
Symbiotic 3: New Slicer and
Error-Witness Generation*

(Competition Contribution)

Marek Chalupa†, Martin Jonáš, Jiri Slaby, Jan Strejček, and Martina Vitovská

Faculty of Informatics, Masaryk University, Brno, Czech Republic

Abstract. Symbiotic 3 is a new generation of a bug-detection tool for
C programs. The tool sticks to the combination of program instrumenta-
tion, slicing, and symbolic execution. Large parts of the tool are rewrit-
ten, in particular the managing and instrumentation scripts and slicer
(including points-to analysis). Further, the symbolic executor Klee has
been modified to produce error-witnesses. The changes are commented
in the description of the tool workflow.

1 Verification Approach and Software Architecture

As the previous versions of Symbiotic [9,7], the new version also follows the
approach suggested in [8]: an analyzed program is (i) instrumented with code
that tracks a finite-state machine describing erroneous behaviors, (ii) reduced
by slicing [10] that removes code not influencing the state machine moves, and
(iii) symbolically executed [6] to find erroneous runs in the program.

The workflow of Symbiotic 3 (together with indication of chosen program-
ming languages and employed external tools with their respective versions) is
provided in Figure 1. Our tool currently focuses on the Error Function Un-
reachability property (however, the approach can handle the other properties as
well and we plan to support them in near future). The code cleanup modifies
the C source (e.g. to bypass the known bug in clang where inlined functions
are omitted). The program is then translated to llvm, checked for unsupported
functionality (e.g. creation of new threads), and instrumented. As we support
only the unreachability property, the instrumentation is trivial. This step makes
also another small modifications of the program, e.g. each allocated variable is
initialized to a nondeterministic value (to solve problems with uninitialized vari-
ables appearing in some benchmarks). After linking with lib.bc (which contains
our definitions of VERIFIER * functions) and some optimization passes, namely
control flow graph optimization and constant propagation, we slice the program.

The slicer in Symbiotic 3 is written from scratch. While the previous slicer
followed the slicing algorithm of [10], the current one implements slicing based
on dependence graphs [3,5]. The slicer relies on field-sensitive, flow-insensitive

* The research was supported by The Czech Science Foundation, grant GA15-17564S.
† Corresponding author: xchalup4@fi.muni.cz



main script (in Python 2.7)

llvm 3.4

unreachability
property

code cleanup

unsupported
instruction

instrumentation

interpretation
of Klee output

translation to llvm

clang

linking with lib.bc

llvm-link

CFG optimization
constant propagation

opt

optimizations like -O2

opt

points-to analysis
slicing

slicer (in C++11)

symbolic execution
witness generation

Klee 1.0 (patched)

Property

C program

unknown

unknown

true
false+ witness
unknown

−

−

+

+

Fig. 1: Workflow of Symbiotic 3. Dashed lines represent C programs, solid lines
llvm bytecode, and dotted lines text data.

points-to analysis (extended with an “unknown offset” value), which has been
also reimplemented. The new slicer is substantially faster than the previous one.

The sliced program is optimized again (with passes similar to -O2 optimiza-
tion level) and symbolically executed with our fork of Klee [1]. We modified it
to stop the computation when assertion violation is detected and to produce the
corresponding error witness. The exact versions of Klee and the solvers stp [4]
and MiniSat [2] called by Klee can be found in the Symbiotic 3 distribution.
Finally, the Klee output is translated into the required form. In particular, a
witness is translated to the GraphML format by a Perl script.

2 Strengths and Weaknesses

The main strengths of the approach are its soundness and universality; the ap-
proach can be applied also to the Concurrency benchmarks and these with more
complex properties, which are currently not supported by our implementation
(and thus skipped). Another advantage is the modularity of the tool architecture.

The main disadvantage is the high computational cost of symbolic execution.
Especially programs with loops, recursion, or intensive branching cannot be an-
alyzed within reasonable time unless an erroneous execution is detected soon.

2



The fundamental problem are programs with infinite paths as these cannot be
fully symbolically executed in finite time.

3 Tool Setup and Configuration

– Download:
https://github.com/staticafi/symbiotic/releases/tag/3.0.1

– Installation: Unpack the archive. Further, gcc 4.9 or higher, GNU utils
(sed), python 2.7, and perl with the XML::Writer module are required.

– Participation Statement: Symbiotic 3 participates in all categories.
– Execution: Run ./symbiotic OPTS <source>, where available OPTS include:

• --64 sets environment for 64-bit benchmarks
• --prp=file sets the specification file to use
• --help shows the full list of possible options

4 Software Project and Contributors

Symbiotic 3 has been developed by M. Chalupa, J. Slaby, M. Vitovská, and
M. Jonáš under supervision of J. Strejček. The tool is available under the GNU
GPLv2 License. The project is hosted by the Faculty of Informatics, Masaryk
University. llvm, Klee, stp, and MiniSat are also available under open-source
licenses. The project web page is: https://github.com/staticafi/symbiotic

References

1. C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In OSDI, pages 209–224.
USENIX Association, 2008.

2. N. Eén and N. Sörensson. An extensible SAT-solver. In SAT 2003, volume 2919
of LNCS, pages 502–518. Springer, 2004.

3. J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program dependence graph
and its use in optimization. In International Symposium on Programming, volume
167 of LNCS, pages 125–132. Springer, 1984.

4. V. Ganesh and D. L. Dill. A decision procedure for bit-vectors and arrays. In
CAV, volume 4590 of LNCS, pages 519–531. Springer, 2007.

5. S. Horwitz, T. W. Reps, and D. Binkley. Interprocedural slicing using dependence
graphs. ACM Trans. Program. Lang. Syst., 12(1):26–60, 1990.

6. J. C. King. Symbolic execution and program testing. Communications of ACM,
19(7):385–394, 1976.

7. J. Slaby and J. Strejček. Symbiotic 2: More precise slicing - (competition contri-
bution). In TACAS, volume 8413 of LNCS, pages 415–417. Springer, 2014.

8. J. Slaby, J. Strejček, and M. Trt́ık. Checking properties described by state ma-
chines: On synergy of instrumentation, slicing, and symbolic execution. In FMICS,
volume 7437 of LNCS, pages 207–221. Springer, 2012.

9. J. Slaby, J. Strejček, and M. Trt́ık. Symbiotic: Synergy of instrumentation, slicing,
and symbolic execution - (competition contribution). In TACAS, volume 7795 of
LNCS, pages 630–632. Springer, 2013.

10. M. Weiser. Program slicing. In Proceedings of ICSE, pages 439–449. IEEE, 1981.

3

https://github.com/staticafi/symbiotic/releases/tag/3.0.1
https://github.com/staticafi/symbiotic

	Symbiotic 3: New Slicer and Error-Witness Generation

