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Abstract. We consider the verification problem of a class of infinite-
state systems called wPAD. These systems can be used to model pro-
grams with (possibly recursive) procedure calls and dynamic creation of
parallel processes. They correspond to PAD models extended with an
acyclic finite-state control unit, where PAD models can be seen as com-
binations of prefix rewrite systems (pushdown systems) with context-free
multiset rewrite systems (synchronization-free Petri nets). Recently, we
have presented symbolic reachability techniques for the class of PAD
based on the use of a class of unranked tree automata. In this paper, we
generalize our previous work to the class wPAD which is strictly larger
than PAD. This generalization brings a positive answer to an open ques-
tion on decidability of the model checking problem for wPAD against EF
logic. Moreover, we show how symbolic reachability analysis of wPAD can
be used in (under) approximate analysis of Synchronized PAD, a (Turing)
powerful model for multithreaded programs (with unrestricted synchro-
nization between parallel processes). This leads to a pragmatic approach
for detecting the presence of erroneous behaviors in these models based
on the bounded reachability paradigm where the notion of bound con-
sidered here is the number of synchronization actions.

1 Introduction

Reasoning about software systems requires the consideration of powerful mod-
els which are in general infinite-state, i.e., they may have an infinite number
of reachable configurations. Sources of complexity, and of infinity of the state
space, may be related to either data manipulation such as the use of variables
over infinite data domains, dynamic and unbounded-size data structures, etc,
or to complex control primitives such as procedures calls, (unbounded) dynamic
creation of concurrent processes, etc. One popular approach to handle this com-
plexity is to combine abstraction methods with model-checking. Techniques such
as predicate abstraction allows to deal with aspects such as data manipulation
and to generate abstract models over finite data domains. Then, the so obtained
abstract models can be analyzed automatically using model checking algorithms,
provided that such algorithms exist for the considered class of abstract models.
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This is the case obviously when abstract models are finite-state. However, as
said above, in order to take into account complex control primitives such as pro-
cedure calls and process creation, finite state models are not expressive enough.
For instance, in the case of sequential programs with recursive procedure calls,
the needed abstract models are (unbounded-stack) pushdown systems, and for
programs with dynamic creation of communicating finite-state processes, natural
models are (unbounded) Petri nets. Fortunately, there exist several algorithmic
techniques (e.g., reachability analysis, model-checking) which have been devel-
oped for the analysis and the verification of these infinite-state models.

In this paper, we consider the case of programs which may contain both (re-
cursive) procedure calls and dynamic creation of processes (threads). One possi-
ble approach to model such systems is to combine pushdown systems with Petri
nets. This corresponds to the use of Process Rewrite Systems (PRS) introduced
in [May00]. These models can be seen indeed as combinations of prefix rewrite
systems and multiset rewrite systems. The relevance of PRS in program modeling
have been discussed for instance in [EK99,EP00,Esp02,BT03,BT05]. Subclasses
of PRS which are of particular interest for program modeling are for instance the
class of PA processes, and the larger class of PAD processes generalizing both PA
and pushdown processes and corresponding to synchronization-free PRS (i.e.,
models where parallel composition is not allowed in the left-hand-side of the
rewrite rules). Processes in these classes allow indeed to model systems with
procedure calls and parbegin-parend blocks (i.e., launching a number of par-
allel threads, and wait for their termination before proceeding). PAD allow in
addition return values from sequential procedure calls.

Richard Mayr has shown that the reachability problem (whether a given state
is reachable from another given state) for PRS is decidable using a reduction to
the reachability problem of Petri nets [May00]. To get practical verification al-
gorithms, symbolic reachability algorithms have been investigated for significant
subclasses of PRS such as PA [LS98,EP00] and PAD [BT03,BT05]. These algo-
rithms use (various kinds of) tree automata to represent (regular) infinite sets of
configurations (i.e., process terms). In particular, we have provided in [BT05] a
generic construction allowing to compute the set of (forward or backward) reach-
able configurations of any subclass of PRS built from the combination of prefix
rewrite systems with an effectively semilinear class of multiset rewrite systems
(i.e., a class of systems for which reachability sets are always semilinear and ef-
fectively computable). We have shown that this leads to a symbolic reachability
analysis algorithm for PAD processes in a certain normal form.

The PRS formalism is not Turing powerful due to a subtle restriction on
the way synchronization is done between parallel processes. Roughly speaking,
the semantics of PRS implies that synchronization can only be allowed between
parallel processes with empty stacks.

In order to extend the modeling power of PRS, one approach is to add
synchronization by rendez-vous (& la CCS), which leads to a Turing powerful
model called synchronized PRS [Tou05]. Similarly, PAD can be extended to
synchronized PAD (which is also a Turing powerful model). Approximate analy-



sis algorithms for these models using abstraction techniques have been proposed
in [Tou05].

Another approach for enhancing the modeling power of PRS (and PAD) con-
sists in adding global control states. The new models, called sePRS [JKMO01],
can be seen as parallel product of a PRS with a finite-state automaton repre-
senting a global control. Obviously, sePRS are Turing powerful since they allow
communication between recursive parallel processes through the global control
state. However, if the structure of the control automaton is weak, which means
that all its loops are self-loops, then it can be proved that the obtained mod-
els, called wPRS, have a decidable reachability problem [KRS04a] (the proof
employs decidability of the reachability problem for Petri nets). Similarly, if we
add control states to PAD processes, we obtain Turing powerful models, but the
extension of PAD with weak control automata leads to models, called wPAD,
having a decidable reachability problem, and interestingly, which can be proven
to be strictly more powerful (w.r.t. strong bisimulation) than PAD [KRS04b).

In this paper we extend the results on symbolic reachability analysis pre-
sented in [BT05]. While [BT05] deals only with PAD processes in a certain nor-
mal form (now called canonic PAD), here we show that the set of reachability
states are computable and effectively representable even for (general) wPAD
systems. To do this, we employ symbolic representations based on so-called
commutative-hedge automata (CH-automata), allowing to define sets of process
terms modulo the associativity of sequential composition, and the associativity-
commutativity of the parallel composition. We show that these representations
are effectively closed under the computation of the post* and pre* images (i.e.,
computation of all successors and all predecessors) for wPAD, as well as under
the post and pre images (i.e., computation of immediate successors and prede-
cessors) for the whole class of wPRS.

Further, we solve the global model-checking problem of wPAD against the EF
logic. We consider a variant of EF logic which generalizes the standard action-
based EF logic by the use of atomic propositions corresponding to (potentially
infinite) sets of configurations which are definable using CH-automata. We prove
that for every formula in this logic, it is possible to construct a (CH-automata
based) representation of the set of all configurations (in a given wPAD) satisfying
this formula. This result closes an open problem formulated in [KRS05] concern-
ing the model-checking problem of wPAD. Notice that global model-checking is
a more general problem than deciding whether a given configuration satisfies a
given formula.

Finally, we show that our results concerning symbolic reachability analy-
sis of wPAD can be used in the analysis of synchronized PAD (SPAD) with
a bounded number of synchronizations. This leads to an approximate analysis
procedure for SPAD based on computing under approximations of their reacha-
bility sets by considering only reachable configurations up to some fixed number
of synchronizations. Such approximate analysis method for SPAD can be used
in practice to establish the ezxistence of erroneous behaviors, following the ap-
proach advocated in [QRO5]. It constitutes a complementary approach to the



abstract analysis (provided for the same models in [Tou05]), which is based on
considering upper approximations of the set of possible behaviors and which is
useful for establishing the absence of erroneous behaviors.

2 Preliminaries

2.1 Process terms

Let Const = {X,...} be a set of process constants. For every C C Const, the set
Te of process terms over C' is defined by the abstract syntax ¢ := 0| X | t©1 | t]|t,
where 0 is the idle term, X € C is a process constant; and ® and || mean
sequential and parallel compositions respectively.

We use w to denote in a generic way © or ||. We denote by @ the operator ®
(resp. ||) if w = || (resp. w = ®). Process terms are considered modulo the fol-
lowing algebraic properties: associativity of ®, associativity and commutativity
of ||, and neutrality of 0 w.r.t. both ® and ||, i.e. 00t =t® 0 =1¢||0 =¢. Let ~
be the equivalence relation on 7" induced by these properties.

We distinguish four classes of process terms as:

1 — terms consisting of a single process constant only, in particular 0 ¢ 1,
S — sequential terms - terms without parallel composition, e.g. X ®Y ® Z,
P — parallel terms - terms without sequential composition, e.g. X||Y||Z,

G — general terms - terms without any restrictions, e.g. (X © (Y|2))||W.

Process terms in canonical form are terms ¢ defined by:

te=0|s|p
s:=X | p1OPO®...0py, n>2
pu=X | sil|s2ll .. |Isn, n>2

It can easily be seen that every term has an ~-equivalent term in canonical form.
In the following we work with terms in canonical form.

Term ¢ is called seg-term if t = 0, or t = X for a constant X, or ¢t =
PLOP2® ... p, where n > 2. In the last case, the term is also called ®-rooted
term. Further, ¢ is called flat seg-term if t = X7 © Xo ®...® X, forn > 0
(the case n = 0 corresponds to the term 0, and the case n = 1 corresponds to
a process constant X ). By analogy we define par-terms, ||-rooted terms, and flat
par-terms.

2.2 Process Rewrite Systems and weak extension

Let M = {o,p,q,...} be an ordered set of control states and Act = {a,b,c,...}
be a set of actions. Let a, B € {1, S, P,G} be classes of process terms such that
a C B. An (o, 8)-wPRS (weakly extended process rewrite system) R is a finite

set of rewrite rules of the form (p,t;) N (g, t2), where t1 € a, t1 # 0, ty € [,



p,q € M,p<gq,and a € Act. By M(R), Const(R), and Act(R) we denote sets
of control states, process constants, and actions occurring in rewrite rules of R.

An (a, 8)-wPRS R induces a labelled transition system the states of which
are pairs (p, t) such that p € M(R) is a control state and ¢ € 3 is a process term
over Const(R). The transition relation —p is the least relation satisfying the
following inference rules:

((pvtl) (g (th)) ER (pvtl) i)R (qth) (p:tl) i>R (q:tQ)
(p7t1) i)R (q7t2) (p,t1||t) i)R (Qat2||t) (patl © t) i)R (q7t2 © t)

We extend the transition relation to finite words over Act in a standard way.
The reflexive and transitive closure of — g is denoted by —*>R. To shorten our
notation we write pt in lieu of (p,t).

An (a,8)-wPRS where M(R) is a singleton is called («a,3)-PRS (process
rewrite system). In such systems we omit the single control state from rules and
states.

Instead of (S,G)-PRS, (S, G)-wPRS, (G, G)-PRS, and (G, G)-wPRS we use
more readable names PAD, wPAD, PRS, and wPRS respectively. Let us note
that the classes PAD and wPAD subsume widely known models of infinite-
state systems as pushdown processes (PDA), basic parallel processes (BPP), and
process algebras (PA). The classes PRS and wPRS subsume also Petri nets (PN).
More information about expressiveness of («, 8)-wPRS and («a, §)-wPRS can be
found in [KRS04b,KRS04a].

Given a state pt of a wPRS R, we define

Postg(pt) = {p't' | pt S g p't' for some a} Posty(pt) = {p't' | pt Sg p't'}
Preg(pt) = {p't' | p't' Sr pt for some a} Preg(pt) = {p't' | p't' Sg pt}

The sets Posty(pt) and Prey(pt) are called (forward and backward) reachability
sets. The sets Postgr(pt) and Preg(pt) are called 1-step (forward and backward)
reachability sets. These definitions and notations can be extended to sets of states
in the obvious manner.

2.3 Canonic PRS

A canonic PRS R is a set of rewrite rules of the forms:

X10X0®...0X, S Y10Y20...0Y, (1)
a
X1 Xal| . |1 Xn <SS V1| Y2 ([ Vi (2)

where n,m > 0. Rules of the form (1) and (2) are called ®@-rules and ||-rules
respectively. By R, we denote the set of all w-rules of R. Note that the sets
R and Ry do not have to be disjoint as some rules (e.g. X < V) are of both
types. Let a, 8 € {1, S, P, G} be classes of process terms. A canonic PRS is called
canonic («, 3)-PRS if every rule ¢, <% t, of R satisfies t; € a and t, € B. Finally,
canonic PAD stands for canonic (S, G)-PRS.



Note that a canonic PRS does not have to be a PRS as we allow rules with
0 on the left-hand side. Further, the definition of canonic (a, 8)-PRS does not
require that o C 3. The meaning of Const(R), — g, Postg, Preg, ... remains the
same.

Given a canonic (a, 3)-PRS R, by R™! we denote the canonic (3, a)-PRS
with rules obtained by swapping the left-hand and right-hand sides of the rules
of R. Notice that for every set of process terms L, Preg(L) = Postg-1(L) and
Preg (L) = Postp-1(L).

The problem of computing reachability sets of PRS systems can be trans-
formed into the same problem for canonic PRS using the following theorem.
The proof of this theorem employs a variant of the standard construction given
in [May00]. However, our theorem differs from the one of [May00] in several as-
pects. In particular, (1) we transform an (a, 3)-PRS into a canonic («, 3)-PRS,
which is not the case of Mayr’s transformation, and (2) in contrast to the origi-
nal theorem in [May00], our theorem states that the same transformation of R
works for all terms over a given set of process constants.

A term substitution h is a function on process terms satisfying h(0) = 0 and
h(tiw ... wty) = h(t1)w ... wh(ty) for all finite sequences t1,...,t, of terms
and for both w = @, ||. In other words, a term substitution is fully specified by
its values on process constants. We say that a term subsitution h is finite if the
set {X | h(X) # X} of process constants is finite.

Theorem 1. For every (a, 3)-PRS system R and every set of process constants
C we can construct a canonic (a,3)-PRS system R' and a finite term substitu-
tion h, such that for every ti,ta over C U Const(R) and every a € Act(R) we
have:

) =t1, h(th) = ta, and t| Sg th,
) =t1, h(th) = to, and t, Sgi th.

1. t1 Bty iff there exists t', t) satisfying h(t!
2.ty Sty iff there exists t', t satisfying h(t)
Proof. Let size(t < t') be the number of occurrences of ® and || in terms ¢ and
t'. Given any PRS R, let k; be the number of rules r € R that are neither ®-rules
nor ||-rules and size(r) = i. Thus, R is canonic PRS iff k; = 0 for every i. In this
case, let n = 0. Otherwise, let n be the largest i such that k; # 0 (n exists as
the set of rules is finite). We define norm(R) to be the pair (n, ky).

First we describe a procedure transforming an («, 3)-PRS R into an (a, §)-
PRS R’ and defining finite term substitution A such that norm(R') < norm(R)
(with respect to the lexicographical ordering) and for every terms ¢i,ts over
C U Const(R) and every a € Act(R) the following equivalences hold:

1.t Brty <= there exists t|,t} satisfying h(t}) = t; and t| S g/ 1}
2.t Spty <= there exists |t} satisfying h(t) = t; and t, Spi th

In this proof we assume that © is left-associative. It means that the term
XeYo®Zisseen as (X ©Y)® Z and so its subterms are X, Y, Z, and X Y,
but not ¥ ® Z. Let us assume that R is not canonic PRS. Let 7 ¢ Act(R) be
a fresh action. We set h(X) = X for every X € C U Const(R) and R’ = R.



Let r = (s; <> s5) be a rule of R’ that is neither ®-rule nor ||-rule and has the
maximal size. There are three cases:

1. s1 is w-rooted and s5 is w-rooted. In R' we replace the rule r by rules s; SN Z,
Z < sy, where Z ¢ C U Const(R) is a fresh process constant. We set
h(Z) = s;. Clearly, the considered equivalences holds.

2. 81,89 are par-terms and at least one of them is not flat. Let ¢ be an ®-
rooted subterm of s; or s5. We modify R’ in two steps. First, in all left-hand
and right-hand sides of all rules, we replace every occurrence of ¢ by a fresh
process constant Z ¢ C'U Const(R). Further, we add the rule Z <5 ¢ and if
t € a then we add also the rule ¢ < Z. We set h(Z) = t.

We say that an occurrence of subterm ¢ of term s is active, if a rule ¢ Sz
can be applied on s such that the occurrence of ¢ is replaced by Z. The
occurrence is inactive otherwise. Note that an occurrence of ¢ in s is inactive
iff it is a subterm of the right component of some sequential composition.

Clearly, the first equivalence and the implication “<=" of the second equiv-
alence hold. In order to prove the remaining implication, we show that every
transition I; g I (where [y, 1y are terms over C'U Const(R)) corresponds

to a transition sequence 1} T*i;*Rf 1}, where 11,1} are l1,ls with all inactive
occurrences of t replaced by Z. Let us assume that the transition Iy el is
generated by a rule [ < I'. Bach occurrence of ¢ in I modified by the rule is
either active, or it is inactive (and thus replaced by Z in l}) and completely
contained in ! (due to the left-associativity of @). Hence, we can apply the

rule t < Z to all occurrences of ¢ in I} which are going to be modified by the

rule of R’ corresponding to [ < I' (i.e. the same rule with all occurrences of
t replaced by Z). This corresponding rule is applied afterwards.
The situation with occurrences of ¢ appearing in [ after the application of
the considered rule is similar. Each occurrence of ¢ in 5 created by the rule
is either active, or it is inactive and completely contained in [. Hence, after
application of the corresponding rule of R', we apply the rule Z < ¢ to all
active occurrences of Z to reach l}.

3. s1, 82 are seq-terms and at least one of them is not flat. This case is a direct
analogy of the previous one.

Note that norm(R') < norm(R) and R' belongs to (a,3)-PRS class. After
finitely many (say m) applications of this procedure, a given (a,)-PRS R is
transformed into a canonic (o, 8)-PRS R'. Let h; be the finite term substitution
defined in i-th application of the procedure. We set h = hy ohs o...0h,. It is
now easy to see that this canonic PRS R’ and finite term substitution h satisfy
the equivalences formulated in the theorem. O

3 Automata-based symbolic representations

In order to perform reachability analysis of PRS, we need representation struc-
tures for (infinite) sets of process terms. For this purpose, we use a class of



tree-automata, called commutative hedge automata [BT05], which recognize sets
of trees modulo associativity / associativity-commutativity. These automata ex-
tend both (1) bottom-up tree automata over ranked alphabets [CDG*97], and
(2) hedge automata recognizing sets of undounded width trees [BKMWO01].

3.1 Preliminaries

Presburger arithmetic is the first order logic of integers with addition and linear
ordering. Given a formula ¢, we denote by F'V () the set of its free variables. Let
FV(p) ={z1,...,zn}. Then, a vector u = (u1,...,u,) € Z" satisfies ¢, written
u = o, if p(u) = plz; < u;] is true. Each formula ¢ defines a set of integer
vectors [¢] = {u € Z" | u |= ¢}. Presburger formulas define semilinear sets
of integer vectors, i.e., finite union of sets of the form {x € Z" | Iky,..., k, €
Z,x=vo+ kv + k,v,}, where v; € Z"™ for 1 <i < m (see [Har78]).

Given a word w over an alphabet ¥ = {ai,...,a,}, the Parikh image of
w, denoted Parikh(w), is the vector (Jw|s,, ..., |wls,). This definition can be
generalized to sets of words (languages) over X' in the obvious manner.

As usual, a set of words is regular if it is definable by a finite-state automaton.
The notion of regularity can be transfered straightforwardly to sets of flat seq-
terms. Similarly, the notion of semilinearity can be transfered to sets of flat
par-term by associating with a term X || ---||X,, the vector Parikh(X; --- X,,).

In the sequel, we will represent by 7 a constraint which is either a regular
language or a Presburger formula. We say that a word w = ajas ... a, satisfies
the constraint v if w € 7 (resp. Parikh(w) |= ) when ~ is a language (resp. a
formula).

3.2 Commutative Hedge Automata

Let X = X' U X4 be a finite alphabet, where X’ is a ranked alphabet, and X4
is a finite set of associative operators. We assume that X’ and X4 are disjoint.
For k > 0, let X} denote the set of elements of X’ of rank k.

X-Terms: Let X be a fixed countable set of variables {z1,22,...}. The set
T5;[X] of X-terms over X is the smallest set such that:

~ Dy UX C T[],
—fork>1,if f € XY and ty,...,t; € TZ[X], then f(tl,...,tk) € TZ[X],
—if f € X4, t1,...,tn € Tx[X] for some n > 1, and root(t;) # f for every

1<i < n,then f(t1,...,ty) € Ts[X], where root(c) = o if 0 € ZyU X, and
root(g(ul,...,um)) =g.

Note that if f € X4, we only consider terms of the form f(t1,...,t,)
such that for every i, the root of ¢; is different from f. Indeed, since f is
associative, f(tl, costicn, fUr, ey Um) tigay e ,tn) is equivalent to the term
f(tl, P ,ti_l,ul, e .,um,ti+1, e tn)



Terms without variables are called ground terms. Let T's; be the set of ground
terms of T [X]. A term ¢ in T'x[X] is linear if each variable occurs at most once
in t. A context C is a linear term of Tx[X]. Let t1,...,t, be terms of Ty,
then Clty,...,t,] denotes the term obtained by replacing in the context C' the

occurrence of the variable z; by the term ¢;, for each 1 <i < n.

Definition of CH-automata: Let us consider that ¥4 = X/ U X', where
X' o 1s a set of associative and commutative operators. We assume that X/, and
X' o are disjoint. Then, a CH-automaton is a tuple A = (Q, X, F, A) where:

— (@ is a union of disjoint finite sets of states Q' U UfezA Qy,

— F C Q is a set of final states,

— A is a set of rules of the form:

a — q, where g € Q',a € Xy,

fla1,...,qx) = q, where f € Xy, g € Q', and ¢; € Q,

q— q', where (¢,¢') € Q" x Q" U5, Qf X Qy,

f(Reg) — g, where f € X', Reg C (Q\ Q)* is a regular language given
by a finite-state automaton, and ¢ € Qy,

5. f(y) — ¢, where f € X'y, ¢ € Qy, and ¢ is a Presburger formula such

that FV () ={zq | g€ Q\ Qy}.

e

We define a mowve relation — o between ground terms in T'x;g as follows: for
every two terms ¢ and ', we have t — 4 t' iff there exist a context C' and a rule
r € A such that t = C[s], t' = C[s'], and:

= a — q, with s =a and s’ = ¢, or
= qg—¢,withs=qgand s’ =¢, or
= f(QIa"'a(Jk)_)Q7Withszf(ql7"':Qk) ands’:q,or

=q, or

= f(‘p) — q, with f € 2140: s = f(qla"':qn)z Pa’erh(qlqn) = @,
and s’ = q.

\
ST T T
|

Let = 4 denote the reflexive-transitive closure of — 4. A ground term t € Ty is
accepted by a state q if t S, q. Let L, = {t € T | t =4 q}. A ground term
t € Ts is accepted by the automaton A if it is accepted by some final state ¢ € F'.
The CH-language of A, denoted by L(.A), is the set of all ground terms accepted
by A.

We have the following fact [Col02,Lug03,SSM03,Tou03,BT05]:
Theorem 2. The class of languages recognized by CH-automata is effectively

closed under boolean operations, term substitutions and inverse of finite term
substitutions. Moreover, the emptiness problem of CH-automata is decidable.



3.3 CH-automata for PRS process terms

We consider process terms as trees and use CH-automata to represent sets of
such trees. Indeed, for any finite set C C Const, the set T of process terms
can be seen as the set of X-terms Tx, where Xy = {0} U C, Xy, = {®}, and
Do = I}

Sets of process terms are recognized by CH-automata A = (Q, X, F, A) such
that (1) @ is the disjoint union @ = Q'U Qs U Q) where Q' is itself the disjoint
union Q' = Qo U Q_, and (2) the rules in A are of the form: (a) X — ¢, where
q € Q_, X € Const, (b) 0 = ¢, where ¢ € Qo, (c) ¢ — ¢, where (q,q') €
(Q0)? U(Q-)? U(Qe)* U (Q))?, (d) ®(Reg) — q. where Reg € (Q\ (Qo U Qo))"
is a regular language and ¢ € Q, and (e) [[(¢) — ¢, where ¢ € @ and ¢ is a
Presburger formula such that FV () = {z, | ¢ € Q\ (QU Qo)}.

In other words, the states in Q@ (resp. Q) recognize trees whose root is
® (resp. ||). The states in Q_ recognize constants in C, and the states in Qq
recognize 0.

4 Computing 1-step reachability sets for canonic PRS

Let us consider a canonic PRS R = Ro UR) and let A= (Q, Y, F, A) be a CH-
automaton recognizing a set L of process terms. We show that the sets Postg(L)
and Preg(L) are effectively representable and computable by CH-automata.

For a given canonic PRS R’ and a given set of terms L, we write R'(L1)
as an abbreviation for Postgr/(L1). In the following we use the fact that given
a regular set Lo of flat seq-terms, the set Rj (L) is again regular and easily
constructible. The same holds for any semilinear sets L3 of flat par-terms and
Ry (Ls).

We construct a CH-automaton A' = (@,E,f‘, A~) which recognizes R(L),
where @ is the set of states, F is the set of final states, and A is the set of rules.
Let C be a finite set of process constants such that C O Const(R) and L C T¢.

4.1 The set of states

The set of states @ includes the set of states @) of A and contains new states ¢x,
which are assumed to accept precisely the singletons {X} (i.e., Ly, = {X}), for
each X € C. Let Qg be the set of states Qr = {gx | X € C}. In addition, the
set () contains states which recognize the set R(L,) of immediate successors of
terms in L, for each ¢ € Q U Q. In order to ensure (during the construction)
that the recognized trees are always in canonical form, we need to partition the
sets of recognized trees according to their types (given by their root).

We associate with each ¢ € Q U Qg different states (q,—), (¢,0), (¢, ®), and
(g, 1) recognizing immediate successors of terms in L, which are respectively
constants in C, null (equal to 0), ®-rooted terms, and ||-rooted terms.

Let Q@ = Qo U Q- U Qe UQ). We consider that the set () is equal to the
union of the following sets: (1) Qo = Qo U {(¢,0) | ¢ € QU Qr}, (2) Q_ =



Q-UQrU{(2.—-) | g€ QUQr}, and (3) Q. = Qu U{(g,w) | ¢ € QUQR}, for
w € {®,]|}. Moreover, we consider that F' = {(g, —), (¢,0), (¢,®),(q,]|) | ¢ € F}.

4.2 Rewrite system over the alphabet of states

Rules in CH-automata (of the forms w(y) — ¢) involve constraints on sequences
of states, whereas the systems R, and R are defined over the alphabet of process
constants. Therefore, we define the systems So, = a(Rg) and S| = a(R|) where
« is the substitution such that «(X) = gx, for every X € C (extended in the
standard way to terms, rules, and sets of rules).

4.3 The set of transition rules

The set A is defined as the smallest set of transition rules which (1) contains A,
(2) contains the set of rules X — ¢x for every X € Const, and (3) is such that:

(81) Closure rules: successors of process constants and 0:
(a) If X 5 ¢, then w(Sw(qX)) = (q,w) € AN,
(b) If 0 54 g, then w(S,(0)) = (g,w) € A.
The rule (a) says that if X is in L,, then all its immediate w-successors
obtained by applying once the system R, are also immediate successors of
L,. The rule (b) says the same thing for successors of 0.

(B2) Closure rule: successors of w-rooted terms: If w(y) = p € A, then
w(Su(a(7))) = (p,w) € A, where o is the substitution such that Vg €
QUQr, o(g) ={a¢}U{ax | X 54 ¢} U{0]0>4q}.

This rule says that if w(X1,...,Xn) € L, and w(Xy,...,X],) €

3

R, (w(Xl, e ,Xn)), then w(X7,...,X,,) is a w-successor of L.

(Bs) Propagation rule: If w(y) = p € A, then w(E, (7)) = (p,w) € A, where
E is a canonic PRS defined as E = {q¢ <= (¢, —),q = (¢,®),q = (¢,|])}
The rule says that if ©(t1,...,tn) € L, and t} is a successor of t1, then
O(ty, ..., tn) is a successor of L,. Moreover, if ||(t1,...,tn) € Ly, and t} is a
successor of t;, then ||(t1,...,t}, ..., tn) is a successor of Ly.
Note that we need to distinguish between E) () and Eg(7y) to ensure that

the prefix-rewrite strategy of the © is correctly taken into account.
(84) Term flattening rules:
(a) If w(y) = (q,w) € A and ¢' € 7, then ¢’ = (¢,—) € Aif ¢ € Q_, and
¢ = (qw) e Aif ¢ € Qs
(b) If w(y) = (g.w) € A and 0 € 7, then 0 — (¢,0) € A.

The rules say that if w(t) is a successor of Ly, then t is also a successor
of L.

Now we prove that the construction is correct.

Lemma 3. For every process term t, and every ¢ € Q U Qgr we have:



t =1 (¢,0) iff t € Postp(L,) and t =0,
(2) t 55 (q,-) iff t € Postg(L,) and t € C,
t

Proof. We consider the (more complicated) left-to-right direction. The proof is
by structural induction on ¢:

— t=X 55 (q,—) (the case where ¢t =0 = 5 (¢,0) is similar). Note that the

rules of A do not allow derivations of the form X 55 (2,0) or X 5 3 (g, w).
Such a derivation has necessarily the following form:

X— zqx— 5(q,—)

where the rule gx — 5(q, —) is a B4-rule. There are three cases:
1. There exists w € {®, ||}, such that w(y) =4 ¢, w(Su(c(7))) = (g, w) is

in A, and gx € S, (o(7)). Suppose that w = ®, the other case where w =
|| is analogous. This means that there exists ¢x, - - - ¢x, € o(v) such that
ax € Se(gx, - qx,). This means that X € Rg(® (X1,...,X,)). Since
ax, - qx, € o(y) and ©(y) —a g, it follows that &(X1,...,X,) € L,.
Therefore, X € Rg(Ly), i.e., X € Postr(Ly).

2. There exists a constant V" such that ¥ -4 ¢, w(S,(gv)) — (g.w) is in

A, and gx € S, (gv). Suppose here also that w = @, the other case where
w = || is analogous. This means that ¢x € Sg(gy), and that X € R (V).
Since Y € L, it follows that X € Rg(Lg), i.e., X € Postr(L,).

3.0 54 ¢ w(S,(0) = (g,w) is in Aand gx € S, (0). Suppose here also
that w = ©, the other case where w = || is analogous. This means
that gx € Se(0), and that X € Rg(0). Since 0 € L, it follows that
X € Ry(Ly), i.e., X € Postr(Ly).

—t=0(t,....ty) =5 (q,®). The case where ¢t = ||(t1,...,t,) — 5 (q,]]) is
similar. There are three cases:
1. There exist n constants X1,..., X, such that

t= @(tl,...,tn) —*)A~ ®(qX1=---aan)_)A~(Q=®)-

In this case, every #; is necessarily equal to the constant X;. Then,
the A-rule ®(Reg) — (q,®), where ¢x, - -qx, € Reg is either a (;
or a (3o rule. Let us consider the case where it is a [f;-rule, the other
case being similar. Let then X be a constant such that X 5,4 ¢
and Reg = Sg(qx). Since gx, - --qx, € Reg, this means as previously
that ©(X1,...,Xn) € Re(X), i.e., since X € L, that ©(t1,...,tn) =
O(X1,...,Xp) € Postr(Ly).

2. There exist k constants Xi,..., Xy and n — k states qgy1,...,¢n in @
such that

t= G(t1,7tn) i)j Q(QXN---7QXk=‘Ik+17---:‘In)—)j((b@)-



In this case, for every 4, 1 < i < k, t; is necessarily equal to
the constant X;, and for every i, k +1 < @ < n, t; € L.
Then, the A-rule Q(Reg) - (q,®)/ where ax, " 4xyqk+1"""qn €
Reg is necessarily a [ rule. Let then ®(Reg') — ¢ be a rule
in A such that Reg = Sg(o(Reg')). Since qx, - qx,qr+1 " qn €
Reg, it follows that there exists qy, - qv,, qrs1 - qn € o(Reg') such
that gx, - - ¢x,qk+1- "an € Se(@vy - - qv, qk+1 - qn), and therefore
that ¢x, - gx, € Selqy; - -¢qv,,), and hence that ©(Xy,...,X;) €
Ro(® (1,...,Yn)), and that ©(X1,..., Xk, tit1,..-,tn) € Ro(®
(Yla"'7Ymatk+17"':tn))'

Since gy, QY. k1 n € o(Reg'),  we  get
that oY1, ..., Yo, tret1, .. tn) € L, and since
X1, o, Xyttt .- tn) € Ro( © Vi, Yo, thgr, ..o tn)), it

3 3

follows that ©(X1, ..., Xk, tkt1,...,tn) € Postg(L,). Therefore

t= @(tl,...,tn) = @(Xl,....Xk,tk+1....,tn) € POStR(Lq)

3 3

3. There exist n states qi,...,q, where at least one ¢; is of the form (p, ||)
or (p,—) where

t=0(t,. . tn) D5 0(a15- 1 an) 23 (0:0)

In this case, the last rule that is applied during the derivation is neces-
sarily a (3-rule. Then, 3 implies that for every i, 2 < i < n, ¢; € Q,
and that it is the state g; that is of the form (pi,||) (the case where it is
of the form (p;, —) is similar). More precisely, it implies that there exist
a rule ®(Reg) — ¢ in A and a rule ®(Reg') — (¢,®) in A such that
P1G2 - qn € Reg and (p1,||)q2 - qn € Reg'.

By structural induction, it follows that ¢1 € Postg(Lyp,). Let then ¢ €
Ly, be such that t; € Postg(t)). It follows that ®(t1,...,t,) € Postr(®

3

(t),.. .,tn)), and since for ¢, 2 <i <n, t; € L,, we have:

G(tll; e ;tn) _*)A ®(p17q2: e :qn)_)Aq
It follows then that t = ®(t1,...,t,) € Postr(Ly). 0

Therefore, we have:

Theorem 4. For every canonic PRS R and every CH-automaton A, we have

Postr(L(A)) = L(A").

As Preg(L) = Postg-1(L), the previous construction can also be used to
compute 1-step backward reachability sets.

5 Computing reachability sets for PAD and wPAD

In this section, we solve the problem of computing both reachability sets and 1-
step reachability sets for PAD and wPAD systems. Computing reachability sets



is difficult for PRS in general. One of the reasons is that already the reachability
sets of Petri nets are not semilinear. In [BT05] we show that the reachability
sets of a given canonic PRS system R can be effectively computed provided
the underlying multiset rewrite system R is effectively semilinear. This is, for
example, the case of canonic PAD systems due to the result of [Esp97] concerning
context-free multiset rewrite systems (BPP processes).

Theorem 5 ([BTO05]). Let A be a CH-automaton recognizing a set of process
terms and R be a canonic PAD. Then the sets Postp(L(A)) and Prep(L(A))
are computable and effectively representable by CH-automata.

Using this theorem and the results of the previous section, we get the following.

Theorem 6. For every PAD R and every CH-automaton A, the sets
Postr(L(A)), Prer(L(A)), Posti(L(A)), and Pre(L(A)) are computable and
effectively representable by CH-automata.

Proof. Theorem 1 implies that for every PAD R and every set of terms L,
there exists a canonic PAD R’ and a finite term substitution h such that
Posty(L) = h(Posty (h=(L))) and Postg(L) = h(Postg:(h~'(L))), where R"
is the set R' restricted to rules labelled with actions of Act(R). Hence, CH-
automata representing the sets Posth(L(A)) and Postr(L(A)) are constructible
due to closure properties of CH-automata and Theorems 5 and 4. The proof for
Prep(L(A)) and Prer(L(A)) is analogous. O

Now we show that the previous theorem holds for wPAD as well. Recall that
states of wPAD are pairs pt of a control state p and a term ¢. The sets of such
states can be represented by CHA-mappings.

Definition 7. Let R be a wPRS. A CHA-mapping A is a mapping assigning
to each control state p € M(R) a CH-automaton A(p). A CHA-mapping A
represents the set of states L(A) = {pt |p € M(R),t € L(A(p))}.

Theorem 8. For every wPAD R and every CHA-mapping A, the sets
Postr(L(A)), Preg(L(A)), Posti(L(A)), and Prey(L(A)) are computable and
effectively representable by CHA-mappings.

Proof. Let R be a wPAD. For each pair of control states p,q € M(R) we set

Ryy = {t1 < ty | pt1 < gty is a rule of R}. Note that each R, , is a PAD
system.

CHA-mapping A; representing Postg(L(A)) is defined as follows. For each
q € M(R), Ai(q) is an CH-automaton satisfying

L(Ai(g) = |J Postr,,(L(A(D))).

pEM(R)

CHA-mapping Ay representing Post(L(A)) is defined inductively with re-
spect to ordering < on set M (R) of control states. For every minimal element



r of M(R), Ax(r) is a CH-automaton satisfying L(4s(r)) = Posty  (L(A(r))).
For non-minimal element ¢ of M(R), A2(q) is a CH-automaton satisfying

L(4a(a)) = Posty, , (L(A(@) U | Post, , (L(4:(»))).

p<q

CHA-mappings Ay, Ay are constructible due to Theorem 6 and the fact that CH-
automata are closed under union. The proof for Preg(L(A)) and Preg(L(A)) is
analogous. O

As mentioned in [BTO05], the generic algorithm presented there can employ
known algorithms computing semilinear overapproximations of reachability sets
for Petri nets in order to compute overapproximations of reachability sets for
general canonic PRS systems. If we use this approximative algorithm for canonic
PRS instead of exact algorithm for canonic PAD system in Theorems 6 and 8, we
get an algorithm computing overapproximations of reachability sets for general
wPRS systems. Note that 1-step reachability sets for wPRS systems can still be
computed precisely as Theorems 6 and 8 hold even for (w)PRS if we restrict our

attention only to 1-step reachability sets.

6 Model checking of wPAD against EF logic

This section presents a straightforward application of Theorem 8. We consider
a variant of EF logic combining both action-based and state-based approaches.
We show that the global model checking problem of wPAD systems against this
logic is decidable.

Formulae of EF logic are defined as

@u=P|-p| o Aps | (a)p | EFp,

where P ranges over set AP of atomic propositions and a ranges over Act.
Here, formulae are interpreted over states of wPRS systems. For each atomic
proposition P, let V(P) denotes its valuation, i.e. the set of states where P
holds. We define when a state pt of a given wPRS system R satisfies a formula
p, written R, pt |= ¢, by induction on the structure of .

Rpt=P ifft pt e V(P)

R.pt|E—p iff R,ptlEep

R.ptlE i ANps iff R,ptl= 1 and R, pt = o

R, pt |= (a)p iff 3gt' such that pt Sk qt' and R, qt' |= ¢
R, pt |= EFp iff 3gt' such that pt S5 qt' and R, qt' |= ¢

Theorem 9. For every wPAD system R and every EF formula ¢ over atomic
propositions with valuations given by CHA-mappings, the set of states of R sat-
isfying ¢ is computable and effectively representable by a CHA-mapping.



Proof. The theorem follows directly from Theorem 8 and closure properties of
CH-automata. Here we mention just the induction step corresponding to oper-
ator (a). Let ¢ = {a)y and let CHA-mapping A recognizes all states satisfying
1. We construct a CHA-mapping A’, which recognizes all states where ¢ holds,
to satisfy L(A') = Preg, (L(A)), where R, is the set R restricted to rules with
label a. Such a CHA-mapping A’ is constructible due to Theorem 8. O

This theorem gives a positive answer to open questions formulated
in [KRS05], namely whether model checking of wBPP, wPA, and wPAD sys-
tems against action-based EF logic is decidable. Our result is tight as model
checking of state extended PAD (defined as wPAD where rules may not respect
the ordering on control states) against EF logic is already undecidable. In fact,
the problem is undecidable even for the subclass of state extended PAD called
multiset automata and EF formulae with the only atomic proposition ¢rue (this
can be proved by the arguments of [Esp97] showing that model checking of Petri
nets against EF logic is undecidable).

7 Bounded reachability analysis of synchronized PAD

The main disadvantage of PRS formalism in modelling current software sys-
tems is the fact that it allows only local communication or synchronization. For
example, PRS cannot model communicating parallel threads with unbounded
recursion, intuitively because no rule with left-hand side A||B can be applied to
term (A.C.D)||(B.E.F). Therefore, synchronized PRS systems have been intro-
duced [Tou05].

Let Act be a disjoint union Async U Sync U {7}. We assume that to each
a € Sync corresponds a co-action @ € Sync such that @ = a. Intuitively, Sync
is the set of all synchronization actions, i.e. actions which must be performed
simultaneously with their corresponding co-actions. A synchronized («,3)-PRS
R is defined as standard (a, §)-PRS. Instead of ’synchronized («, 3)-PRS’ we
use shorter names like SPAD, SPRS, etc.

Let — be the least transition relation over terms satisfying the inference rules

, )
(bt > t) €R t Dt th St t St St
t Dt tllt Sttt totdbot tllta = 1|2

where a ranges over Sync and b ranges over Act. An transition step induced by
the last rule is called synchronization. The transition relation — g is then defined
as the restriction of — to transitions labelled with actions of Act \ Sync.

The formalism of synchronized PRS systems allows to model both recursion
and task synchronization. Hence, it has a Turing power and even basic reacha-
bility problems are undecidable (see e.g. [Ram00]).

Abstraction techniques for getting upper approximations of reachability sets
for SPAD systems have been already defined in [Tou05], extending the approach
of [BET03,BET04]. Here we present a technique for computing underapproxi-
mations of these sets in style of [QRO5].



Given a synchronized (a, 8)-PRS R and n > 0, we construct an («, 3)-wPRS
R,, which mimics (prefixes of) all behaviours of R with at most n synchroniza-
tions. The system R, uses control states 0 < 1 < ... < 3n. For every rewrite

rule r = (t; Ly t2) of R, let Z, ¢ Const(R) be a fresh process constant. If

— b € Async U {7} then we add to R, the rule (3i)¢; Ly (3i)ty for every
0<i<n. , ,

— b=a € Sync the we add to Ry, rules (3i)t; < (3i + 1)Z, and (3i + 2)Z, &
(37 4 3)ty for every 0 < i < n.

— b =a € Sync the we add to R, rule (3i + 1)t; < (3i 4 2)t, for every
0<i<n.

Intuitively, every synchronization via actions a, @ is replaced by a sequence of
actions 7/77'. The changes of control states prevents interleaving of this sequence
with other actions. Moreover, use of fresh process constants ensures that the rules
under a and a are applied on different parts of the current term.

Let R be an SPAD and L be a set of states represented by a CH-automaton.
Theorem 8 says that we can construct a CHA-mapping A such that L(A) =
Posty, ({0} x L). Obviously, the set | J,<,,, L(A(37)) is an underapproximation
of Posty(L). Further, with increasing n, we can compute better approximations
of this set. Moreover, if for n and n + 1 the computed underapproximations are
the same, we know that we have exactly the set Posty(L).

The same technique can be employed to underapproximate the set Prey(L).
The sets Postg(L) and Preg(L) can be computed precisely using a similar ap-
proach.

8 Conclusion

We have presented an automata-based symbolic reachability analysis algorithm
for the class of wPAD systems. This algorithm is based on the use of a class
of unranked tree automata (called CH-automata) which can recognize sets of
configurations closed under the algebraic properties of the sequential and parallel
composition. We used the reachability analysis algorithm, together with one-step
successor computation (and boolean operations on CH-automata), in order to
define an algorithm for the global model checking of wPAD against the EF logic
with regular atomic predicates. These results generalize those proved in [BT05]
concerning the class of (canonic) PAD systems, which is a strict subclass of
wPAD, pushing the known decidability limit of EF model checking further up
in the (se/w)PRS hierarchy, and answering open questions left in [KRS05].

We have also shown that the symbolic reachability algorithm for wPAD can
be used to compute under approximations of the set of reachable configurations
of synchronized PAD (SPAD), a (Turing) powerful model introduced in [Tou05)
for modeling multithreaded programs (with dynamic creation of communicating
processes and procedure calls). Abstraction techniques for getting upper ap-
proximations of reachability sets for SPAD systems have been already defined
in [Tou05], extending the approach of [BET03,BET04].
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