
Compositional Approach to Suspension and
Other Improvements to LTL Translation

Tomáš Babiak2, Thomas Badie1, Alexandre Duret-Lutz1,
Mojmı́r Křet́ınský2, and Jan Strejček2

1 LRDE, EPITA, Le Kremlin-Bicêtre, France
{badie,adl}@lrde.epita.fr

2 Faculty of Informatics, Masaryk University, Brno, Czech Republic
{xbabiak, kretinsky, strejcek}@fi.muni.cz

Abstract. Recently, there was defined a fragment of LTL (containing
fairness properties among other interesting formulae) whose validity over
a given infinite word depends only on an arbitrary suffix of the word.
Building upon an existing translation from LTL to Büchi automata, we in-
troduce a compositional approach where subformulae of this fragment are
translated separately from the rest of an input formula and the produced
automata are composed in a way that the subformulae are checked only in
relevant accepting strongly connected components of the final automaton.
Further, we suggest improvements over some procedures commonly ap-
plied to generalized Büchi automata, namely over generalized acceptance
simplification and over degeneralization. Finally we show how existing
simulation-based reductions can be implemented in a signature-based
framework in a way that improves the determinism of the automaton.

1 Introduction

Linear Temporal Logic (LTL) is a standard formalism for description of temporal
properties of systems. LTL is mainly used as a specification formalism, typically
in the context of model checking or control synthesis. Algorithms taking an LTL
formula as input usually translate the formula (or its negation) to an equivalent
Büchi automaton (BA) and subsequently work with that automaton.

Since the publication of the first algorithm translating LTL to Büchi au-
tomata [18], 30 years ago, dozens of papers presenting different translation
algorithms and their optimizations have been published [e.g., 3, 11, 2, 12, 15, 10].
The quality of automata produced by current translators is much higher than
before: automata are substantially smaller and are more often deterministic. In
spite of this, we present several ideas to further improve the produced automata.

First, we introduce a compositional approach to suspension (or simply com-
positional suspension). It elaborates on the notion of suspension introduced
recently [1]. The idea is based on the observation that validity of many interesting
formulae (including fairness formulae) over an infinite word depends only on an
arbitrary suffix of the word. We say that these formulae are suspendable. The
original suspension technique, implemented in LTL3BA [1], was closely bound

to the translation of LTL to BA of Gastin and Oddoux [11]. The compositional
suspension technique presented in this paper is more effective and more general
as it can work on top of an arbitrary translation using generalized Büchi au-
tomata (GBAs) or transition-based generalized Büchi automata (TGBAs) as an
intermediate (or a target) formalism. Note that nearly all LTL to BA translation
algorithms use either a GBA or a TGBA in some form. (A notable exception
is the translation of Fritz [10].) We present our techniques using the TGBA
formalism as it encompasses GBAs, and it has been used by translators such as
LTL2BA [11], Spot [6, 5], and LTL3BA [1] with a great success.

We also improve some post-processings used in LTL translators:
SCC-based simplifications of acceptance conditions reduce the number

of acceptance sets in a TGBA by studying the relation between acceptance
sets in each accepting strongly connected component (SCC) separately. The
implementation of this technique requires careful fine-tuning, as it may greatly
affect final Büchi automata produced by the next two procedures.

Transition-based simulation reductions We show how to implement direct
and reverse simulation reductions of TGBAs in a signature-based framework,
and show how to adjust these to improve determinism as a side-effect.

SCC-based degeneralization We suggest some improvements to the standard
transformation of a TGBA into an equivalent BA.
The rest of the paper is organized as follows. The next section recalls the defini-

tion of LTL and several kinds of automata. Section 3 introduces the compositional
suspension technique. Section 4 successively describes the other improvements.
Experimental results are presented in Section 5.

2 Preliminaries

Let AP be a finite set of (atomic) propositions, and let B = {ff, tt} represent
Boolean values. An assignment is a function ` : AP → B that valuates each
proposition. BAP is the set of all assignments of AP . X∗ (resp. Xω) denotes the set
of finite (resp. infinite) sequences over a set X. In a sequence π = π1π2π3 . . . ∈ Xω,
πi denotes the ith element and πi.. = πiπi+1πi+2 A word w ∈ (BAP)ω is an
infinite sequence of assignments. For ` ∈ BAP , let `|AP ′ denote the restriction of
` to AP ′ ⊆ AP ; we extend this notation to words (w|AP ′) as well.

2.1 Linear temporal logic (LTL)

We define LTL with ϕ ::= tt | ff | a | ā |ϕ ∧ ϕ |ϕ ∨ ϕ |Xϕ |Fϕ |Gϕ |ϕUϕ |ϕRϕ
where a ∈ AP and ā denotes negation of a. We omit ∧ in conjunctions of
atomic propositions (e.g., ab̄ ≡ a ∧ b̄). We allow negation only in front of atomic
propositions as it is well known that any LTL formula can be rewritten into this
form. The validity of a formula ϕ over a word w ∈ (BAP)ω, written w |= ϕ, is
defined by a structural induction on ϕ in the standard way. For example:

w |= a iff w1(a) = tt;
w |= ϕUψ iff ∃i ≥ 1, (wi.. |= ψ and ∀j ∈ {1, . . . , i− 1}, wj.. |= ϕ).

We say that ϕ holds at position i of w iff wi.. |= ϕ.

2.2 Automata

A labeled transition system (LTS) is a tuple S = 〈AP , Q, q0, δ〉 where AP is a
finite set of atomic propositions, Q is a finite set of states, q0 ∈ Q is the initial
state, δ ⊆ Q×BAP ×Q is the transition relation, labeling each transition by an
assignment. As an implementation optimization, and to simplify illustrations,
it is practical to use edges labeled by Boolean formulae to group transitions
with same sources and destinations: for instance two transitions (s1, ab̄, s2) and
(s1, ab, s2) will be represented by an edge from s1 to s2 and labeled by the Boolean
formula a. We use the terms transition and edge to distinguish between these
two representations.

An infinite sequence π = (s1, `1, d1)(s2, `2, d2) . . . ∈ δω is a run of S if s1 = q0
and ∀i ≥ 1, di = si+1. Run(S) denotes the set of all runs of S. Let InfQ(π)
(resp. Infδ(π)) denote the set of states (resp. transitions) that appear infinitely
often in π, and let Labels(π) = `1`2 . . . ∈ (BAP)ω be the word evaluated by π.

A Büchi automaton is a pair B = 〈S, F 〉 where S = 〈AP , Q, q0, δ〉 is an
LTS and F ⊆ Q is a set of accepting states. Let Acc(B) = {π ∈ Run(S) |
InfQ(π)∩F 6= ∅} denote the accepting runs of B. The language of B is the set of
words evaluated by accepting runs: L (B) = {Labels(π) | π ∈ Acc(B)}.

A Transition-based Generalized Büchi automaton (TGBA) is a pair T = 〈S, F 〉
where S = 〈AP , Q, q0, δ〉 is an LTS and F ⊆ 2δ is a set of acceptance sets of
transitions. Let Acc(T) = {π ∈ Run(S) | ∀Z ∈ F, Infδ(π) ∩ Z 6= ∅} denote the
accepting runs of B, i.e., runs of S whose transitions visit each acceptance set
infinitely often. The language of T is the set of words evaluated by accepting
runs: L (T) = {Labels(π) | π ∈ Acc(T)}. On figures, membership of transitions
to acceptance sets is indicated using one colored marker (, , , . . .) per set.

A Büchi automaton B = 〈S, FB〉 can easily be converted into a TGBA
T = 〈S, FT 〉 such that L (B) = L (T) by setting FT = {{(s, `, d) ∈ δ | s ∈ FB}}.
A similar view can be used to interpret state-based generalized Büchi automata
(which we do not define) as TGBAs. Although we describe our improvements on
TGBAs, they adapt easily to these classes of Büchi automata with such views.

The reverse operation, degeneralizing a TGBA with multiple acceptance sets
into a Büchi automaton, is discussed in Sec. 4.3.

A promise automaton is again a pair P = 〈S, F 〉 where F ⊆ 2δ is a set
of promise sets of transitions. The runs accepted by a promise automaton are
those which have no suffix that stays continuously in any promise set: Acc(P) =
{π ∈ Run(S) | ∀Z ∈ F, ∀i ≥ 1, πi.. 6∈ Zω}. As expected, the language of P is
L (P) = {Labels(π) | π ∈ Acc(P)}.

Because a run that does not visit infinitely often a set of transitions Z will
have a suffix that stays continuously in the set δ r Z, T = 〈S, FT 〉 can be
converted into a promise automaton P = 〈S, FP〉 such that L (T) = L (P) by
complementing the acceptance sets: FP = {δ r Z | Z ∈ FT }. The converse holds
as well. The name of promise automaton comes from an interpretation of the
elements of FP = {Z1, . . . , Zn} as promises: a transition in the set Zi can be
seen as making the promise Zi. A promise Zi is fulfilled by a run that does not
stay in Zi continuously, and a run is accepting if it fulfills all promises.

A strongly connected component (SCC) C ⊆ Q is a non-empty set of states
such that any ordered pair of states of C can be connected by a sequence of
transitions. Let Cδ = {(s, `, d) ∈ δ | s ∈ C, d ∈ C} denote the set of transitions
induced by C. An SCC C is said to be accepting if: C ∩ F 6= ∅ on a Büchi
automaton, ∀Z ∈ F, Cδ ∩Z 6= ∅ on a TGBA, ∀Z ∈ F, Cδ ∩Z 6= Cδ on a promise
automaton. With these definitions, any accepting run π is necessarily ultimately
contained by some accepting SCC C, i.e., Infδ(π) ⊆ Cδ.

3 Compositional Approach to Suspension

3.1 Suspendable formulae

A suspendable formula, originally called alternating formula [1]3, has at least
one F and at least one G operator on each branch of its syntax tree. The formal
definition is given by the following abstract syntax equations, where ϕ ranges
over general LTL formulae. Besides suspendable formulae ξ, these equations also
define pure eventuality formulae µ and pure universality formulae ν introduced
by Etessami and Holzmann [8].

µ ::= Fϕ | µ ∨ µ | µ ∧ µ | Xµ | ϕUµ | µRµ | Gµ
ν ::= Gϕ | ν ∨ ν | ν ∧ ν | Xν | ν U ν | ϕR ν | Fν
ξ ::= Gµ | Fν | ξ ∨ ξ | ξ ∧ ξ | Xξ | ϕU ξ | ϕR ξ | Fξ | Gξ

The class of suspendable formulae contains many specification patterns frequently
used in practical applications of LTL like model checking. For example, uncondi-
tional fairness GFϕ, weak fairness FGϕ→ GFρ (≡ GF(ϕ→ ρ)), strong fairness
GFϕ → GFρ, and their negation can be easily transformed into suspendable
formulae (our definition of LTL does not allow →).

The following lemma states that a suspendable formula either holds at each
position of a word or at none of them.

Lemma 1 ([1]). Let ξ be a suspendable formula. For all u ∈ (BAP)∗, w ∈
(BAP)ω, we have uw |= ξ ⇐⇒ w |= ξ.

Consequently, every suspendable formula ξ satisfies ξ ≡ Xξ. This property
provides a theoretical base for the suspension technique [1] that was used to
improve the translation of Gastin and Oddoux [11]. This translation uses a very
weak alternating automaton (VWAA) and a TGBA as intermediate formalisms.
States of the VWAA are identified with subformulae of the input formula. States
of the TGBA are sets of VWAA states. Transitions leaving from a TGBA state
M are computed as combinations of transitions leaving from the VWAA states
in M . If M contains a suspendable subformula ξ, the corresponding VWAA state
can be temporarily suspended: during the computation step, ξ is treated as Xξ
and hence it has only one transition leading back to ξ. As a result, the number
of transition combinations is reduced and a smaller automaton is produced. For

3 We change the terminology here as the original name seems to be ambiguous.

1

2

3

b̄c[ξ]

ab̄c[ξ]bc[ξ]

[ξ]

b[ξ]

ab̄[ξ]

(a)

6

4

5

[ξ]

[ξ]

d[ξ]

d[ξ]

[ξ]

(b)

14

24

34

15

35

b̄c

bc
ab̄c

b̄cd

tt

d

ab̄
b

b̄cd

ab̄c

bc

d

(c)

b̄c

bc
ab̄c

b̄cd

bcd

tt

d

ab̄

b
bd

b̄cd

ab̄cd

bcd

d

ab̄d

bd

(d)

Fig. 1: (a) Skeleton TGBA for ((aU b)R c)∧ξ. (b) Suspendable TGBA for ξ = FGd
(equipped with suspending arcs). (c) Composition of the previous two automata.
(d) Traditional translation of ((aU b)R c) ∧ FGd.

correctness, ξ should not be suspended forever during any accepting run of the
TGBA, we therefore enable suspension only in TGBA states that are not on
any accepting cycle. Because the detection of such a cycle is complicated as the
TGBA is only under construction, a heuristic was used to detect some of the
TGBA states not lying on any accepting cycle [1].

3.2 Translation with Compositional Suspension

We now present a new version of the suspension technique that has two advantages
over the original one: it can be combined with all LTL translation algorithms
producing a TGBA or GBA and it is more effective as it uses a more precise
detection of TGBA states not lying on any accepting cycle.

To explain the general idea, consider an LTL formulae of the form ϕ∧ ξ where
ξ is a suspendable formula. If Tϕ and Tξ are TGBAs for ϕ and ξ, we can construct
an automaton for ϕ ∧ ξ by composing Tϕ and Tξ using a synchronous product.
However, ξ is suspendable, so by Lemma 1 we can suspend its verification by any
finite prefix. In our composition we could delay the verification of ξ until Tϕ has
entered an accepting SCC. This remark calls for the implementation of a new
synchronous product, that synchronizes Tξ only in the accepting SCCs of Tϕ.

One way to describe this product is to introduce a new atomic proposition
[ξ] and its negation [ξ] to mark where the two automata should be synchronized.
Figure 1(a) shows a TGBA for ϕ = (aU b)R c equipped with these new properties
and ready to be composed: transitions induced by accepting SCCs {1} and {3}
carry the additional label [ξ], while all other transitions have [ξ]. We call such

an automaton a skeleton automaton for ϕ ∧ ξ because it indicates the places
where the suspended ξ should be composed. Figure 1(b) shows a TGBA Tξ
for ξ = FGd also equipped with the same labels: transitions from the original
translation of ξ carry the [ξ] label, and additional “suspending transitions” (the
dotted arcs) have been added to reset the automaton to its initial state when Tξ
leaves an accepting SCC (and thus suspend checking ξ by another step). We call
this a suspendable automaton for ξ. The synchronous product of both automata
can then be stripped of all occurrences of the auxiliary proposition [ξ] and its
negation, and [ξ] is removed from its set of atomic propositions. The resulting
Fig. 1(c), should be compared to the automaton of Fig 1(d) that we would get
by a traditional translation. The superfluous acceptance set we obtain can be
easily removed, as explained in Sec. 4.1.

We now focus on constructing a skeleton automaton for an arbitrary formula
ϕ that contains suspendable subformulae (not necessarily at the top level). We
first replace every maximal suspendable subformula ξ of ϕ by the subformula
G[ξ] with fresh auxiliary propositions [ξ]. The resulting formula, denoted ϕ′ is
translated into a TGBA Tϕ′ . This automaton can directly be used as a skeleton for
ϕ: whenever G[ξ] holds at some positions of a word accepted by this automaton,
the product with a suspendable TGBA for ξ will check the validity of ξ on
this word. Note that we do not say that validity of ξ will be checked exactly at
the positions where G[ξ] holds. Indeed, this is not needed as ξ is a suspendable
formula and thus it either holds at each position of a word or at none of them.

Even if Tϕ′ is a correct skeleton for ϕ, it is not what we typically use in
the synchronous product with a suspendable TGBA for ξ. To avoid checking ξ
whenever possible, we want to reduce the set of words w′ accepted by the skeleton
and such that G[ξ] holds at some positions of w′. We use two reductions:
– We replace [ξ] with [ξ] on transitions that are not induced by any accepting

SCC. (This is what we did in Fig 1(a).) The reduction is correct as for every
word w′ accepted by the original skeleton, there is a word w′′ accepted by the
reduced skeleton such that w′|AP = w′′|AP and G[ξ] holds at some positions
of w′ if and only if it holds at some position of w′′. The last equivalence holds
because we do not change transition labels in accepting SCCs.

– We remove transitions labeled with [ξ] from the skeleton if they are not
needed, i.e. there are analogous transitions that differ only in validity of [ξ].
Formally, we remove each transition (s, `, d) such that `([ξ]) = tt if there
exists a transition (s, `′, d) where `′|AP = `|AP , `′([ξ]) = ff, and the two
transitions belong to the same acceptance sets. This reduction is correct as
for each w′ accepted before this reduction and such that G[ξ] holds at some
position of w′, there is another word w′′ accepted by the reduced skeleton
and satisfying w′|AP = w′′|AP . (Note that either G[ξ] holds at some positions
of w′′ too and then the product with suspendable automaton for ξ checks
validity of ξ on w′|AP anyway, or G[ξ] does not hold at any positions of w′′

and w′|AP satisfies ϕ regardless validity of ξ.)
We call susp(ϕ) the function that transforms ϕ into ϕ′,
make suspendable(T , [ξ]) the function that transforms a TGBA T for
a suspendable subformula ξ into a suspendable automaton for ξ, and

01 2

tt tt
ab

ab̄

āb

āb̄

c

c̄

āb̄

(a)

01 2

tt tt
ab

ab̄

āb

āb̄

c

c̄
(b)

Fig. 2: (a) TGBA for (GF(a)∧GF(b))∨GF(c), with three acceptance sets denoted
by , , and . (b) Same automaton after SCC-based acceptance simplification.

reduce skel(T , {ξ1, ..., ξn}) the function that reduces a skeleton automaton for
a set of suspendable subformulae. They will be used in Fig. 6.

4 Other Improvements

4.1 SCC-based simplifications of acceptance conditions

While simplifying the acceptance sets of an automaton does not immediately
change the size of the underlying LTS, it can lead to smaller automata as it eases
the job of simulation-based reductions (Sec. 4.2) and degeneralization (Sec. 4.3).

Let T = 〈S, F 〉 be a TGBA with n acceptance sets: F = {Z1, Z2, . . . , Zn}.
Let {A1, . . . , Am} denote the set of all accepting SCCs of T and let Aδ =
A1δ ∪ . . . ∪Amδ be the set of all transitions induced by these accepting SCCs.

Because any accepting run will ultimately be contained in some accepting
SCC, any transition outside of Aδ can be removed from the acceptance sets
without changing the language. A typical simplification is therefore to restrict all
Zi to Aδ: we have L (〈S, F 〉) = L (〈S, {Z1 ∩Aδ, . . . , Zn ∩Aδ}〉).

If there exists i 6= j such that Zi ⊆ Zj , then any run that visits Zi infinitely
often will necessarily visit Zj infinitely often. In other words, Zj can be removed
from F without changing the language: L (〈S, F 〉) = L (〈S, F r {Zj}〉).

If we define U = {Zj ∈ F | ∃Zi ∈ F, (Zi (Zj) ∨ (Zi = Zj ∧ j > i)} to be the
set of useless acceptance sets, we have L (〈S, F 〉) = L (〈S, F r U〉). Note that
the definition of U carefully keeps one copy when two sets are equal. We view
this simplification as the standard way to diminish the number of acceptance sets
in an automaton [16]. For instance after restricting the acceptance sets of Fig. 1c
to the accepting SCCs {15}δ ∪ {35}δ, one of or can be removed (not both).

Detecting inclusion between acceptance sets at the automaton level fails to
simplify the TGBA from Fig. 2(a): in this automaton there is no inclusion between
acceptance sets. However, by considering such inclusions in each accepting SCC,
we can notice that is useless in SCC A1 = {1} (because includes either or

), while and are both useless in SCC A2 = {2}. We can therefore reorganize
the acceptance sets of the automaton to use only two acceptance sets: Fig. 2(b)
shows one possibility.

More formally, for an accepting SCC Ak, let Uk = {j ∈ {1, . . . , n} | ∃i ∈
{1, . . . , n}, (Zi ∩Akδ (Zj ∩Akδ)∨ (Zi ∩Akδ = Zj ∩Akδ ∧ j > i)} be the set of
indices of useless acceptance sets in the sub-automaton induced by Ak, and let
Nk = {1, . . . , n}r Uk be the set of needed acceptance sets. Because acceptance
sets are defined for the whole automaton, we may not use a different number
of acceptance sets for each SCC: n′ = maxk∈{1,...,n} |Nk| acceptance sets are
required to hold all needed acceptance sets. Let N ′k be a copy of Nk in which we
have added n′ − |Nk| items from Uk. Then for each accepting SCC Ak, |N ′k| = n′

and let αk : {1, . . . , n′} → N ′k be any bijection. We can define the new acceptance
sets F ′ = {Z ′1, . . . , Z ′n′} as:

Z ′i =
⋃

k∈{1,...,m}

(Zαk(i) ∩Akδ) (1)

Then we have L (〈S, F 〉) = L (〈S, F ′〉). In the example of Fig. 2(a), with A1 =
{1} and A2 = {2}, let us assume that , , and respectively denote the
acceptance sets Z1, Z2, and Z3. We have U1 = {3}, N1 = {1, 2}, U2 = {1, 2},
N2 = {3}, n′ = 2, and we define N ′1 = N1, N ′2 = N2 ∪ {1}, α1(1) = 1, α1(2) = 2,
α2(1) = 1, α2(2) = 3 to get the TGBA of Fig. 2(b).

Note that there is a lot of freedom in the definition of the bijective function
αk for each accepting SCC. In our implementation we make sure αk is monotonic
so that the order of the acceptance sets are preserved: we have found that this
usually helps the degeneralization algorithm that is run afterwards. Furthermore,
in accepting SCCs that require less than n′ acceptance sets, the n′ − |Nk| extra
sets that are added could be defined in many different ways: instead of reusing
some of the useless acceptance sets, we could duplicate some of the needed ones
(making αk : {1, . . . , n′} → Nk a surjection), or adding all transitions of Akδ
into the extra sets (at the price of more complex definitions). Our attempts at
implementing these alternative definitions had a negative effect on the simulation-
based reductions described in the next section.

Note that Somenzi and Bloem [16, Theorem 4] proposed another SCC-based
acceptance simplification, that simplifies Fig. 2(a) differently. If we have Zi∩Akδ ⊆
Zj ∩Akδ for some i, j, k, they remove the transitions Akδ r Zi from Zj . While
this reduces the size of Zi, it does not yet change the number of acceptance sets.
On Fig. 2(a), this would remove the bottom right loop from the sets and ,
after which it would be possible to detect that includes all sets, and remove it.

4.2 Transition-based simulation reductions

Spot has an implementation of simulation-based reductions described by Somenzi
and Bloem [16], but adapted to work on promise automata (easily converted to
and from TGBAs, see Sec. 2.2) instead of BAs. Intuitively, direct simulation can
merge states or remove transitions based on the inclusion of the sets of infinite
runs starting from these states, while reverse simulation is based on the inclusion
between sets of (finite or infinite) runs leading to these states.

Our implementation is a signature-based implementation of Moore’s classic
partition refinement algorithm: initially all states belong to the same class, and
the partition is iteratively refined until fixpoint. Depending on the definition of
the signature, we compute a bisimulation or simulation relation, direct or reverse.

Direct bisimulation: We first explain how to perform a signature-based, di-
rect bisimulation of a promise automaton 〈S, F 〉, using a setup inspired from Wim-
mer et al. [17]. The signature sigi(q) of a state q is a Boolean function that
describes the outgoing transitions of q, their membership to acceptance sets, and
the class of their destination at iteration i.

If the acceptance sets are F = {Z1, . . . , Zn}, and the partition of Q at
iteration i is P i = {Ci1, . . . , Cim}, we use Boolean variables Ẑk and Ĉk to denote
membership to the sets Zk and Cik, and we define sigi(s) as:

sigi(q) =
∨

(s,`,d)∈δ
q=s

` ∧Acc(s, `, d) ∧ Classi(d);

where Acc(s, `, d) =
∧
Zk∈F

(s,`,d)∈Zk

Ẑk and Classi(d) = Ĉk ⇐⇒ d ∈ Cik.

With this encoding, two states that have the same outgoing transitions (same
labels, membership to acceptance sets, and destination class) will have the
same signature. Also if a state q has two outgoing transitions t1 = (q, a, d1)
and t2 = (q, a, d2) such that t1 ∈ Z1 is in a promise set but t2 6∈ Z1 we have
sigi(q) = a∧ ((Ẑ1 ∧Classi(d1))∨Classi(d2)). If the two classes are the same, the
signature simplifies to sigi(q) = a ∧ Classi(d2), as if t1 had been merged into t2.
This simplification, correct on promise automata, would be incorrect on TGBAs.

To compute a direct bisimulation relation we start with the partition P 0 = {Q}
that considers all states as equivalent, and then split the partition according
to the signatures of the states: P i+1 = {{s ∈ Q | sigi(s) ≡ sigi(q)} | q ∈ Q}.
Once a fixpoint has been reached (i.e., P j = P j+1 for some j), the partition
provides the set of states that are (direct) bisimilar and can therefore be merged.
It should be noted that the signature associated to each class can also be used
to reconstruct the quotient automaton. By extension, let sigi−1(C) denote the
signature common to all states of the class C ∈ P i.

Direct simulation: To perform the (direct) simulation of a promise automa-
ton, we alter sig to include all the classes implied by the destination class:

sigi(q) =
∨

(s,`,d)∈δ
q=s

` ∧Acc(s, `, d) ∧ Impliedi(d) where Impliedi(d) =
∧

Ci
k∈P

i

sigi−1(d)→sigi−1(Ci
k)

Ĉk

We fix Implied0(q) = Ĉ1 for all q ∈ Q initially, as there is only one class. Then
partition refinement can be iterated until both P k = P k+1 and Impliedk =
Impliedk+1. The implication sigi−1(d) → sigi−1(Cik) can be tested easily since
signatures are encoded as BDDs.

Figure 3 illustrates this reduction on an example. Although all states start
in the same class, computing sig0 is enough to separate all states into four

0 1

2 3

a

a a

b

a
b tt

(a)

Ĉ1Ĉ2Ĉ3Ĉ4

Ĉ3Ĉ4 Ĉ4

a

a

āb tt

Note: the values of
Impliedi(0) for i = 1, 2
are bogus in the pro-
ceedings of SPIN’13.
This version of the pa-
per is fixed.

(b)

i q Classi(q) Impliedi(q) sigi(q)

0 0 Ĉ1 Ĉ1 aĈ1 ∨ aĈ1 = aĈ1

1 Ĉ1 Ĉ1 bˆĈ1 ∨ aĈ1

2 Ĉ1 Ĉ1 bĈ1 ∨ aĈ1

3 Ĉ1 Ĉ1 Ĉ1

1 0 Ĉ1 Ĉ1Ĉ2Ĉ3Ĉ4 aĈ2Ĉ3Ĉ4 ∨ aĈ3Ĉ4 = aĈ3Ĉ4

1 Ĉ2 Ĉ2Ĉ3Ĉ4 bˆĈ2Ĉ3Ĉ4 ∨ aĈ4

2 Ĉ3 Ĉ3Ĉ4 bĈ3Ĉ4 ∨ aĈ4

3 Ĉ4 Ĉ4 Ĉ4

2 0 Ĉ1 Ĉ1Ĉ2Ĉ3Ĉ4 aĈ2Ĉ3Ĉ4 ∨ aĈ3Ĉ4 = aĈ3Ĉ4

1 Ĉ2 Ĉ2Ĉ3Ĉ4 bˆĈ2Ĉ3Ĉ4 ∨ aĈ4

2 Ĉ3 Ĉ3Ĉ4 bĈ3Ĉ4 ∨ aĈ4

3 Ĉ4 Ĉ4 Ĉ4

(c)

Fig. 3: (a) A promise automaton to simplify. (b) The result of direct simulation
reduction. (c) Detailed steps for the signature-based direct simulation.

classes. The refinement stops at iteration i = 2 because Class2 = Class1 and
Implied2 = Implied1. The signatures computed at the last iteration can be
used to reconstruct the automaton. Especially, the edge (0, a, 1) in the original
automaton is dominated by edge (0, a, 2) in the computation of sig2(0) (intuitively,
the suffixes accepted via (0, a, 1) are included in those accepted via (0, a, 2)), so
only the latter edge appears in the resulting signature and in the final automaton.

An additional trick can be used to improve the determinism of the constructed
automaton. Because sig2(2) = bĈ3Ĉ4 ∨ aĈ4 is equivalent to ābĈ3Ĉ4 ∨ aĈ4, the
self-loop to state 2 (represented by Ĉ3Ĉ4 in the signature) can be labeled by āb
instead of just b. In practice, for each state q we iterate over all assignments
f ∈ BAP , and compute the possible destinations by rewriting sigi(q) ∧ f as an
irredundant sum of products.

Reverse simulation: A reverse simulation can be built and used similarly
by computing a signature using the incoming transitions:

sigi(q) = Init(q)∨
∨

(s,`,d)∈δ
q=d

`∧Acc(s, `, d)∧Impliedi(s) with Init(q) =

{
Î if q = q0;

ff else.

Because the reverse simulation has to distinguish finite prefixes from infinite

Note: the definition

of sigi(q) is bogus

in the proceedings of

SPIN’13. This version

of the paper is fixed.

prefixes we use an extra Boolean variable Î to distinguish the initial state.

In practice we alternate direct and reverse simulations until the automaton is
no longer reduced. Most of the time only one iteration is needed (meaning that
we do the second iteration just to discover that the produced automaton has the
same size). As an optimization, we abort this loop when the automaton produced

0 1
tt

a

ā

(a)

0 1

a

ā a

ā

(b)

0 a

ā

(c)

Fig. 4: Three equivalent TGBAs. (a) is obtained from (b) with the acceptance
simplifications of Sec. 4.1. (c) is obtained from (b) using the simulation reductions
of Sec. 4.2, however the latter reductions are unable to reduce (a) into (c).

by the direct simulation is deterministic: the reverse simulation cannot improve
a deterministic automaton since all prefixes leading to a state are unique.

Other simulations have been suggested, such as fair or delayed simulation [9],
both relaxing the handling of acceptance conditions, and these have also been
extended to (state-based) generalized Büchi automata [13]. All of these are
presented in a game-theoretic framework that is not straightforward to implement,
especially in the generalized Streett game version required for generalized Büchi
automata. Conversely, our implementation of direct and reverse simulation easily
deals with TGBAs (when first converted as promise automata), augments the
determinism as a side-effect, and was simple to implement because it uses the
same BDD framework that Spot is already using for the LTL translation.

Although the operations described in Section 4.1 simplify the SCC-based
acceptance conditions of a TGBA, there are situations where it worsens the
results of the simulation-based reductions. A typical example is given by Fig. 4.

Since Couvreur’s translation can produce automata with a configuration
similar to Fig. 4(b), we use an alternative acceptance simplification that preserves
the acceptance of all transitions entering an accepting SCC. This corresponds
to replacing Akδ by {(s, `, d) ∈ δ | d ∈ Ak} in equation (1). In our tests, this is
always favorable to the simulation.

Unfortunately, the situation depicted by Fig. 4(a) also occurs in the output
of some translations, even before acceptance simplification. This is even more
frequent with the compositional approach to suspension presented in Sec. 3.

4.3 SCC-based degeneralization

While any Büchi automaton can be converted into a TGBA without altering the
underlying LTS (see Sec. 2.2), the reverse is not generally true.

A TGBA T = 〈S, F 〉 with S = 〈AP , Q, q0, δ〉 and F = {Z1, . . . , Zn} can be
degeneralized into a BA B = 〈S ′, F ′〉 with S ′ = 〈AP , Q′, q′0, δ

′〉 as follows [11, 12]:
– Q′ = Q× {0, . . . , n}, i.e., the original automaton is cloned in n+ 1 levels,
– F ′ = Q× {n}, i.e., states from the last level are accepting,
– δ′ = {((s, j), `, (d, Lj((s, `, d)))) | (s, `, d) ∈ δ, j ∈ {0, . . . , n}} where

Lj(t) =

0 if j = n;

j + 1 if t ∈ Zj+1;

j otherwise.

1

2

3 4

(a)

1,0 1,1

1,2

2,0 2,1

3,0 4,0 3,1 4,1

3,2

(b)

Fig. 5: Example of degeneralization of the TGBA (a) with F = { , } taken in
this order. Transition labels are omitted for clarity. The automaton (b) with the
dashed part is obtained by the classical degeneralization (with jumping of levels).
Our redefinition replaces the dashed part by the dotted transition.

i.e., for each level j < n the outgoing transitions that belong to Zj+1 are
redirected to the next level and all outgoing transitions from the last level
are redirected to the first one.

– q′0 = (q0, 0), i.e., the initial state is on the first level (any level works).

Note: the definition

of q′0 and the exam-

ple of Fig. 5 are bogus

in the proceedings of

SPIN’13. This version

of the paper is fixed.

This leveled setup guarantees that any accepting path in B correspond to an
infinite path that sees all acceptance conditions infinitely often in T . If T [q]
denotes the automaton T in which the initial state has been changed to q, we
have L (T [q]) = L (B[(q, j)]) for all states q ∈ Q and all levels j ∈ {0, . . . , n}.

The classical optimization is to “jump levels”, i.e., when a transition from
level j < n belongs to acceptance sets Zj+1, Zj+2, and Zj+3, it can be redirected
to the level j + 3. This corresponds to the following redefinition of Lj :

Lj(t) =

{
max{k ∈ {j, . . . , n} | t ∈ Zj+1 ∩ . . . ∩ Zk} if j < n;

max{k ∈ {0, . . . , n} | t ∈ Z1 ∩ . . . ∩ Zk} if j = n.

Of course only the reachable part of B is constructed, so it is not frequent to
construct the maximum number of (n+ 1)× |Q| states. Fig. 5 applies the above
definition to an example. The transition from (3, 0) to (3, 2) jumps level 1.

This construction offers several degrees of freedom: for instance there are n!
possible orderings of the acceptance sets, and n+ 1 possible levels for the initial
state. Giannakopoulou and Lerda [12] perform two degeneralizations starting
respectively at level 0 and n, then they keep the best. We are not aware on any
work on the selection of a suitable ordering. Empirical evidence shows that the
order in which these sets are created during translation is often favorable to the
degeneralization (the reverse order, at least, is catastrophic), this is why Sec. 4.1
defines α in a way that preserves the ordering.

Staying away from these combinatorial possibilities, we suggest two ideas to
improve degeneralization procedures: level reset and level caching. Both require
knowledge of the set {A1, . . . , Am} of accepting SCCs of T .

Level reset: Since non-accepting SCCs of T do not contain accepting cycles
(by definition), they do not need to be cloned on different levels. Therefore all
transitions that are not induced by any accepting SCC, are directed to level 0.

Level caching: Consider a transition (s, `, d) that enters an accepting SCC
(∃i, s 6∈ Ai ∧ d ∈ Ai): as with the initial state, the level associated to d can be
set to any arbitrary value. If a copy of d already exists on some level, we should
start on that level to avoid creating a new one. This optimization is of course
affected by the order chosen to construct the degeneralized automaton (we do a
simple DFS but there could be room for improvement).

These two optimizations can be implemented with Lj((s, `, d)) =
max{k ∈ {j, . . . , n} | (s, `, d) ∈ Zj+1 ∩ . . . ∩ Zk} if j < n ∧ ∃i, (s, d) ∈ A2

i ;

max{k ∈ {0, . . . , n} | (s, `, d) ∈ Z1 ∩ . . . ∩ Zk} if j = n ∧ ∃i, (s, d) ∈ A2
i ;

0 if @i, d ∈ Ai;
x if ∃i, s 6∈ Ai ∧ d ∈ Ai.

Where x is any level such that the state (d, x) already exists, or 0 otherwise.
On the example of Fig. 5, the level reset alone is enough to replace transition

((1, 1), `, (2, 1)) by transition ((1, 1), `, (2, 0)), therefore avoiding state (2, 1) and
all its descendants. Using level caching without level reset, and assuming the
descendants of (2, 0) have been built before those of (2, 1), then state (2, 1) would
be connected to states (3, 0) and (4, 0) instead of states (3, 1) and (4, 1). It is
hard to find a small example to illustrate that both optimizations are useful
together: the smallest such occurrence in our benchmarks has 20 states.

5 Experimental Results

5.1 Translation Scenarios

All of the above improvements are implemented in Spot 1.14 on top of Couvreur’s
LTL to BA translation algorithm [2] (denoted by Cou99(ϕ) in the sequel although
it has been regularly improved over the past years [5]). Besides the techniques
discussed in this paper, Spot implements the WDBA-minimization algorithm
of Dax et al. [4] that converts any TGBA representing an obligation property [14]
into a minimal Weak Deterministic Büchi Automaton. The corresponding function
WDBA minimize(T , ϕ) requires the formula ϕ represented by automaton T to
check the validity of the minimized automaton.

There are cases where the deterministic BA produced by WDBA-minimization
is bigger than the nondeterministic automaton obtained via simulation and degen-
eralization. In the context of model checking, it is not clear when a deterministic

4 http://spot.lip6.fr/. After download and installation, see the man pages of
ltl2tgba(1) and spot-x(7) for the options to enable the algorithms discussed
here, and see also bench/spin13/README.

“small size” scenario “determinism” scenario

co
m

p
o
si

ti
o
n

ϕ′, {ξ1, ..., ξn} ← susp(ϕ) ϕ′, {ξ1, ..., ξn} ← susp(ϕ)
T ← Cou99(ϕ′) T ′ ← Cou99(ϕ′)

T ← WDBA minimize(T ′, ϕ′)
if T could not be built:

(S) T ← iter simulations(T) (S) T ← iter simulations(T ′)
T ← reduce skel(T , {ξ1, ..., ξn}) T ← reduce skel(T , {ξ1, ..., ξn})
for ξ ∈ {ξ1, ..., ξn} do: for ξ ∈ {ξ1, ..., ξn} do:
Tξ ← Cou99(ξ) Tξ ← Cou99(ξ)

(S) Tξ ← iter simulations(Tξ) (S) Tξ ← iter simulations(Tξ)
Tξ ← make suspendable(Tξ, [ξ]) Tξ ← make suspendable(Tξ, [ξ])
T ← product(T , Tξ) T ← product(T , Tξ)

p
o
st

-p
ro

ce
ss

in
g
s

T ← prune dead SCCs(T) T ← prune dead SCCs(T)
(A) T ← acc simplify(T) (A) T ← acc simplify(T)
T1 ← WDBA minimize(T , ϕ) T1 ← WDBA minimize(T , ϕ)

(S) T ← iter simulations(T) if T1 could be built:
(D) T ← degeneralize(T) return T1
(B) T ← iter simulations(T) (S) T ← iter simulations(T)

if T1 could be built: (D) T ← degeneralize(T)
return smallest(T , T1) (B) T ← iter simulations(T)

return T return T

Fig. 6: Two translation scenarios that use compositional suspension (denoted
“Comp” in the sequel) to produce a BA. Automata are stored as TGBAs even when
they represent BAs. The scenarios without compositional suspension (denoted
as “Cou99”) arise by replacing all the composition lines by T ← Cou99(ϕ). To
produce a TGBA instead of a BA, we omit lines (D) and (B).

automaton should be favored over a small one. For instance, Sebastiani and
Tonetta [15] have shown that their larger and more deterministic automata yield
smaller synchronized products with a model than the smaller automata produced
by Gastin and Oddoux [11]. Spot implements two translation scenarios: the “small
size” scenario tries to reduces the size of the automaton, while the “determinism”
scenario tries to reduces the number of nondeterministic states. According to our
experience with Spot, automata produced by our “small size” scenario tends to
give smaller synchronized products.

Fig. 6 shows how the different techniques we have presented are chained in
these two scenarios. The function prune dead SCCs is a classical optimization
that removes states that may not reach an accepting SCC. susp, reduce skel,
make suspendable correspond to operations defined in Sec. 3.2. We will use keys
(S),(A),(D),(B) to denote lines that are enabled or disabled in our experiments.
For acceptance simplification (A) and degeneralization (D), we write (a) and
(d) to indicate that old definitions are used. For instance “Cou99 (a)” means
that Spot’s implementation of Couvreur’s translation was used to translate the
formulae, and that the only post-processings performed were prune dead SCCs,

“small size” scenario “determinism” scenario
|Q| |δ| |F | ns nA time |Q| |δ| |F | ns nA time

k
n
o
w
n
.
l
t
l
:
1
8
4
fo
rm

u
la
e

T
G
B
A 1 Cou99 (a) 672 10921 198 113 49 7.09 676 10805 198 105 45 7.13

2 Cou99 (A) 672 10921 195 113 49 7.24 676 10805 195 105 45 7.38
3 Cou99 (AS) 636 9848 195 88 50 7.50 641 9958 195 82 45 7.34
4 Comp (AS) 636 9838 195 85 50 7.63 644 9968 195 79 45 7.53

B
A

5 Cou99 (ad) 717 11653 184 124 49 6.93 721 11537 184 116 45 6.84
6 Cou99 (Ad) 717 11653 184 124 49 6.94 721 11537 184 116 45 6.97
7 Cou99 (ASd) 678 10511 184 97 50 7.28 683 10621 184 91 45 7.02
8 Cou99 (ASD) 675 10463 184 97 50 7.35 680 10573 184 91 45 7.08
9 Cou99 (ASDB) 673 10362 184 95 49 7.50 678 10472 184 89 44 7.14
10 Comp (ASDB) 673 10352 184 92 49 7.56 687 10530 184 86 44 7.32

w
e
a
k
3
.
l
t
l
:
1
0
0
fo
rm

u
la
e

T
G
B
A 1 Cou99 (a) 749 116312 361 324 92 6.81 749 116312 361 324 92 6.83

2 Cou99 (A) 743 115104 357 319 90 8.89 743 115104 357 319 90 8.94
3 Cou99 (AS) 618 84603 355 237 86 10.42 618 84603 355 237 86 10.36
4 Comp (AS) 617 83875 355 225 87 7.51 647 90771 355 195 69 7.84

B
A

5 Cou99 (ad) 2030 299376 100 776 92 7.75 2030 299376 100 776 92 7.76
6 Cou99 (Ad) 2018 296904 100 765 90 8.50 2018 296904 100 765 90 8.55
7 Cou99 (ASd) 1700 212984 100 549 86 10.04 1700 212984 100 549 86 9.92
8 Cou99 (ASD) 1565 193157 100 493 86 9.99 1565 193157 100 493 86 9.90
9 Cou99 (ASDB) 1525 188873 100 435 86 11.32 1525 188873 100 435 86 11.41
10 Comp (ASDB) 1530 188939 100 424 87 8.48 1588 201611 100 387 69 8.51

s
t
r
o
n
g
2
.
l
t
l
:
1
0
0
fo
rm

u
la
e

T
G
B
A 1 Cou99 (a) 6237 3524004 261 4633 100 82.32 6237 3524004 261 4633 100 82.65

2 Cou99 (A) 6183 3485348 257 4583 100 151.17 6183 3485348 257 4583 100 151.49
3 Cou99 (AS) 1900 508972 255 879 100 178.43 1900 508972 255 879 100 178.68
4 Comp (AS) 1731 434812 255 703 100 50.41 1801 464412 255 675 100 46.80

B
A

5 Cou99 (ad) 8207 3928868 100 5379 100 114.24 8207 3928868 100 5379 100 114.38
6 Cou99 (Ad) 8083 3876308 100 5290 100 151.76 8083 3876308 100 5290 100 151.57
7 Cou99 (ASd) 3488 782324 100 1368 100 178.83 3488 782324 100 1368 100 178.73
8 Cou99 (ASD) 3330 745280 100 1292 100 177.44 3330 745280 100 1292 100 178.14
9 Cou99 (ASDB) 3259 727416 100 1211 100 181.43 3259 727416 100 1211 100 182.34
10 Comp (ASDB) 3091 668768 100 1039 100 53.92 3201 713152 100 991 100 49.98
11 ltl3ba 5389 2473408 100 5041 100 2.38 8660 2281988 100 4515 100 4.77
12 ltl3ba susp. 5298 2458372 100 4950 100 2.38 5418 1424964 100 2409 100 2.56

Table 1: Results for selected combinations of the presented techniques. Numbers
are accumulated over all translated formulae. Smaller numbers are better every-
where. Keys A/a,S,D/d,B indicate when the corresponding lines of Fig. 6 have
been enabled a/d respectively denote the original acceptance simplification and
degeneralization while A/D apply the definitions from this paper. Compositional
suspension is only enabled on “Comp” lines.

the old version of acc simplify, and WDBA-minimization when applicable;
especially, no simulation-based reduction or degeneralization was performed.

We note that suspendable formulae are not obligation properties, so the
presence of a suspendable subformulae prevents the application of WDBA-
minimization except in pathological cases.

5.2 Experiments

Table 1 presents results of selected combinations of the presented techniques
applied according to the two scenarios to three different sets of formulae.5 For

5 More measures and details at http://www.lrde.epita.fr/~adl/spin13/.

each configuration, scenario, and set of formulae we show the cumulative size
of the automata produced for formulae in the set, namely numbers of states,
transitions, acceptance sets, nondeterministic states (ns), and nondeterministic
automata (nA). We also provide total translation time. Grey rectangles mark
the best results: smallest automata for the “small size” scenario and automata
with the least nondeterminism for the “determinism” scenario.

known.ltl contains 92 formulae and their negation, collected from the litera-
ture [7, 16, 8]. 122 of these 184 formulae describe obligation properties, for which
WDBA minimization computes a minimal deterministic automaton during the
post-processing. Only 14 formulae of the set require more than one acceptance
set for the translation. The potential for improvement on this set is very thin.

weak3.ltl contains 100 formulae combined with a weak fairness hypothesis.
Formulae have the form ϕi ∧GFa∧GFb∧GFc where ϕi is a random LTL formula
with a syntax tree of 15..20 nodes, using up to 6 atomic propositions. The fairness
hypothesis GFa ∧ GFb ∧ GFc is a single suspendable subformula which can be
translated to a one-state deterministic TGBA.

strong2.ltl contains 100 formulae combined with a strong fairness hypoth-
esis. Formulae have the form ϕi ∧ (GFa→ GFb) ∧ (GFc→ GFd) where ϕi are the
same as in the previous set.

For each formula set, the table can be read vertically to see the incremental
effect of improvements presented in Sec. 4 on translations “Cou99”. The difference
between lines 1 and 2 shows that our acceptance simplification improvement is
rather small: situations such as the one depicted by Fig. 2 are rare. Applying
simulations to move from line 2 to 3 shows a much greater improvement, both in
term of states and determinism. Analogous conclusions can be made by comparing
lines 5, 6, and 7 where the original degeneralization is additionally applied to
get BAs. The effect of the new degeneralization (line 8) defined in Sec. 4.3 is
very limited on known.ltl because most BAs come directly out of the WDBA
minimization function. It is much clearer in the other two sets of formulae.
Application of a final simulation on the BA (line 9) saves a few more states.

The table also includes a compositional suspension with all other improvements
(line 10). Its results on known.ltl are not very relevant as only 18 formulae
of this set contain at least some suspendable subformula. The results are more
interesting on the other two sets. As suspendable subformula GFa ∧ GFb ∧ GFc
of each formula in weak3.ltl translates only to a one-state TGBA, one cannot
expect improvements in automata size. The improvement here comes from the
fact that the one-state TGBA is deterministic and the compositional approach
allows to apply WDBA minimization to skeletons (note that it cannot be applied
to the full formulae as fairness breaks obligation property). In many cases,
we get a deterministic skeleton and composition with a deterministic TGBA
results into a deterministic TGBA. To sum up, compositional suspension used
in “deterministic” scenario produces substantially more deterministic automata
(both TGBAs and BAs) than any other translation. The situation regarding
automata size is different for strong2.ltl as (GFa → GFb) ∧ (GFc → GFd) is
a suspendable formulae that translates into a nondeterministic TGBA with 5

states. As the suspended TGBA is relatively big, compositional suspension brings
a nice reduction of automata size and also an interesting speedup (again, for
both TGBAs and BAs).

The table finally presents the results of ltl3ba [1] on strong2.ltl. ltl3ba
improves ltl2ba [11] in several ways including the original suspension technique
(see Sec. 3.1) and application of direct simulation on the final BA (but not
before). We run ltl3ba with options -S -A to enable the direct simulation
and disable the suspension and with option -S to enable both. Moreover, in
the “deterministic” scenario we add the option -M leading to more deterministic
automata. The lines 11 and 12 illustrate the gain that could be expected from the
on-the-fly suspension [1] implemented in ltl3ba. It can be compared to the gain
of compositional suspension from Sec. 3: the reduction between lines 11 and 12
should be compared to the reduction between lines 9 and 10.

6 Conclusion

We have presented four techniques to improve LTL-to-Büchi translators.

The compositional suspension improves the translations of suspendable subfor-
mulae (such as fairness constraints) and is especially effective in the case where
the suspendable subformulae are expressed with automata of more than one state:
in that case we avoid synchronizing the suspendable subformulae in non-accepting
SCCs of the resulting automaton. The technique can accommodate any translator,
by replacing the suspendable subformulae by fresh atomic propositions.

The other three contributions are improvements to the post-processings per-
formed on the translated automaton. The SCC-based acceptance simplifications is
an improvement over the transitional acceptance simplifications used in GBA. Its
effect is limited as the forms of automata it attempts to simplify are not frequent
in our benchmarks. Our simulation-based reductions build upon the existing
direct and reverse simulations, but have been adapted to generalized acceptance
sets, and implemented in a way that can be used to improve the determinism
of the reduced automaton. Finally, we have shown that the degeneralization
procedure could also benefit from the knowledge of the accepting SCCs.

In our experiments, we managed to reduce automata by a few states even on
set of simple formulae (known.ltl) where years of developments have left only
a little room for improvement. The bigger reduction were clearly achieved on
formulae using strong fairness hypotheses (strong2.ltl).

Along the way, we pointed a couple of opportunities for further improvements.
For instance in the degeneralization, and as far as we know, nobody has ever
studied the selection of a suitable ordering (maybe SCC-based), or the selection
of the best initial level. Our simulation currently suffers from the fact that
Fig. 4(a) cannot be reduced to Fig. 4(c). Since suspendable subformulae are best
translated separately, maybe we could consider other class of subformulae to
translate separately (e.g., obligation properties are appealing since we already
know how to construct a minimal WDBA from them).

Acknowledgments. T. Babiak, M. Křet́ınský, and J. Strejček have been supported
by The Czech Science Foundation, grant No. P202/12/G061.

References

1. T. Babiak, M. Křet́ınský, V. Řehák, and J. Strejček. LTL to Büchi automata
translation: Fast and more deterministic. In TACAS’12, volume 7214 of LNCS,
pages 95–109. Springer, 2012.

2. J.-M. Couvreur. On-the-fly verification of temporal logic. In FM’99, volume 1708
of LNCS, pages 253–271. Springer, 1999.

3. M. Daniele, F. Giunchiglia, and M. Y. Vardi. Improved automata generation for
linear temporal logic. In CAV’99, volume 1633 of LNCS, pages 249–260. Springer,
1999.

4. C. Dax, J. Eisinger, and F. Klaedtke. Mechanizing the powerset construction for
restricted classes of ω-automata. In ATVA’07, volume 4762 of LNCS, pages 223–236.
Springer, 2007.

5. A. Duret-Lutz. LTL translation improvements in Spot. In VECoS’11, Electronic
Workshops in Computing. British Computer Society, 2011.

6. A. Duret-Lutz and D. Poitrenaud. SPOT: An extensible model checking library
using transition-based generalized Büchi automata. In MASCOTS’04, pages 76–83.
IEEE, 2004.

7. M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Property specification patterns
for finite-state verification. In FMSP’98, pages 7–15, New York, Mar. 1998. ACM
Press.

8. K. Etessami and G. J. Holzmann. Optimizing Büchi Automata. In CONCUR’00,
volume 1877 of LNCS, pages 153–167. Springer, 2000.

9. K. Etessami, T. Wilke, and R. A. Schuller. Fair simulation relations, parity games,
and state space reduction for Büchi automata. In ICALP’01, volume 2076 of LNCS,
pages 694–707. Springer, 2001.

10. C. Fritz. Constructing Büchi automata from linear temporal logic using simulation
relations for alternating Büchi automata. In CIAA’03, volume 2759 of LNCS, pages
35–48. Springer, 2003.

11. P. Gastin and D. Oddoux. Fast LTL to Büchi Automata Translation. In CAV’01,
volume 2102 of LNCS, pages 53–65. Springer, 2001.

12. D. Giannakopoulou and F. Lerda. From states to transitions: Improving translation
of LTL formulae to Büchi automata. In FORTE’02, volume 2529 of LNCS, pages
308–326. Springer, 2002.

13. S. Juvekar and N. Piterman. Minimizing generalized Büchi automata. In CAV’06,
volume 4144 of LNCS, pages 45–58. Springer, 2006.

14. Z. Manna and A. Pnueli. A hierarchy of temporal properties. In PODC’90, pages
377–410. ACM press, 1990.

15. R. Sebastiani and S. Tonetta. ”More Deterministic” vs. ”Smaller” Büchi Automata
for Efficient LTL Model Checking. In CHARME’03, volume 2860 of LNCS, pages
126–140. Springer, 2003.

16. F. Somenzi and R. Bloem. Efficient Büchi Automata from LTL Formulae. In
CAV’00, volume 1855 of LNCS, pages 248–263. Springer, 2000.

17. R. Wimmer, M. Herbstritt, H. Hermanns, K. Strampp, and B. Becker. Sigref — a
symbolic bisimulation tool box. In ATVA’06, volume 4218 of LNCS, pages 477–492.
Springer, 2006.

18. P. Wolper, M. Y. Vardi, and A. P. Sistla. Reasoning about infinite computation
paths. In FOCS’83, pages 185–194. IEEE, 1983.

