
Complementing Semi-Deterministic
Büchi Automata?

Frantǐsek Blahoudek1, Matthias Heizmann2, Sven Schewe3,
Jan Strejček1, and Ming-Hsien Tsai4

1 Masaryk University, Brno, Czech Republic
2 University of Freiburg, Germany

3 University of Liverpool, UK
4 Institute of Information Science, Academia Sinica, Taiwan

Abstract. We introduce an efficient complementation technique for
semi-deterministic Büchi automata, which are Büchi automata that are
deterministic in the limit: from every accepting state onward, their be-
haviour is deterministic. It is interesting to study semi-deterministic au-
tomata, because they play a role in practical applications of automata
theory, such as the analysis of Markov decision processes. Our motivation
to study their complementation comes from the termination analysis im-
plemented in Ultimate Büchi Automizer, where these automata rep-
resent checked runs and have to be complemented to identify runs to be
checked. We show that semi-determinism leads to a simpler complemen-
tation procedure: an extended breakpoint construction that allows for
symbolic implementation. It also leads to significantly improved bounds
as the complement of a semi-deterministic automaton with n states has
less than 4n states. Moreover, the resulting automaton is unambiguous,
which again offers new applications, like the analysis of Markov chains.
We have evaluated our construction against the semi-deterministic au-
tomata produced by the Ultimate Büchi Automizer. The evaluation
confirms that our algorithm outperforms the known complementation
techniques for general nondeterministic Büchi automata.

1 Introduction

The complementation of Büchi automata [6] is a classic problem that has been
extensively studied [6,22,19,26,23,31,20,25,17,13,12,37,27,33,11,32] for more than
half a century; see [35] for a survey. The traditional line of research has started
with a proof on the existence of complementation algorithms [22,19] and contin-
ued to home in on the complexity of Büchi complementation, finally leading to
matching upper [27] and lower [37] bounds for complementing Büchi automata.

? The research was supported through The Czech Science Foundation,
grant P202/12/G061, by the German Research Council (DFG) as part of the
Transregional Collaborative Research Center “Automatic Verification and Analysis
of Complex Systems” (SFB/TR14 AVACS) and EPSRC grant EP/M027287/1.

This line of research has been extended to more general classes of automata,
notably parity [30] and generalised Büchi [29] automata.

The complementation of Büchi automata is a valuable tool in formal veri-
fication (cf. [18]), in particular when a property that all runs of a model shall
have is provided as a Büchi automaton,1 and when studying language inclusion
problems of ω-regular languages. With the growing understanding of the worst
case complexity, the practical cost of complementing Büchi automata has be-
come a second line of research. In particular the GOAL tool suite [33] provides
a platform for comparing the behaviour of different complementation techniques
on various benchmarks [32].

While these benchmarks use general Büchi automata, practical applications
can produce or require subclasses of Büchi automata in specific forms. Our re-
search is motivated by the observation that the program termination analy-
sis in Ultimate Büchi Automizer [15] and the LTL software model checker
Ultimate LTL Automizer [9] produce semi-deterministic Büchi automata
(SDBA) [34,36] during their run. Semi-deterministic Büchi automata are a spe-
cial class of Büchi automata that behave deterministically after traversing the
first accepting state. For this reason, they are sometimes referred to as limit
deterministic or deterministic-in-the-limit Büchi automata.

Program termination analysis is a model checking problem, where the aim is
to prove that a given program terminates on all inputs. In other words, it tries to
establish (or disprove) that all infinite execution paths in the program flowgraph
are infeasible. The Ultimate Büchi Automizer uses an SDBA to represent
infinite paths that are already known to be infeasible. It needs to complement
the SDBA and make the product with the program flowgraph to identify the
set of infinite execution paths whose infeasibility still needs to be proven. One
can use off-the-shelf complementation algorithms like rank based [17,13,12,27]
or determinisation based [25,24,28,29] ones, but they make no use of the special
structure of SDBAs.

We show that exploiting this structure helps: while the complementation of
Büchi automata with n states leads to a (cn)n blow-up for a constant c ≈ 0.76
(cf. [27] for the upper and [37] for the lower bound), an SDBA with n states can
be complemented to an automaton with less than 4n states. More precisely, if
the deterministic part (the states reachable from the accepting states) contains
d states, including a accepting states, the complement automaton has at most
2n−d3a4d−a states. The 2Θ(n) blow-up is tight as an Ω(2n) lower bound is in-
herited from the complementation of nondeterministic finite automata. Another
advantage of our construction is that it is suitable for the simplest class of Büchi
automata: deterministic Büchi automata with a accepting and n non-accepting
states are translated to 2n − a states, which meets Kurshan’s construction for
the complementation of deterministic Büchi automata [18].

1 In model checking, one tests for emptiness the intersection of the automaton that
recognises the runs of a system with the automaton that recognises the complement
of the property language.

Moreover, the resulting automata have further useful properties. For example,
their structure is very simple: they are merely an extended breakpoint construc-
tion [21]. Like ordinary breakpoint constructions, this provides a structure that is
well suited for symbolic implementation. This is quite different from techniques
based on Safra style determinisation [25,24,28,29]. In addition to this, they are
unambiguous, i.e. there is exactly one accepting run for each word accepted by
such an automaton. This is notable, because disambiguation is another automata
transformation that seems to be more involved than complementation, but sim-
pler than determinisation [16], and it has proven to be useful for the quantitative
analysis of Markov chains [7,3]. For our motivating application, this is particular
good news, as the connection to Markov chains implies direct applicability to
model checking stochastic models as well as nondeterministic ones. The connec-
tion to stochastic models closes a cycle of applications, as they form a second
source for applying semi-deterministic automata: they appear in the classic algo-
rithm for the qualitative analysis of Markov decision processes [8] and in current
model checking tools for their quantitative analysis [14] alike.

With all of these favourable properties in mind, it would be easy to think
that the complementation mechanism we develop forms a class of its own. But
this is not the case: when comparing it with classic rank based complementa-
tion [17] and its improvements [13,12,27], semi-deterministic automata prove to
be automata, where all states in all runs can be assigned just three ranks, ranks
1 through 3 in the terminology of [17]. Consequently, there are only states with a
single even rank, and a rank based algorithm that has to guess the rank correctly
for states that are reachable from an accepting state has very similar properties.
From this perspective, one could say that complementation and disambiguation
are easy to obtain, as very little needs to be guessed (only the point where the
rank of a state goes down to 1) and very little has to be checked.

We also motivate and present an on-the-fly modification of our complemen-
tation, which does not need to know the whole automaton before the comple-
mentation starts. The price for the on-the-fly approach is a slightly worse upper
bound on the size of the produced automaton for the complement: it has less
than 5n states.

We have implemented our construction in the GOAL tool and the Ultimate
Automata Library and evaluated it on semi-deterministic Büchi automata
that were produced by Ultimate Büchi Automizer applied to programs of
the Termination category of the software verification competition SV-COMP
2015 [4]. The evaluation confirms that the specific complementation algorithm
realises its theoretical advantage and outperforms the traditional algorithms and
produces smaller complement automata.

The remainder of the paper is organised as follows. After recalling some
definitions and introducing our notation in Section 2, we present the comple-
mentation construction in Section 3 together with its complexity analysis and
on-the-fly modification. In Section 4, we show a connection between our con-
struction and rank-based constructions, followed by a correctness proof for our
construction. The experimental evaluation is presented in Section 5.

2 Preliminaries

A (nondeterministic) Büchi automaton (NBA) is a tuple A = (Q,Σ, δ, I, F),
where

– Q is a finite set of states,
– Σ is a finite alphabet,
– δ : Q×Σ → 2Q is a transition function,
– I ⊆ Q is a set of initial states, and
– F ⊆ Q is a set of accepting states.

A run of an automaton A over an infinite word w = w0w1 . . . ∈ Σω is a
finite or infinite sequence of states ρ = q0q1q2 . . . ∈ Q+ ∪ Qω such that q0 ∈ I
and qj+1 ∈ δ(qj , wj) for each pair of adjacent states qjqj+1 in ρ. For a finite
run ρ = q0q1q2 . . . qn ∈ Qn+1 we require that there is no transition for its last
state, i.e. δ(qn, wn) = ∅, and we say that the run blocks. A run is accepting if
qj ∈ F holds for infinitely many j. A word w is accepted by A if there exists an
accepting run of A over w. The language of an automaton A is the set L(A) of
all words accepted by A.

A complement of a Büchi automaton A is a Büchi automaton C over the
same alphabet Σ that accepts the complement language, L(C) = Σω rL(A), of
the language of A.

A Büchi automaton A = (Q,Σ, δ, I, F) is called complete if, for each state
q ∈ Q and for each letter a ∈ Σ, there exists at least one successor, i.e. |δ(q, a)| ≥
1. A Büchi automaton A is unambiguous if, for each w ∈ L(A), there exists only
one accepting run over w.

A state of a Büchi automaton A = (Q,Σ, δ, I, F) is called reachable if it
occurs in some run for some word w ∈ Σω. A = (Q,Σ, δ, I, F) is called deter-
ministic if it has only one initial state, i.e. if |I| = 1, and if, for each reachable
state q ∈ Q and for each letter a ∈ Σ, there exists at most one successor, i.e.
|δ(q, a)| ≤ 1.

We are particularly interested in semi-deterministic automata. A Büchi au-
tomaton is semi-deterministic if it behaves deterministically from the first visit
of an accepting state onward. Formally, a Büchi automaton A = (Q,Σ, δ, I, F) is
a semi-deterministic Büchi automaton (SDBA) (also known as deterministic-in-
the-limit) if, for each qf ∈ F , the automaton (Q,Σ, δ, {qf}, F) is deterministic.

Each semi-deterministic automaton can be divided into two parts: the part
reachable from accepting states—which is completely deterministic—and the
rest. Hence, one can alternatively define a semi-deterministic automaton such
that the set of states Q = Q1∪Q2 consists of two disjoint sets Q1 and Q2, where
F ⊆ Q2, and the transition relation δ = δ1 ∪ δt ∪ δ2 consists of three disjoint
transition functions, namely

δ1 : Q1 ×Σ → 2Q1 , δt : Q1 ×Σ → 2Q2 , and δ2 : Q2 ×Σ → 2Q2 ,

where the relation δ2 is deterministic: for each q ∈ Q2 and each a ∈ Σ, |δ2(q, a)| ≤
1. δ can then be defined as δ(q, a) = δ1(q, a) ∪ δt(q, a) if q ∈ Q1 and δ(q, a) =
δ2(q, a) if q ∈ Q2. The elements of δt are called transit edges. This alternative
definition is captured in Figure 1 and used in the following section.

Q1, δ1

Q2, δ2

deterministic

δt

Fig. 1. A semi-deterministic Büchi automaton: δ2 is deterministic, accepting states are
only in Q2, and transit edges (δt) lead from Q1 to Q2.

3 Semi-deterministic Büchi Automata Complementation

First of all, we explain our complementation construction intuitively. Then we
formulate it precisely and discuss the size of the resulting automata when the
complementation is applied to semi-deterministic and deterministic Büchi au-
tomata. At the end, we briefly introduce the modification of our complementation
construction for on-the-fly approach. The correctness is addressed in Section 4
after introducing the concept of level rankings and run graphs.

3.1 Relation of Runs to the Complement

Let A = (Q,Σ, δ, I, F) be an SDBA, Q1, δ1, Q2, δ2, δt be the notation introduced
in Figure 1, and w = w0w1 . . . ∈ Σω be an infinite word. Each run ρ of A over
w has one of the following properties:

1. ρ blocks,
2. ρ stays forever in Q1,
3. ρ enters Q2 and stops visiting F at some point, or
4. ρ is an accepting run.

Clearly, w /∈ L(A) if and only if every run of A over w has one of the first three
properties. In the third case, we say that ρ is safe after visiting F for the last
time (or since the moment it enters Q2 if it does not visit any accepting state
at all).

In order to check whether w ∈ L(A) or not, one has to track all possible runs
of A. After reading a finite prefix of w, the states reached by the corresponding
prefixes of runs can be divided into three sets.

1. The set N ⊆ Q1 represents the runs that kept out of the deterministic part
(N stands for nondeterministic) so far.

2. The set C ⊆ Q2 represents the runs that have entered the deterministic
part and that are not safe. One has to check (hence the name C) if some of
them will be prolonged into accepting runs in the future, or if all of the runs
eventually block or become safe.

3. The set S ⊆ Q2 r F represents the safe runs.

Clearly, every accepting run of A stays in C after leaving N . On the other
hand, if w /∈ L(A), every infinite run either stays in N or eventually leaves C to
S and thus does not stay in C forever.

3.2 NCSB Complementation Construction

In this section, we describe an efficient construction that produces, for a given
SDBA A, a complement automaton C. The automaton C has typically a low
degree of non-determinism when compared to results of other complementation
algorithms, and is always unambiguous. The complementation construction pro-
posed here tracks the runs of A using the well known powerset construction and
guesses the right classification of runs into sets N,C, and S. Moreover, in order
to check that no run stays forever in C, it uses one more set B ⊆ C. The set
B mimics the behaviour of C with one exception: it does not adopt the runs
freshly coming to C via δt. The size of B never increases until it becomes empty;
then we say that a breakpoint is reached. After each breakpoint, B is set to
track exactly the runs currently in C. To sum up, states of C are quadruples
(N,C, S,B)—hence the name NCSB complementation construction.

After reading only a finite prefix of the input word w, the automaton cannot
know whether or not some run is already safe, as this depends on the suffix of w.
The automaton C uses the guess-and-check strategy. Whenever a run ρ in C may
freshly become safe (it is leaving an accepting state or it is entering Q2 via a
transit edge), then the automaton C makes a nondeterministic decision to move
ρ to S or to leave it in C. The construction punishes every wrong decision:

– in order to preserve correctness, a run of C is blocked if ρ is moved to S too
early (runs in S are not allowed to visit accepting states any more), and

– in order to maintain unambiguity, ρ is allowed to move from C to S only
when leaving an accepting state. Hence, if ρ misses the moment when it
leaves an accepting state for the last time, it will stay in C forever and this
particular run of C cannot be accepting.

Before we formally describe the NCSB construction, we first naturally extend
δ1, δ2, and δt to sets. For any δ̄ ∈ {δ1, δ2, δt}, any a ∈ Σ, and any set X ⊆ Q1 or
X ⊆ Q2, we set δ̄(X, a) =

⋃
q∈X δ̄(q, a).

With the provided intuition in mind, we define the complement automaton
NBA C = (P,Σ, δ′, IC , FC) as follows.

– P ⊆ 2Q1 × 2Q2 × 2Q2rF × 2Q2 .
– IC = {(Q1 ∩ I, C, S,C) | S ∪ C = I ∩Q2, S ∩ C = ∅}.
– FC = {(N,C, S,B) ∈ P | B = ∅}.
– δ′ is the transition function δ′ : P × Σ → 2P , such that (N ′, C ′, S′, B′) ∈
δ′
(
(N,C, S,B), a

)
iff

• N ′ = δ1(N, a), C ′ ∪ S′ = δt(N, a) ∪ δ2(C ∪ S, a) (intuition: tracing the
reachable states correctly),

• C ′ ∩ S′ = ∅ (intuition: a run in Q2 is either safe, or not),
• S′ ⊇ δ2(S, a) (intuition: safe runs must stay safe),

• C ′ ⊇ δ2(C r F, a) (intuition: only runs leaving an accepting state can
become safe),

• for all q ∈ C r F , δ2(q, a) 6= ∅ (intuition: otherwise the corresponding
run was safe already and should have been moved to S earlier), and

• if B = ∅ then B′ = C ′, and else B′ = δ2(B, a)∩C ′ (intuition: breakpoint
construction to check that no run stays in C forever).

Note that the only source of nondeterminism of δ′ is when C has to guess
correctly whether or not a run ρ of A is safe. Such situations arise in two cases,
namely when the current state q of the run ρ satisfies

– q ∈ δt(N, a) r (δ2(S, a) ∪ F)—ρ is freshly entering Q2, and when
– q ∈ δ2(C ∩ F, a) r (δ2(S, a) ∪ F)—ρ is leaving an accepting state.

All other situations are determined, including runs that are currently in δ2(S, a)
(which belong to S) and runs that are currently in F (which belong to C).

3.3 Complexity

Let p = (N,C, S,B) ∈ P of C. Then

– for a state q1 ∈ Q1 of A, q1 is either present or absent in N ;
– for q2 ∈ F , one of the following three options holds: q2 is only in C, q2 is

both in C and B, or q2 is not present in p at all; and
– for q3 ∈ Q2 r F , one of the following four options holds: q3 is only in S, q3

is only in C, q3 is both in C and B, or q3 is not present in p at all.

The size of P is thus bounded by |P | ≤ 2|Q1| · 3|F | · 4|Q2rF |.
Let us note that, for deterministic automata (here we assume A is complete

and Q1 is empty), the NCSB construction leads to an automaton similar to an
automaton with 2|Q| − |F | states produced by Kurshan’s construction [18]. To
see the size of the automaton produced by our construction for a DBA, recall
that a state (N,C, S,B) of the complement automaton encodes that exactly the
states in N∪C∪S are reachable. For a DBA, N∪C∪S thus contains exactly one
state q of Q. Moreover, N is empty and thus B coincides with C since B becomes
empty together with C. If q ∈ F , then it is in both B and C. If q ∈ Q2 r F ,
then it is either only in S, or in both B and C, leading to a size ≤ 2|Q2| − |F |.

3.4 Modification Suitable for On-the-fly Implementation

Some algorithms do not need to construct the whole complement automaton.
For example, in order to verify that w /∈ L(A) one only needs to built the ac-
cepting lasso in C for w. Or when building a product with some other automaton
(or Markov chain), it is unnecessary to build the part of C which is not used in
the product. Further, some tools work with implicitly encoded automata and/or
query an SMT solver to check the presence of a transition in the automaton,
which is expensive. Ultimate Büchi Automizer has both properties: it stores

automata in an implicit form and builds a product of the complement with a
program flowgraph. Such tools can greatly benefit from an on-the-fly comple-
mentation that does not rely on the knowledge of the whole input automaton.

Our complementation can be easily adapted for an on-the-fly implementation.
Because we have no knowledge about Q1, Q2, and δt in this variation, the runs
are held in N until they reach an accepting state, only then they are moved
to C.

Technically, the “N ′ = δ1(N, a)” from the definition of δ′ would be replaced
by “N ′ = δ(N, a) r F” and for C ′ now holds C ′ ⊆ δ(C, a) ∪ (δ(N, a) ∩ F). The
on-the-fly construction can therefore have up to 2|Q1| · 3|F | · 5|Q2rF | states.

Note that the on-the-fly construction does not add any further nondetermin-
ism to the construction. To the contrary, there is an injection of runs from the
construction discussed in Section 3.2 to this on-the-fly construction. The cor-
rectness argument and the uniqueness argument for the accepting run which are
given in Section 4 therefore need only very minor adjustments.

4 Level Rankings in Complementation and Correctness

We open this section by introduction of run graphs and level rankings. We then
look at our construction through the level ranking lense and use the insights this
provides for proving its correctness and unambiguity.

4.1 Complementation and Level Rankings

In [17], Kupferman and Vardi introduce level rankings as a witness for the ab-
sence of accepting runs of Büchi automata. They form the foundation of several
complementation algorithms [17,13,12,27,29].

The set of all runs of a nondeterministic Büchi automaton A = (Σ,Q, I, δ, F)
over a word w can be represented by a directed acyclic graph Gw = (V,E), called
the run graph of A on w, with

– vertices V ⊆ Q× ω such that (q, i) ∈ V iff there is a run ρ = q0q1q2 . . . over
A on w with qi = q, and

– edges E ⊆ (Q× ω)× (Q× ω) such that
(
(q, i), (q′, i′)

)
∈ E iff i′ = i+ 1 and

there is a run ρ = q0q1q2 . . . of A over w with qi = q and qi+1 = q′.

The run graph Gw is called rejecting if no path in Gw satisfies the Büchi
condition. That is, Gw is rejecting iff w does not have any accepting run, and thus
iff w is not in the language of A. A can be complemented to a nondeterministic
Büchi automaton C that checks if Gw is rejecting.

The property that Gw is rejecting can be expressed in terms of ranks [17]. We
call a vertex (q, i) ∈ V of a graph G = (V,E) safe, if no vertex reachable from
(q, i) is accepting (that is, in F × ω), and finite, if the set of vertices reachable
from (q, i) in G is finite.

Based on these definitions, ranks can be assigned to the vertices of a rejecting
run graph. We set Gw0 = Gw, and repeat the following procedure until a fixed
point is reached, starting with i = 1:

– Assign all safe vertices of Gwi−1 the rank i, and set Gwi to Gwi−1 minus the
vertices with rank i (that is, minus the safe vertices in Gwi−1).

– Assign all finite vertices of Gwi the rank i + 1, and set Gwi+1 to Gwi minus
the vertices with rank i+ 1 (that is, minus the finite vertices in Gwi).

– Increase i by 2.

A fixed point is reached in n+ 2 steps2, and the ranks can be used to char-
acterise the complement language of a nondeterministic Büchi automaton:

Proposition 1. [17] A nondeterministic Büchi automaton A with n states re-
jects a word w iff Gw2n+2 is empty. ut

4.2 Ranks and Complementation of SDBAs

When considering the run graph for SBDAs, we only need to consider three
ranks: 1, 2, and 3. What is more, the vertices Q2 × ω reachable from accepting
vertices can only have rank 1 or rank 2 in a rejecting run graph.

Proposition 2. A semi-deterministic Büchi automaton A rejects a word w iff
Gw3 is empty. This is the case iff Gw2 contains no vertex in Q2 × ω.

Proof. Let w be a word rejected by S. By construction, Gw1 contains no safe
vertices. (Note that removing safe vertices does not introduce new safe vertices.)

Let us assume for contradiction that Gw1 contains a vertex (qi, i) ∈ Q2 × ω,
which is not finite. As (qi, i) is not finite, there is an infinite run ρ =
q0q1q2 . . . qi−1qiqi+1 . . . of A over w such that, for all j ≥ i, (qj , j) is a ver-
tex in Gw1. This is because qi ∈ Q2, the deterministic part of the SBDA, and
{(qj , j) | j ≥ i} is therefore (1) determined by w and (qi, i), and (2) fully in Gw1,
because otherwise (qi, i) would be finite.

But if all vertices in {(qj , j) | j ≥ i} are in Gw1, then none of them is safe
in Gw. Using again that the tail qiqi+1qi+2 . . . is unique and well defined (as
qi ∈ Q2, the deterministic part of the SDBA), it follows that, for all j ≥ i, there
is a k ≥ j such that qk is accepting. Consequently, ρ is accepting (contradiction).

We have thus shown that, if S rejects a word w, then Gw2 contains no state in
Q2×ω. This also implies that Gw2 contains no accepting vertices. Consequently,
all vertices in Gw2 are safe. Consequently, Gw3 is empty. ut

We now consider the NCSB construction from a level ranking per-
spective. We start with an intuition for the rational run ρ =
(N0, C0, S0, B0)(N1, C1, S1, B1)(N2, C2, S2, B2) . . . of C over a word w rejected
by A, where (V,E) = Gw. A rational run is the unique accepting run of C over
w and it guesses the ranks precisely, that is:

2 It is common to use 0 as the minimal rank (i.e. to start with the finite vertices), but
the correctness of the complementation does not rely on this. The proof in [17] refers
to this case, and requires n + 1 steps. For our purpose, the minimal rank needs to
be odd, i.e. we need to start with safe vertices.

– Ni = {q | (q, i) ∈ V, q ∈ Q1},
– Ci = {q | (q, i) ∈ V, q ∈ Q2 and the rank of (q, i) is 2} (we need to check

that these states are finite in Gw2),
– Si = {q | (q, i) ∈ V, q ∈ Q2 and the rank of (q, i) is 1},
– Bi ⊆ Ci.

All runs of C that differ on some i from the rational run will either block or
will keep the wrongly guessed vertices with rank 1 in C and thus will be not
accepting.

Note that the C does not need to guess much. The development of the Ni is
deterministic. The development of Ci∪Si is deterministic, Si and Ci are disjoint,
and states in F cannot be in Si. The Bi serve as a breakpoint construction, and
the development of Bi is determined by the development of the Ci. All that
needs to be guessed is the point when a vertex becomes safe, and there is only
a single correct guess.

4.3 Correctness

After reading only a finite prefix of an input word w, the automaton has to use
its nondeterministic power to guess which reached state in Q2 should be added
to S. We now establish that the automaton C is an unambiguous automaton
that recognises the complement language of A by showing

1. C does not accept a word that is accepted by A,
2. for words that are not accepted by A, the run inferred from the level ranking

discussed in Section 4.2 defines an accepting run, and
3. for words w that are not accepted by A, this is the only accepting run of C

over w.

Lemma 1. Let A be an SDBA, C be constructed by the NCSB complementation
of A, and w ∈ L(A) be a word in the language of A. Then C does not accept w.

Proof. Let ρ = q0q1 . . . be an accepting run of A over w, and let i ∈ ω
be an index such that qi ∈ F . Let us assume for contradiction that ρ′ =
(N0, C0, S0, B0)(N1, C1, S1, B1) . . . (Nn, Cn, Sn, Bn) . . . is an accepting run of C
over w. Clearly, qi ∈ Ci. It therefore holds, for all j ≥ i, that qj ∈ Cj ∪ Sj .

We look at the following case distinction.

1. For all j ≥ i, qj ∈ Cj . As ρ′ is accepting, there is a breakpoint (Bj = ∅)
for some j ≥ i. For such a j we have that qj+1 ∈ Bj+1 and, moreover, that
qk ∈ Bk for all k ≥ j + 1. Thus, Bk 6= ∅ for all k ≥ j + 1 and ρ′ visits only
finitely many accepting states (contradiction).

2. There is a j ≥ i such that qj ∈ Sj . But then qk ∈ Sk holds for all k ≥ j by
construction. However, as ρ is accepting, there is an l ≥ j such that ql ∈ F ,
which contradicts ql ∈ Sl (contradiction).

ut

Lemma 2. Let A be an SDBA, C be the automaton constructed by the
NCSB complementation of A, w /∈ L(A), and (V,E) = Gw be the run
graph of A on w. Then there is exactly one rational run of the form ρ =
(N0, C0, S0, B0)(N1, C1, S1, B1)(N2, C2, S2, B2) This run is accepting.

Proof. It is easy to check that this defines exactly one infinite run: the updates of
the N , C, and S components follow the rules for transitions from the definition
of C, and the update of the B component is fully determined by the update of
C and the previous value of B.

What remains is to show that the run is accepting. Let us assume for con-
tradiction that there are only finitely many breakpoints reached, i.e. there is an
index i ∈ ω, for which there is no j ≥ i, such that Bj = ∅.

Now we have ∅ 6= Bi ⊆ Ci = {q | (q, i) ∈ V s.t. q ∈ Q2 and the rank of
(q, i) is 2}. The construction provides that, if there is no breakpoint on or after
position i, then Bj is the set of states that correspond to vertices from Q× {j}
reachable in Gw1 from the vertices Bi × {i}. As there is no future breakpoint,
there are infinitely many such vertices, and Königs lemma implies that there is
an infinite path in Gw1 from at least one of the vertices in Bi×{i}. This provides
a contradiction to the assumption that the rank of these vertices is 2, i.e. that
they are finite in Gw1. ut

Lemma 3. Let A be an SDBA, C be the automaton constructed by the NCSB
complementation of A, w /∈ L(A), and (V,E) = Gw be the run graph of A
on w. Let ρ = (N0, C0, S0, B0)(N1, C1, S1, B1)(N2, C2, S2, B2) . . . be an infinite,
non-rational run of C over w that is, it does not satisfy

– Ni = {q | (q, i) ∈ V s.t. q ∈ Q1},
– Ci = {q | (q, i) ∈ V s.t. q ∈ Q2 and the rank of (q, i) is 2},
– Si = {q | (q, i) ∈ V s.t. q ∈ Q2 and the rank of (q, i) is 1},

for some i. Then ρ is rejecting.

Proof. As the N part always tracks the reachable states in Q1 correctly by con-
struction, and the C∪S part always tracks the reachable states in Q2 correctly by
construction, we have one of the following two cases according to Proposition 2.

The first case is that there is a safe vertex (q, i) ∈ V such that q ∈ Ci. By
construction, a unique maximal path (qi, i)(qi+1, i+1)(qi+2, i+2)(qi+3, i+3) . . .
for qi = q exists in Gw, and this path does not contain any accepting state. By
an inductive argument, for all vertices (qj , j) on this path, qj ∈ Cj . If the path
is finite, ρ blocks at the end (due to the definition of the transition function of
C), which contradicts the assumption that the run ρ is infinite. Similarly, if the
path is infinite, qk ∈ Bk for some k ≥ i. Then qj ∈ Bj for all j > k with (qj , j)
on this path. Therefore, ρ cannot be accepting.

The second case is that there is a non-safe vertex in (q, i) ∈ V such that
q ∈ Si. (Note that this implies q /∈ F .) By construction, we get, for qi = q, a
unique maximal path (qi, i)(qi+1, i+ 1)(qi+2, i+ 2)(qi+3, i+ 3) . . . in Gw, and this
path contains an accepting state qk. By an inductive argument, for all vertices
(qj , j) on this path, qj ∈ Sj . But this implies qk ∈ Sk (contradiction). ut

The first two lemmas provide the correctness of our complementation algo-
rithm. Considering that no finite run is accepting, the third lemma establishes
that C is unambiguous.

Theorem 1. Let A be an SDBA and C be the automaton constructed by the
NCSB complementation of A. Then C is an unambiguous Büchi automaton that
recognises the complement of the language of A.

5 Experimental Evaulation

This section compares the results of the NCSB complementation with these pro-
duced by well-known complementations for nondeterministic Büchi automata.
All the automata, tools, scripts and commands used in the evaluation, and
some further comparisons can be found at https://github.com/xblahoud/

NCSB-Complementation.

5.1 Implementations of the NCSB Complementation

We implemented the NCSB complementation in two tools. One implementation
is available in the Goal tool3 [33]. Goal is a graphical interactive tool for omega
automata, temporal logics, and games. It provides several Büchi complementa-
tion algorithms and was used in an extensive evaluation of these algorithms [32].
In the commandline version, the parameter for our construction is complement

-m sdbw -a. The partition of the set Q into Q1 and Q2 is not a parameter, in-
stead the implementation uses the set of all states that are reachable from some
accepting state as Q2.

Our second implementation is available in the Ultimate Automata Li-
brary. This library is used by the termination analyser Ultimate Büchi Au-
tomizer and other tools of the Ultimate program analysis framework4. The
implementation uses the on-the-fly construction discussed in Section 3.4. The
library provides a language that allows users to define automata and a sequence
of commands that should be executed by the library. This language is called
automata script and an interpreter for this language is available via a web in-
terface5. The operation that implements the NCSB construction has the name
buchiComplementNCSB.

5.2 Example Automata

For our evaluation, we took automata whose complementation was a subtask
while the tool Ultimate Büchi Automizer was analysing the programs from
the Termination category of the software verification competition SV-COMP
2015 [4]. We wrote each Büchi automaton that was semi-deterministic but not

3 http://goal.im.ntu.edu.tw/
4 http://ultimate.informatik.uni-freiburg.de/
5 http://ultimate.informatik.uni-freiburg.de/automata_script_interpreter

https://github.com/xblahoud/NCSB-Complementation
https://github.com/xblahoud/NCSB-Complementation
http://goal.im.ntu.edu.tw/
http://ultimate.informatik.uni-freiburg.de/
http://ultimate.informatik.uni-freiburg.de/automata_script_interpreter

deterministic to a file in the Hanoi omega-automata format [2]. We obtained 106
semi-deterministic Büchi automata. Using the command autfilt --unique -H

from the Spot library [10], we identified isomorphic automata and kept only the
remaining 97 pairwise non-isomorphic ones.

By construction, all these automata behave deterministically only after the
first visit of an accepting state. Hence the partition of the states Q into Q1 and
Q2 is unique and the results of the construction presented in Section 3.2 and the
results of the on-the-fly modification presented in Section 3.4 coincide.

5.3 Other Complementation Constructions

The known constructions for the complementation of nondeterministic Büchi
automata can be classified into the following four categories.

Ramsey-based. Historically the first complementation construction intro-
duced by Büchi [6] and later improved by Sistla, Vardi, and Wolper [31]
in which a Ramsey-based combinatorial argument is involved.

Determinisation-based. A construction proposed by Safra [25] and later en-
hanced by Piterman [24] in which a state of a complement is represented by
a Safra tree.

Rank-based. A construction introduced by Kupferman and Vardi [17] for
which several optimisations [17,13,12,27] have been proposed.

Slice-based. A construction [16] proposed by Kähler and Wilke that constructs
complements accepting reduced split trees rather than run graphs.

For each of these categories, GOAL provides implementations that can be ad-
justed by various parameters. In our evaluation, we included one construction
from each category. For the latter three categories, we took the arguments that
were most successful in an extensive evaluation [32]. For the first category, we
used additionally an optimisation that minimises the finite automata that are
constructed during the complementation [5]. The commands that we used are
listed in Table 1.

Table 1. Complementation constructions of NBAs used in our evaluation

construction GOAL command

Ramsey-based complement -m ramsey -macc -min

Determinisation-based complement -m piterman -macc -sim -eq

Rank-based complement -m rank -macc -tr -ro -cp

Slice-based complement -m slice -macc -eg -madj -ro

Table 2. Results of complementation constructions without posteriori simplifications

construction
91 easy SDBAs 6 difficult SDBAs

states transitions 1 2 3 4 5 6

Ramsey-based 16909 848969 – – – – – –
Rank-based 2703 21095 – – 1022 7460 8245 –
Det.-based 1841 24964 – – 172 346 385 3527
Slice-based 1392 14783 66368 – 184 421 475 9596
NCSB 950 8003 20711 84567 108 343 401 5449

0 50 100
0

50

100

best general construction

N
C

S
B

co
n
st

ru
ct

io
n

number of states

0 500 1,000
0

500

1,000

best general construction

N
C

S
B

co
n
st

ru
ct

io
n

number of transitions

Fig. 2. Comparison of the NCSB construction and other complementations

5.4 Evaluation

We applied the NCSB complementation and the four complementations of Ta-
ble 1 to the 97 pairwise non-isomorphic SDBAs. All complementations were run
on a laptop with an Intel Core i5 2.70GHz CPU. We restricted the maximal
heap space of the JVM to 8GB (all complementations are implemented in Java)
and used a timeout of 300s. The results are depicted in Table 2 and Figure 2.

For 91 out of 97 SDBAs, all implementations were able to compute a result.
We refer to these 91 SDBAs as easy SDBAs, while the remaining six are ref-
erenced as difficult in the Table 2. For each complementation, we provide the
cumulative numbers of states and transitions of all 91 easy complements. For
each of the easy SDBAs, NCSB construction produces the complement with the
smallest number of states. In Figure 2, a size of the complement produced by the
NCSB construction is compared to the size of the smallest complement produced
by the constructions of Table 1 for each of the easy automata.

For the difficult SDBAs, at least one construction was not able to provide
the result within the given time and memory limits. We provide the number of
states of the computed complements for each of them. While there are two cases
where the determinisation-based construction produced an automaton with less

Table 3. Complementations and simplifications

construction
no simplifications with simplifications failure

states transitions states transitions min compl. simp.

GoalRamsey 6386 172351 5223 90548 0 6 22
GoalRank 1437 11677 899 7657 4 3 14
GoalSafraPiterman 1300 15491 1083 9589 0 2 11
GoalSlice 892 8921 785 6789 4 1 13
UltimateBS 598 4922 514 4460 73 0 10

states than the NCSB construction, the number of transition was always smaller
for the NCSB construction.

A common approach to mitigate the problem of large complementation re-
sults is to apply generic size reduction algorithm. Does our NCSB construction
also outperform the other constructions if we apply size reduction techniques
afterwards? In order to address this question, we applied the “simplification
routines” of the Spot library [1] (in version 1.99.4a) to the complements. We
run the command autfilt --small --high -B -H with a timeout of 300s and
obtained the results depicted in Table 3. For 75 SDBAs, all complements could
be simplified within the timeout. For these we again provide the cumulative num-
bers of states and transitions before and after the simplifications. The column
min shows how often each construction followed by simplification produced a
complement with the minimal number of states. The column failure shows how
often a timeout prevented a successful complementation or simplification. It is
interesting to see that the simplifications were not able to reduce the number of
transitions much for the NCSB construction, while they were able to reduce it
by more than 20% in case of the other complementations.

6 Conclusion

We have introduced an efficient complementation construction for semi-
deterministic Büchi automata (SDBA). The results of our construction have
two appealing properties: they are unambiguous and have less than 4n states.
We have presented a modification of our construction suitable for implementa-
tion on-the-fly and showed that our construction can be seen as a specialised
version of the rank-based construction for nondeterministic Büchi automata.
We have implemented our construction in two tools and did an experimental
evaluation on semi-deterministic Büchi automata produced by the termination
analyser Ultimate Büchi Automizer. We have compared our construction to
four known complementation constructions for (general) nondeterministic Büchi
automata. The evaluation showed that our construction outperforms the existing
constructions in the number of states and transitions.

References

1. T. Babiak, T. Badie, A. Duret-Lutz, M. Křet́ınský, and J. Strejček. Compositional
approach to suspension and other improvements to LTL translation. In SPIN 2013,
volume 7976 of LNCS, pages 81–98. Springer, 2013.

2. T. Babiak, F. Blahoudek, A. Duret-Lutz, J. Klein, J. Křet́ınský, D. Müller,
D. Parker, and J. Strejček. The Hanoi omega-automata format. In CAV 2015,
volume 9206 of LNCS, pages 479–486. Springer, 2015.

3. M. Benedikt, R. Lenhardt, and J. Worrell. LTL model checking of interval Markov
chains. In TACAS 2013, volume 7795 of LNCS, pages 32–46. Springer, 2013.

4. D. Beyer. Software verification and verifiable witnesses - (report on SV-COMP
2015). In TACAS 2015, volume 9035 of LNCS, pages 401–416. Springer, 2015.

5. S. Breuers, C. Löding, and J. Olschewski. Improved Ramsey-based Büchi com-
plementation. In FoSSaCS 2012, volume 7213 of LNCS, pages 150–164. Springer,
2012.

6. J. R. Büchi. On a decision method in restricted second order arithmetic. In CLMPS
1960, pages 1–11. Stanford University Press, 1962.

7. D. Bustan, S. Rubin, and M. Y. Vardi. Verifying ω-regular properties of Markov
chains. In CAV 2004, volume 3114 of LNCS, pages 189–201. Springer, 2004.

8. C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification.
J. ACM, 42(4):857–907, 1995.

9. D. Dietsch, M. Heizmann, V. Langenfeld, and A. Podelski. Fairness modulo theory:
A new approach to LTL software model checking. In CAV 2015, volume 9206 of
LNCS, pages 49–66. Springer, 2015.

10. A. Duret-Lutz and D. Poitrenaud. SPOT: An extensible model checking library
using transition-based generalized Büchi automata. In MASCOTS 2004, pages
76–83. IEEE Computer Society, 2004.

11. S. Fogarty, O. Kupferman, T. Wilke, and M. Y. Vardi. Unifying Büchi comple-
mentation constructions. Logical Methods in Computer Science, 9(1), 2013.

12. E. Friedgut, O. Kupferman, and M. Y. Vardi. Büchi complementation made tighter.
International Journal of Foundations of Computer Science, 17(4):851–868, 2006.

13. S. Gurumurthy, O. Kupferman, F. Somenzi, and M. Y. Vardi. On complementing
nondeterministic Büchi automata. In CHARME 2003, volume 2860 of LNCS, pages
96–110. Springer, 2003.

14. E. M. Hahn, G. Li, S. Schewe, A. Turrini, and L. Zhang. Lazy probabilistic model
checking without determinisation. In CONCUR 2015, volume 42 of LIPIcs, pages
354–367. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2015.

15. M. Heizmann, J. Hoenicke, and A. Podelski. Termination analysis by learning ter-
minating programs. In CAV 2014, volume 8559 of LNCS, pages 797–813. Springer,
2014.

16. D. Kähler and T. Wilke. Complementation, disambiguation, and determinization
of Büchi automata unified. In ICALP 2008, volume 5125 of LNCS, pages 724–735.
Springer, 2008.

17. O. Kupferman and M. Y. Vardi. Weak alternating automata are not that weak.
ACM Transactions on Computational Logic, 2(2):408–429, July 2001.

18. R. P. Kurshan. Computer-aided verification of coordinating processes: the
automata-theoretic approach. Princeton University Press, 1994.

19. R. McNaughton. Testing and generating infinite sequences by a finite automaton.
Information and Control, 9(5):521–530, October 1966.

20. M. Michel. Complementation is more difficult with automata on infinite words.
Technical report, CNET, Paris (Manuscript), 1988.

21. S. Miyano and T. Hayashi. Alternating finite automata on ω-words. Theoretical
Computer Science, 32(3):321–330, 1984.

22. D. E. Muller. Infinite sequences and finite machines. In FOCS 1963, pages 3–16.
IEEE Computer Society Press, 1963.

23. J.-P. Pécuchet. On the complementation of Büchi automata. Theoretical Computer
Science, 47(3):95–98, 1986.

24. N. Piterman. From nondeterministic Büchi and Streett automata to deterministic
parity automata. Logical Methods in Computer Science, 3(3), 2007.

25. S. Safra. On the complexity of omega-automata. In FOCS 1988, pages 319–327.
IEEE Computer Society, 1988.

26. W. J. Sakoda and M. Sipser. Non-determinism and the size of two-way automata.
In STOC 1978, pages 274–286. ACM Press, 1978.

27. S. Schewe. Büchi complementation made tight. In STACS 2009, volume 3 of
LIPIcs, pages 661–672. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2009.

28. S. Schewe. Tighter bounds for the determinisation of Büchi automata. In FOSSACS
2009, volume 5504 of LNCS, pages 167–181. Springer, 2009.

29. S. Schewe and T. Varghese. Tight bounds for the determinisation and comple-
mentation of generalised Büchi automata. In ATVA 2012, volume 7561 of LNCS,
pages 42–56. Springer, 2012.

30. S. Schewe and T. Varghese. Tight bounds for complementing parity automata. In
MFCS 2014, volume 8634 of LNCS, pages 499–510. Springer, 2014.

31. A. P. Sistla, M. Y. Vardi, and P. Wolper. The complementation problem for
Büchi automata with applications to temporal logic. Theoretical Computer Science,
49(3):217–239, 1987.

32. M. Tsai, S. Fogarty, M. Y. Vardi, and Y. Tsay. State of Büchi complementation.
Logical Methods in Computer Science, 10(4), 2014.

33. M. Tsai, Y. Tsay, and Y. Hwang. GOAL for games, omega-automata, and logics.
In CAV 2013, volume 8044 of LNCS, pages 883–889. Springer, 2013.

34. M. Y. Vardi. Automatic verification of probabilistic concurrent finite-state pro-
grams. In FOCS 1985, pages 327–338. IEEE Computer Society, 1985.

35. M. Y. Vardi. The Büchi complementation saga. In STACS 2007, volume 4393 of
LNCS, pages 12–22. Springer, 2007.

36. M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification (preliminary report). In LICS 1986, pages 332–344. IEEE Computer
Society, 1986.

37. Q. Yan. Lower bounds for complementation of omega-automata via the full au-
tomata technique. Logical Methods in Computer Science, 4(1:5), 2008.

	Complementing Semi-Deterministic Büchi Automata

