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ABSTRACT
We present a symbolic-execution-based algorithm that for a given
program and a given program location in it produces a nontrivial
necessary condition on input values to drive the program execution
to the given location. The algorithm is based on computation of
loop summaries for loops along acyclic paths leading to the target
location. We also propose an application of necessary conditions in
contemporary bug-finding and test-generation tools. Experimental
results on several small benchmarks show that the presented tech-
nique can in some cases significantly improve performance of the
tools.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification;
D.2.5 [Software Engineering]: Testing and Debugging;
F.3.1 [Logics and Meanings of Programs]: Specifying and Veri-
fying and Reasoning about Programs

General Terms
Reliability, Verification, Algorithms

Keywords
Symbolic execution, Path conditions, Program location reachabil-
ity, Tests generation

1. INTRODUCTION
Symbolic execution [19, 18] is enjoying a renaissance during the

last decade. The basic idea of the technique is to replace input
data of a program by symbols representing arbitrary data. Executed
instructions then manipulate expressions over the symbols instead
of exact values. Symbolic execution further produces, for each path
in a program starting in the initial location, a formula called path
condition, i.e. a necessary and sufficient condition on input data to
drive the execution along the path.

Symbolic execution serves as a basis in many successful tools
for test generation and bug finding, for example KLEE [4], EXE [5],
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PEX [28], SAGE [11], or CUTE [26]. Such tools explore real pro-
gram paths to cover program locations by tests. There is typically
huge (or even infinite) number of real paths, even for very small and
simple programs. To cover a given program location by a test then
becomes a serious problem. In this paper, we present a dedicated
algorithm, which is supposed to help the tools to cover the given
program location quickly, and hence improve their performance.

For a given program and a given program location in it, our algo-
rithm computes a nontrivial necessary condition on input values to
drive the program execution to the given location. The basic idea
of this algorithm is to replace each program loop by a summary of
its effect on both, program variables and path conditions. The algo-
rithm is intuitively explained in Section 2 and precisely described
in Section 3.

The algorithm usually produces necessary conditions with quan-
tifiers. In spite of recent advances in SMT solving, current SMT
solvers often fail to quickly decide satisfiability of quantified for-
mulae. We employ a specific structure of constructed necessary
conditions and introduce a transformation of a quantified necessary
condition into a more general but quantifier-free necessary condi-
tion. The transformation is presented in Section 4.

Section 5 proposes possible applications of necessary conditions
in the test-generation tools. In principle, the application of neces-
sary conditions can speed up recognition of unreachable locations
as well as discovery of tests reaching uncovered locations. In Sec-
tion 6 we discuss experimental results, depicting running times of
our algorithm and PEX on small set of benchmarks. The purpose
of the experiments is to show that PEX could benefit from our al-
gorithm.

Finally, Section 7 discusses some related work and Section 8
concludes the paper.

2. OUTLINE OF THE ALGORITHM
An intuitive explanation of the algorithm is illustrated on the fol-

lowing simple program, where we want to compute a necessary
condition to reach the assertion on the last line.

k = 0;
for (i = 3; i < n; ++i) {

if (A[i] == 1)
++k;

}
if (k > 12)

assert(false);

The relevant part of the program is represented as the flowgraph of
Figure 1, where the node h corresponds to the target location.

Our algorithm works on flowgraphs. In the following, by com-
plete path we mean a path in a flowgraph leading from an initial to
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Figure 1: Flowgraph of the running example.

a target location. If a given flowgraph contains only finitely many
complete paths ρ1, . . . , ρn, one can compute a necessary (and suffi-
cient) condition very easily: using symbolic execution, we compute
a path condition ϕi for each complete path ρi and we construct the
necessary condition as

ϕ̂ =
∨

1≤i≤n

ϕi.

Unfortunately, the number of complete paths is usually very large
or even infinite as flowgraphs typically contain cycles. However,
the number of acyclic complete paths is always finite and typically
moderate. Therefore, we associate to each complete path ρ one
acyclic complete path called the backbone of ρ. The backbone is
defined by the following procedure: If ρ is acyclic, then the back-
bone is directly ρ. Otherwise, we find the leftmost repeating node
in ρ, remove the part of ρ between the first and the last occurrence
of this node (including the last occurrence), and repeat the proce-
dure. In other words, the backbone arises from ρ by removing all
cycles. Note that the cycles correspond to iterations in program
loops.

The algorithm finds all backbones in a given flowgraph. For each
backbone π, it computes an abstract path condition. This path con-
dition is called abstract as it represents not only the backbone, but
all complete paths with backbone π. More precisely, the abstract
path condition is implied by each path condition corresponding to a
complete path with backbone π. The resulting necessary condition
for reaching the target location is disjunction of all abstract path
conditions.

We demonstrate the computation of an abstract path condition
for a backbone on our running example. All complete paths in the
flowgraph of Figure 1 have the same backbone, namely π = abcgh .
The crucial step in the computation of the abstract path condition
for the backbone is to compute loop summaries of all program
loops along it. A complete path with the backbone π may enter
a program loop only in node c. The node c is called a loop en-
try node of the backbone π, and the corresponding program loop
(given by nodes {c, d, e, f}) is a loop along π at c. In the follow-
ing two subsections we illustrate how we compute a loop summary
for the loop along π and then how we use it to compute the result-
ing abstract path condition. Since we use several new terms and
symbols throughout these sections, we put their informal defini-
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Figure 2: Flowgraph P ({c, d, e, f}, c) induced by the loop
{c, d, e, f} with entry node c along the backbone π = abcgh
of the flowgraph at Figure 1.

tions into Table 1 for fast orientation in the text. We present their
formal definitions later in Section 3.

2.1 Computation of a Loop Summary
The computation of a loop summary is based on an analysis of

paths going around the loop, from its entry node back to it. The
analysis is performed on a smaller flowgraph induced by the loop
and its entry node. The flowgraph induced by the loop {c, d, e, f}
with entry node c of our running example is on Figure 2. Each
iteration of the loop corresponds to one complete path in the in-
duced flowgraph. The induced flowgraph of Figure 2 contains two
complete paths, namely ρ1 = cdefc′ and ρ2 = cdfc′. Note that
the paths ρ1 and ρ2 are acyclic and thus they are identical to two
backbones π1 = cdefc′ and π2 = cdfc′ of the induced flowgraph
respectively.

A loop summary consists of two parts. The first part of a loop
summary is a description of an overall effect of the loop on variable
values, since the first visit of the loop entry node to the last visit of
the node. The effect is described by an iterated symbolic memory,
which is a function that assigns to each program variable its value
given by an expression over symbols and path counters. Symbols
represent initial values of variables at the first visit of the entry
node. For each variable a, we denote the corresponding symbol by
a. Path counters κ1, κ2, . . . correspond to different backbones of
the flowgraph induced by the loop. Each path counter represents a
number of loop iterations along the corresponding backbone.

In our example, we assign path counters κ1, κ2 to backbones
π1, π2 respectively. Note that the backbones change only values
of variables k and i. While the value of k is increased by one
in iterations along π1 only, the value of i is increased by one in
each iteration along π1 or π2. Hence, after κ1 iterations of π1 and
κ2 iterations of π2, in arbitrary order, the values of k and i are
increased by κ1 and κ1 + κ2, respectively. Formally, the overall
effect of the loop can be described by the iterated symbolic memory
θ~κ with only two interesting values (as the other variables are not
changed in the loop):

θ~κ(k) = κ1 + k θ~κ(i) = κ1 + κ2 + i

The vector ~κ = (κ1, κ2) denotes the path counters parametrising
the memory θ~κ. The symbols k and i represent values of the vari-
ables k and i respectively, just before an execution of the original
program enters the loop.



Table 1: General terms and symbols used throughout Section 2.

ϕ̂ A resulting abstract path condition representing a
necessary condition for reaching a target location
in a given flowgraph.

πi An i–th backbone in an (induced) flowgraph. It is
an acyclic path form the start to the target location.

κi A path counter counting a number of loop itera-
tions with the backbone πi of the flowgraph in-
duced by the loop and its entry node.

τi A path counter representing an actual number of
loop iterations with the backbone πi of the flow-
graph induced by the loop and its entry node.

a A symbol corresponding to the initial value of
variable a.

θ~κ An iterated symbolic memory parametrised by a
path counters ~κ = (κ1, . . . , κn).

ϕ~κ A looping condition parametrised by a path coun-
ters ~κ = (κ1, . . . , κn).

ϕ′i An abstract path condition for the backbone πi.
γi A formula that has to be satisfied by each iteration

of with backbone πi preceded by τj iterations of
πj , for all j.

ψi A necessary condition to perform κi iterations
with backbone πi. It is expressed in terms of γi.

θ~κ[~κ/~τ ] The symbolic memory θ~κ, where each occurrence
of each path counter κi ∈ ~κ has been replaced by
the corresponding path counter τi ∈ ~τ .

θ〈ψ〉 The symbolic expression ψ, where all occurrences
of each symbol a in ψ have been simultaneously
replaced by symbolic values θ(a).

Example specific terms

π The backbone abcgh of the flowgraph at Figure 1.
π1, π2 The backbones cdefc′, cdfc′ of the induced flow-

graph at Figure 2, respectively.

The second part of a loop summary is a looping condition ϕ~κ.
In general, given path counters κ1, . . . , κn corresponding to back-
bones π1, . . . , πn of the flowgraph induced by the loop, the formula
ϕ~κ describes a necessary condition to perform κ1 + · · ·+ κn iter-
ations of the loop such that, for each i, exactly κi iterations have
the backbone πi. In other words, ϕ~κ has to be implied by each path
condition ϕ corresponding to such κ1 + · · · + κn iterations of the
loop.

A looping condition is constructed in the following way. First,
we compute an abstract path condition ϕ′i for each backbone πi of
the flowgraph induced by the loop. Recall that ϕ′i is implied by
each path condition corresponding to a complete path with back-
bone πi. In our running example, abstract path conditions ϕ′1 and
ϕ′2 directly coincide with standard path conditions for backbones
π1 and π2 as there is no loop along these backbones. Hence, the
formulae ϕ′1 and ϕ′2 are defined as follows:

ϕ′1 ≡ i < n ∧ A(i) = 1
ϕ′2 ≡ i < n ∧ A(i) 6= 1

A condition ϕ′i has to be satisfied by each loop iteration with
backbone πi, where the symbols in ϕ′i refer to values of corre-
sponding variables before the iteration starts. With iterated sym-
bolic memory θ~κ, these values can be expressed using symbols

representing variable values before the first loop iteration. More
precisely, after τi iterations with backbone πi for each i, the values
of variables are given by θ~κ[~κ/~τ ], which is the function θ~κ where
all occurrences of κi is replaced by τi. By replacing each symbol a
in ϕ′i with θ~κ[~κ/~τ ](a), we get a formula γi that has to be satisfied
by each loop iteration with backbone πi preceded by τ1 iterations
with backbone π1, τ2 iterations with backbone π2, etc. In our run-
ning example, we have

θ~κ[~κ/~τ ](i) = τ1 + τ2 + i θ~κ[~κ/~τ ](n) = n θ~κ[~κ/~τ ](A) = A

and γ1, γ2 are thus defined as follows:

γ1 ≡ τ1 + τ2 + i < n ∧ A(τ1 + τ2 + i) = 1
γ2 ≡ τ1 + τ2 + i < n ∧ A(τ1 + τ2 + i) 6= 1

Note that i, n,A in γ1, γ2 refer to values of corresponding variables
before the first loop iteration.

Using γi we build a formula ψi that is a necessary condition to
perform κi loop iterations with backbone πi. We simply say that
for each τi satisfying 0 ≤ τi < κi, there exists a configuration
of iteration counters ~τi = (τ1, . . . , τi−1, τi+1, . . . τn) such that γi
holds. Moreover, each iteration counter τi of ~τi has to be valid,
i.e. it satisfies 0 ≤ τj ≤ κj . Hence, we set

ψi ≡ ∀τi (0 ≤ τi < κi → ∃~τi (~0 ≤ ~τi ≤ ~κi ∧ γi)),

where ~κi = (κ1, . . . , κi−1, κi+1, . . . κn) and ~0 ≤ ~τi ≤ ~κi is an
abbreviation of a conjunction of all formulae 0 ≤ τj ≤ κj such
that 1 ≤ j ≤ n, j 6= i. The overall looping condition ϕ~κ is now
defined as a conjunction ψ1 ∧ . . . ∧ ψn. In our running example,
we get the following looping condition:

ϕ~κ ≡ ψ1 ∧ ψ2

ψ1 ≡ ∀τ1
(
0 ≤ τ1 < κ1 → ∃τ2(0 ≤ τ2 ≤ κ2 ∧
∧ τ1 + τ2 + i < n ∧ A(τ1 + τ2 + i) = 1)

)
ψ2 ≡ ∀τ2

(
0 ≤ τ2 < κ2 → ∃τ1(0 ≤ τ1 ≤ κ1 ∧
∧ τ1 + τ2 + i < n ∧ A(τ1 + τ2 + i) 6= 1)

)
2.2 Computation of Abstract Path Conditions

We assign computed loop summaries to the corresponding loop
entry nodes on a backbone of the original flowgraph and we apply
(a slight modification of) symbolic execution to get an abstract path
condition for the backbone.

In our running example, we first assign the computed summary
(θ~κ, ϕ~κ) to the loop entry c of the backbone π = abcgh of the
flowgraph of Figure 1, and then we execute the backbone π sym-
bolically as follows. The first two edges of the backbone are exe-
cuted in the standard way. We get a symbolic memory θ1 with only
two interesting values (the other variables are not changed in our
program and hence we do not track them)

θ1(k) = 0 θ1(i) = 3

and a path condition ϕ1 ≡ true . As we are now in the loop en-
try node c, we apply the loop summary (θ~κ, ϕ~κ) computed before.
We need to compose θ1 and ϕ1 with the summary to achieve a
symbolic memory θ2 and a path condition ϕ2 representing variable
values and a path condition after the loop. Let us first discuss the
computation of θ2.

We know that θ1(i) = 3 and θ~κ(i) = κ1 + κ2 + i. The
symbol i represents the value of the variable i when we reach the
node c for the first time. This value is given by θ1(i). There-
fore, θ2(i) = κ1 + κ2 + θ1(i) = κ1 + κ2 + 3. In general, for
each variable v, θ2(v) is given by θ~κ(v) where all symbols a were



simultaneously replaced by corresponding symbolic values θ1(a).
We can summarise the content of θ2 as follows:

θ2(k) = κ1 θ2(i) = κ1 + κ2 + 3

Now we focus on the computation of ϕ2. The formula ϕ~κ con-
tains symbols n, i, A representing values before the loop. Again,
we replace these by corresponding values in θ1. This substitu-
tion has exactly the same meaning as in the computation of the
value θ2(i) discussed before. We get an abstracted path condition
ϕ2 ≡ ϕ1 ∧ θ1〈ϕ~κ〉, where θ1〈ϕ~κ〉 is the formula ϕ~κ with all the
symbols a appearing in it simultaneously replaced by correspond-
ing symbolic values θ1(a). Sinceϕ1 ≡ true, we getϕ2 ≡ θ1〈ϕ~κ〉.

At the end, we process the last two edges of the backbone π =
abcgh. The edges do not change variable values, but they extend
the abstracted path condition ϕ2 with tests i>=n and k>12 eval-
uated in the abstract symbolic memory θ2. Hence, we get an ab-
stracted path condition

ϕ3 ≡ θ1〈ϕ~κ〉 ∧ κ1 + κ2 + 3 ≥ n ∧ κ1 > 12.

To obtain the resulting abstract path condition for the backbone,
we existentially quantify all path counters with a free occurrence in
the formula ϕ3 and we state that values of the path counters have
to be non-negative. Hence, the resulting abstract path condition for
the backbone π = abcgh of our example is

ϕ4 ≡ ∃κ1, κ2 (κ1, κ2 ≥ 0 ∧ θ1〈ϕ~κ〉 ∧
∧ κ1 + κ2 + 3 ≥ n ∧ κ1 > 12 ).

The necessary condition ϕ̂ is then a disjunction of all abstract path
conditions for backbones of the analysed flowgraph. As there is
only one backbone π = abcgh in our running example, we directly
get ϕ̂ ≡ ϕ4.

2.3 Imprecision of Abstract Path Conditions
In general, the formula ϕ̂ is not a sufficient condition on inputs

to reach the target node. There are basically two sources of this
imprecision.

• It is not always possible to express the overall effect of a loop
on a variable in the presented way. Moreover, our algorithm
may fail to express it even if it is expressible. In such cases,
the variable is assigned the special value ? with the meaning
“unknown”. If we symbolically execute a test containing a
variable with the value ?, we do not add a result of this test
to our path condition.

• The looping condition is constructed as a necessary but not a
sufficient condition. More precisely, it checks whether tests
in each iteration are satisfied for the iterated symbolic mem-
ory with some admissible values of path counters, but the
consistency of these admissible values over all iterations is
not checked.

3. DESCRIPTION OF THE ALGORITHM
For simplicity, we describe our algorithm for programs manipu-

lating only integer variables and read-only multidimensional inte-
ger arrays, and with no function calls. Nevertheless, the algorithm
can be extended to handle variables of other types, function calls,
etc.

3.1 Preliminaries
A flowgraph is a tuple P = (V,E, ls, lt, ι), where (V,E) is a

finite oriented graph, ls, lt ∈ V are different start and target nodes

ls

a

b c

d

lt

Figure 3: Flowgraph with more loops.

respectively, in-degree of ls is 0, and ι : E → I is a function as-
signing to each edge e an instruction ι(e). A node is branching
if its out-degree is 2. All other nodes have out-degree at most 1.
We use two kinds of instruction: an assignment instruction a:=e
for some scalar variable a and some expression e, and an assump-
tion assume(γ) for some quantifier-free formula γ over program
variables. Out-edges of any branching node are labelled with as-
sumptions assume(γ) and assume(¬γ) for some γ. We often
omit the keyword assume in our flowgraphs. We consider only
instructions operating on scalar variables a, b, . . . of type Int and
multi-dimensional array variables A, B, . . . of type Intk →Int.
Note that we often identify programs with the corresponding flow-
graphs.

A path in a flowgraph is a finite sequence v1v2 · · · vk of nodes
such that k ≥ 0 and (vi, vi+1) ∈ E for all 1 ≤ i < k. Paths are
always denoted by Greek letters. The terms complete path and its
backbone have already been defined in the previous section.

Now we formalise definitions of loops and loop entry nodes on
a backbone. Let π be a backbone with a prefix αv. There is a loop
C with an entry node v along π, if there exists a path vβv such
that no node of β appears in α. The loop C is then the smallest
set containing all nodes of all such paths vβv. For example, the
flowgraph of Figure 3 contains two backbones: π1 = lsbdlt and
π2 = lsabdlt . While π1 contains only one loop {a, b, c, d} with
entry node b, π2 contains loop {a, b, c, d} with entry node a and
loop {b, c} with entry node b.

For a loop C with an entry node v, a flowgraph induced by the
loop, denoted as P (C, v), is the subgraph of the original flowgraph
induced by C where v is marked as the start node, a fresh node v′

is added and marked as the target node, and every edge (u, v) ∈ E
leading to v is replaced by an edge (u, v′) labelled with the same
instruction as one of the edge (u, v).

By symbolic expressions we mean all expressions build with in-
tegers, standard integer operations and functions, and

• a symbol a for each scalar variable a,

• a function symbol A for each array variable A, where arity of
A corresponds to the dimension of array A,

• a countable set {κ1, τ1, κ2, τ2, . . .} of variables called path
counters, and

• a construct ite(ϕ, e1, e2), of meaning “if-then-else”, where
e1, e2 are symbolic expressions and ϕ is a first order formula
over symbols and path counters. The value of ite(ϕ, e1, e2)
is e1 if ϕ holds and e2 otherwise. And finally,



• a special symbol ? called unknown.

Let f, e1, . . . , en be symbolic expressions and x1, . . . , xn be
path counters or symbols corresponding to scalar variables. Then
f [x1/e1, . . . , xn/en] is a symbolic expression f where all occur-
rences of all xi are simultaneously replaced by expressions ei. To
shorten the notation, we write f [~x/~e] when the meaning is clearly
given by a context. We also use the notation ϕ[~x/~e] with the anal-
ogous meaning for formulae ϕ.

A symbolic memory is a function θ assigning to each scalar vari-
able a a symbolic expression and to each array variable A the func-
tion symbol A. Let a be a scalar variable and e be a symbolic ex-
pression. Then θ[a → e] is a symbolic memory equal to θ except
for variable a, where θ[a → e](a) = e. The notation θ(·) is used
in a more general way. It always denotes the operation of replacing
each (scalar or array) variable a by θ(a). θ〈·〉 denotes the opera-
tion on symbolic expressions or formulae, where all occurrences of
all symbols a are simultaneously replaced by θ(a). Additionally,
θ1〈θ2〉 denotes composition of two symbolic memories θ1 and θ2
satisfying θ1〈θ2〉(a) = θ1〈θ2(a)〉 for each variable a. Intuitively,
the symbolic memory θ1〈θ2〉 represents an overall effect of a code
with effect θ1 followed by a code with effect θ2.

Finally, for vectors ~u = (u1, . . . , un) and ~v = (v1, . . . , vn) we
use ~u ≤ ~v as an abbreviation for u1 ≤ v1 ∧ . . . ∧ un ≤ vn.

3.2 The Algorithm
Now we precisely formulate our algorithm computing a neces-

sary condition ϕ̂ for reaching a target node of a given flowgraph.
We provide more details, which includes dealing with nested loops.

To compute the necessary condition, we call Algorithm 1 on the
set of all backbones {π1, . . . , πk} of the given program. The algo-
rithm performs a modified symbolic execution of these backbones
described later. We extract abstract path conditions ϕ1, . . . , ϕk
from the algorithm’s output and we compute the necessary con-
dition as

ϕ̂ ≡
∨

1≤i≤k

∃~κi (~κi ≥ 0 ∧ ϕi ),

where ~κi is a vector of all path counters having a free occurrence
in ϕi.

The Algorithm 1 symbolically executes backbones one by one
(see line 2). For each backbone πi, we first analyse all loops along
it (see foreach loop at lines 3–9). Since we convert loops into in-
duced flowgraphs (see lines 4–6), we can analyse loops (and their
nested loops) in the same way as we analyse the original program
(see line 7). The main part of the loop analysis is the computation
of loop summaries (see line 8) performed by Algorithm 2, which
we discuss later. After analysis of loops along πi, the backbone is
symbolically executed (see initialisation at lines 10–12 and fore-
ach loop at lines 13–22). The symbolic execution differs from
the original one only at loop entry locations, where we process
the computed loop summaries. In both lines 20 and 22 there we
apply symbol-substitution operations ·〈·〉. The purpose of these
operations is to compose symbolic execution up to the loop entry
vertex with symbolic execution of the loop, over-approximated by
the summary. For each backbone πi, the algorithm produces an ab-
stracted symbolic memory θi and an abstracted path condition ϕi,
which are added into the result at line 23.

3.3 Computation of a Loop Summary
The computation is depicted in Algorithm 2. The algorithm first

introduces new path counters~κ for backbones within the loop. Note
that the algorithm knows the effect of each backbone within the
loop as it gets the corresponding symbolic memories and abstract

Algorithm 1: executeBackbones({π1, . . . , πk})
Input:
{π1, . . . , πk} // backbone paths to be executed

Output:
{(π1, θ1, ϕ1), . . . , (πk, θk, ϕk)}

// result of symbolic execution of backbones

1 result←− ∅
2 foreach i = 1, . . . , k do
3 foreach loop entry v along πi do
4 Let C be the loop at v
5 Compute induced flowgraph P (C, v) for C at v
6 Let {π′1, . . . , π′l} be all backbones in P (C, v)
7 {(π′1, θ′1, ϕ′1), . . . , (π′l, θ′l, ϕ′l)} ←−

executeBackbones( {π′1, . . . , π′l})
8 (θ~κ, ϕ~κ)←− computeSummary(

{(π′1, θ′1, ϕ′1), . . . , (π′l, θ′l, ϕ′l)})
9 Attach the summary (θ~κ, ϕ~κ) to the loop entry v

10 Initialise θi to return a for each variable a
11 ϕi ←− true
12 Let πi = v1 . . . vn
13 foreach j = 1, . . . , n− 1 do
14 if ι((vj , vj+1)) has the form assume(γ) and θi(γ)

contains no ? then
15 ϕi←−ϕi ∧ θi(γ)
16 if ι((vj , vj+1)) has the form a←− e then
17 θi←−θi[a→ θi(e)]
18 if vj+1 is a loop entry then
19 Let (θ~κ, ϕ~κ) be the summary attached to vj+1

20 ϕi ←− ϕi ∧ θi〈ϕ~κ〉
21 Replace all predicates of ϕi containing ? by true

22 θi ←− θi〈θ~κ〉
23 Insert triple (πi, θi, ϕi) into result

24 return result

path conditions as input. The only task is to combine these sym-
bolic memories into an iterated symbolic memory θ~κ and to assem-
ble a looping condition ϕ~κ.

The first half of the algorithm (see lines 2-10) computes the iter-
ated memory θ~κ. To be on the safe side, we start with θ~κ assigning
? to all scalar variables. Then we gradually improve the precision
of θ~κ. The crucial step is the computation of an improved value
e for a scalar variable a (see line 6). The value e is defined as ?
except in the following cases:

1. For each backbone π′i, we have θ′i(a) = a. In other words,
the value of a is not changed in any iteration of the loop. This
case is trivial. We set e = a.

2. For each backbone π′i, either θ′i(a) = a or θ′i(a) = a + di
for some symbolic expression di such that θ~κ〈di〉 contains
neither ? nor any path counters. Let us assume that the latter
possibility holds for backbones π′1, . . . , π′m. The condition
on θ~κ〈di〉 guarantees that the value of di is constant during
all iterations over the loop. In this case, we set e = a +∑

1≤i≤m θ
~κ〈di〉 · κi.

3. There exists a symbolic expression d such that θ~κ〈d〉 con-
tains neither ? nor any path counters. For each backbone π′i,
either θ′i(a) = a or θ′i(a) = d. Let us assume that the latter
possibility holds for backbones π′1, . . . , π′m. In other words,
the value of a is set to d in each iteration with backbone π′i



Algorithm 2: computeSummary({(π′1, θ′1, ϕ′1),...,(π′l, θ′l, ϕ′l)})
Input:
{(π′1, θ′1, ϕ′1), . . . , (π′l, θ′l, ϕ′l)}

// results from single execution of backbones
Output:

(θ~κ, ϕ~κ) // the computed summary

1 Introduce fresh path counters ~κ = (κ1, . . . , κl) for backbones
π′1, . . . , π

′
l respectively

2 Initialise θ~κ to return ? for each scalar variable
3 repeat
4 change←− false
5 foreach scalar variable a do
6 Compute an improved value e for the variable a from

symbolic memories θ′1, . . . , θ′l and θ~κ

7 if e 6= ? ∧ θ~κ(a) = ? then
8 θ~κ ←− θ~κ[a→ e]
9 change←− true

10 until change = false
11 foreach i = 1, . . . , l do
12 Let ~κ′i be a vector of all path counters having a free

occurrence in ϕ′i
13 γ′i ←− θ~κ〈ϕ′i〉[~κ/~τ ], where ~τ = (τ1, . . . , τl)
14 Replace all predicates of γ′i containing ? by true
15 Let ~κi = (κ1, . . . , κi−1, κi+1, . . . κl) and

~τi = (τ1, . . . , τi−1, τi+1, . . . τl)
16 ψ′i ←− ∀τi (0 ≤ τi < κi →

∃~τi (~0 ≤ ~τi ≤ ~κi ∧ ∃~κ′i(~κ′i ≥ 0 ∧ γ′i)))
17 ϕ~κ ←− ψ′1 ∧ . . . ∧ ψ′l
18 return (θ~κ, ϕ~κ)

for 1 ≤ i ≤ m, while it is unchanged in any other iteration.
Hence, we set e = ite(

∑
1≤i≤m κi > 0, θ~κ〈d〉, a).

4. For one backbone, say π′i, θ
′
i(a) = d for some symbolic

expression d such that θ~κ〈d〉 contains neither ? nor any path
counters except κi. Further, for each backbone π′j such that
i 6= j, θ′j(a) = a. That is, only iterations with backbone π′i
modify a and they set it to a value independent on other path
counters than κi. Note that if we assign d to a in the κi-th
iteration with backbone π′i, then the actual assigned value of
d is the value after κi−1 iterations along the paths. Therefore
we set e = ite(κi > 0, (θ~κ〈d〉)[κi/κi − 1], a).

Note that one can add another cases covering other situations where
the value of a can be expressed precisely, e.g. the case capturing ge-
ometric progressions. Also note that symbolic value e computed
by the rules represent precise value for the analysed variable a.
Therefore, a value of any variable in the resulting iterated sym-
bolic memory θ~κ is expressed either precisely, or it is completely
unknown (i.e. ?). We may consider abstract values in between the
corner cases, but we leave this for future research.

The second half of the algorithm (see lines 11-17) builds looping
condition ϕ~κ. The foreach loop at lines 11–16 computes for each
backbone π′i the formula ψ′i. There are several lines which exactly
match the description we gave in Section 2.1. First of all, we can
recognise the computation of formula γ′i at line 13. At line 15,
there we introduce vectors ~κi and ~τi of path counters, which we
use at line 16 to express the formula ψ′i. But we can notice, that the
formula ψ′i now contains a sub-formula ∃~κ′i(~κ′i ≥ 0 ∧ γ′i) instead
of simply γ′i. This is because there can be some nested loops along

the backbone π′i. Therefore, ϕ′i may contain free occurrences of
path counters introduced in loop summaries of these nested loops.
We collect these path counters in vector ~κ′i at line 12. We have to
existentially bind these path counters in the formula ψ′i, since for
each τi-th execution of the backbone π′i there can be different val-
ues of the path counters ~κ′i of the loops along π′i. We have already
discussed all the lines of the foreach loop, except line 14. Note that
some variables in the iterated symbolic memory θ~κ may have the
unknown value ?. Then the computation at line 13 may bring some
of these values ? into the resulting formula γ′i. Predicates contain-
ing values ? are useless. Therefore, we remove them. This in turn
also weakens ψ′i. And just below the foreach loop at line 17, there
we construct the resulting looping condition ϕ~κ as the conjunction
of the formulae ψ′i computed in the loop above. This construction
matches the intuition we gave in Section 2.1.

3.4 Loss of Precision Caused by Nested Loops
Iterated symbolic memory θ~κ computed by the Algorithm 2 can

lose some precision also due to nested loops. We illustrate it on the
following program.

for (i = 0; i < m; ++i) {
j = i;
while (j < n)
++j;

}

The corresponding flowgraph is depicted in Figure 4 (top). The
flowgraph contains one backbone lsalt with the loop entry node
a and the corresponding loop C = {a, b, c, d, e}. The induced
flowgraph P ′ = P (C, a) contains again one backbone abcea ′ with
entry node c and the corresponding loop C′ = {c, d}. The induced
flowgraphs P ′ and P ′′ = P (C′, c) are depicted in Figure 4 (bot-
tom left and bottom right respectively). Note that P ′′ has a single
backbone cdc′.

If we symbolically execute the backbone cdc′ of the induced
program P ′′ by the Algorithm 1, we get the following symbolic
memory θ′′ and path condition ϕ′′:

θ′′(j) = j + 1 ϕ′′ ≡ j < n

θ′′(n) = n

Now we apply Algorithm 2 on {(cdc′, θ′′, ϕ′′)} to compute the
loop summary (θκ

′
, ϕκ

′
) for the loop {c, d} with entry node c

along the backbone abcea ′ of the induced program P ′, we get the
following:

θκ
′
(j) = j + κ′ ϕκ

′
≡ ∀ τ ′(0 ≤ τ ′ < κ′ → j + τ ′ < n)

θκ
′
(n) = n

This loop summary is used in symbolic execution of the backbone
abcea ′ of the induced program P ′ performed again by Algorithm 1.
The symbolic execution produces the following symbolic memory
θ′ and abstract path condition ϕ′:

θ′(i) = i+ 1 ϕ′ ≡ i < m ∧
θ′(j) = i+ κ′ ∀ τ ′(0 ≤ τ ′ < κ′ → i+ τ ′ < n) ∧
θ′(m) =m i+ κ′ ≥ n
θ′(n) = n

And finally, we run Algorithm 2 with the triple {(abcea ′, θ′, ϕ′)}
to get the loop summary for the loop {a, b, c, d, e} with entry node
a along the backbone lsalt of the program P . We get the following
iterated symbolic memory θκ:

θκ(i) = i+ κ θκ(m) = m
θκ(j) = ? θκ(n) = n
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Figure 4: Example of a program P (top) with nested path
counter dependency. Program P ′ (bottom left) is induced by
loop C = {a, b, c, d, e} with entry node a of the program P .
Program P ′′ (bottom right) is induced by loopC′ = {c, d}with
entry node c of the program P ′.

In fact, the value of j after one iteration of P ′ can be expressed
without κ′ as θ′(j) = max(n, i). If we modify θ′ in this way,
then the Algorithm 2 automatically computes more precise iterated
symbolic memory θκ, namely for the variable j it returns

θκ(j) = ite(κ > 0,max(n, i+ κ− 1), j).

The crucial step towards higher precision of iterated symbolic
memory is detection of dependencies between path counters of an
outer loop and path counters of its nested loops. In the example,
we would like to detect the fact that in (κ + 1)-st iteration of P ′,
the nested loop is iterated κ′ = max(0, n − (i + κ)) times. To
improve the precision, we have developed a ‘heavyweight’ version
of Algorithm 2, which tries to find a linear relations between inner
and outer path counters using an SMT solver. For details see [27].

3.5 Soundness, Incompleteness, Termination
We finish the description of the algorithm by formulating its

soundness, incompleteness and termination theorems.

THEOREM 1 (SOUNDNESS). Let ϕ̂ be the necessary condi-
tion computed by our algorithm for a given program and a given
target location in it. If ϕ̂ is not satisfiable, then the target location
is not reachable in that program.

PROOF. (Sketch) Let us suppose that the target location is reach-
able. Then there exists a complete path σ such that the standard
symbolic execution of this path produces a satisfiable path condi-
tion. We prove that this path condition implies ϕ̂. Hence, we get
satisfiability of ϕ̂.

The formula ϕ̂ is constructed as
∨

1≤i≤k ∃~κi (~κi≥ 0 ∧ ϕi),
where each ϕi is an abstract path condition for backbone πi. Let
πi be the backbone of σ. Hence, it is sufficient to show that the for-
mula ∃~κi (~κi ≥ 0 ∧ ϕi), where ϕi is the abstract path condition
for the backbone πi, is implied by the path condition of the sym-
bolic execution along σ. This can be shown by double induction on
maximal loop nesting depth (top-level induction) and length of the
backbone πi (nested induction).

THEOREM 2 (INCOMPLETENESS). There is a program and
an unreachable target location in it for which the formula ϕ̂ com-
puted by our algorithm is satisfiable.

PROOF. Let us consider the following C code:

int i = 1;
while (i < 3)

if (i == 2) i = 1;
else i = 2;

assert(false);

The loop never terminates. Therefore, a program location below it
(the assertion) is not reachable. But ϕ̂ computed according to our
algorithm for that location is equal to true , since value of variable
i is expressed as ? in the iterated symbolic memory of the loop
summary.

THEOREM 3 (TERMINATION). Algorithm 1 executed on all
the backbones of a given program P always terminates.

PROOF. A backbone is a finite path in P , so there is a finite
number of loop entries along it. Therefore, the loop at line 3 termi-
nates if there is only finite number of recursive calls at line 7 and
Algorithm 2 called at line 8 also always terminates. The function
executeBackbones is recursively called on induced programs. As P
is finite, there is a finite number of nested loops in each loop along
any backbone. The loop at line 3 of the Algorithm 2 must always
terminate, since (1) there is only finite number of variables in P ,
and (2) for each variable a, the line 8 can be executed at most once
during the algorithm. Therefore the condition at line 7 eventually
becomes always false .

3.6 Limitations of the Algorithm
The main limitation of our algorithm computing necessary con-

dition comes from the fact that it cannot compute precise effect of
a loop in all cases. Let us consider the programs

for(...) for(...)
if(i<0) j=j+1; if(i<0) j=j+1;
else j=j+2; else j=j*2;

where the symbol ‘...’ represents some unspecified progression
of the variable i. The two programs are very similar: they differ
only in the last statement. In both cases, an induced program cor-
responding to the loop’s body has two backbones π1 and π2 going
through the positive and the negative branch of the if-else state-
ment respectively. We assign path counters κ1 and κ2 to the back-
bones π1 and π2 respectively. The difference become important
when we compute an iterated symbolic memory θ~κ for the cycle.
For the left program, we easily compute that θ~κ(j) = j+κ1+2κ2,
where j represents an initial value of j. For the right program, our



algorithm computes θ~κ with θ~κ(j) = ?. The reason is that the re-
sulting value of j heavily depends on interleaving of the positive
and negative branches of the if-else statement when iterating
the loop. In general, we cannot declaratively describe a value of a
variable after execution of a loop if the value depends on interleav-
ing of paths along the loop and if we cannot deduce the interleaving
from any other information. This is a principal limitation of our ap-
proach.

However, in many practical cases the interleaving of paths along
a loop can be derived from other information. Then our technique
can be adjusted to handle such cases. For example, assume that the
first line of the right program looks like

for( ; i<n; i+=c)

for some fixed integer c. Then θ~κ(i) = i+ c(κ1 +κ2) and the test
i<0 is evaluated into the predicate i+ c(κ1 +κ2) < 0. This allow
as to express θ~κ(j) precisely again as (j + κ1)2

κ2 if c ≥ 0 and as
j+2κ2 +κ1 otherwise. This can be formulated as another rule for
Section 3.3. To sum up, technique can be improved to handle more
cases without loss of precision.

These improvements leads to another, and perhaps more impor-
tant, issue: the performance of SMT solvers. Let us see this on
our example. The proposed rule would produce symbolic value
for θ~κ(j) with the exponential function containing expression 2κ2 .
Since values in θ~κ commonly appear in a resulting abstract path
condition ϕ̂, we significantly increase complexity of satisfiability
queries to the SMT solver. Hence, one has to find a reasonable
trade-off between precision of produced necessary conditions and
time needed to solve them by available SMT solvers. In this pa-
per we do not give an answer what composition of rules gives an
optimal ϕ̂. We only propose one, which seems to perform well ac-
cording to our experimentation (see Section 6). Nevertheless, we
can easily observe that the efficiency of applications of necessary
conditions depends on what rules we choose and not on how many
rules we can provide in total.

There is another issue related to SMT solvers. It is widely known
that current SMT solvers have serious performance issues when
dealing with quantified formulae. Since formulae ϕ̂ computed by
our algorithm commonly contain quantifiers, we tackle this issue in
separate Section 4.

4. DEALING WITH QUANTIFIERS
We can ask an SMT solver whether a computed necessary condi-

tion ϕ̂ is satisfiable or not. If it is, we may further ask for a model.
As we will see in Section 5, such queries to a solver should be fast.
Unfortunately, our experience with solvers shows that presence of
quantifiers in ϕ̂ usually causes performance issues. To overcome
this issue, we introduce a transformation of ϕ̂ into a quantifier-free
formula ϕ̂K that is implied by ϕ̂ and thus remains necessary. The
transformation is parametrised by K ≥ 0.

One can immediately see that all universal quantifiers in ϕ̂ come
from formulae ψ′i of line 16 of Algorithm 2. Each formula ψ′i has
the form

ψ′i ≡ ∀τi (0 ≤ τi < κi → ρ(τi)).

Clearly, the formula is equivalent to
∧

0≤τi<κi ρ(τi). We do not
know the value of κi, but we can weaken the formula to check only
the first K instances of ρ(τi). In other words, we replace each ψ′i
in ϕ̂ by a weaker formula

ψKi ≡
∧

0≤τi≤K

(τi < κi → ρ(τi)).

Having eliminated all universal quantifiers, we can also eliminate
existential quantification of all κi and all ~τi by redefining them as
uninterpreted integer constants. The resulting formula is denoted
as ϕ̂K .

Let us note that the choice of K affects the length and precision
of ϕ̂K : the higher value of K we choose, the stronger and longer
formula ϕ̂K we get. Hence, higher values of K lead to longer
running times of an SMT solver. However, for lower values of
K, the information represented by ϕ̂K can be less significant or
insignificant at all. For example, one can easily find a program with
an unreachable location and some K > 0 such that the necessary
formula ϕ̂ is unsatisfiable and ϕ̂K

′
is unsatisfiable for all K′ ≥ K

and satisfiable for all K′ < K.

In some cases, an SMT solver decides satisfiability of ϕ̂ very
quickly: even in a shorter time than needed for transformation of
ϕ̂ into ϕ̂K . In practice, we ask the solver for satisfiability of ϕ̂
and, in parallel, we transform ϕ̂ into ϕ̂K and then ask the solver for
satisfiability of ϕ̂K . We take the faster answer.

5. INTEGRATION INTO TOOLS
Tools typically explore program paths iteratively. At each itera-

tion there is a set of program locations {v1, . . . , vk}, from which
the symbolic execution may continue further. At the beginning, the
set contains only program entry location. In each iteration of the
symbolic execution the set is updated such that actions of program
edges going out from some locations vi are symbolically executed.
Different tools use different systematic and heuristic strategies for
selecting locations vi to be processed in the current iteration. It is
also important to note that for each vi there is available an actual
path condition ϕi capturing already taken symbolic execution from
the entry location up to vi.

When a tool detects difficulties to cover a particular program lo-
cation, then using ϕ̂ it can restrict selection from the whole set
{v1, . . . , vk} to only those locations vi, for which a formula ϕi∧ ϕ̂
is satisfiable. In other words, if for some vi the formula ϕi ∧ ϕ̂ is
not satisfiable, then we are guaranteed there is no real path from
vi to the target location. And therefore, vi can be safely removed
from the consideration.

Tools like SAGE, PEX, or CUTE combine symbolic execution
with concrete one. Let us assume that a location vi, for which the
formula ϕi ∧ ϕ̂ is satisfiable, was selected in a current iteration.
These tools require a concrete input to the program to proceed fur-
ther from vi. Such an input can directly be extracted from any
model of the formula ϕi ∧ ϕ̂.

6. EXPERIMENTAL RESULTS
We have implemented the algorithm (employing the mentioned

’heavyweight’ version of Algorithm 2 and supporting mutable ar-
rays, see [27]) in an experimental tool called APC. We also pre-
pared a small set of benchmark programs mostly taken from other
papers. In each benchmark we marked a single location as the tar-
get one. All the benchmarks have a huge number of real program
paths, generated by loops. So, it is difficult to reach the target.

We run PEX and APC on the benchmarks and we measured times
till the target locations were reached. This measurement is unfair
from PEX perspective, since its task is to cover an analysed bench-
mark by tests and not to reach a single particular location in it.
Therefore, we clarify the right meaning of the measurement. First
of all, the measurement is definitely not supposed to compare the
tools. As we said, it would be unfair. Instead, the only purpose
of the measurement is to show, that our algorithm produces use-
ful necessary conditions. We show that with a support of PEX as



Table 2: Running times of PEX and APC on benchmarks. Each number in the table represents a running time in seconds. The words
SAT, UNSAT and UNKNOWN identify results from queries to Z3 SMT solver with obvious meaning. The marks T/O and M/O
represent exceeding of one hour timeout and out of memory error respectively. The column ’Build ϕ̂’ shows times required for APC
to build ϕ̂ for benchmarks. The column ’SMT ϕ̂’ depicts running times and related results from satisfiability queries to Z3 SMT
solver for formulae ϕ̂. The column ’Build ϕ̂25 + SMT ϕ̂25’ has three data per benchmark. The first number (from the left) identifies
time consumed by transformation of ϕ̂ to ϕ̂25. The second number represents time required by Z3 SMT solver to decide satisfiability
of ϕ̂25. And the last data represents result from the query to Z3 about satisfiability of ϕ̂25. Each number in the column Total of the
tool APC is the sum of the following numbers from the same row: The number from the column ’Build ϕ̂’ and number(s) in bold.
Note that numbers in bold identify shorter running times of two parallel computations, whose results are depicted in the last two
columns of the table. We discussed the proper setting of Z3 SMT solver with the developers. So, we set the option produce-models
on for both ϕ̂ and ϕ̂25, and we set the options mbqi and pull-nested-quantifiers on only for queries with ϕ̂.

PEX APC

Benchmark Total Total Build ϕ̂ SMT ϕ̂ Build ϕ̂25 + SMT ϕ̂25

Hello 5.257 0.181 0.021 0.160 SAT 0.290 + 0.060 SAT
HW 25.05 0.941 0.073 13.84 SAT 0.698 + 0.170 SAT

HWM T/O 4.660 1.715 M/O – 2.135 + 0.810 SAT
MatrIR 95.00 0.035 0.015 0.020 SAT 0.491 + 70.80 SAT

WinDriver 28.39 0.627 0.178 4.860 UNKNOWN 0.369 + 0.080 SAT
OneLoop 134.0 0.003 0.001 0.010 UNSAT 0.001 + 0.001 UNSAT
TwoLoops 64.00 0.003 0.002 0.001 UNSAT 0.004 + 0.010 UNSAT

follows. Typical scenario when running PEX on a benchmark is
that majority of the code is covered in few seconds (typically up to
three). Then PEX needs a longer time to cover the target location or
decide that the location is unreachable. We want to show that this
longer searching time can be shortened by computing and using a
necessary condition ϕ̂ for the target location of the benchmark.

It should be easy to modify PEX to detect that it is repeatedly
failing for a longer time to cover some program location (like our
target). In such cases, the modified PEX could run our algorithm
to compute a necessary condition ϕ̂ for that location and use it
for boosting the subsequent search, for example in the way sug-
gested in the previous section. For all our benchmarks we manually
checked that necessary conditions computed by our algorithm are
also sufficient ones. Therefore, the subsequent search boosted by ϕ̂
mentioned above reduces to a single query to SMT solver produc-
ing an input to the benchmark which drives benchmark’s execution
directly to the target location.

Before we present the results, we discuss the benchmarks (C#
listing of all the benchmarks can be found in [27]). Benchmark
HWM taken from [1] checks whether an input string contains four
substrings: Hello, World, At, and Microsoft!. It does not
matter at which position and in which order the words occur in the
string. The target location can be reached only when all the words
are presented in the string. The benchmark consists of four loops in
a sequence, where each loop searches for one of the four subwords.
Each loop traverses the input string from the beginning and at each
position it runs a nested loop checking whether the subword starts
at this position. Benchmark HWM is the most complicated one
from our set of benchmarks. We also took its two lightened ver-
sions presented in [21]: Benchmark HW searches an input string
only for subwords Hello and World, while benchmark Hello
searches only for the first one. It is interesting to observe perfor-
mance of PEX and APC on these three benchmarks, as complexity
grows exponentially from Hello to HWM.

Benchmark MatrIR scans upper triangle of an input matrix. The
target location is reached if the matrix is bigger than 20 × 20 and

it contains a line with more than 15 scanned elements between 10
and 100.

Benchmarks OneLoop and TwoLoops originate from [21]. They
are designed such that their target locations are not reachable. Both
benchmarks contain a loop iterated n–times. In each iteration, the
variable i (initially set to 0) is increased by 4. The target loca-
tion is then guarded by an assertion i==15 in OneLoop and by
a loop while (i != j + 7) j += 2 in TwoLoops (j is
initialised to 0 before the loop).

The last benchmark WinDriver comes from a practice and we
took it from [12]. It is a part of a Windows driver processing a
stream of network packets. It reads an input stream and decom-
poses it into a two dimensional array of packets. A position in the
array where the data from the stream are copied into are encoded
in the input stream itself. We marked the target location as a failure
branch of a consistency check of the filled in array. It was discussed
in the paper [12] that the consistency check can be broken.

The experimental results are depicted in Table 2. They show
running times of PEX and APC on the benchmarks. We did all the
measurements on a single common desktop computer1. For PEX
we provide total running times and for APC we in addition provide
time profiles of different parts of the computation. As we explained
in Section 4, the construction and satisfiability checking of ϕ̂K runs
in parallel with satisfiability checking of ϕ̂. Therefore, we take the
minimum of the times to compute the total running time of APC.
The faster variant is written in boldface in the table. Note that we
used the same number K = 25 for all the benchmarks to compute
ϕ̂25 from ϕ̂. There is nothing special about this number. It is not
related to any of the benchmarks. Actually, all the benchmarks
can use different smaller numbers for K to achieve even the same
precision as with the chosen one (for example K = 5 is sufficient
for the benchmark Hello).

1Intel R© CoreTM i7 CPU 920 @ 2x2.67GHz, 6GB RAM, Windows
7 Professional 64-bit, MS PEX 0.92.50603.1, MS Moles 1.0.0.0,
MS Visual Studio 2008, MS .NET Framework v3.5 SP1, MS Z3
SMT solver v3.2, and boost v1.42.0.



7. RELATED WORK
Early work on symbolic execution [19, 18] showed its effective-

ness in test generation. King [19] further showed that symbolic ex-
ecution can bring more automation into Floyd’s inductive proving
method [6]. Nevertheless, loops as the source of the path explosion
problem were not in the center of interest.

More recent approaches dealt mostly with limitations of SMT
solvers and the environment problem by combining the symbolic
execution with the concrete one [9, 1, 26, 10, 7, 11, 8, 28, 11,
22]. Although practical usability of the symbolic execution has
improved, these approaches still suffer from the path explosion
problem. An interesting idea is to combine the symbolic execu-
tion with a complementary technique [14, 17, 2, 20, 15]. Comple-
mentary techniques typically perform differently on different parts
of the analysed program. Therefore, an information exchange be-
tween the techniques leads to a mutual improvement of their per-
formance. There are also techniques based on saving of already ob-
served program behaviour and early terminating those executions,
whose further progress will not explore a new one [3, 5, 4]. Com-
positional approaches are typically based on computation of func-
tion summaries [7, 1]. A function summary often consists of pre
and post condition. Preconditions identify paths through the func-
tion and postconditions capture effects of the function along those
paths. Reusing these summaries at call sites typically leads to an
interesting performance improvement. Moreover, the summaries
may insert additional symbolic values into the path condition which
causes another improvement. And there are also techniques parti-
tioning program paths into separate classes according to similarities
in program states [23, 24]. Values of output variables of a program
or function are typically considered as a partitioning criteria. A
search strategy Fitnex [29] implemented in PEX [28] guides a path
exploration to a particular target location using a fitness function.
The function measures how close an already discovered feasible
path is to the target.

Although the techniques above showed performance improve-
ments when dealing with the path explosion problem, they do not
focus directly on loops. The LESE [25] approach introduces sym-
bolic variables for the number of times each loop was executed.
These variables are related to our path counters, but the path coun-
ters provide finer information as they are associated to iterations via
individual paths through a loop. LESE links the symbolic variables
with features of a known grammar generating inputs. Using these
links, the grammar can control the numbers of loop iterations per-
formed on a generated input. A technique presented in [13] anal-
yses loops on-the-fly, i.e. during simultaneous concrete and sym-
bolic execution of a program for a concrete input. The loop anal-
ysis infers inductive variables, i.e. variables that are modified by a
constant value in each loop iteration. These variables are used to
build loop summaries expressed in a form of pre a post conditions.
Our approach provides more precise analysis of loops than [25, 13],
since we introduce an individual path counter for each backbone in
a loop (i.e. not a single counter for whole the loop). Therefore,
while we are able to precisely express a value of the variable j of
the left program listed in Section 3.6, the approaches [25, 13] are
not able to do so.

In [16] the authors compute a worst-case complexity bound on
the number of visits to a given program location l for any execution
of the program. Heart of the computation is an analysis of a part of
the program consisting of paths going from the location l back to it.
The program part is first transformed into formula T using a simple
data-flow analysis, and then there is computed a transitive closure
T ′ of T based on convex-theory-like assumption. If the program
part contains a loop, then the described process is recursively re-

peated, where the location l now represents a single entry location
to the loop. The computed closure T ′ (viewed as a loop summary
in this case) is then inserted just before l and back-edges of the loop
are discarded. The resulting closure T ′ of whole the program part
is then used to compute ranking functions. These functions are in-
ferred using pattern-matching technique and are used to express the
worst-case complexity bound. Values of the variables in the bound
are linked to the program input using a backward symbolic execu-
tion from the analysed part towards program entry. Our approach
differs in several key aspects: First, our analysis is applied to all
program loops, instead of analysing only paths going from l back
to it. Second, we use pattern-matching to compute precise values of
variables rather then computing ranking functions. And finally, we
use path counters to compute iterated symbolic memory and loop-
ing condition (i.e. the summary), while the summary in [16] is the
closure of the formula T (~x, ~x′) relating values of live variables ~x
at the location l with values ~x′ of these variables in the subsequent
visit of l.

As far as we know, the algorithm presented in [21] is the most
related to our work. It also tackles the reachability of a given tar-
get location, it focuses on program loops, and it is also supposed
to be used as a heuristic for test generation tools. Nevertheless,
there are several conceptual differences between both algorithms.
The algorithm in [21] first transforms analysed program into tree-
like structure of chains. A chain is basically a linear sequence of
instructions along a cyclic path in the analysed program. The re-
maining analysis is performed on the chains. For each chain with
sub-chains the algorithm infers a constraint system. Then the al-
gorithm applies symbolic execution on chains. When a symbolic
execution reaches an instruction of a chain where sub-chains are
attached, the constraint system (of the chain) is used as an oracle
to decide, where to continue next. It is either possible to step into
some of the sub-chains or to continue further along the chain. The
target location is reached when the last instruction of the root chain
is executed. Besides differences in approaches of both algorithms,
there are also differences in their integration into symbolic execu-
tion tools. On one hand, our algorithm applies fast and finite pro-
gram analysis producing a necessary condition. A tool then applies
its own symbolic exploration of program paths boosted with the
necessary condition. On the other hand, the algorithm in [21] ap-
plies its own symbolic execution on chains. This execution can be
long or even infinite. Therefore, a tool have to continue its general
search until [21] gives a result.

8. CONCLUSION
We presented a symbolic-execution-based algorithm computing,

for a given program and a target location in it, a nontrivial necessary
condition on input symbols for reaching of the target location. In
particular, if an input to the program is not a model of the condition,
then the execution of the program on that input will definitely miss
the target location. The key part of the algorithm is computation
of loop summaries. A loop summary consists of iterated symbolic
memory representing overall effect of all changes to program state
done by all executions of the loop, and looping condition, which
is a non-trivial formula implied by all path conditions of all sym-
bolic executions of the loop. We further proposed a use of the al-
gorithm in test-generation tools based on symbolic execution, and
we showed that the integration is straightforward. We also imple-
mented our algorithm in an experimental tool and we empirically
checked, for a small set of benchmarks, that PEX could cover the
benchmarks faster with our algorithm.
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