
EPiC Series in Computing

Volume 46, 2017, Pages 356–367

LPAR-21. 21st International Conference on Logic for
Programming, Artificial Intelligence and Reasoning

Seminator: A Tool for Semi-Determinization of

Omega-Automata

Frantǐsek Blahoudek1, Alexandre Duret-Lutz2, Mikuláš Klokočka1,
Mojmı́r Křet́ınský1, and Jan Strejček1

1 Masaryk University, Brno, Czech Republic
{xblahoud, xklokock, kretinsky, strejcek}@fi.muni.cz

2 LRDE, EPITA, Le Kremlin-Bictre, France
adl@lrde.epita.fr

Abstract

We present a tool that transforms nondeterministic ω-automata to semi-deterministic
ω-automata. The tool Seminator accepts transition-based generalized Büchi automata
(TGBA) as an input and produces automata with two kinds of semi-determinism. The im-
plemented procedure performs degeneralization and semi-determinization simultaneously
and employs several other optimizations. We experimentally evaluate Seminator in the
context of LTL to semi-deterministic automata translation.

1 Introduction

Semi-deterministic automata (also known as limit-deterministic or deterministic in the limit)
have been introduced more than 30 years ago [14]. They are considered mainly in the context of
model checking of probabilistic systems, where nondeterministic automata are inapplicable and
deterministic automata are often unnecessarily large. More precisely, semi-deterministic au-
tomata are known to be convenient for qualitative model checking of Markov decision processes
(MDPs) [18, 5].

Semi-deterministic automata were neglected for a long time, as they do not bring any
substantial theoretical advantage over deterministic automata. Indeed, an LTL formula can
be translated into a doubly exponential semi-deterministic automaton as well as into a doubly
exponential deterministic automaton. However, with the development of practically usable
tools for analysis of probabilistic systems, semi-deterministic automata gained a new wave of
interest. During the last two years, there appeared: a direct translation of an LTL fragment
(LTL\GU) to semi-deterministic automata [12], an algorithm for quantitative model checking of
MDPs based on semi-deterministic automata [10], a procedure for efficient complementation of
semi-deterministic automata [4], a direct translation of full LTL to semi-deterministic automata
of a specific form (called cut-deterministic automata later) [15] implemented in a tool ltl2ldba
and presented together with a modification of a standard algorithm for quantitative model
checking of MDPs employing these automata, and an implementation of this algorithm in a
tool MoChiBA [16].

T.Eiter and D.Sands (eds.), LPAR-21 (EPiC Series in Computing, vol. 46), pp. 356–367

Seminator Blahoudek, Duret-Lutz, Klokočka, Křet́ınský and Strejček

In practice, a specification property for a model checking procedure is typically given as an
LTL formula. The formula can be translated to a semi-deterministic automaton directly, using
the tool ltl2ldba [15]. Another possibility is to translate the formula into a nondeterministic
automaton and then apply a semi-determinization procedure [5, 10]. While there exist optimized
tools like Spot [7] or LTL3BA [3] for translation of LTL to nondeterministic automata, we did
not know about any tool for semi-determinization of these automata when we submitted the
paper. Seminator was introduced to fill this gap. The tool nba2ldba for semi-determinization
of Büchi automata appeared recently. Experimental results presented in this paper show that
Seminator performs better.

Seminator implements semi-determinization procedures similar to the one presented by Hahn
et al. [10]. The procedures take a transition-based generalized Büchi automaton (TGBA) as an
input. Note that the two LTL-to-nondeterministic automata translators mentioned above (Spot
and LTL3BA) can produce TGBAs and these automata are usually smaller than equivalent
Büchi automata (BA). A TGBA can be degeneralized into a BA and then semi-determinized
by the standard procedure [5], but doing both steps at once often results in a smaller automaton.

Seminator can produce two kinds of semi-deterministic automata. First, automata where
all the states reachable from accepting states (or behind accepting transitions in the case of
transition-based acceptance) are deterministic. These semi-deterministic automata are suitable
for qualitative model checking of MDPs. Second, cut-deterministic automata where nondeter-
minism is even more restricted. Section 2 defines these two types of automata. The implemented
semi-determinization and cut-determinization procedures are given in Section 3. Section 4 de-
scribes the tool and Section 5 presents an experimental comparison of Seminator and ltl2ldba.

2 Semi-Deterministic Automata

A transition-based generalized Büchi automaton (TGBA) is a tuple A = (Q,Σ, δ, qI ,F), where
Q is a finite set of states, Σ is a finite alphabet, δ ⊆ Q× Σ×Q is a transition relation, qI ∈ Q
is the initial state, and F = {F1, . . . , Fn} with F1, . . . , Fn ⊆ δ are sets of accepting transitions.
A TGBA with a single set of accepting transitions is sometimes called TBA.

A run ρ of a TGBA A over a word w = w0w1w2 . . . ∈ Σω is an infinite sequence of adjoining
transitions ρ = (q0, w0, q1)(q1, w1, q2) . . . ∈ δω where q0 = qI . A run ρ is accepting if, for each
accepting set Fi ∈ F , it contains infinitely many transitions from Fi. A word w is accepted
if there is an accepting run over w. The language of a TGBA A is the set L(A) of all words
accepted by A.

As illustrated by Figure 1, a TGBA A = (Q,Σ, δ, qI ,F) is semi-deterministic if Q is a union
of two disjoint sets QN and QD such that

• there is no transition from QD to QN , i.e., δ ∩ (QD×Σ×QN) = ∅,

• states in QD are deterministic, i.e., for each p ∈ QD and a ∈ Σ there exists at most one
q ∈ Q satisfying (p, a, q) ∈ δ, and

• accepting transitions are between states of QD, i.e., Fi ⊆ QD×Σ×QD holds for each
Fi ∈ F .

A TGBA is called cut-deterministic if it is semi-deterministic and moreover it holds that
the states in QN are also deterministic when considering only the transitions leading to states
of QN , i.e., for each p ∈ QN and a ∈ Σ there exists at most one q ∈ QN satisfying (p, a, q) ∈ δ.
Intuitively, nondeterminism in a cut-deterministic automaton can be induced only by transitions

357

Seminator Blahoudek, Duret-Lutz, Klokočka, Křet́ınský and Strejček

QN

deterministicno accepting transition

QD

Figure 1: Structure of a semi-deterministic automaton. The green cloud is deterministic and
contains all accepting transitions and states that are reachable from them. In a cut-deterministic
automaton, the blue cloud is deterministic too.

from QN to QD. Note that the term cut-determinism is just introduced here (unused before)
and we propose it to disambiguate the overloaded term semi-determinism [19, 10, 4]. It is
inspired by the graph-theoretic notion of cut (the red transitions of Figure 1).

Finally, an automaton is called deterministic if all its states are deterministic. Clearly, every
deterministic automaton is also cut-deterministic and every cut-deterministic automaton is also
semi-deterministic. The opposite relations do not hold.

3 Semi-Determinization and Cut-Determinization

We first present a procedure that transforms a TGBA into a semi-deterministic TBA. Then we
modify the procedure to produce a cut-deterministic TBA. Finally, we discuss correctness of
the procedures.

3.1 Semi-Determinization

Let A =
(
Q,Σ, δ, qI ,F) be a TGBA where F = {F1, . . . , Fn} for some n > 0. Then an

equivalent semi-deterministic TBA B =
(
Q′,Σ, δ′, qI , {F ′}) can be constructed as follows.

• We set Q′ = Q ∪ D, where D = 2Q × {0, . . . , n − 1} × 2Q. States (M, i,N) ∈ D form
the deterministic part of automaton B. The set M tracks runs of A using the standard
subset construction. The level i has a similar meaning as in a standard degeneralization
procedure: it records that each state in M can be reached by a run that passed through
sets F1, . . . , Fi since the last accepting transition of B was taken. Finally, the set N ⊆M
tracks the runs that also passed the acceptance set Fi+1.

• The transition relation δ′ contains three kinds of transitions:

(1) All transitions of δ are also in δ′.

(2) For every transition (p, a, q) ∈ F1, we add a transition leading from p to the state
in the deterministic part of B that corresponds to q and with the level after passing
F1. Formally, we add the transition

(
p, a, ({q}, 1 mod n, ∅)

)
∈ δ′.

(3) We construct deterministic transitions between the states of D. For each (M, i,N) ∈
D and a ∈ Σ, we compute the set M ′ =

⋃
p∈M{q | (p, a, q) ∈ δ} of all successors of

the states in M under a. If M ′ is not empty, the transition
(
(M, i,N), a, (M ′, i′, N ′)

)
is added to δ′, where i′ and N ′ are constructed as follows. We first compute the set
N ′′ of all successors of the states in N under a and we add there also all successors

358

Seminator Blahoudek, Duret-Lutz, Klokočka, Křet́ınský and Strejček

of the states of M reached by a-transitions in Fi+1. Formally,

N ′′ =
⋃
p∈N

{q | (p, a, q) ∈ δ} ∪
⋃
p∈M

{q | (p, a, q) ∈ Fi+1}.

If N ′′ = M ′, then each tracked state can be reached by a run that already passed
Fi+1 and we move to the next level, i.e., i′ = (i + 1) mod n and N ′ =

⋃
p∈M{q |

(p, a, q) ∈ Fi′+1}. Otherwise, we set N ′ = N ′′ and i′ = i.

• The set F ′ of accepting transitions consists of the transitions between states of D where
N ′′ = M ′ and i′ = 0. Such a transition is taken if all tracked states can be reached by
runs of A that passed all accepting sets F1, . . . , Fn.

3.2 Cut-Determinization

A cut-deterministic TBA B equivalent to a TGBA A can be obtained by the procedure given
above supplemented with a subset construction to determinize the first part of the automaton.
Formally, we build B =

(
Q′,Σ, δ′, {qI}, {F ′}), where all symbols have the same meaning as

before except the following.

• Q′ = 2Q ∪D and D is defined as before.

• The construction of parts (1) and (2) of δ′ is modified, while the part (3) remains un-
changed.

(1) For each M ∈ 2Q and a ∈ Σ, we compute the set M ′ =
⋃

p∈M{q | (p, a, q) ∈ δ}. If
M ′ is not empty, we add the transition (M,a,M ′) ∈ δ′.

(2) We construct a transition entering D from a state M if there is a transition in F1

leading from some state of M . Formally, for every transition (p, a, q) ∈ F1 and for
every M containing p, we add the transition

(
M,a, ({q}, 1 mod n, ∅)

)
∈ δ′.

3.3 Correctness

One can readily confirm that the automata constructed by the described procedures are indeed
semi-deterministic and cut-deterministic, respectively.

The proof of language equivalence of an input automaton A and the constructed automaton
B is more complex. While it should be relatively easy to see that every accepting run of B
subsumes some accepting run of A and thus L(B) ⊆ L(A), the opposite language inclusion is
non-trivial. Formal proofs of correctness would be very similar to these by Hahn et al. [10] as
our semi-determinization procedures differ only in details.

4 Seminator

Seminator implements the algorithms described in Section 3 with some additional optimizations
that are described in Section 4.1. The tool takes a TGBA on input and returns an equivalent
semi-deterministic or cut-deterministic automaton as output. The tool is implemented in C++
using the Spot library [7] and is distributed under the GNU GPL v3 license. It relies on
Hanoi Omega-Automata (HOA) format [2] for reading and writing automata. The source code,
installation, and usage instructions can be found on the tool’s web page which is listed in
Table 1.

There are two choices for the Seminator users regarding the type of automata on output.

359

Seminator Blahoudek, Duret-Lutz, Klokočka, Křet́ınský and Strejček

1. Seminator outputs semi-deterministic automata by default. A cut-deterministic automa-
ton can be requested by the option --cd.

2. TGBA are produced by default, transition-based Büchi automata can be requested by
--tba and state-based Büchi automata by --ba if needed. In fact, a TGBA is returned
only if Seminator does not perform the full semi-determinization (see Section 4.1 for more
details).

We have two possible ways how to use our algorithms for transformation of a TGBA into
an equivalent automaton of requested type. Besides running them directly on the TGBA,
one can first transform the TGBA into an equivalent BA and run the algorithm on the BA.
The latter approach is basically equivalent to the semi-determinization procedure described by
Courcoubetis and Yannakakis [5]. This behavior can be requested by the option --cy.

The size of the produced automata can be often further improved by the automata reduction
techniques that are implemented in Spot. They all preserve semi-determinism of TGBAs.
However, the reverse simulation technique [1] does not preserve cut-determinism and thus it is
not applied if cut-deterministic automaton is requested. The automata reduction techniques
can be disabled by the option -s0.

4.1 Optimizations

Seminator applies few straightforward optimizations that can result in smaller automata on
output. Clearly we do not need to modify the input automaton if it already complies with the
requested type. In such cases, only simplifications offered by Spot are applied. Moreover, before
testing the input automaton for semi- or cut-determinism we apply the following language-
preserving modification of the automaton: We remove from accepting sets F1, . . . , Fn each
transition that is not inside any accepting strongly connected component, where a component is
accepting if it contains at least one transition of each accepting set Fi. This modification itself
can transform an automaton which is not semi-deterministic into a semi-deterministic one (the
same holds for cut-determinism) and even if it is not the case, it can reduce the size of resulting
automaton as smaller part of the original automaton has to be determinized.

The full cut-determinization can be avoided even in cases when a cut-deterministic automa-
ton is requested and the input automaton is semi-deterministic but not cut-deterministic. In
such case, we first compute a division of Q into QN and QD that complies with the definition of
semi-determinism such that the deterministic part is as large as possible. There are no accept-
ing transitions in the first part, thus we can apply the classical subset construction to states
and transitions of QN . This will result in two separate deterministic components. Now we only
have to add transitions from QN to QD to preserve the language properly. To be more precise,
if there was a transition (q, a, p) from QN to QD in the original automaton, we add a transition
(M,a, p) in the new automaton for each M that contains q. Note that semi-determinization
and cut-determinization always produce a TBA. Seminator can produce a TGBA with two or
more accepting sets only when these constructions are avoided due to the above optimizations.

An early version of Seminator sometimes produced a smaller automaton when executed with
--cy option, i.e., when an input automaton is first degeneralized into a BA. This is because
Seminator calls the highly optimized degeneralization procedure implemented in Spot [1], which
is not the case when degeneralization is performed simultaneously with the semi-determinization
or cut-determinization described in Section 3. We have modified Seminator to use the following
three modes of dealing with degeneralization, compare the resulting automata sizes and return
the smallest automaton out of the three.

360

Seminator Blahoudek, Duret-Lutz, Klokočka, Křet́ınský and Strejček

Table 1: Tools used in the experimental evaluation.

tools version webpage

Seminator 1.1.0 https://github.com/mklokocka/seminator/

ltl2ldba, nba2ldba 1.0.0 https://www7.in.tum.de/~sickert/projects/owl/

ltl2tgba, autfilt 2.3.2 https://spot.lrde.epita.fr/

1. Convert directly the input TGBA.

2. Create an equivalent TBA and then perform the conversion.

3. Degeneralize into a BA and then perform the conversion.

5 Experimental Evaluation

In this section we evaluate Seminator and compare it to existing work. To our best knowledge,
only two other tools can produce semi-deterministic or cut-deterministic automata and are thus
relevant for comparison with Seminator. The tool nba2ldba converts BA into semi-deterministic
BA and ltl2ldba translates LTL formulae directly to semi-deterministic or cut-deterministic
TGBA [15]. Both tools are now distributed as parts of the Owl library (see Table 1).

5.1 Experimental Setup and Results

Because ltl2ldba needs an LTL formula on input, our evaluation starts with LTL formulae and
translates them by Spot’s ltl2tgba -D to automata expected on input of other tools. Option
-D expresses a preference towards more deterministic output, but does not guarantee it.

We use two benchmark sets of LTL formulae. The first set consists of formulae collected
from literature [8, 13, 9, 17, 11]. For each formula from the sources we added its negation into
our set. We further simplified all the formulae by ltlfilt [6], removed duplicates and formulae
equivalent to true or false. The resulting benchmark set contains 222 formulae. Figure 2 shows
that it is very often the case that ltl2tgba -D produces a deterministic TGBA (), or a non-
deterministic TGBA that is already cut-deterministic (). Depending on its configuration,
Seminator only has to perform some work on automata that are not cut-deterministic (and

) or on automata that are not semi-deterministic ().
Because there are few formulae on which Seminator actually has to work in the previous set,

we use a second set of formulae generated randomly, but filtered so that each of the four types
of ltl2tgba -D output (, , ,) has exactly 100 formulae. The files with all formulae used
in this evaluation can be found in the GitHub repository of Seminator.

Table 3 compares the sizes (number of states) of semi-deterministic automata produced
by Seminator and ltl2ldba, and nba2ldba in configurations given in Table 2. One trick used in
Seminator is that it can perform degeneralization of the input TGBA simultaneously with semi-
determinization or cut-determinization. To see the impact of this, we also include Seminator
with the option --cy into our evaluation. This setting mimics the construction of Courcoubetis
and Yannakakis [5] applied after degeneralization and is referenced by the acronym CY in the
evaluation.

Another particularity of Seminator is that after applying semi-determinisation (or cut-
determinisation) described in Section 3, it reduces the resulting automaton using the sim-

361

https://github.com/mklokocka/seminator/
https://www7.in.tum.de/~sickert/projects/owl/
https://spot.lrde.epita.fr/

Seminator Blahoudek, Duret-Lutz, Klokočka, Křet́ınský and Strejček

[13]

[8]

[9]

[17]

[11]

20

55

12

27

58

122 duplicates or
trivial formulae

removed

add negations
of formulae,

simplify formulae,
remove duplicates and

formulae equivalent
to true and false

22
2

fo
rm

u
la

e

1
72

fo
rm

u
la

e

24

47

semi-det. 3

deterministic 148

non semi-det.

non deterministic cut-deterministic

non cut-det.

sources cleanup type of automata produced by ltl2tgba -D

S
em

in
at

or
h

a
s

n
o
th

in
g

to
ch

a
n

g
e

Figure 2: Preparation of the formulae from the literature, and classification according to the
four types of automata produced by ltl2tgba -D.

Table 2: Tool configurations for generating a semi-deterministic automaton from formula ϕ.

approach reductions command line

Seminator no ltl2tgba -D ϕ | seminator -s0

yes ltl2tgba -D ϕ | seminator

CY no ltl2tgba -D ϕ | seminator --cy -s0

yes ltl2tgba -D ϕ | seminator --cy

ltl2ldba no ltl2ldba -n ϕ
yes ltl2ldba -n ϕ | autfilt -D

nba2ldba no ltl2tgba -B -D ϕ | nba2ldba

yes ltl2tgba -B -D ϕ | nba2ldba | autfilt -D

plification procedures of Spot. These reductions can have a strong effect on the size of the
produced automata, therefore, to ease comparison with other tools, we evaluate each tool with
and without these reductions. As shown in Table 2, the reductions can be disabled with option
-s0 in Seminator, and can be applied to other tools by passing their result through autfilt.

The evaluation ran on a desktop computer with Intel i7-3770 (3.40 GHz) processor and
8GB RAM. All toolchains finished the computation for each but one input formula within
one minute. For one formula from literature, the reverse-simulation based reduction of semi-

362

Seminator Blahoudek, Duret-Lutz, Klokočka, Křet́ınský and Strejček

Table 3: Evaluation of the tools producing semi-deterministic automata, on random LTL for-
mulae and LTL formulae from literature classified according the type of automata produced by
ltl2tgba -D. Each cell presents the cummulative size (number of states) of semi-deterministic
automata produced by the corresponding tool without (‘no’) or with (‘yes’) reductions for the
corresponding set of n formulae.

formulae CY ltl2ldba nba2ldba Seminator

origin type n no yes no yes no yes no yes

random det 100 426 426 664 442 530 426 413 413
cd 100 510 510 715 535 816 510 467 467
sd 100 720 720 1228 787 1085 720 704 704
nd 100 3408 1637 1666 873 3539 1788 3209 1500

literature det 148 596 596 1263 851 816 596 555 555
cd 47 211 211 834 344 363 211 197 197
sd 3 13 13 49 17 17 13 13 13
nd 23 687 418 616 326 777 459 608 400

lit. (T/O) nd 1 148 — 49 49 164 — 115 —

Table 4: Tool configurations for generating cut-deterministic automata. (The autfilt invoca-
tion has extra options to disable reverse-simulation based reductions, since those do not preserve
cut-determinism.)

approach reductions command line

Seminator no ltl2tgba -D ϕ | seminator --cd -s0

yes ltl2tgba -D ϕ | seminator --cd

CY no ltl2tgba -D ϕ | seminator --cy --cd -s0

yes ltl2tgba -D ϕ | seminator --cy --cd

ltl2ldba no ltl2ldba ϕ
yes ltl2ldba ϕ | autfilt -D -xsimul=1,ba-simul=1

deterministic automata produced by Seminator, CY, and nba2ldba did not finished within this
timeout. Table 3 shows computed values for this formula separately in the last line.

Tables 4 and 5 show configurations and evaluation results for tools set to output cut-
deterministic automata.

Further, Figure 3 provides comparison of Seminator and ltl2ldba on the level of individual
semi-deterministic or cut-deterministic automata produced for considered formulae. Both tools
run without reductions to expose the difference of core algorithms of the tools. Finally, Figure 4
compares semi-deterministic automata produced by Seminator the those produced by nba2ldba.
Again, both tool run without reductions.

5.2 Observations

The presented results immediately lead to several observations.

1. Seminator produces nearly always the smallest semi-deterministic or cut-deterministic

363

Seminator Blahoudek, Duret-Lutz, Klokočka, Křet́ınský and Strejček

Table 5: Evaluation of the tools producing cut-deterministic automata, on random LTL for-
mulae and LTL formulae from literature classified according the type of automata produced by
ltl2tgba -D. Each cell presents the cummulative size (number of states) of cut-deterministic
automata produced by the corresponding tool without (‘no’) or with (‘yes’) reductions for the
corresponding set of n formulae.

formulae CY ltl2ldba Seminator

origin type n no yes no yes no yes

random det 100 426 426 566 493 413 413
cd 100 510 510 730 650 467 467
sd 100 750 728 1492 1277 734 712
nd 100 4342 1954 1394 1042 4032 1754

literature det 148 596 596 1033 806 555 555
cd 47 211 211 610 493 197 197
sd 3 13 13 61 40 13 13
nd 24 1214 661 469 409 907 554

automaton if it gets on input a TGBA that is already semi-deterministic (which includes
deterministic and cut-deterministic automata as well). Note that Seminator does not
change such automata at all unless a cut-deterministic automaton is required and it gets
a semi-deterministic automaton that is not cut-deterministic. In this case, Seminator just
applies the subset construction on the nondeterministic part of the automaton. Hence,
all these results reflect the efficiency of Spot’s LTL to TGBA translation and not the
efficiency of the Seminator’s core algorithm.

2. When Seminator gets a TGBA that is not semi-deterministic, it usually produces a bigger
cut-deterministic automaton than the one produced by ltl2ldba directly from the formula.
When semi-deterministic automata are produced, the situation is similar, only the domi-
nance of ltl2ldba is slightly smaller. Note that Seminator always produces a TBA in these
cases, while ltl2ldba produces a TGBA.

3. Numbers in Tables 3 and 5 show that reductions can save many states of semi-deterministic
and cut-deterministic automata produced by Seminator, ltl2ldba, or nba2ldba.

4. The obtained semi-deterministic automata are not dramatically smaller than the corre-
sponding cut-deterministic automata.

5. Semi-deterministic automata produced by ltl2ldba can be bigger than cut-deterministic
automata produced by the same tool. This is unexpected and it indicates a potential for
further improvement of the tool.

The experimental evaluation brought two main outputs. First, if someone needs to translate
an LTL formula to a small semi-deterministic automaton, it pays to try to translate it by
Spot. If Spot produces a semi-deterministic automaton, it is very probably smaller than what
ltl2ldba would produce. The same holds when cut-deterministic automaton is needed, but
it may be necessary to run Seminator to cut-determinize the semi-deterministic automaton
produced by Spot. Second, if someone needs to get a semi-deterministic automaton from a
nondeterministic automaton rather than from an LTL formula, Seminator will probably deliver
a smaller automaton than nba2ldba.

364

Seminator Blahoudek, Duret-Lutz, Klokočka, Křet́ınský and Strejček

literature formulae random formulae
cut−

determ
inistic output

sem
i−

determ
inistic output

1 10 100 1000 1 10 100 1000

1

10

100

1

10

100

seminator

ltl
2l

db
a

type

det

cd

sd

nd

Figure 3: Comparison of the size of cut-deterministic automata produced by Seminator and
ltl2ldba (both without reductions) on random formulae and on formulae from literature, and
the analogous comparison of produced semi-deterministic automata. Scatter plots are colored
according to the output type of ltl2tgba -D. Scales are logarithmic.

6 Conclusion

We introduced a tool called Seminator for semi-determinization of nondeterministic (transition-
based generalized) Büchi automata. In combination with the LTL to automata translator in
Spot, Seminator often produces smaller automata than the direct LTL to semi-deterministic
automata translator ltl2ldba. However, most of these cases are due to the highly optimized
translation of Spot.

When comparing to the other available automata semi-determinization tool nba2ldba, Sem-
inator usually performs better. It also offers more flexibility for input automata and support of
two kinds of semi-determinism.

We plan to further improve Seminator, in particular to adopt heuristics for better degener-
alization of generalized Büchi acceptance.

365

Seminator Blahoudek, Duret-Lutz, Klokočka, Křet́ınský and Strejček

literature formulae random formulae
sem

i−
determ

inistic output

1 10 100 1000 1 10 100 1000

1

10

100

1000

seminator

nb
a2

ld
ba

type

det

cd

sd

nd

Figure 4: Comparison of the size of semi-deterministic automata produced by Seminator and
nba2ldba (both without reductions) on random formulae and on formulae from literature. Scat-
ter plots are colored according to the output type of ltl2tgba -D. Scales are logarithmic.

Acknowledgments The authors would like to thank Salomon Sickert for pointing out that
not every cut-deterministic automaton is suitable for quantitative model checking of MDPs.
F. Blahoudek, M. Klokočka, M. Křet́ınský, and J. Strejček have been supported by the Czech
Science Foundation grant GBP202/12/G061.

References

[1] T. Babiak, T. Badie, A. Duret-Lutz, M. Křet́ınský, and J. Strejček. Compositional approach
to suspension and other improvements to LTL translation. In Model Checking Software - 20th
International Symposium, SPIN 2013, volume 7976 of LNCS, pages 81–98. Springer, 2013.

[2] T. Babiak, F. Blahoudek, A. Duret-Lutz, J. Klein, J. Křet́ınský, D. Müller, D. Parker, and
J. Strejček. The Hanoi omega-automata format. In Computer Aided Verification - 27th Inter-
national Conference, CAV 2015, volume 9206 of LNCS, pages 479–486. Springer, 2015.

[3] T. Babiak, M. Křet́ınský, V. Řehák, and J. Strejček. LTL to Büchi automata translation: Fast and
more deterministic. In Proc. of the 18th Int. Conf. on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’12), volume 7214 of LNCS, pages 95–109. Springer, 2012.

[4] F. Blahoudek, M. Heizmann, S. Schewe, J. Strejček, and M. Tsai. Complementing semi-
deterministic Büchi automata. In Tools and Algorithms for the Construction and Analysis of
Systems - 22nd International Conference, TACAS 2016, volume 9636 of LNCS, pages 770–787.
Springer, 2016.

[5] C. Courcoubetis and M. Yannakakis. Verifying temporal properties of finite-state probabilistic
programs. In 29th Annual Symposium on Foundations of Computer Science (FOCS’88), pages
338–345. IEEE Computer Society, 1988.

[6] A. Duret-Lutz. Manipulating LTL formulas using Spot 1.0. In Proceedings of the 11th International
Symposium on Automated Technology for Verification and Analysis (ATVA’13), volume 8172 of
Lecture Notes in Computer Science, pages 442–445. Springer, 2013.

366

Seminator Blahoudek, Duret-Lutz, Klokočka, Křet́ınský and Strejček

[7] A. Duret-Lutz, A. Lewkowicz, A. Fauchille, T. Michaud, E. Renault, and L. Xu. Spot 2.0 —
a framework for LTL and ω-automata manipulation. In Proceedings of the 14th International
Symposium on Automated Technology for Verification and Analysis (ATVA’16), volume 9938 of
LNCS, pages 122–129. Springer, 2016.

[8] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Property specification patterns for finite-state
verification. In M. Ardis, editor, Proceedings of the 2nd Workshop on Formal Methods in Software
Practice (FMSP’98), pages 7–15, New York, Mar. 1998. ACM Press.

[9] K. Etessami and G. J. Holzmann. Optimizing Büchi automata. In C. Palamidessi, editor, Pro-
ceedings of the 11th International Conference on Concurrency Theory (Concur’00), volume 1877
of Lecture Notes in Computer Science, pages 153–167, Pennsylvania, USA, 2000. Springer-Verlag.

[10] E. M. Hahn, G. Li, S. Schewe, A. Turrini, and L. Zhang. Lazy probabilistic model checking
without determinisation. In 26th International Conference on Concurrency Theory, CONCUR
2015, volume 42 of LIPIcs, pages 354–367. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2015.

[11] J. Holeček, T. Kratochv́ıla, V. Řehák, D. Šafránek, and P. Šimeček. Verification results in Liber-
outer project. Technical Report 03, 32pp, CESNET, September 2004.

[12] D. Kini and M. Viswanathan. Limit deterministic and probabilistic automata for LTL\GU. In Tools
and Algorithms for the Construction and Analysis of Systems - 21st International Conference,
TACAS 2015, volume 9035 of LNCS, pages 628–642. Springer, 2015.

[13] R. Pelánek. BEEM: benchmarks for explicit model checkers. In Proceedings of the 14th interna-
tional SPIN conference on Model checking software, Lecture Notes in Computer Science, pages
263–267. Springer-Verlag, 2007.

[14] S. Safra. On the complexity of omega-automata. In 29th Annual Symposium on Foundations of
Computer Science (FOCS’88), pages 319–327. IEEE Computer Society, 1988.

[15] S. Sickert, J. Esparza, S. Jaax, and J. Křet́ınský. Limit-deterministic Büchi automata for linear
temporal logic. In Computer Aided Verification - 28th International Conference, CAV 2016, volume
9780 of LNCS, pages 312–332. Springer, 2016.

[16] S. Sickert and J. Křet́ınský. Mochiba: Probabilistic LTL model checking using limit-deterministic
Büchi automata. In Automated Technology for Verification and Analysis - 14th International
Symposium, ATVA 2016, volume 9938 of LNCS, pages 130–137, 2016.

[17] F. Somenzi and R. Bloem. Efficient Büchi automata for LTL formulæ. In Proceedings of the 12th
International Conference on Computer Aided Verification (CAV’00), volume 1855 of Lecture Notes
in Computer Science, pages 247–263, Chicago, Illinois, USA, 2000. Springer-Verlag.

[18] M. Y. Vardi. Automatic verification of probabilistic concurrent finite-state programs. In 26th An-
nual Symposium on Foundations of Computer Science (FOCS’85), pages 327–338. IEEE Computer
Society, 1985.

[19] M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verification. In
Proceedings of the 1st IEEE Symposium on Logic in Computer Science (LICS’86), pages 332–344.
IEEE Computer Society Press, 1986.

367

	Introduction
	Semi-Deterministic Automata
	Semi-Determinization and Cut-Determinization
	Semi-Determinization
	Cut-Determinization
	Correctness

	Seminator
	Optimizations

	Experimental Evaluation
	Experimental Setup and Results
	Observations

	Conclusion

