
Symbiotic 4: Beyond Reachability*

(Competition Contribution)

Marek Chalupa†, Martina Vitovská, Martin Jonáš, Jiri Slaby, and Jan Strejček

Faculty of Informatics, Masaryk University, Brno, Czech Republic

Abstract. The fourth version of Symbiotic brings a brand new instru-
mentation part, which can now instrument the analyzed program with
code pieces checking various specification properties. As a consequence,
Symbiotic 4 participates for the first time also in categories focused on
memory safety. Further, we have ported both Symbiotic and Klee to
llvm 3.8 and added new features to the slicer which is now modular and
easily extensible.

1 Verification Approach and Software Architecture

Symbiotic implements the approach of [6] combining instrumentation, slicing,
and symbolic execution [4] to detect errors in C programs. While all the previous
releases [7,5,2] focus on checking reachability of an error location, Symbiotic 4
can check any property definable by a finite state machine. For example, the
finite state machine of Figure 1 describes the double free error. Intuitively, for
every allocated block of memory we create a copy of the state machine that
tracks its current status. An error state is reached if the block is deallocated
twice. Hence, the instrumentation reduces property checking to unreachability
checking as the program violates the property iff the error state is reachable.

Creation and tracking of the state machine is performed by code instrumented
to the original program. In fact, the brand new instrumentation implemented
in Symbiotic works more generally. It gets a JSON file with instrumentation
rules. Every rule specifies a function call to be inserted before (or after) each
occurrence of a given sequence of instructions. Bodies of called functions are then
defined in a separate file written in C. Each instrumentation rule can be refined
using an output of a specified static analysis. For example, a code checking NULL
dereference does not have to be instrumented to locations where a suitable static
analysis guarantees that the corresponding pointer cannot be NULL.

For SV-COMP 2017, we have prepared instrumentation rules for checking
memory safety properties. For overflow property, we let clang sanitizer to in-
strument the program. We do not support checking termination property as it
cannot be simply translated to reachability analysis.

The workflow of Symbiotic 4 is illustrated by Figure 2. As the first step,
we check that the verified property is not termination. Then we translate the

* The research was supported by The Czech Science Foundation, grant GA15-17564S.
† Corresponding author: xchalup4@fi.muni.cz

allocatedmalloc

freed

error

freemalloc

free

int *p = malloc(sizeof(int));

fsm change state(p, FSM MALLOC);
.
.
.

fsm change state(p, FSM FREE);

free(p);
.
.
.

if (VERIFIER nondet int()) {
fsm change state(p2, FSM FREE);

free(p2); // double free if p2 == p

}

Fig. 1: State machine describing double free and a code example with instru-
mented function calls (red).

analyzed C program to the llvm bitcode by clang. Next, we check that the
bitcode contains no calls to pthread create as neither our slicer, nor Klee can
process concurrent programs. If the check is successful, we proceed to the instru-
mentation of the bitcode. The instrumentation step has two phases. In the first
phase, we insert instructions that tell the symbolic executor to treat all memory
as symbolic, which allows us to correctly handle uninitialized variables. In the
second phase, we perform a static analysis of the bitcode and instrument it as
described above. We currently use a points-to analysis when instrumenting mem-
ory safety properties to insert property-checking functions only to the locations
where the analysis itself does not guarantee that the property holds. The inserted
functions call VERIFIER error whenever the property is violated. Definitions
of the inserted property-checking functions as well as definitions of VERIFIER *

functions are then linked to the bitcode. Parts of the produced code that have
no effect on reaching VERIFIER error call sites are consequently removed by
slicing. Moreover, code optimizations provided by llvm are used before and af-
ter slicing. Before the bitcode is symbolically executed by Klee [1], we check
that it does not contain instructions related to the floating point arithmetic not
supported by Klee, e.g. isnan or inf. We use our fork of Klee that pro-
duces an error witness when a property violation is detected. If Klee reports
that VERIFIER error is unreachable, we return true and a trivial correctness
witness unless Klee warns about not exploring the whole state space. This can
happen for example due to limitted support of floating point instructions. In
such cases, we return unknown.

The slicer has undergone significant changes. Points-to analyses and reach-
ing definitions analysis (needed to build dependency graphs for slicing [3]) were
redesigned into a more general modular framework: Symbiotic now supports
more types of analyses that share a common interface and are therefore in-
terchangeable. In particular, the current version of Symbiotic supports both
flow-sensitive and flow-insensitive points-to analyses and for both of these anal-
yses, field-sensitive and field-insensitive variants are available. Further, points-to
analyses can now precisely handle a larger subset of llvm including memset

2

instrumentation

slicer

llvm 3.8.1

property termination? unknownC program

convert to bitcode is parallel? unknown

KLEE-related functions

static analysis

property-related
functions

link undefined functions function definitions

-O3 optimizations

points-to analysis

slicing

-O3 optimizations

unsupported
instructions?

−

unknown

KLEE KLEE output analysis
true (+ witness)

false (+ witness)

unknown

+

−

+

−

+

Fig. 2: Workflow of Symbiotic 4. Dashed lines represent verification inputs,
solid lines llvm bitcode and control flow, and dotted lines represent outputs.

and memcpy llvm’s intrinsic calls. We have also implemented additional opti-
mizations based on the information about strongly connected components of the
program’s control flow graph to speed up the analyses. Note that the redesigned
analyses are not firmly integrated into the slicer and can therefore be reused by
external tools.

The last significant change in Symbiotic 4 is that all components have been
ported to llvm 3.8, including the symbolic executor Klee. Finally, we got rid
of separate Perl and bash scripts in favor of a concise modular implementation
in Python.

2 Strengths and Weaknesses

The main strength of the approach is its universality and modularity. Thanks
to the instrumentation, Symbiotic now supports almost all checked properties
specified by SV-COMP. Authors of other llvm-based verification tools can also
benefit from the implemented instrumentation and slicer: the instrumentation

3

can be used to add the ability to verify additional properties such as memory
safety to tools that only support reachability and the slicer can be used to remove
irrelevant parts of the verified program.

The main disadvantage of the current configuration is the high computational
cost of symbolic execution for branching-intensive programs. However, thanks
to the modular architecture, a suitable software verifier can be in principle used
instead of Klee to alleviate this problem.

3 Tool Setup and Configuration

– Download: https://github.com/staticafi/symbiotic/releases/tag/4.0.0

– Installation: Unpack the archive. The only requirement is python 2.7.
– Participation Statement: Symbiotic 4 participates in all categories.
– Execution: Run ./symbiotic OPTS <source>, where available OPTS include:

• --64, which sets the environment for 64-bit benchmarks,
• --prp=file, which sets the property specification file to use,
• --witness=file, which sets the output file for the witness,
• --help, which shows the full list of possible options.

4 Software Project and Contributors

Symbiotic 4 has been developed by M. Chalupa, M. Vitovská, and J. Slaby
with support of M. Jonáš and under supervision of J. Strejček. The tool and its
components are available under GNU GPLv2 and MIT Licenses. The project is
hosted by the Faculty of Informatics, Masaryk University. llvm, Klee, stp, and
MiniSat are also available under open-source licenses. The project web page is:
https://github.com/staticafi/symbiotic

References

1. C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In OSDI, pages 209–224.
USENIX Association, 2008.

2. M. Chalupa, M. Jonáš, J. Slaby, J. Strejček, and M. Vitovská. Symbiotic 3: New
slicer and error-witness generation - (competition contribution). In TACAS, volume
8413 of LNCS, pages 946–949. Springer, 2016.

3. S. Horwitz, T. W. Reps, and D. Binkley. Interprocedural slicing using dependence
graphs. ACM Trans. Program. Lang. Syst., 12(1):26–60, 1990.

4. J. C. King. Symbolic execution and program testing. Communications of ACM,
19(7):385–394, 1976.

5. J. Slaby and J. Strejček. Symbiotic 2: More precise slicing - (competition contribu-
tion). In TACAS, volume 8413 of LNCS, pages 415–417. Springer, 2014.

6. J. Slaby, J. Strejček, and M. Trt́ık. Checking properties described by state machines:
On synergy of instrumentation, slicing, and symbolic execution. In FMICS, volume
7437 of LNCS, pages 207–221. Springer, 2012.

7. J. Slaby, J. Strejček, and M. Trt́ık. Symbiotic: Synergy of instrumentation, slicing,
and symbolic execution - (competition contribution). In TACAS, volume 7795 of
LNCS, pages 630–632. Springer, 2013.

4

https://github.com/staticafi/symbiotic/releases/tag/4.0.0
https://github.com/staticafi/symbiotic

	Symbiotic 4: Beyond Reachability

