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This is the ase obviously when abstrat models are �nite-state. However, assaid above, in order to take into aount omplex ontrol primitives suh as pro-edure alls and proess reation, �nite state models are not expressive enough.For instane, in the ase of sequential programs with reursive proedure alls,the needed abstrat models are (unbounded-stak) pushdown systems, and forprograms with dynami reation of ommuniating �nite-state proesses, naturalmodels are (unbounded) Petri nets. Fortunately, there exist several algorithmitehniques (e.g., reahability analysis, model-heking) whih have been devel-oped for the analysis and the veri�ation of these in�nite-state models.In this paper, we onsider the ase of programs whih may ontain both (re-ursive) proedure alls and dynami reation of proesses (threads). One possi-ble approah to model suh systems is to ombine pushdown systems with Petrinets. This orresponds to the use of Proess Rewrite Systems (PRS) introduedin [May00℄. These models an be seen indeed as ombinations of pre�x rewritesystems and multiset rewrite systems. The relevane of PRS in programmodelinghave been disussed for instane in [EK99,EP00,Esp02,BT03,BT05℄. Sublassesof PRS whih are of partiular interest for program modeling are for instane thelass of PA proesses, and the larger lass of PAD proesses generalizing both PAand pushdown proesses and orresponding to synhronization-free PRS (i.e.,models where parallel omposition is not allowed in the left-hand-side of therewrite rules). Proesses in these lasses allow indeed to model systems withproedure alls and parbegin-parend bloks (i.e., launhing a number of par-allel threads, and wait for their termination before proeeding). PAD allow inaddition return values from sequential proedure alls.Rihard Mayr has shown that the reahability problem (whether a given stateis reahable from another given state) for PRS is deidable using a redution tothe reahability problem of Petri nets [May00℄. To get pratial veri�ation al-gorithms, symboli reahability algorithms have been investigated for signi�antsublasses of PRS suh as PA [LS98,EP00℄ and PAD [BT03,BT05℄. These algo-rithms use (various kinds of) tree automata to represent (regular) in�nite sets ofon�gurations (i.e., proess terms). In partiular, we have provided in [BT05℄ ageneri onstrution allowing to ompute the set of (forward or bakward) reah-able on�gurations of any sublass of PRS built from the ombination of pre�xrewrite systems with an e�etively semilinear lass of multiset rewrite systems(i.e., a lass of systems for whih reahability sets are always semilinear and ef-fetively omputable). We have shown that this leads to a symboli reahabilityanalysis algorithm for PAD proesses in a ertain normal form.The PRS formalism is not Turing powerful due to a subtle restrition onthe way synhronization is done between parallel proesses. Roughly speaking,the semantis of PRS implies that synhronization an only be allowed betweenparallel proesses with empty staks.In order to extend the modeling power of PRS, one approah is to addsynhronization by rendez-vous (�a la CCS), whih leads to a Turing powerfulmodel alled synhronized PRS [Tou05℄. Similarly, PAD an be extended tosynhronized PAD (whih is also a Turing powerful model). Approximate analy-



sis algorithms for these models using abstration tehniques have been proposedin [Tou05℄.Another approah for enhaning the modeling power of PRS (and PAD) on-sists in adding global ontrol states. The new models, alled sePRS [JKM01℄,an be seen as parallel produt of a PRS with a �nite-state automaton repre-senting a global ontrol. Obviously, sePRS are Turing powerful sine they allowommuniation between reursive parallel proesses through the global ontrolstate. However, if the struture of the ontrol automaton is weak, whih meansthat all its loops are self-loops, then it an be proved that the obtained mod-els, alled wPRS, have a deidable reahability problem [K�RS04a℄ (the proofemploys deidability of the reahability problem for Petri nets). Similarly, if weadd ontrol states to PAD proesses, we obtain Turing powerful models, but theextension of PAD with weak ontrol automata leads to models, alled wPAD,having a deidable reahability problem, and interestingly, whih an be provento be stritly more powerful (w.r.t. strong bisimulation) than PAD [K�RS04b℄.In this paper we extend the results on symboli reahability analysis pre-sented in [BT05℄. While [BT05℄ deals only with PAD proesses in a ertain nor-mal form (now alled anoni PAD), here we show that the set of reahabilitystates are omputable and e�etively representable even for (general) wPADsystems. To do this, we employ symboli representations based on so-alledommutative-hedge automata (CH-automata), allowing to de�ne sets of proessterms modulo the assoiativity of sequential omposition, and the assoiativity-ommutativity of the parallel omposition. We show that these representationsare e�etively losed under the omputation of the post� and pre� images (i.e.,omputation of all suessors and all predeessors) for wPAD, as well as underthe post and pre images (i.e., omputation of immediate suessors and prede-essors) for the whole lass of wPRS.Further, we solve the global model-heking problem of wPAD against the EFlogi. We onsider a variant of EF logi whih generalizes the standard ation-based EF logi by the use of atomi propositions orresponding to (potentiallyin�nite) sets of on�gurations whih are de�nable using CH-automata. We provethat for every formula in this logi, it is possible to onstrut a (CH-automatabased) representation of the set of all on�gurations (in a given wPAD) satisfyingthis formula. This result loses an open problem formulated in [K�RS05℄ onern-ing the model-heking problem of wPAD. Notie that global model-heking isa more general problem than deiding whether a given on�guration satis�es agiven formula.Finally, we show that our results onerning symboli reahability analy-sis of wPAD an be used in the analysis of synhronized PAD (SPAD) witha bounded number of synhronizations. This leads to an approximate analysisproedure for SPAD based on omputing under approximations of their reaha-bility sets by onsidering only reahable on�gurations up to some �xed numberof synhronizations. Suh approximate analysis method for SPAD an be usedin pratie to establish the existene of erroneous behaviors, following the ap-proah advoated in [QR05℄. It onstitutes a omplementary approah to the



abstrat analysis (provided for the same models in [Tou05℄), whih is based ononsidering upper approximations of the set of possible behaviors and whih isuseful for establishing the absene of erroneous behaviors.2 Preliminaries2.1 Proess termsLet Const = fX; : : :g be a set of proess onstants. For every C � Const , the setTC of proess terms over C is de�ned by the abstrat syntax t ::= 0 jX j t�t j tkt,where 0 is the idle term, X 2 C is a proess onstant; and � and k meansequential and parallel ompositions respetively.We use ! to denote in a generi way � or k. We denote by ! the operator �(resp. k) if ! = k (resp. ! = �). Proess terms are onsidered modulo the fol-lowing algebrai properties: assoiativity of �, assoiativity and ommutativityof k, and neutrality of 0 w.r.t. both � and k, i.e. 0� t = t� 0 = tk0 = t. Let 'be the equivalene relation on T indued by these properties.We distinguish four lasses of proess terms as:1 { terms onsisting of a single proess onstant only, in partiular 0 62 1,S { sequential terms - terms without parallel omposition, e.g. X � Y � Z,P { parallel terms - terms without sequential omposition, e.g. XkY kZ,G { general terms - terms without any restritions, e.g. (X � (Y kZ))kW .Proess terms in anonial form are terms t de�ned by:t ::= 0 j s j ps ::= X j p1 � p2 � : : :� pn; n � 2p ::= X j s1ks2k : : : ksn; n � 2It an easily be seen that every term has an '-equivalent term in anonial form.In the following we work with terms in anonial form.Term t is alled seq-term if t = 0, or t = X for a onstant X , or t =p1 � p2 � : : :� pn where n � 2. In the last ase, the term is also alled �-rootedterm. Further, t is alled at seq-term if t = X1 � X2 � : : : � Xn for n � 0(the ase n = 0 orresponds to the term 0, and the ase n = 1 orresponds toa proess onstant X). By analogy we de�ne par-terms, k-rooted terms, and atpar-terms.2.2 Proess Rewrite Systems and weak extensionLet M = fo; p; q; : : :g be an ordered set of ontrol states and At = fa; b; ; : : :gbe a set of ations. Let �; � 2 f1; S; P;Gg be lasses of proess terms suh that� � �. An (�; �)-wPRS (weakly extended proess rewrite system) R is a �niteset of rewrite rules of the form (p; t1) a,! (q; t2), where t1 2 �, t1 6= 0, t2 2 �,



p; q 2 M , p � q, and a 2 At . By M(R), Const(R), and At(R) we denote setsof ontrol states, proess onstants, and ations ourring in rewrite rules of R.An (�; �)-wPRS R indues a labelled transition system the states of whihare pairs (p; t) suh that p 2M(R) is a ontrol state and t 2 � is a proess termover Const(R). The transition relation !R is the least relation satisfying thefollowing inferene rules:((p; t1) a,! (q; t2)) 2 R(p; t1) a!R (q; t2) (p; t1) a!R (q; t2)(p; t1kt) a!R (q; t2kt) (p; t1) a!R (q; t2)(p; t1 � t) a!R (q; t2 � t)We extend the transition relation to �nite words over At in a standard way.The reexive and transitive losure of !R is denoted by �!R. To shorten ournotation we write pt in lieu of (p; t).An (�; �)-wPRS where M(R) is a singleton is alled (�; �)-PRS (proessrewrite system). In suh systems we omit the single ontrol state from rules andstates.Instead of (S;G)-PRS, (S;G)-wPRS, (G;G)-PRS, and (G;G)-wPRS we usemore readable names PAD, wPAD, PRS, and wPRS respetively. Let us notethat the lasses PAD and wPAD subsume widely known models of in�nite-state systems as pushdown proesses (PDA), basi parallel proesses (BPP), andproess algebras (PA). The lasses PRS and wPRS subsume also Petri nets (PN).More information about expressiveness of (�; �)-wPRS and (�; �)-wPRS an befound in [K�RS04b,K�RS04a℄.Given a state pt of a wPRS R, we de�nePostR(pt) = fp0t0 j pt a!R p0t0 for some ag Post�R(pt) = fp0t0 j pt �!R p0t0gPreR(pt) = fp0t0 j p0t0 a!R pt for some ag Pre�R(pt) = fp0t0 j p0t0 �!R ptgThe sets Post�R(pt) and Pre�R(pt) are alled (forward and bakward) reahabilitysets. The sets PostR(pt) and PreR(pt) are alled 1-step (forward and bakward)reahability sets. These de�nitions and notations an be extended to sets of statesin the obvious manner.2.3 Canoni PRSA anoni PRS R is a set of rewrite rules of the forms:X1 �X2 � : : :�Xn a,! Y1 � Y2 � : : :� Ym (1)X1kX2k : : : kXn a,! Y1kY2k : : : kYm (2)where n;m � 0. Rules of the form (1) and (2) are alled �-rules and k-rulesrespetively. By R! we denote the set of all !-rules of R. Note that the setsRk and R� do not have to be disjoint as some rules (e.g. X a,! Y ) are of bothtypes. Let �; � 2 f1; S; P;Gg be lasses of proess terms. A anoni PRS is alledanoni (�; �)-PRS if every rule t1 a,! t2 of R satis�es t1 2 � and t2 2 �. Finally,anoni PAD stands for anoni (S;G)-PRS.



Note that a anoni PRS does not have to be a PRS as we allow rules with0 on the left-hand side. Further, the de�nition of anoni (�; �)-PRS does notrequire that � � �. The meaning of Const(R);!R;PostR;PreR; : : : remains thesame.Given a anoni (�; �)-PRS R, by R�1 we denote the anoni (�; �)-PRSwith rules obtained by swapping the left-hand and right-hand sides of the rulesof R. Notie that for every set of proess terms L, PreR(L) = PostR�1(L) andPre�R(L) = Post�R�1(L).The problem of omputing reahability sets of PRS systems an be trans-formed into the same problem for anoni PRS using the following theorem.The proof of this theorem employs a variant of the standard onstrution givenin [May00℄. However, our theorem di�ers from the one of [May00℄ in several as-pets. In partiular, (1) we transform an (�; �)-PRS into a anoni (�; �)-PRS,whih is not the ase of Mayr's transformation, and (2) in ontrast to the origi-nal theorem in [May00℄, our theorem states that the same transformation of Rworks for all terms over a given set of proess onstants.A term substitution h is a funtion on proess terms satisfying h(0) = 0 andh(t1 ! : : : ! tn) = h(t1)! : : : ! h(tn) for all �nite sequenes t1; : : : ; tn of termsand for both ! = �; k. In other words, a term substitution is fully spei�ed byits values on proess onstants. We say that a term subsitution h is �nite if theset fX j h(X) 6= Xg of proess onstants is �nite.Theorem 1. For every (�; �)-PRS system R and every set of proess onstantsC we an onstrut a anoni (�; �)-PRS system R0 and a �nite term substitu-tion h, suh that for every t1; t2 over C [ Const(R) and every a 2 At(R) wehave:1. t1 a!R t2 i� there exists t01; t02 satisfying h(t01) = t1, h(t02) = t2, and t01 a!R0 t02,2. t1 �!R t2 i� there exists t01; t02 satisfying h(t01) = t1, h(t02) = t2, and t01 �!R0 t02.Proof. Let size(t a,! t0) be the number of ourrenes of � and k in terms t andt0. Given any PRS R, let ki be the number of rules r 2 R that are neither �-rulesnor k-rules and size(r) = i. Thus, R is anoni PRS i� ki = 0 for every i. In thisase, let n = 0. Otherwise, let n be the largest i suh that ki 6= 0 (n exists asthe set of rules is �nite). We de�ne norm(R) to be the pair (n; kn).First we desribe a proedure transforming an (�; �)-PRS R into an (�; �)-PRS R0 and de�ning �nite term substitution h suh that norm(R0) < norm(R)(with respet to the lexiographial ordering) and for every terms t1; t2 overC [ Const(R) and every a 2 At(R) the following equivalenes hold:1. t1 a!R t2 () there exists t01; t02 satisfying h(t0i) = ti and t01 a!R0 t022. t1 �!R t2 () there exists t01; t02 satisfying h(t0i) = ti and t01 �!R0 t02In this proof we assume that � is left-assoiative. It means that the termX �Y �Z is seen as (X �Y )�Z and so its subterms are X , Y , Z, and X �Y ,but not Y � Z. Let us assume that R is not anoni PRS. Let � 62 At(R) bea fresh ation. We set h(X) = X for every X 2 C [ Const(R) and R0 = R.



Let r = (s1 a,! s2) be a rule of R0 that is neither �-rule nor k-rule and has themaximal size . There are three ases:1. s1 is !-rooted and s2 is !-rooted. In R0 we replae the rule r by rules s1 �,! Z,Z a,! s2, where Z 62 C [ Const(R) is a fresh proess onstant. We seth(Z) = s1. Clearly, the onsidered equivalenes holds.2. s1; s2 are par-terms and at least one of them is not at. Let t be an �-rooted subterm of s1 or s2. We modify R0 in two steps. First, in all left-handand right-hand sides of all rules, we replae every ourrene of t by a freshproess onstant Z 62 C [ Const(R). Further, we add the rule Z �,! t and ift 2 � then we add also the rule t �,! Z. We set h(Z) = t.We say that an ourrene of subterm t of term s is ative, if a rule t �,! Zan be applied on s suh that the ourrene of t is replaed by Z. Theourrene is inative otherwise. Note that an ourrene of t in s is inativei� it is a subterm of the right omponent of some sequential omposition.Clearly, the �rst equivalene and the impliation \(=" of the seond equiv-alene hold. In order to prove the remaining impliation, we show that everytransition l1 a!R l2 (where l1; l2 are terms over C [ Const(R)) orrespondsto a transition sequene l01 ��a��! R0 l02, where l01; l02 are l1; l2 with all inativeourrenes of t replaed by Z. Let us assume that the transition l1 a!R l2 isgenerated by a rule l a,! l0. Eah ourrene of t in l1 modi�ed by the rule iseither ative, or it is inative (and thus replaed by Z in l01) and ompletelyontained in l (due to the left-assoiativity of �). Hene, we an apply therule t �,! Z to all ourrenes of t in l01 whih are going to be modi�ed by therule of R0 orresponding to l a,! l0 (i.e. the same rule with all ourrenes oft replaed by Z). This orresponding rule is applied afterwards.The situation with ourrenes of t appearing in l2 after the appliation ofthe onsidered rule is similar. Eah ourrene of t in l2 reated by the ruleis either ative, or it is inative and ompletely ontained in l. Hene, afterappliation of the orresponding rule of R0, we apply the rule Z �,! t to allative ourrenes of Z to reah l02.3. s1; s2 are seq-terms and at least one of them is not at. This ase is a diretanalogy of the previous one.Note that norm(R0) < norm(R) and R0 belongs to (�; �)-PRS lass. After�nitely many (say n) appliations of this proedure, a given (�; �)-PRS R istransformed into a anoni (�; �)-PRS R0. Let hi be the �nite term substitutionde�ned in i-th appliation of the proedure. We set h = h1 Æ h2 Æ : : : Æ hn. It isnow easy to see that this anoni PRS R0 and �nite term substitution h satisfythe equivalenes formulated in the theorem. ut3 Automata-based symboli representationsIn order to perform reahability analysis of PRS, we need representation stru-tures for (in�nite) sets of proess terms. For this purpose, we use a lass of



tree-automata, alled ommutative hedge automata [BT05℄, whih reognize setsof trees modulo assoiativity / assoiativity-ommutativity. These automata ex-tend both (1) bottom-up tree automata over ranked alphabets [CDG+97℄, and(2) hedge automata reognizing sets of undounded width trees [BKMW01℄.3.1 PreliminariesPresburger arithmeti is the �rst order logi of integers with addition and linearordering. Given a formula ', we denote by FV (') the set of its free variables. LetFV (') = fx1; : : : ; xng. Then, a vetor u = (u1; : : : ; un) 2 Zn satis�es ', writtenu j= ', if '(u) = '[xi  ui℄ is true. Eah formula ' de�nes a set of integervetors [['℄℄ = fu 2 Zn j u j= 'g. Presburger formulas de�ne semilinear setsof integer vetors, i.e., �nite union of sets of the form fx 2 Zn j 9k1; : : : ; kn 2Z;x= v0 + k1v1 � � �+ knvmg, where vi 2 Zn, for 1 � i � m (see [Har78℄).Given a word w over an alphabet � = fa1; : : : ; ang, the Parikh image ofw, denoted Parikh(w), is the vetor (jwja1 ; : : : ; jwjan). This de�nition an begeneralized to sets of words (languages) over � in the obvious manner.As usual, a set of words is regular if it is de�nable by a �nite-state automaton.The notion of regularity an be transfered straightforwardly to sets of at seq-terms. Similarly, the notion of semilinearity an be transfered to sets of atpar-term by assoiating with a term X1k � � � kXn the vetor Parikh(X1 � � �Xn).In the sequel, we will represent by  a onstraint whih is either a regularlanguage or a Presburger formula. We say that a word w = a1a2 : : : an satis�esthe onstraint  if w 2  (resp. Parikh(w) j= ) when  is a language (resp. aformula).3.2 Commutative Hedge AutomataLet � = �0 [ �A be a �nite alphabet, where �0 is a ranked alphabet, and �Ais a �nite set of assoiative operators. We assume that �0 and �A are disjoint.For k � 0, let �k denote the set of elements of �0 of rank k.�-Terms: Let X be a �xed ountable set of variables fx1; x2; : : :g. The setT�[X ℄ of �-terms over X is the smallest set suh that:{ �0 [ X � T� [X ℄,{ for k � 1, if f 2 �k and t1; : : : ; tk 2 T�[X ℄, then f(t1; : : : ; tk) 2 T�[X ℄,{ if f 2 �A, t1; : : : ; tn 2 T�[X ℄ for some n � 1, and root(ti) 6= f for every1 � i � n, then f(t1; : : : ; tn) 2 T� [X ℄, where root(�) = � if � 2 �0 [X , androot�g(u1; : : : ; um)� = g.Note that if f 2 �A, we only onsider terms of the form f(t1; : : : ; tn)suh that for every i, the root of ti is di�erent from f . Indeed, sine f isassoiative, f�t1; : : : ; ti�1; f(u1; : : : ; um); ti+1; : : : ; tn� is equivalent to the termf(t1; : : : ; ti�1; u1; : : : ; um; ti+1; : : : ; tn).



Terms without variables are alled ground terms. Let T� be the set of groundterms of T� [X ℄. A term t in T�[X ℄ is linear if eah variable ours at most onein t. A ontext C is a linear term of T� [X ℄. Let t1; : : : ; tn be terms of T� ,then C[t1; : : : ; tn℄ denotes the term obtained by replaing in the ontext C theourrene of the variable xi by the term ti, for eah 1 � i � n.De�nition of CH-automata: Let us onsider that �A = �0A [ �0AC where�0AC is a set of assoiative and ommutative operators. We assume that �0A and�0AC are disjoint. Then, a CH-automaton is a tuple A = (Q;�; F;�) where:{ Q is a union of disjoint �nite sets of states Q0 [Sf2�A Qf ,{ F � Q is a set of �nal states,{ � is a set of rules of the form:1. a! q, where q 2 Q0; a 2 �0,2. f(q1; : : : ; qk)! q, where f 2 �k; q 2 Q0, and qi 2 Q,3. q ! q0, where (q; q0) 2 Q0 �Q0 [Sf2�A Qf �Qf ,4. f(Reg)! q, where f 2 �0A, Reg � (Q nQf )� is a regular language givenby a �nite-state automaton, and q 2 Qf ,5. f(') ! q, where f 2 �0AC , q 2 Qf , and ' is a Presburger formula suhthat FV (') = fxq j q 2 Q nQfg.We de�ne a move relation !� between ground terms in T�[Q as follows: forevery two terms t and t0, we have t!� t0 i� there exist a ontext C and a ruler 2 � suh that t = C[s℄, t0 = C[s0℄, and:{ r = a! q, with s = a and s0 = q, or{ r = q ! q0, with s = q and s0 = q0, or{ r = f(q1; : : : ; qk)! q, with s = f(q1; : : : ; qk) and s0 = q, or{ r = f(Reg) ! q, with f 2 �0A, s = f(q1; : : : ; qn), q1 � � � qn 2 Reg , ands0 = q, or{ r = f(') ! q, with f 2 �0AC , s = f(q1; : : : ; qn), Parikh(q1 � � � qn) j= ',and s0 = q.Let �!� denote the reexive-transitive losure of !�. A ground term t 2 T� isaepted by a state q if t �!� q. Let Lq = ft 2 T� j t �!� qg. A ground termt 2 T� is aepted by the automaton A if it is aepted by some �nal state q 2 F .The CH-language of A, denoted by L(A), is the set of all ground terms aeptedby A.We have the following fat [Col02,Lug03,SSM03,Tou03,BT05℄:Theorem 2. The lass of languages reognized by CH-automata is e�etivelylosed under boolean operations, term substitutions and inverse of �nite termsubstitutions. Moreover, the emptiness problem of CH-automata is deidable.



3.3 CH-automata for PRS proess termsWe onsider proess terms as trees and use CH-automata to represent sets ofsuh trees. Indeed, for any �nite set C � Const , the set TC of proess termsan be seen as the set of �-terms T� where �0 = f0g [ C, �0A = f�g, and�0AC = fkg.Sets of proess terms are reognized by CH-automata A = (Q;�; F;�) suhthat (1) Q is the disjoint union Q = Q0 [Q� [Qk where Q0 is itself the disjointunion Q0 = Q0 [ Q�, and (2) the rules in � are of the form: (a) X ! q, whereq 2 Q�, X 2 Const, (b) 0 ! q, where q 2 Q0, () q ! q0, where (q; q0) 2(Q0)2 [ (Q�)2 [ (Q�)2 [ (Qk)2, (d) �(Reg)! q, where Reg � �Q n (Q� [Q0)��is a regular language and q 2 Q�, and (e) k(') ! q, where q 2 Qk and ' is aPresburger formula suh that FV (') = fxq j q 2 Q n (Qk [Q0)g.In other words, the states in Q� (resp. Qk) reognize trees whose root is� (resp. k). The states in Q� reognize onstants in C, and the states in Q0reognize 0.4 Computing 1-step reahability sets for anoni PRSLet us onsider a anoni PRS R = R� [Rk and let A = (Q;�; F;�) be a CH-automaton reognizing a set L of proess terms. We show that the sets PostR(L)and PreR(L) are e�etively representable and omputable by CH-automata.For a given anoni PRS R0 and a given set of terms L1, we write R0(L1)as an abbreviation for PostR0(L1). In the following we use the fat that givena regular set L2 of at seq-terms, the set R0�(L2) is again regular and easilyonstrutible. The same holds for any semilinear sets L3 of at par-terms andR0k(L3).We onstrut a CH-automaton A0 = ( eQ;�; eF; e�) whih reognizes R(L),where eQ is the set of states, eF is the set of �nal states, and e� is the set of rules.Let C be a �nite set of proess onstants suh that C � Const(R) and L � TC .4.1 The set of statesThe set of states eQ inludes the set of states Q of A and ontains new states qX ,whih are assumed to aept preisely the singletons fXg (i.e., LqX = fXg), foreah X 2 C. Let QR be the set of states QR = fqX j X 2 Cg. In addition, theset eQ ontains states whih reognize the set R(Lq) of immediate suessors ofterms in Lq for eah q 2 Q [ QR. In order to ensure (during the onstrution)that the reognized trees are always in anonial form, we need to partition thesets of reognized trees aording to their types (given by their root).We assoiate with eah q 2 Q [ QR di�erent states (q;�); (q; 0); (q;�), and(q; k) reognizing immediate suessors of terms in Lq whih are respetivelyonstants in C, null (equal to 0), �-rooted terms, and k-rooted terms.Let Q = Q0 [ Q� [ Q� [ Qk. We onsider that the set eQ is equal to theunion of the following sets: (1) eQ0 = Q0 [ f(q; 0) j q 2 Q [ QRg, (2) eQ� =



Q� [QR [ f(q;�) j q 2 Q [QRg, and (3) eQ! = Q! [ f(q; !) j q 2 Q[QRg, for! 2 f�; kg. Moreover, we onsider that eF = f(q;�); (q; 0); (q;�); (q; k) j q 2 Fg.4.2 Rewrite system over the alphabet of statesRules in CH-automata (of the forms !()! q) involve onstraints on sequenesof states, whereas the systemsR� and Rk are de�ned over the alphabet of proessonstants. Therefore, we de�ne the systems S� = �(R�) and Sk = �(Rk) where� is the substitution suh that �(X) = qX , for every X 2 C (extended in thestandard way to terms, rules, and sets of rules).4.3 The set of transition rulesThe set e� is de�ned as the smallest set of transition rules whih (1) ontains �,(2) ontains the set of rules X ! qX for every X 2 Const , and (3) is suh that:(�1) Closure rules: suessors of proess onstants and 0:(a) If X �!� q, then !�S!(qX)�! (q; !) 2 e�,(b) If 0 �!� q, then !�S!(0)�! (q; !) 2 e�.The rule (a) says that if X is in Lq, then all its immediate !-suessorsobtained by applying one the system R! are also immediate suessors ofLq. The rule (b) says the same thing for suessors of 0.(�2) Closure rule: suessors of !-rooted terms: If !() ! p 2 �, then!�S!(�())� ! (p; !) 2 e�, where � is the substitution suh that 8q 2Q [QR, �(q) = fqg [ fqX j X �!� qg [ f0 j 0 �!� qg.This rule says that if !(X1; : : : ; Xn) 2 Lp and !(X 01; : : : ; X 0m) 2R!�!(X1; : : : ; Xn)�, then !(X 01; : : : ; X 0m) is a !-suessor of Lp.(�3) Propagation rule: If !() ! p 2 �, then !�E!()� ! (p; !) 2 e�, whereE is a anoni PRS de�ned as E = fq ,! (q;�); q ,! (q;�); q ,! (q; k)g.The rule says that if �(t1; : : : ; tn) 2 Lp and t01 is a suessor of t1, then�(t01; : : : ; tn) is a suessor of Lp. Moreover, if k(t1; : : : ; tn) 2 Lp and t0i is asuessor of ti, then k(t1; : : : ; t0i; : : : ; tn) is a suessor of Lp.Note that we need to distinguish between Ek() and E�() to ensure thatthe pre�x-rewrite strategy of the � is orretly taken into aount.(�4) Term attening rules:(a) If !() ! (q; !) 2 e� and q0 2 , then q0 ! (q;�) 2 e� if q0 2 eQ�, andq0 ! (q; !) 2 e� if q0 2 eQ!.(b) If !()! (q; !) 2 e� and 0 2 , then 0! (q; 0) 2 e�.The rules say that if !(t) is a suessor of Lq, then t is also a suessorof Lq.Now we prove that the onstrution is orret.Lemma 3. For every proess term t, and every q 2 Q [QR we have:



(1) t �! e� (q; 0) i� t 2 PostR(Lq) and t = 0,(2) t �! e� (q;�) i� t 2 PostR(Lq) and t 2 C,(3) t �! e� (q; !) i� t 2 PostR(Lq) and root(t) = !, for ! 2 f�; kg.Proof. We onsider the (more ompliated) left-to-right diretion. The proof isby strutural indution on t:{ t = X �! e� (q;�) (the ase where t = 0 �! e� (q; 0) is similar). Note that therules of e� do not allow derivations of the form X �! e� (q; 0) or X �! e� (q; w).Suh a derivation has neessarily the following form:X! e�qX! e�(q;�)where the rule qX! e�(q;�) is a �4-rule. There are three ases:1. There exists w 2 f�; jjg, suh that w()!� q, !�S!(�())�! (q; !) isin e�, and qX 2 S!(�()). Suppose that ! = �, the other ase where ! =jj is analogous. This means that there exists qX1 � � � qXn 2 �() suh thatqX 2 S�(qX1 � � � qXn). This means that X 2 R��� (X1; : : : ; Xn)�. SineqX1 � � � qXn 2 �() and �() !� q, it follows that �(X1; : : : ; Xn) 2 Lq.Therefore, X 2 R�(Lq), i.e., X 2 PostR(Lq).2. There exists a onstant Y suh that Y �!� q, !�S!(qY )� ! (q; !) is ine�, and qX 2 S!(qY ). Suppose here also that w = �, the other ase wherew = jj is analogous. This means that qX 2 S�(qY ), and thatX 2 R�(Y ).Sine Y 2 Lq, it follows that X 2 R�(Lq), i.e., X 2 PostR(Lq).3. 0 �!� q, !�S!(0)� ! (q; !) is in e�,and qX 2 S!(0). Suppose here alsothat w = �, the other ase where w = jj is analogous. This meansthat qX 2 S�(0), and that X 2 R�(0). Sine 0 2 Lq, it follows thatX 2 R�(Lq), i.e., X 2 PostR(Lq).{ t = �(t1; : : : ; tn) �! e� (q;�). The ase where t = jj(t1; : : : ; tn) �! e� (q; jj) issimilar. There are three ases:1. There exist n onstants X1; : : : ; Xn suh thatt = �(t1; : : : ; tn) �! e� �(qX1 ; : : : ; qXn)! e�(q;�):In this ase, every ti is neessarily equal to the onstant Xi. Then,the e�-rule �(Reg) ! (q;�), where qX1 � � � qXn 2 Reg is either a �1or a �2 rule. Let us onsider the ase where it is a �1-rule, the otherase being similar. Let then X be a onstant suh that X �!� qand Reg = S�(qX ). Sine qX1 � � � qXn 2 Reg , this means as previouslythat �(X1; : : : ; Xn) 2 R�(X), i.e., sine X 2 Lq that �(t1; : : : ; tn) =�(X1; : : : ; Xn) 2 PostR(Lq).2. There exist k onstants X1; : : : ; Xk and n � k states qk+1; : : : ; qn in Qsuh thatt = �(t1; : : : ; tn) �! e� �(qX1 ; : : : ; qXk ; qk+1; : : : ; qn)! e�(q;�):



In this ase, for every i, 1 � i � k, ti is neessarily equal tothe onstant Xi, and for every i, k + 1 � i � n, ti 2 Lqi .Then, the e�-rule �(Reg) ! (q;�), where qX1 � � � qXkqk+1 � � � qn 2Reg is neessarily a �2 rule. Let then �(Reg 0) ! q be a rulein � suh that Reg = S�(�(Reg 0)). Sine qX1 � � � qXkqk+1 � � � qn 2Reg , it follows that there exists qY1 � � � qYmqk+1 � � � qn 2 �(Reg 0) suhthat qX1 � � � qXkqk+1 � � � qn 2 S�(qY1 � � � qYmqk+1 � � � qn), and thereforethat qX1 � � � qXk 2 S�(qY1 � � � qYm), and hene that �(X1; : : : ; Xk) 2R�� � (Y1; : : : ; Ym)�, and that �(X1; : : : ; Xk; tk+1; : : : ; tn) 2 R�� �(Y1; : : : ; Ym; tk+1; : : : ; tn)�.Sine qY1 � � � qYmqk+1 � � � qn 2 �(Reg 0), we getthat �(Y1; : : : ; Ym; tk+1; : : : ; tn) 2 Lq , and sine�(X1; : : : ; Xk; tk+1; : : : ; tn) 2 R�� � (Y1; : : : ; Ym; tk+1; : : : ; tn)�, itfollows that �(X1; : : : ; Xk; tk+1; : : : ; tn) 2 PostR(Lq). Thereforet = �(t1; : : : ; tn) = �(X1; : : : ; Xk; tk+1; : : : ; tn) 2 PostR(Lq)3. There exist n states q1; : : : ; qn where at least one qi is of the form (p; jj)or (p;�) wheret = �(t1; : : : ; tn) �! e� �(q1; : : : ; qn)! e� (q;�)In this ase, the last rule that is applied during the derivation is nees-sarily a �3-rule. Then, �3 implies that for every i, 2 � i � n, qi 2 Q,and that it is the state q1 that is of the form (p1; jj) (the ase where it isof the form (p1;�) is similar). More preisely, it implies that there exista rule �(Reg) ! q in � and a rule �(Reg 0) ! (q;�) in e� suh thatp1q2 � � � qn 2 Reg and (p1; jj)q2 � � � qn 2 Reg 0.By strutural indution, it follows that t1 2 PostR(Lp1). Let then t01 2Lp1 be suh that t1 2 PostR(t01). It follows that �(t1; : : : ; tn) 2 PostR��(t01; : : : ; tn)�, and sine for i, 2 � i � n, ti 2 Lqi we have:�(t01; : : : ; tn) �!� �(p1; q2; : : : ; qn)!�qIt follows then that t = �(t1; : : : ; tn) 2 PostR(Lq). utTherefore, we have:Theorem 4. For every anoni PRS R and every CH-automaton A, we havePostR�L(A)� = L(A0).As PreR(L) = PostR�1(L), the previous onstrution an also be used toompute 1-step bakward reahability sets.5 Computing reahability sets for PAD and wPADIn this setion, we solve the problem of omputing both reahability sets and 1-step reahability sets for PAD and wPAD systems. Computing reahability sets



is diÆult for PRS in general. One of the reasons is that already the reahabilitysets of Petri nets are not semilinear. In [BT05℄ we show that the reahabilitysets of a given anoni PRS system R an be e�etively omputed providedthe underlying multiset rewrite system Rk is e�etively semilinear. This is, forexample, the ase of anoni PAD systems due to the result of [Esp97℄ onerningontext-free multiset rewrite systems (BPP proesses).Theorem 5 ([BT05℄). Let A be a CH-automaton reognizing a set of proessterms and R be a anoni PAD. Then the sets Post�R(L(A)) and Pre�R(L(A))are omputable and e�etively representable by CH-automata.Using this theorem and the results of the previous setion, we get the following.Theorem 6. For every PAD R and every CH-automaton A, the setsPostR(L(A)), PreR(L(A)), Post�R(L(A)), and Pre�R(L(A)) are omputable ande�etively representable by CH-automata.Proof. Theorem 1 implies that for every PAD R and every set of terms L,there exists a anoni PAD R0 and a �nite term substitution h suh thatPost�R(L) = h(Post�R0(h�1(L))) and PostR(L) = h(PostR00(h�1(L))), where R00is the set R0 restrited to rules labelled with ations of At(R). Hene, CH-automata representing the sets Post�R(L(A)) and PostR(L(A)) are onstrutibledue to losure properties of CH-automata and Theorems 5 and 4. The proof forPre�R(L(A)) and PreR(L(A)) is analogous. utNow we show that the previous theorem holds for wPAD as well. Reall thatstates of wPAD are pairs pt of a ontrol state p and a term t. The sets of suhstates an be represented by CHA-mappings.De�nition 7. Let R be a wPRS. A CHA-mapping � is a mapping assigningto eah ontrol state p 2 M(R) a CH-automaton �(p). A CHA-mapping �represents the set of states L(�) = fpt j p 2M(R); t 2 L(�(p))g.Theorem 8. For every wPAD R and every CHA-mapping �, the setsPostR(L(�)), PreR(L(�)), Post�R(L(�)), and Pre�R(L(�)) are omputable ande�etively representable by CHA-mappings.Proof. Let R be a wPAD. For eah pair of ontrol states p; q 2 M(R) we setRp;q = ft1 a,! t2 j pt1 a,! qt2 is a rule of Rg. Note that eah Rp;q is a PADsystem.CHA-mapping �1 representing PostR(L(�)) is de�ned as follows. For eahq 2M(R), �1(q) is an CH-automaton satisfyingL(�1(q)) = [p2M(R)PostRp;q�L(�(p))�:CHA-mapping �2 representing Post�R(L(�)) is de�ned indutively with re-spet to ordering < on set M(R) of ontrol states. For every minimal element



r of M(R), �2(r) is a CH-automaton satisfying L(�2(r)) = Post�Rr;r�L(�(r))�.For non-minimal element q of M(R), �2(q) is a CH-automaton satisfyingL(�2(q)) = Post�Rq;q�L(�(q)) [ [p<qPostRp;q�L(�2(p))��:CHA-mappings �1; �2 are onstrutible due to Theorem 6 and the fat that CH-automata are losed under union. The proof for PreR(L(�)) and Pre�R(L(�)) isanalogous. utAs mentioned in [BT05℄, the generi algorithm presented there an employknown algorithms omputing semilinear overapproximations of reahability setsfor Petri nets in order to ompute overapproximations of reahability sets forgeneral anoni PRS systems. If we use this approximative algorithm for anoniPRS instead of exat algorithm for anoni PAD system in Theorems 6 and 8, weget an algorithm omputing overapproximations of reahability sets for generalwPRS systems. Note that 1-step reahability sets for wPRS systems an still beomputed preisely as Theorems 6 and 8 hold even for (w)PRS if we restrit ourattention only to 1-step reahability sets.6 Model heking of wPAD against EF logiThis setion presents a straightforward appliation of Theorem 8. We onsidera variant of EF logi ombining both ation-based and state-based approahes.We show that the global model heking problem of wPAD systems against thislogi is deidable.Formulae of EF logi are de�ned as' ::= P j :' j '1 ^ '2 j hai' j EF';where P ranges over set AP of atomi propositions and a ranges over At .Here, formulae are interpreted over states of wPRS systems. For eah atomiproposition P , let V (P ) denotes its valuation, i.e. the set of states where Pholds. We de�ne when a state pt of a given wPRS system R satis�es a formula', written R; pt j= ', by indution on the struture of '.R; pt j= P i� pt 2 V (P )R; pt j= :' i� R; pt 6j= 'R; pt j= '1 ^ '2 i� R; pt j= '1 and R; pt j= '2R; pt j= hai' i� 9qt0 suh that pt a!R qt0 and R; qt0 j= 'R; pt j= EF' i� 9qt0 suh that pt �!R qt0 and R; qt0 j= 'Theorem 9. For every wPAD system R and every EF formula ' over atomipropositions with valuations given by CHA-mappings, the set of states of R sat-isfying ' is omputable and e�etively representable by a CHA-mapping.



Proof. The theorem follows diretly from Theorem 8 and losure properties ofCH-automata. Here we mention just the indution step orresponding to oper-ator hai. Let ' = hai and let CHA-mapping � reognizes all states satisfying . We onstrut a CHA-mapping �0, whih reognizes all states where ' holds,to satisfy L(�0) = PreRa�L(�)�, where Ra is the set R restrited to rules withlabel a. Suh a CHA-mapping �0 is onstrutible due to Theorem 8. utThis theorem gives a positive answer to open questions formulatedin [K�RS05℄, namely whether model heking of wBPP, wPA, and wPAD sys-tems against ation-based EF logi is deidable. Our result is tight as modelheking of state extended PAD (de�ned as wPAD where rules may not respetthe ordering on ontrol states) against EF logi is already undeidable. In fat,the problem is undeidable even for the sublass of state extended PAD alledmultiset automata and EF formulae with the only atomi proposition true (thisan be proved by the arguments of [Esp97℄ showing that model heking of Petrinets against EF logi is undeidable).7 Bounded reahability analysis of synhronized PADThe main disadvantage of PRS formalism in modelling urrent software sys-tems is the fat that it allows only loal ommuniation or synhronization. Forexample, PRS annot model ommuniating parallel threads with unboundedreursion, intuitively beause no rule with left-hand side AkB an be applied toterm (A:C:D)k(B:E:F ). Therefore, synhronized PRS systems have been intro-dued [Tou05℄.Let At be a disjoint union Asyn [ Syn [ f�g. We assume that to eaha 2 Syn orresponds a o-ation ~a 2 Syn suh that ~~a = a. Intuitively, Synis the set of all synhronization ations, i.e. ations whih must be performedsimultaneously with their orresponding o-ations. A synhronized (�; �)-PRSR is de�ned as standard (�; �)-PRS. Instead of 'synhronized (�; �)-PRS' weuse shorter names like SPAD, SPRS, et.Let! be the least transition relation over terms satisfying the inferene rules(t1 b,! t2) 2 Rt1 b! t2 t1 b! t2t1kt b! t2kt t1 b! t2t1 � t b! t2 � t t1 a! t01 t2 ~a! t02t1kt2 �! t01kt02where a ranges over Syn and b ranges over At . An transition step indued bythe last rule is alled synhronization. The transition relation!R is then de�nedas the restrition of ! to transitions labelled with ations of At r Syn.The formalism of synhronized PRS systems allows to model both reursionand task synhronization. Hene, it has a Turing power and even basi reaha-bility problems are undeidable (see e.g. [Ram00℄).Abstration tehniques for getting upper approximations of reahability setsfor SPAD systems have been already de�ned in [Tou05℄, extending the approahof [BET03,BET04℄. Here we present a tehnique for omputing underapproxi-mations of these sets in style of [QR05℄.



Given a synhronized (�; �)-PRS R and n > 0, we onstrut an (�; �)-wPRSRn whih mimis (pre�xes of) all behaviours of R with at most n synhroniza-tions. The system Rn uses ontrol states 0 < 1 < : : : < 3n. For every rewriterule r = (t1 b,! t2) of R, let Zr 62 Const(R) be a fresh proess onstant. If{ b 2 Asyn [ f�g then we add to Rn the rule (3i)t1 b,! (3i)t2 for every0 � i � n.{ b = a 2 Syn the we add to Rn rules (3i)t1 � 0,! (3i+ 1)Zr and (3i+ 2)Zr � 0,!(3i+ 3)t2 for every 0 � i < n.{ b = ~a 2 Syn the we add to Rn rule (3i + 1)t1 �,! (3i + 2)t2 for every0 � i < n.Intuitively, every synhronization via ations a; ~a is replaed by a sequene ofations � 0�� 0. The hanges of ontrol states prevents interleaving of this sequenewith other ations. Moreover, use of fresh proess onstants ensures that the rulesunder a and ~a are applied on di�erent parts of the urrent term.Let R be an SPAD and L be a set of states represented by a CH-automaton.Theorem 8 says that we an onstrut a CHA-mapping � suh that L(�) =Post�Rn(f0g�L). Obviously, the set S0�i�n L(�(3i)) is an underapproximationof Post�R(L). Further, with inreasing n, we an ompute better approximationsof this set. Moreover, if for n and n+ 1 the omputed underapproximations arethe same, we know that we have exatly the set Post�R(L).The same tehnique an be employed to underapproximate the set Pre�R(L).The sets PostR(L) and PreR(L) an be omputed preisely using a similar ap-proah.8 ConlusionWe have presented an automata-based symboli reahability analysis algorithmfor the lass of wPAD systems. This algorithm is based on the use of a lassof unranked tree automata (alled CH-automata) whih an reognize sets ofon�gurations losed under the algebrai properties of the sequential and parallelomposition. We used the reahability analysis algorithm, together with one-stepsuessor omputation (and boolean operations on CH-automata), in order tode�ne an algorithm for the global model heking of wPAD against the EF logiwith regular atomi prediates. These results generalize those proved in [BT05℄onerning the lass of (anoni) PAD systems, whih is a strit sublass ofwPAD, pushing the known deidability limit of EF model heking further upin the (se/w)PRS hierarhy, and answering open questions left in [K�RS05℄.We have also shown that the symboli reahability algorithm for wPAD anbe used to ompute under approximations of the set of reahable on�gurationsof synhronized PAD (SPAD), a (Turing) powerful model introdued in [Tou05℄for modeling multithreaded programs (with dynami reation of ommuniatingproesses and proedure alls). Abstration tehniques for getting upper ap-proximations of reahability sets for SPAD systems have been already de�nedin [Tou05℄, extending the approah of [BET03,BET04℄.
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