))�.For non-minimal element q of M(R), �2(q) is a CH-automaton satisfyingL(�2(q)) = Post�Rq;q�L(�(q)) [ [p<qPostRp;q�L(�2(p))��:CHA-mappings �1; �2 are 
onstru
tible due to Theorem 6 and the fa
t that CH-automata are 
losed under union. The proof for PreR(L(�)) and Pre�R(L(�)) isanalogous. utAs mentioned in [BT05℄, the generi
 algorithm presented there 
an employknown algorithms 
omputing semilinear overapproximations of rea
hability setsfor Petri nets in order to 
ompute overapproximations of rea
hability sets forgeneral 
anoni
 PRS systems. If we use this approximative algorithm for 
anoni
PRS instead of exa
t algorithm for 
anoni
 PAD system in Theorems 6 and 8, weget an algorithm 
omputing overapproximations of rea
hability sets for generalwPRS systems. Note that 1-step rea
hability sets for wPRS systems 
an still be
omputed pre
isely as Theorems 6 and 8 hold even for (w)PRS if we restri
t ourattention only to 1-step rea
hability sets.6 Model 
he
king of wPAD against EF logi
This se
tion presents a straightforward appli
ation of Theorem 8. We 
onsidera variant of EF logi
 
ombining both a
tion-based and state-based approa
hes.We show that the global model 
he
king problem of wPAD systems against thislogi
 is de
idable.Formulae of EF logi
 are de�ned as' ::= P j :' j '1 ^ '2 j hai' j EF';where P ranges over set AP of atomi
 propositions and a ranges over A
t .Here, formulae are interpreted over states of wPRS systems. For ea
h atomi
proposition P , let V (P ) denotes its valuation, i.e. the set of states where Pholds. We de�ne when a state pt of a given wPRS system R satis�es a formula', written R; pt j= ', by indu
tion on the stru
ture of '.R; pt j= P i� pt 2 V (P )R; pt j= :' i� R; pt 6j= 'R; pt j= '1 ^ '2 i� R; pt j= '1 and R; pt j= '2R; pt j= hai' i� 9qt0 su
h that pt a!R qt0 and R; qt0 j= 'R; pt j= EF' i� 9qt0 su
h that pt �!R qt0 and R; qt0 j= 'Theorem 9. For every wPAD system R and every EF formula ' over atomi
propositions with valuations given by CHA-mappings, the set of states of R sat-isfying ' is 
omputable and e�e
tively representable by a CHA-mapping.



Proof. The theorem follows dire
tly from Theorem 8 and 
losure properties ofCH-automata. Here we mention just the indu
tion step 
orresponding to oper-ator hai. Let ' = hai and let CHA-mapping � re
ognizes all states satisfying . We 
onstru
t a CHA-mapping �0, whi
h re
ognizes all states where ' holds,to satisfy L(�0) = PreRa�L(�)�, where Ra is the set R restri
ted to rules withlabel a. Su
h a CHA-mapping �0 is 
onstru
tible due to Theorem 8. utThis theorem gives a positive answer to open questions formulatedin [K�RS05℄, namely whether model 
he
king of wBPP, wPA, and wPAD sys-tems against a
tion-based EF logi
 is de
idable. Our result is tight as model
he
king of state extended PAD (de�ned as wPAD where rules may not respe
tthe ordering on 
ontrol states) against EF logi
 is already unde
idable. In fa
t,the problem is unde
idable even for the sub
lass of state extended PAD 
alledmultiset automata and EF formulae with the only atomi
 proposition true (this
an be proved by the arguments of [Esp97℄ showing that model 
he
king of Petrinets against EF logi
 is unde
idable).7 Bounded rea
hability analysis of syn
hronized PADThe main disadvantage of PRS formalism in modelling 
urrent software sys-tems is the fa
t that it allows only lo
al 
ommuni
ation or syn
hronization. Forexample, PRS 
annot model 
ommuni
ating parallel threads with unboundedre
ursion, intuitively be
ause no rule with left-hand side AkB 
an be applied toterm (A:C:D)k(B:E:F ). Therefore, syn
hronized PRS systems have been intro-du
ed [Tou05℄.Let A
t be a disjoint union Asyn
 [ Syn
 [ f�g. We assume that to ea
ha 2 Syn
 
orresponds a 
o-a
tion ~a 2 Syn
 su
h that ~~a = a. Intuitively, Syn
is the set of all syn
hronization a
tions, i.e. a
tions whi
h must be performedsimultaneously with their 
orresponding 
o-a
tions. A syn
hronized (�; �)-PRSR is de�ned as standard (�; �)-PRS. Instead of 'syn
hronized (�; �)-PRS' weuse shorter names like SPAD, SPRS, et
.Let! be the least transition relation over terms satisfying the inferen
e rules(t1 b,! t2) 2 Rt1 b! t2 t1 b! t2t1kt b! t2kt t1 b! t2t1 � t b! t2 � t t1 a! t01 t2 ~a! t02t1kt2 �! t01kt02where a ranges over Syn
 and b ranges over A
t . An transition step indu
ed bythe last rule is 
alled syn
hronization. The transition relation!R is then de�nedas the restri
tion of ! to transitions labelled with a
tions of A
t r Syn
.The formalism of syn
hronized PRS systems allows to model both re
ursionand task syn
hronization. Hen
e, it has a Turing power and even basi
 rea
ha-bility problems are unde
idable (see e.g. [Ram00℄).Abstra
tion te
hniques for getting upper approximations of rea
hability setsfor SPAD systems have been already de�ned in [Tou05℄, extending the approa
hof [BET03,BET04℄. Here we present a te
hnique for 
omputing underapproxi-mations of these sets in style of [QR05℄.



Given a syn
hronized (�; �)-PRS R and n > 0, we 
onstru
t an (�; �)-wPRSRn whi
h mimi
s (pre�xes of) all behaviours of R with at most n syn
hroniza-tions. The system Rn uses 
ontrol states 0 < 1 < : : : < 3n. For every rewriterule r = (t1 b,! t2) of R, let Zr 62 Const(R) be a fresh pro
ess 
onstant. If{ b 2 Asyn
 [ f�g then we add to Rn the rule (3i)t1 b,! (3i)t2 for every0 � i � n.{ b = a 2 Syn
 the we add to Rn rules (3i)t1 � 0,! (3i+ 1)Zr and (3i+ 2)Zr � 0,!(3i+ 3)t2 for every 0 � i < n.{ b = ~a 2 Syn
 the we add to Rn rule (3i + 1)t1 �,! (3i + 2)t2 for every0 � i < n.Intuitively, every syn
hronization via a
tions a; ~a is repla
ed by a sequen
e ofa
tions � 0�� 0. The 
hanges of 
ontrol states prevents interleaving of this sequen
ewith other a
tions. Moreover, use of fresh pro
ess 
onstants ensures that the rulesunder a and ~a are applied on di�erent parts of the 
urrent term.Let R be an SPAD and L be a set of states represented by a CH-automaton.Theorem 8 says that we 
an 
onstru
t a CHA-mapping � su
h that L(�) =Post�Rn(f0g�L). Obviously, the set S0�i�n L(�(3i)) is an underapproximationof Post�R(L). Further, with in
reasing n, we 
an 
ompute better approximationsof this set. Moreover, if for n and n+ 1 the 
omputed underapproximations arethe same, we know that we have exa
tly the set Post�R(L).The same te
hnique 
an be employed to underapproximate the set Pre�R(L).The sets PostR(L) and PreR(L) 
an be 
omputed pre
isely using a similar ap-proa
h.8 Con
lusionWe have presented an automata-based symboli
 rea
hability analysis algorithmfor the 
lass of wPAD systems. This algorithm is based on the use of a 
lassof unranked tree automata (
alled CH-automata) whi
h 
an re
ognize sets of
on�gurations 
losed under the algebrai
 properties of the sequential and parallel
omposition. We used the rea
hability analysis algorithm, together with one-stepsu

essor 
omputation (and boolean operations on CH-automata), in order tode�ne an algorithm for the global model 
he
king of wPAD against the EF logi
with regular atomi
 predi
ates. These results generalize those proved in [BT05℄
on
erning the 
lass of (
anoni
) PAD systems, whi
h is a stri
t sub
lass ofwPAD, pushing the known de
idability limit of EF model 
he
king further upin the (se/w)PRS hierar
hy, and answering open questions left in [K�RS05℄.We have also shown that the symboli
 rea
hability algorithm for wPAD 
anbe used to 
ompute under approximations of the set of rea
hable 
on�gurationsof syn
hronized PAD (SPAD), a (Turing) powerful model introdu
ed in [Tou05℄for modeling multithreaded programs (with dynami
 
reation of 
ommuni
atingpro
esses and pro
edure 
alls). Abstra
tion te
hniques for getting upper ap-proximations of rea
hability sets for SPAD systems have been already de�nedin [Tou05℄, extending the approa
h of [BET03,BET04℄.
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