
EXPRESS 2006

On Symbolic Verification of
Weakly Extended PAD

Ahmed Bouajjania,1, Jan Strejčekb,2, and Tayssir Touilia,3

a LIAFA, CNRS and University of Paris 7, France

b Faculty of Informatics, Masaryk University, Brno, Czech Republic

Abstract

We consider the verification problem of a class of infinite-state systems called wPAD. These systems can be
used to model programs with (possibly recursive) procedure calls and dynamic creation of parallel processes.
They correspond to PAD models extended with an acyclic finite-state control unit, where PAD models can
be seen as combinations of prefix rewrite systems (pushdown systems) with context-free multiset rewrite
systems (synchronization-free Petri nets). Recently, we have presented symbolic reachability techniques
for the class of PAD based on the use of a class of unranked tree automata. In this paper, we generalize
our previous work to the class wPAD which is strictly larger than PAD. This generalization brings a
positive answer to an open question on decidability of the model checking problem for wPAD against EF
logic. Moreover, we show how symbolic reachability analysis of wPAD can be used in (under) approximate
analysis of Synchronized PAD, a (Turing) powerful model for multithreaded programs (with unrestricted
synchronization between parallel processes). This leads to a pragmatic approach for detecting the presence
of erroneous behaviors in these models based on the bounded reachability paradigm where the notion of
bound considered here is the number of synchronization actions.

Keywords: rewrite systems, infinite-state systems, symbolic reachability analysis, model checking

1 Introduction

Reasoning about software systems requires the consideration of powerful models
which are in general infinite-state, i.e., they may have an infinite number of reach-
able configurations. Sources of complexity, and of infinity of the state space, may
be related to either data manipulation such as the use of variables over infinite data
domains, dynamic and unbounded-size data structures, etc, or to complex control
primitives such as procedures calls, (unbounded) dynamic creation of concurrent
processes, etc. One popular approach to handle this complexity is to combine ab-
straction methods with model-checking. Techniques such as predicate abstraction

1 Email: abou@liafa.jussieu.fr
2 Partly supported by the research centre Institute for Theoretical Computer Science (ITI), project
No. 1M0545. The paper has been written during J. Strejček’s postdoc stay in LaBRI, Univeristé Bor-
deaux 1. Email: strejcek@fi.muni.cz
3 Email: touili@liafa.jussieu.fr

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:abou@liafa.jussieu.fr
mailto:strejcek@fi.muni.cz
mailto:touili@liafa.jussieu.fr

Bouajjani et al.

allows to deal with aspects such as data manipulation and to generate abstract
models over finite data domains. Then, the so obtained abstract models can be
analyzed automatically using model checking algorithms, provided that such algo-
rithms exist for the considered class of abstract models. This is the case obviously
when abstract models are finite-state. However, as said above, in order to take
into account complex control primitives such as procedure calls and process cre-
ation, finite state models are not expressive enough. For instance, in the case of
sequential programs with recursive procedure calls, the needed abstract models are
(unbounded-stack) pushdown systems, and for programs with dynamic creation of
communicating finite-state processes, natural models are (unbounded) Petri nets.
Fortunately, there exist several algorithmic techniques (e.g., reachability analysis,
model-checking) which have been developed for the analysis and the verification of
these infinite-state models.

In this paper, we consider the case of programs which may contain both (re-
cursive) procedure calls and dynamic creation of processes (threads). One possible
approach to model such systems is to combine pushdown systems with Petri nets.
This corresponds to the use of Process Rewrite Systems (PRS) introduced in [17].
These models can be seen indeed as combinations of prefix rewrite systems and
multiset rewrite systems. The relevance of PRS in program modeling have been
discussed for instance in [8,9,7,1,2]. Subclasses of PRS which are of particular in-
terest for program modeling are for instance the class of PA processes, and the
larger class of PAD processes generalizing both PA and pushdown processes and
corresponding to synchronization-free PRS (i.e., models where parallel composition
is not allowed in the left-hand-side of the rewrite rules). Processes in these classes
allow indeed to model systems with procedure calls and parbegin-parend blocks
(i.e., launching a number of parallel threads, and wait for their termination before
proceeding). PAD allow in addition return values from sequential procedure calls.

Richard Mayr has shown that the reachability problem (whether a given state
is reachable from another given state) for PRS is decidable using a reduction to
the reachability problem of Petri nets [17]. To get practical verification algorithms,
symbolic reachability algorithms have been investigated for significant subclasses of
PRS such as PA [16,9] and PAD [1,2]. These algorithms use (various kinds of) tree
automata to represent (regular) infinite sets of configurations (i.e., process terms).
In particular, we have provided in [2] a generic construction allowing to compute
the set of (forward or backward) reachable configurations of any subclass of PRS
built from the combination of prefix rewrite systems with an effectively semilinear
class of multiset rewrite systems (i.e., a class of systems for which reachability sets
are always semilinear and effectively computable). We have shown that this leads
to a symbolic reachability analysis algorithm for PAD processes in a certain normal
form.

The PRS formalism is not Turing powerful due to a subtle restriction on the
way synchronization is done between parallel processes. Roughly speaking, the
semantics of PRS implies that synchronization can only be allowed between parallel
processes with empty stacks.

In order to extend the modeling power of PRS, one approach is to add syn-
chronization by rendez-vous (à la CCS), which leads to a Turing powerful model

2

Bouajjani et al.

called synchronized PRS [21]. Similarly, PAD can be extended to synchronized PAD
(which is also a Turing powerful model). Approximate analysis algorithms for these
models using abstraction techniques have been proposed in [21].

Another approach for enhancing the modeling power of PRS (and PAD) consists
in adding global control states. The new models, called sePRS [11], can be seen
as parallel product of a PRS with a finite-state automaton representing a global
control. Obviously, sePRS are Turing powerful since they allow communication
between recursive parallel processes through the global control state. However, if the
structure of the control automaton is weak, which means that all its loops are self-
loops, then it can be proved that the obtained models, called wPRS, have a decidable
reachability problem [12] (the proof employs decidability of the reachability problem
for Petri nets). Similarly, if we add control states to PAD processes, we obtain
Turing powerful models, but the extension of PAD with weak control automata leads
to models, called wPAD, having a decidable reachability problem, and interestingly,
which can be proven to be strictly more powerful (w.r.t. strong bisimulation) than
PAD [13].

In this paper we extend the results on symbolic reachability analysis presented
in [2]. While [2] deals only with PAD processes in a certain normal form (now
called canonic PAD), here we show that the set of reachability states are com-
putable and effectively representable even for (general) wPAD systems. To do this,
we employ symbolic representations based on so-called commutative-hedge automata
(CH-automata), allowing to define sets of process terms modulo the associativity
of sequential composition, and the associativity-commutativity of the parallel com-
position. We show that these representations are effectively closed under the com-
putation of the post∗ and pre∗ images (i.e., computation of all successors and all
predecessors) for wPAD, as well as under the post and pre images (i.e., computation
of immediate successors and predecessors) for the whole class of wPRS.

Further, we solve the global model-checking problem of wPAD against the EF
logic. We consider a variant of EF logic which generalizes the standard action-based
EF logic by the use of atomic propositions corresponding to (potentially infinite)
sets of configurations which are definable using CH-automata. We prove that for
every formula in this logic, it is possible to construct a (CH-automata based) repre-
sentation of the set of all configurations (in a given wPAD) satisfying this formula.
This result closes an open problem formulated in [14] concerning the model-checking
problem of wPAD. Notice that global model-checking is a more general problem than
deciding whether a given configuration satisfies a given formula.

Finally, we show that our results concerning symbolic reachability analysis of
wPAD can be used in the analysis of synchronized PAD (SPAD) with a bounded
number of synchronizations. This leads to an approximate analysis procedure for
SPAD based on computing under approximations of their reachability sets by con-
sidering only reachable configurations up to some fixed number of synchronizations.
Such approximate analysis method for SPAD can be used in practice to establish
the existence of erroneous behaviors, following the approach advocated in [18]. It
constitutes a complementary approach to the abstract analysis (provided for SPAD
in [21]), which is based on considering upper approximations of the set of possible
behaviors and which is useful for establishing the absence of erroneous behaviors.

3

Bouajjani et al.

2 Preliminaries

2.1 Process terms

Let Const = {X, . . .} be a set of process constants. For every C ⊆ Const , the set
TC of process terms over C is defined by the abstract syntax t ::= 0 | X | t� t | t‖t,
where 0 is the idle term, X ∈ C is a process constant; and � and ‖ mean sequential
and parallel compositions respectively.

We use ω to denote in a generic way � or ‖. We denote by ω the operator �
(resp. ‖) if ω = ‖ (resp. ω = �). Process terms are considered modulo the following
algebraic properties: associativity of �, associativity and commutativity of ‖, and
neutrality of 0 w.r.t. both � and ‖, i.e. 0 � t = t � 0 = t‖0 = t. Let ' be the
equivalence relation on T induced by these properties.

We distinguish four classes of process terms as:

1 – terms consisting of a single process constant only, in particular 0 6∈ 1,

S – sequential terms - terms without parallel composition, e.g. X � Y � Z,

P – parallel terms - terms without sequential composition, e.g. X‖Y ‖Z,

G – general terms - terms without any restrictions, e.g. (X � (Y ‖Z))‖W .

Process terms in canonical form are terms t defined by:

t ::= 0 | s | p
s ::=X | p1 � p2 � . . .� pn, n ≥ 2
p ::=X | s1‖s2‖ . . . ‖sn, n ≥ 2

It can easily be seen that every term has an '-equivalent term in canonical form.
In the following we work with terms in canonical form.

Term t is called seq-term if t = 0, or t = X for a constant X, or t = p1 �
p2 � . . . � pn where n ≥ 2. In the last case, the term is also called �-rooted term.
Further, t is called flat seq-term if t = X1�X2� . . .�Xn for n ≥ 0 (the case n = 0
corresponds to the term 0, and the case n = 1 corresponds to a process constant
X). By analogy we define par-terms, ‖-rooted terms, and flat par-terms.

2.2 Process Rewrite Systems and weak extension

Let M = {o, p, q, . . .} be an ordered set of control states and Act = {a, b, c, . . .} be
a set of actions. Let α, β ∈ {1, S, P,G} be classes of process terms such that α ⊆ β.
An (α, β)-wPRS (weakly extended process rewrite system) R is a finite set of rewrite
rules of the form (p, t1)

a
↪→ (q, t2), where t1 ∈ α, t1 6= 0, t2 ∈ β, p, q ∈M , p ≤ q, and

a ∈ Act . By M(R), Const(R), and Act(R) we denote sets of control states, process
constants, and actions occurring in rewrite rules of R.

An (α, β)-wPRS R induces a labelled transition system the states of which are
pairs (p, t) such that p ∈ M(R) is a control state and t ∈ β is a process term over
Const(R). The transition relation →R is the least relation satisfying the following
inference rules:

((p, t1)
a
↪→ (q, t2)) ∈ R

(p, t1)
a→R (q, t2)

(p, t1)
a→R (q, t2)

(p, t1‖t)
a→R (q, t2‖t)

(p, t1)
a→R (q, t2)

(p, t1 � t)
a→R (q, t2 � t)

4

Bouajjani et al.

We extend the transition relation to finite words over Act in a standard way. The
reflexive and transitive closure of →R is denoted by ∗→R. To shorten our notation
we write pt in lieu of (p, t).

An (α, β)-wPRS where M(R) is a singleton is called (α, β)-PRS (process rewrite
system). In such systems we omit the single control state from rules and states.

Instead of (S,G)-PRS, (S,G)-wPRS, (G,G)-PRS, and (G,G)-wPRS we use more
readable names PAD, wPAD, PRS, and wPRS respectively. Let us note that the
classes PAD and wPAD subsume widely known models of infinite-state systems
as pushdown processes (PDA), basic parallel processes (BPP), and process algebras
(PA). The classes PRS and wPRS subsume also Petri nets (PN). More information
about expressiveness of (α, β)-wPRS and (α, β)-wPRS can be found in [13,12].

Given a state pt of a wPRS R, we define

PostR(pt) = {p′t′ | pt a→R p′t′ for some a} Post∗R(pt) = {p′t′ | pt ∗→R p′t′}

PreR(pt) = {p′t′ | p′t′ a→R pt for some a} Pre∗R(pt) = {p′t′ | p′t′ ∗→R pt}

The sets Post∗R(pt) and Pre∗R(pt) are called (forward and backward) reachability
sets. The sets PostR(pt) and PreR(pt) are called 1-step (forward and backward)
reachability sets. These definitions and notations can be extended to sets of states
in the obvious manner.

2.3 Canonic PRS

A canonic PRS R is a set of rewrite rules of the forms:

X1 �X2 � . . .�Xn
a
↪→ Y1 � Y2 � . . .� Ym (1)

X1‖X2‖ . . . ‖Xn
a
↪→ Y1‖Y2‖ . . . ‖Ym (2)

where n,m ≥ 0. Rules of the form (1) and (2) are called �-rules and ‖-rules
respectively. By Rω we denote the set of all ω-rules of R. Note that the sets R‖

and R� do not have to be disjoint as some rules (e.g. X
a
↪→ Y) are of both types.

Let α, β ∈ {1, S, P,G} be classes of process terms. A canonic PRS is called canonic
(α, β)-PRS if every rule t1

a
↪→ t2 of R satisfies t1 ∈ α and t2 ∈ β. Finally, canonic

PAD stands for canonic (S,G)-PRS.
Note that a canonic PRS does not have to be a PRS as we allow rules with 0 on

the left-hand side. Further, the definition of canonic (α, β)-PRS does not require
that α ⊆ β. The meaning of Const(R),→R,PostR,PreR, . . . remains the same.

Given a canonic (α, β)-PRS R, by R−1 we denote the canonic (β, α)-PRS with
rules obtained by swapping the left-hand and right-hand sides of the rules of R.
Notice that for every set of process terms L, PreR(L) = PostR−1(L) and Pre∗R(L) =
Post∗R−1(L).

The problem of computing reachability sets of PRS systems can be transformed
into the same problem for canonic PRS using the following theorem. The proof of
this theorem employs a variant of the standard construction given in [17]. However,
our theorem differs from the one of [17] in several aspects. In particular, (1) we
transform an (α, β)-PRS into a canonic (α, β)-PRS, which is not the case of Mayr’s
transformation, and (2) in contrast to the original theorem in [17], our theorem

5

Bouajjani et al.

states that the same transformation of R works for all terms over a given set of
process constants.

A term substitution h is a function on process terms satisfying h(0) = 0 and
h(t1 ω . . . ω tn) = h(t1)ω . . . ω h(tn) for all finite sequences t1, . . . , tn of terms and
for both ω = �, ‖. In other words, a term substitution is fully specified by its
values on process constants. We say that a term subsitution h is finite if the set
{X | h(X) 6= X} of process constants is finite.

Theorem 2.1 For every (α, β)-PRS system R and every set of process constants
C we can construct a canonic (α, β)-PRS system R′ and a finite term substitution
h, such that for every t1, t2 over C ∪ Const(R) and every a ∈ Act(R) we have:

(i) t1
a→R t2 iff there exists t′1, t

′
2 satisfying h(t′1) = t1, h(t′2) = t2, and t′1

a→R′ t′2,

(ii) t1
∗→R t2 iff there exists t′1, t

′
2 satisfying h(t′1) = t1, h(t′2) = t2, and t′1

∗→R′ t′2.

Proof. Let size(t
a
↪→ t′) be the number of occurrences of � and ‖ in terms t and t′.

Given any PRS R, let ki be the number of rules r ∈ R that are neither �-rules nor
‖-rules and size(r) = i. Thus, R is canonic PRS iff ki = 0 for every i. In this case,
let n = 0. Otherwise, let n be the largest i such that ki 6= 0 (n exists as the set of
rules is finite). We define norm(R) to be the pair (n, kn).

First we describe a procedure transforming an (α, β)-PRS R into an (α, β)-PRS
R′ and defining finite term substitution h such that norm(R′) < norm(R) (with
respect to the lexicographical ordering) and for every terms t1, t2 over C∪Const(R)
and every a ∈ Act(R) the following equivalences hold:

(i) t1
a→R t2 ⇐⇒ there exists t′1, t

′
2 satisfying h(t′i) = ti and t′1

a→R′ t′2

(ii) t1
∗→R t2 ⇐⇒ there exists t′1, t

′
2 satisfying h(t′i) = ti and t′1

∗→R′ t′2

In this proof we assume that � is left-associative. It means that the term
X � Y � Z is seen as (X � Y) � Z and so its subterms are X, Y , Z, and X � Y ,
but not Y � Z. Let us assume that R is not canonic PRS. Let τ 6∈ Act(R) be a
fresh action. We set h(X) = X for every X ∈ C ∪ Const(R) and R′ = R. Let
r = (s1

a
↪→ s2) be a rule of R′ that is neither �-rule nor ‖-rule and has the maximal

size. There are three cases:

(i) s1 is ω-rooted and s2 is ω-rooted. In R′ we replace the rule r by rules s1
τ
↪→ Z,

Z
a
↪→ s2, where Z 6∈ C∪Const(R) is a fresh process constant. We set h(Z) = s1.

Clearly, the considered equivalences holds.

(ii) s1, s2 are par-terms and at least one of them is not flat. Let t be an �-rooted
subterm of s1 or s2. We modify R′ in two steps. First, in all left-hand and
right-hand sides of all rules, we replace every occurrence of t by a fresh process
constant Z 6∈ C ∪Const(R). Further, we add the rule Z

τ
↪→ t and if t ∈ α then

we add also the rule t
τ
↪→ Z. We set h(Z) = t.

We say that an occurrence of subterm t of term s is active, if a rule t
τ
↪→ Z can

be applied on s such that the occurrence of t is replaced by Z. The occurrence
is inactive otherwise. Note that an occurrence of t in s is inactive iff it is a
subterm of the right component of some sequential composition.

Clearly, the first equivalence and the implication “⇐=” of the second equiv-

6

Bouajjani et al.

alence hold. In order to prove the remaining implication, we show that every
transition l1

a→R l2 (where l1, l2 are terms over C ∪ Const(R)) corresponds
to a transition sequence l′1

τ∗aτ∗→ R′ l′2, where l′1, l
′
2 are l1, l2 with all inactive

occurrences of t replaced by Z. Let us assume that the transition l1
a→R l2 is

generated by a rule l
a
↪→ l′. Each occurrence of t in l1 modified by the rule is

either active, or it is inactive (and thus replaced by Z in l′1) and completely
contained in l (due to the left-associativity of �). Hence, we can apply the
rule t

τ
↪→ Z to all occurrences of t in l′1 which are going to be modified by the

rule of R′ corresponding to l
a
↪→ l′ (i.e. the same rule with all occurrences of t

replaced by Z). This corresponding rule is applied afterwards.
The situation with occurrences of t appearing in l2 after the application of

the considered rule is similar. Each occurrence of t in l2 created by the rule
is either active, or it is inactive and completely contained in l. Hence, after
application of the corresponding rule of R′, we apply the rule Z

τ
↪→ t to all

active occurrences of Z to reach l′2.

(iii) s1, s2 are seq-terms and at least one of them is not flat. This case is a direct
analogy of the previous one.

Note that norm(R′) < norm(R) and R′ belongs to (α, β)-PRS class. After finitely
many (say n) applications of this procedure, a given (α, β)-PRS R is transformed
into a canonic (α, β)-PRS R′. Let hi be the finite term substitution defined in i-th
application of the procedure. We set h = h1 ◦ h2 ◦ . . . ◦ hn. It is now easy to see
that this canonic PRS R′ and finite term substitution h satisfy the equivalences
formulated in the theorem. 2

3 Automata-based symbolic representations

In order to perform reachability analysis of PRS, we need representation structures
for (infinite) sets of process terms. For this purpose, we use a class of tree-automata,
called commutative hedge automata [2], which recognize sets of trees modulo asso-
ciativity / associativity-commutativity. These automata extend both (1) bottom-up
tree automata over ranked alphabets [5], and (2) hedge automata recognizing sets
of unbounded width trees [3].

3.1 Preliminaries

Presburger arithmetic is the first order logic of integers with addition and linear
ordering. Given a formula ϕ, we denote by FV (ϕ) the set of its free variables. Let
FV (ϕ) = {x1, . . . , xn}. Then, a vector u = (u1, . . . , un) ∈ Zn satisfies ϕ, written
u |= ϕ, if ϕ(u) = ϕ[xi ← ui] is true. Each formula ϕ defines a set of integer
vectors [[ϕ]] = {u ∈ Zn | u |= ϕ}. Presburger formulas define semilinear sets of
integer vectors, i.e., finite union of sets of the form {x ∈ Zn | ∃k1, . . . , kn ∈ Z,x =
v0 + k1v1 · · ·+ knvm}, where vi ∈ Zn, for 1 ≤ i ≤ m (see [10]).

Given a word w over an alphabet Σ = {a1, . . . , an}, the Parikh image of w, de-
noted Parikh(w), is the vector (|w|a1 , . . . , |w|an). This definition can be generalized
to sets of words (languages) over Σ in the obvious manner.

7

Bouajjani et al.

As usual, a set of words is regular if it is definable by a finite-state automaton.
The notion of regularity can be transfered straightforwardly to sets of flat seq-terms.
Similarly, the notion of semilinearity can be transfered to sets of flat par-term by
associating with a term X1‖ · · · ‖Xn the vector Parikh(X1 · · ·Xn).

In the sequel, we will represent by γ a constraint which is either a regular lan-
guage or a Presburger formula. We say that a word w = a1a2 . . . an satisfies the
constraint γ if w ∈ γ (resp. Parikh(w) |= γ) when γ is a language (resp. a formula).

3.2 Commutative Hedge Automata

Let Σ = Σ′ ∪ ΣA be a finite alphabet, where Σ′ is a ranked alphabet, and ΣA is
a finite set of associative operators. We assume that Σ′ and ΣA are disjoint. For
k ≥ 0, let Σk denote the set of elements of Σ′ of rank k.

3.2.1 Σ-Terms:
Let X be a fixed countable set of variables {x1, x2, . . .}. The set TΣ[X] of Σ-terms
over X is the smallest set such that:

• Σ0 ∪ X ⊆ TΣ[X],
• for k ≥ 1, if f ∈ Σk and t1, . . . , tk ∈ TΣ[X], then f(t1, . . . , tk) ∈ TΣ[X],
• if f ∈ ΣA, t1, . . . , tn ∈ TΣ[X] for some n ≥ 1, and root(ti) 6= f for every

1 ≤ i ≤ n, then f(t1, . . . , tn) ∈ TΣ[X], where root(σ) = σ if σ ∈ Σ0 ∪ X ,
and root

(
g(u1, . . . , um)

)
= g.

Note that if f ∈ ΣA, we only consider terms of the form f(t1, . . . , tn)
such that for every i, the root of ti is different from f . Indeed, since f

is associative, f
(
t1, . . . , ti−1, f(u1, . . . , um), ti+1, . . . , tn

)
is equivalent to the term

f(t1, . . . , ti−1, u1, . . . , um, ti+1, . . . , tn).
Terms without variables are called ground terms. Let TΣ be the set of ground

terms of TΣ[X]. A term t in TΣ[X] is linear if each variable occurs at most once
in t. A context C is a linear term of TΣ[X]. Let t1, . . . , tn be terms of TΣ, then
C[t1, . . . , tn] denotes the term obtained by replacing in the context C the occurrence
of the variable xi by the term ti, for each 1 ≤ i ≤ n.

3.2.2 Definition of CH-automata:
Let us consider that ΣA = Σ′

A ∪Σ′
AC where Σ′

AC is a set of associative and commu-
tative operators. We assume that Σ′

A and Σ′
AC are disjoint. Then, a CH-automaton

is a tuple A = (Q,Σ, F,∆) where:

• Q is a union of disjoint finite sets of states Q′ ∪
⋃

f∈ΣA
Qf ,

• F ⊆ Q is a set of final states,
• ∆ is a set of rules of the form:
(i) a→ q, where q ∈ Q′, a ∈ Σ0,
(ii) f(q1, . . . , qk)→ q, where f ∈ Σk, q ∈ Q′, and qi ∈ Q,
(iii) q → q′, where (q, q′) ∈ Q′ ×Q′ ∪

⋃
f∈ΣA

Qf ×Qf ,
(iv) f(Reg) → q, where f ∈ Σ′

A, Reg ⊆ (Q \ Qf)∗ is a regular language given by a
finite-state automaton, and q ∈ Qf ,

8

Bouajjani et al.

(v) f(ϕ) → q, where f ∈ Σ′
AC , q ∈ Qf , and ϕ is a Presburger formula such that

FV (ϕ) = {xq | q ∈ Q \Qf}.

We define a move relation →∆ between ground terms in TΣ∪Q as follows: for
every two terms t and t′, we have t →∆ t′ iff there exist a context C and a rule
r ∈ ∆ such that t = C[s], t′ = C[s′], and:

• r = a→ q, with s = a and s′ = q, or
• r = q → q′, with s = q and s′ = q′, or
• r = f(q1, . . . , qk)→ q, with s = f(q1, . . . , qk) and s′ = q, or
• r = f(Reg)→ q, with f ∈ Σ′

A, s = f(q1, . . . , qn), q1 · · · qn ∈ Reg , and s′ = q, or
• r = f(ϕ) → q, with f ∈ Σ′

AC , s = f(q1, . . . , qn), Parikh(q1 · · · qn) |= ϕ, and
s′ = q.

Let ∗→∆ denote the reflexive-transitive closure of →∆. A ground term t ∈ TΣ is
accepted by a state q if t ∗→∆ q. Let Lq = {t ∈ TΣ | t

∗→∆ q}. A ground term t ∈ TΣ

is accepted by the automaton A if it is accepted by some final state q ∈ F . The
CH-language of A, denoted by L(A), is the set of all ground terms accepted by A.

We have the following fact [4,15,19,20,2]:

Theorem 3.1 The class of languages recognized by CH-automata is effectively
closed under boolean operations, term substitutions and inverse of finite term sub-
stitutions. Moreover, the emptiness problem of CH-automata is decidable.

3.3 CH-automata for PRS process terms

We consider process terms as trees and use CH-automata to represent sets of such
trees. Indeed, for any finite set C ⊆ Const , the set TC of process terms can be seen
as the set of Σ-terms TΣ where Σ0 = {0} ∪ C, Σ′

A = {�}, and Σ′
AC = {‖}.

Sets of process terms are recognized by CH-automata A = (Q,Σ, F,∆) such
that (1) Q is the disjoint union Q = Q′ ∪ Q� ∪ Q‖ where Q′ is itself the disjoint
union Q′ = Q0 ∪ Q−, and (2) the rules in ∆ are of the form: (a) X → q, where
q ∈ Q−, X ∈ Const, (b) 0 → q, where q ∈ Q0, (c) q → q′, where (q, q′) ∈
(Q0)2 ∪ (Q−)2 ∪ (Q�)2 ∪ (Q‖)2, (d) �(Reg) → q, where Reg ⊆

(
Q \ (Q� ∪ Q0)

)∗
is a regular language and q ∈ Q�, and (e) ‖(ϕ) → q, where q ∈ Q‖ and ϕ is a
Presburger formula such that FV (ϕ) = {xq | q ∈ Q \ (Q‖ ∪Q0)}.

In other words, the states in Q� (resp. Q‖) recognize trees whose root is � (resp.
‖). The states in Q− recognize constants in C, and the states in Q0 recognize 0.

4 Computing 1-step reachability sets for canonic PRS

Let us consider a canonic PRS R = R� ∪ R‖ and let A = (Q,Σ, F,∆) be a CH-
automaton recognizing a set L of process terms. We show that the sets PostR(L)
and PreR(L) are effectively representable and computable by CH-automata.

For a given canonic PRS R′ and a given set of terms L1, we write R′(L1) as an
abbreviation for PostR′(L1). In the following we use the fact that given a regular
set L2 of flat seq-terms, the set R′

�(L2) is again regular and easily constructible.

9

Bouajjani et al.

The same holds for any semilinear sets L3 of flat par-terms and R′
‖(L3).

We construct a CH-automaton A′ = (Q̃,Σ, F̃ , ∆̃) which recognizes R(L), where
Q̃ is the set of states, F̃ is the set of final states, and ∆̃ is the set of rules. Let C
be a finite set of process constants such that C ⊇ Const(R) and L ⊆ TC .

4.1 The set of states

The set of states Q̃ includes the set of states Q of A and contains new states qX ,
which are assumed to accept precisely the singletons {X} (i.e., LqX = {X}), for
each X ∈ C. Let QR be the set of states QR = {qX | X ∈ C}. In addition,
the set Q̃ contains states which recognize the set R(Lq) of immediate successors of
terms in Lq for each q ∈ Q∪QR. In order to ensure (during the construction) that
the recognized trees are always in canonical form, we need to partition the sets of
recognized trees according to their types (given by their root).

We associate with each q ∈ Q∪QR different states (q,−), (q, 0), (q,�), and (q, ‖)
recognizing immediate successors of terms in Lq which are respectively constants in
C, null (equal to 0), �-rooted terms, and ‖-rooted terms.

Let Q = Q0∪Q−∪Q�∪Q‖. We consider that the set Q̃ is equal to the union of
the following sets: (1) Q̃0 = Q0∪{(q, 0) | q ∈ Q∪QR}, (2) Q̃− = Q−∪QR∪{(q,−) |
q ∈ Q ∪QR}, and (3) Q̃ω = Qω ∪ {(q, ω) | q ∈ Q ∪QR}, for ω ∈ {�, ‖}. Moreover,
we consider that F̃ = {(q,−), (q, 0), (q,�), (q, ‖) | q ∈ F}.

4.2 Rewrite system over the alphabet of states

Rules in CH-automata (of the forms ω(γ) → q) involve constraints on sequences
of states, whereas the systems R� and R‖ are defined over the alphabet of process
constants. Therefore, we define the systems S� = α(R�) and S‖ = α(R‖) where α
is the substitution such that α(X) = qX , for every X ∈ C (extended in the standard
way to terms, rules, and sets of rules).

4.3 The set of transition rules

The set ∆̃ is defined as the smallest set of transition rules which (1) contains ∆, (2)
contains the set of rules X → qX for every X ∈ Const , and (3) is such that:

(β1) Closure rules: successors of process constants and 0:
(a) If X ∗→∆ q, then ω

(
Sω(qX)

)
→ (q, ω) ∈ ∆̃,

(b) If 0 ∗→∆ q, then ω
(
Sω(0)

)
→ (q, ω) ∈ ∆̃.

The rule (a) says that if X is in Lq, then all its immediate ω-successors obtained
by applying once the system Rω are also immediate successors of Lq. The rule
(b) says the same thing for successors of 0.

(β2) Closure rule: successors of ω-rooted terms: If ω(γ) → p ∈ ∆, then
ω
(
Sω(σ(γ))

)
→ (p, ω) ∈ ∆̃, where σ is the substitution such that ∀q ∈ Q∪QR,

σ(q) = {q} ∪ {qX | X
∗→∆ q} ∪ {0 | 0 ∗→∆ q}.

This rule says that if ω(X1, . . . , Xn) ∈ Lp and ω(X ′
1, . . . , X

′
m) ∈

Rω

(
ω(X1, . . . , Xn)

)
, then ω(X ′

1, . . . , X
′
m) is a ω-successor of Lp.

10

Bouajjani et al.

(β3) Propagation rule: If ω(γ)→ p ∈ ∆, then ω
(
Eω(γ)

)
→ (p, ω) ∈ ∆̃, where E

is a canonic PRS defined as E = {q ↪→ (q,−), q ↪→ (q,�), q ↪→ (q, ‖)}.
The rule says that if �(t1, . . . , tn) ∈ Lp and t′1 is a successor of t1, then
�(t′1, . . . , tn) is a successor of Lp. Moreover, if ‖(t1, . . . , tn) ∈ Lp and t′i is
a successor of ti, then ‖(t1, . . . , t′i, . . . , tn) is a successor of Lp.
Note that we need to distinguish between E‖(γ) and E�(γ) to ensure that the
prefix-rewrite strategy of the � is correctly taken into account.

(β4) Term flattening rules:
(a) If ω(γ) → (q, ω) ∈ ∆̃ and q′ ∈ γ, then q′ → (q,−) ∈ ∆̃ if q′ ∈ Q̃−, and

q′ → (q, ω) ∈ ∆̃ if q′ ∈ Q̃ω.
(b) If ω(γ)→ (q, ω) ∈ ∆̃ and 0 ∈ γ, then 0→ (q, 0) ∈ ∆̃.
The rules say that if ω(t) is a successor of Lq, then t is also a successor of Lq.

Now we prove that the construction is correct.

Lemma 4.1 For every process term t, and every q ∈ Q ∪QR we have:

(1) t
∗→e∆ (q, 0) iff t ∈ PostR(Lq) and t = 0,

(2) t
∗→e∆ (q,−) iff t ∈ PostR(Lq) and t ∈ C,

(3) t
∗→e∆ (q, ω) iff t ∈ PostR(Lq) and root(t) = ω, for ω ∈ {�, ‖}.

Proof. We consider the (more complicated) left-to-right direction. The proof is by
structural induction on t:

• t = X
∗→e∆ (q,−) (the case where t = 0 ∗→e∆ (q, 0) is similar). Note that the rules

of ∆̃ do not allow derivations of the form X
∗→e∆ (q, 0) or X ∗→e∆ (q, w).

Such a derivation has necessarily the following form:

X→e∆qX→e∆(q,−)

where the rule qX→e∆(q,−) is a β4-rule. There are three cases:
(i) There exists w ∈ {�, ||}, such that w(γ) →∆ q, ω

(
Sω(σ(γ))

)
→ (q, ω) is in

∆̃, and qX ∈ Sω(σ(γ)). Suppose that ω = �, the other case where ω = ||
is analogous. This means that there exists qX1 · · · qXn ∈ σ(γ) such that qX ∈
S�(qX1 · · · qXn). This means that X ∈ R�

(
�(X1, . . . , Xn)

)
. Since qX1 · · · qXn ∈

σ(γ) and �(γ) →∆ q, it follows that �(X1, . . . , Xn) ∈ Lq. Therefore, X ∈
R�(Lq), i.e., X ∈ PostR(Lq).

(ii) There exists a constant Y such that Y ∗→∆ q, ω
(
Sω(qY)

)
→ (q, ω) is in ∆̃, and

qX ∈ Sω(qY). Suppose here also that w = �, the other case where w = || is
analogous. This means that qX ∈ S�(qY), and that X ∈ R�(Y). Since Y ∈ Lq,
it follows that X ∈ R�(Lq), i.e., X ∈ PostR(Lq).

(iii) 0 ∗→∆ q, ω
(
Sω(0)

)
→ (q, ω) is in ∆̃,and qX ∈ Sω(0). Suppose here also that

w = �, the other case where w = || is analogous. This means that qX ∈ S�(0),
and that X ∈ R�(0). Since 0 ∈ Lq, it follows that X ∈ R�(Lq), i.e., X ∈
PostR(Lq).

• t = �(t1, . . . , tn) ∗→e∆ (q,�). The case where t = ||(t1, . . . , tn) ∗→e∆ (q, ||) is similar.
There are three cases:

11

Bouajjani et al.

(i) There exist n constants X1, . . . , Xn such that

t = �(t1, . . . , tn) ∗→e∆ �(qX1 , . . . , qXn)→e∆(q,�).

In this case, every ti is necessarily equal to the constant Xi. Then, the ∆̃-rule
�(Reg) → (q,�), where qX1 · · · qXn ∈ Reg is either a β1 or a β2 rule. Let us
consider the case where it is a β1-rule, the other case being similar. Let then X
be a constant such that X ∗→∆ q and Reg = S�(qX). Since qX1 · · · qXn ∈ Reg ,
this means as previously that �(X1, . . . , Xn) ∈ R�(X), i.e., since X ∈ Lq that
�(t1, . . . , tn) = �(X1, . . . , Xn) ∈ PostR(Lq).

(ii) There exist k constants X1, . . . , Xk and n−k states qk+1, . . . , qn in Q such that

t = �(t1, . . . , tn) ∗→e∆ �(qX1 , . . . , qXk
, qk+1, . . . , qn)→e∆(q,�).

In this case, for every i, 1 ≤ i ≤ k, ti is necessarily equal to the con-
stant Xi, and for every i, k + 1 ≤ i ≤ n, ti ∈ Lqi . Then, the ∆̃-rule
�(Reg) → (q,�), where qX1 · · · qXk

qk+1 · · · qn ∈ Reg is necessarily a β2 rule.
Let then �(Reg ′) → q be a rule in ∆ such that Reg = S�(σ(Reg ′)). Since
qX1 · · · qXk

qk+1 · · · qn ∈ Reg , it follows that there exists qY1 · · · qYmqk+1 · · · qn ∈
σ(Reg ′) such that qX1 · · · qXk

qk+1 · · · qn ∈ S�(qY1 · · · qYmqk+1 · · · qn), and there-
fore that qX1 · · · qXk

∈ S�(qY1 · · · qYm), and hence that �(X1, . . . , Xk) ∈
R�

(
� (Y1, . . . , Ym)

)
, and that �(X1, . . . , Xk, tk+1, . . . , tn) ∈ R�

(
�

(Y1, . . . , Ym, tk+1, . . . , tn)
)
.

Since qY1 · · · qYmqk+1 · · · qn ∈ σ(Reg ′), we get that
�(Y1, . . . , Ym, tk+1, . . . , tn) ∈ Lq, and since �(X1, . . . , Xk, tk+1, . . . , tn) ∈
R�

(
� (Y1, . . . , Ym, tk+1, . . . , tn)

)
, it follows that �(X1, . . . , Xk, tk+1, . . . , tn) ∈

PostR(Lq). Therefore

t = �(t1, . . . , tn) = �(X1, . . . , Xk, tk+1, . . . , tn) ∈ PostR(Lq)

(iii) There exist n states q1, . . . , qn where at least one qi is of the form (p, ||) or (p,−)
where

t = �(t1, . . . , tn) ∗→e∆ �(q1, . . . , qn)→e∆ (q,�)
In this case, the last rule that is applied during the derivation is necessarily a β3-
rule. Then, β3 implies that for every i, 2 ≤ i ≤ n, qi ∈ Q, and that it is the state
q1 that is of the form (p1, ||) (the case where it is of the form (p1,−) is similar).
More precisely, it implies that there exist a rule �(Reg) → q in ∆ and a rule
�(Reg ′)→ (q,�) in ∆̃ such that p1q2 · · · qn ∈ Reg and (p1, ||)q2 · · · qn ∈ Reg ′.

By structural induction, it follows that t1 ∈ PostR(Lp1). Let then t′1 ∈ Lp1 be
such that t1 ∈ PostR(t′1). It follows that �(t1, . . . , tn) ∈ PostR

(
� (t′1, . . . , tn)

)
,

and since for i, 2 ≤ i ≤ n, ti ∈ Lqi we have:

�(t′1, . . . , tn) ∗→∆ �(p1, q2, . . . , qn)→∆q

It follows then that t = �(t1, . . . , tn) ∈ PostR(Lq).
2

Therefore, we have:

12

Bouajjani et al.

Theorem 4.2 For every canonic PRS R and every CH-automaton A, we have
PostR

(
L(A)

)
= L(A′).

As PreR(L) = PostR−1(L), the previous construction can also be used to com-
pute 1-step backward reachability sets.

5 Computing reachability sets for PAD and wPAD

In this section, we solve the problem of computing both reachability sets and 1-
step reachability sets for PAD and wPAD systems. Computing reachability sets
is difficult for PRS in general. One of the reasons is that already the reachability
sets of Petri nets are not semilinear. In [2] we show that the reachability sets of a
given canonic PRS system R can be effectively computed provided the underlying
multiset rewrite system R‖ is effectively semilinear. This is, for example, the case
of canonic PAD systems due to the result of [6] concerning context-free multiset
rewrite systems (BPP processes).

Theorem 5.1 ([2]) Let A be a CH-automaton recognizing a set of process terms
and R be a canonic PAD. Then the sets Post∗R(L(A)) and Pre∗R(L(A)) are com-
putable and effectively representable by CH-automata.

Using this theorem and the results of the previous section, we get the following.

Theorem 5.2 For every PAD R and every CH-automaton A, the sets
PostR(L(A)), PreR(L(A)), Post∗R(L(A)), and Pre∗R(L(A)) are computable and ef-
fectively representable by CH-automata.

Proof. Theorem 2.1 implies that for every PAD R and every set of terms L, there
exists a canonic PAD R′ and a finite term substitution h such that Post∗R(L) =
h(Post∗R′(h−1(L))) and PostR(L) = h(PostR′′(h−1(L))), where R′′ is the set R′ re-
stricted to rules labelled with actions of Act(R). Hence, CH-automata representing
the sets Post∗R(L(A)) and PostR(L(A)) are constructible due to closure proper-
ties of CH-automata and Theorems 5.1 and 4.2. The proof for Pre∗R(L(A)) and
PreR(L(A)) is analogous. 2

Now we show that the previous theorem holds for wPAD as well. Recall that
states of wPAD are pairs pt of a control state p and a term t. The sets of such
states can be represented by CHA-mappings.

Definition 5.3 Let R be a wPRS. A CHA-mapping Λ is a mapping assigning to
each control state p ∈M(R) a CH-automaton Λ(p). A CHA-mapping Λ represents
the set of states L(Λ) = {pt | p ∈M(R), t ∈ L(Λ(p))}.

Theorem 5.4 For every wPAD R and every CHA-mapping Λ, the sets
PostR(L(Λ)), PreR(L(Λ)), Post∗R(L(Λ)), and Pre∗R(L(Λ)) are computable and ef-
fectively representable by CHA-mappings.

Proof. Let R be a wPAD. For each pair of control states p, q ∈ M(R) we set
Rp,q = {t1

a
↪→ t2 | pt1

a
↪→ qt2 is a rule of R}. Note that each Rp,q is a PAD system.

13

Bouajjani et al.

CHA-mapping Λ1 representing PostR(L(Λ)) is defined as follows. For each q ∈
M(R), Λ1(q) is an CH-automaton satisfying

L(Λ1(q)) =
⋃

p∈M(R)

PostRp,q

(
L(Λ(p))

)
.

CHA-mapping Λ2 representing Post∗R(L(Λ)) is defined inductively with respect
to ordering < on set M(R) of control states. For every minimal element r of
M(R), Λ2(r) is a CH-automaton satisfying L(Λ2(r)) = Post∗Rr,r

(
L(Λ(r))

)
. For

non-minimal element q of M(R), Λ2(q) is a CH-automaton satisfying

L(Λ2(q)) = Post∗Rq,q

(
L(Λ(q)) ∪

⋃
p<q

PostRp,q

(
L(Λ2(p))

))
.

CHA-mappings Λ1,Λ2 are constructible due to Theorem 5.2 and the fact that CH-
automata are closed under union. The proof for PreR(L(Λ)) and Pre∗R(L(Λ)) is
analogous. 2

As mentioned in [2], the generic algorithm presented there can employ known
algorithms computing semilinear overapproximations of reachability sets for Petri
nets in order to compute overapproximations of reachability sets for general canonic
PRS systems. If we use this approximative algorithm for canonic PRS instead of
exact algorithm for canonic PAD system in Theorems 5.2 and 5.4, we get an algo-
rithm computing overapproximations of reachability sets for general wPRS systems.
Note that 1-step reachability sets for wPRS systems can still be computed precisely
as Theorems 5.2 and 5.4 hold even for (w)PRS if we restrict our attention only to
1-step reachability sets.

6 Model checking of wPAD against EF logic

This section presents a straightforward application of Theorem 5.4. We consider a
variant of EF logic combining both action-based and state-based approaches. We
show that the global model checking problem of wPAD systems against this logic
is decidable.

Formulae of EF logic are defined as

ϕ ::= A | ¬ϕ | ϕ1 ∧ ϕ2 | 〈a〉ϕ | EFϕ,

where A ranges over set AP of atomic propositions and a ranges over Act . Here,
formulae are interpreted over states of wPRS systems. For each atomic proposition
A, let V (A) denotes its valuation, i.e. the set of states where A holds. We define
when a state pt of a given wPRS system R satisfies a formula ϕ, written R, pt |= ϕ,
by induction on the structure of ϕ.

14

Bouajjani et al.

R, pt |= A iff pt ∈ V (A)

R, pt |= ¬ϕ iff R, pt 6|= ϕ

R, pt |= ϕ1 ∧ ϕ2 iff R, pt |= ϕ1 and R, pt |= ϕ2

R, pt |= 〈a〉ϕ iff ∃qt′ such that pt a→R qt′ and R, qt′ |= ϕ

R, pt |= EFϕ iff ∃qt′ such that pt ∗→R qt′ and R, qt′ |= ϕ

Theorem 6.1 For every wPAD system R and every EF formula ϕ over atomic
propositions with valuations given by CHA-mappings, the set of states of R satisfying
ϕ is computable and effectively representable by a CHA-mapping.

Proof. The theorem follows directly from Theorem 5.4 and closure properties of
CH-automata. Here we mention just the induction step corresponding to operator
〈a〉. Let ϕ = 〈a〉ψ and let CHA-mapping Λ recognizes all states satisfying ψ. We
construct a CHA-mapping Λ′, which recognizes all states where ϕ holds, to satisfy
L(Λ′) = PreRa

(
L(Λ)

)
, where Ra is the set R restricted to rules with label a. Such

a CHA-mapping Λ′ is constructible due to Theorem 5.4. 2

This theorem gives a positive answer to open questions formulated in [14],
namely whether model checking of wBPP, wPA, and wPAD systems against action-
based EF logic is decidable. Our result is tight as model checking of state extended
PAD (defined as wPAD where rules may not respect the ordering on control states)
against EF logic is already undecidable. In fact, the problem is undecidable even
for the subclass of state extended PAD called multiset automata and EF formulae
with the only atomic proposition true (this can be proved by the arguments of [6]
showing that model checking of Petri nets against EF logic is undecidable).

7 Bounded reachability analysis of synchronized PAD

First we give a precise definition of synchronized (α, β)-PRS. Let Act be a disjoint
union Async∪Sync∪{τ}. We assume that to each a ∈ Sync corresponds a co-action
ã ∈ Sync such that ˜̃a = a. Intuitively, Sync is the set of all synchronization actions,
i.e. actions which must be performed simultaneously with their corresponding co-
actions. A synchronized (α, β)-PRS R is defined as standard (α, β)-PRS. Instead
of ’synchronized (α, β)-PRS’ we use shorter names like SPAD, SPRS, etc.

Let → be the least transition relation over terms satisfying the inference rules

(t1
b
↪→ t2) ∈ R

t1
b→ t2

t1
b→ t2

t1‖t
b→ t2‖t

t1
b→ t2

t1 � t
b→ t2 � t

t1
a→ t′1 t2

ã→ t′2

t1‖t2
τ→ t′1‖t′2

where a ranges over Sync and b ranges over Act . An transition step induced by the
last rule is called synchronization. The transition relation →R is then defined as
the restriction of → to transitions labelled with actions of Act r Sync.

Now we present a technique for computing underapproximations of these sets
in style of [18]. Given a synchronized (α, β)-PRS R and n > 0, we construct
an (α, β)-wPRS Rn which mimics (prefixes of) all behaviors of R with at most n

15

Bouajjani et al.

synchronizations. The system Rn uses control states 0 < 1 < . . . < 3n. For every

rewrite rule r = (t1
b
↪→ t2) of R, let Zr 6∈ Const(R) be a fresh process constant. If

• b ∈ Async ∪ {τ} then we add to Rn the rule (3i)t1
b
↪→ (3i)t2 for every 0 ≤ i ≤ n.

• b = a ∈ Sync the we add toRn rules (3i)t1
τ ′
↪→ (3i+1)Zr and (3i+2)Zr

τ ′
↪→ (3i+3)t2

for every 0 ≤ i < n.

• b = ã ∈ Sync the we add to Rn rule (3i+ 1)t1
τ
↪→ (3i+ 2)t2 for every 0 ≤ i < n.

Intuitively, every synchronization via actions a, ã is replaced by a sequence of actions
τ ′ττ ′. The changes of control states prevents interleaving of this sequence with other
actions. Moreover, use of fresh process constants ensures that the rules under a and
ã are applied on different parts of the current term.

Let R be an SPAD and L be a set of states represented by a CH-automaton.
Theorem 5.4 says that we can construct a CHA-mapping Λ such that L(Λ) =
Post∗Rn

({0} × L). Obviously, the set
⋃

0≤i≤n L(Λ(3i)) is an underapproximation of
Post∗R(L). Further, with increasing n, we can compute better approximations of
this set. Moreover, if for n and n + 1 the computed underapproximations are the
same, we know that we have exactly the set Post∗R(L).

The same technique can be employed to underapproximate the set Pre∗R(L). The
sets PostR(L) and PreR(L) can be computed precisely using a similar approach.

8 Conclusion

We have presented an automata-based symbolic reachability analysis algorithm for
the class of wPAD systems. This algorithm is based on the use of a class of un-
ranked tree automata (called CH-automata) which can recognize sets of configura-
tions closed under the algebraic properties of the sequential and parallel composi-
tion. We used the reachability analysis algorithm, together with one-step successor
computation (and boolean operations on CH-automata), in order to define an al-
gorithm for the global model checking of wPAD against the EF logic with regular
atomic predicates. These results generalize those proved in [2] concerning the class
of (canonic) PAD systems, which is a strict subclass of wPAD, pushing the known
decidability limit of EF model checking further up in the (se/w)PRS hierarchy, and
answering open questions left in [14].

We have also shown that the symbolic reachability algorithm for wPAD can be
used to compute under approximations of the set of reachable configurations of syn-
chronized PAD (SPAD), a (Turing) powerful model introduced in [21] for modeling
multithreaded programs (with dynamic creation of communicating processes and
procedure calls).

References

[1] Bouajjani, A. and T. Touili, Reachability Analysis of Process Rewrite Systems, in: Proc. of FSTTCS
2003, LNCS 2914 (2003), pp. 74–87.

[2] Bouajjani, A. and T. Touili, On computing reachability sets of process rewrite systems, in: Proceedings
of RTA 2005, LNCS 3467 (2005), pp. 484–499.

16

Bouajjani et al.

[3] Bruggemann-Klein, A., M. Murata and D. Wood, Regular tree and regular hedge languages over
unranked alphabets, Research report (2001).

[4] Colcombet, T., Rewriting in the partial algebra of typed terms modulo ac, in: Proceedings of
INFINITY’02, ENTCS 68 (2002).

[5] Comon, H., M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison and M. Tommasi, Tree
automata techniques and applications, Available on: http://www.grappa.univ-lille3.fr/tata (1997).

[6] Esparza, J., Decidability of model checking for infinite-state concurrent systems, Acta Informatica 34
(1997), pp. 85–107.

[7] Esparza, J., Grammars as processes, in: Formal and Natural Computing, LNCS 2300 (2002).

[8] Esparza, J. and J. Knoop, An automata-theoretic approach to interprocedural dataflow analysis, in:
Proceedings of FOSSACS’99, LNCS 1578, 1999, pp. 14–30.

[9] Esparza, J. and A. Podelski, Efficient algorithms for pre∗ and post∗ on interprocedural parallel flow
graphs, in: Proceedings of the 27th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POLP’00) (2000), pp. 1–11.

[10] Harrison, M. A., “Introduction to Formal Language Theory,” Addison-Wesley, 1978.

[11] Jančar, P., A. Kučera and R. Mayr, Deciding bisimulation-like equivalences with finite-state processes,
Theor. Comput. Sci. 258 (2001), pp. 409–433.

[12] Křet́ınský, M., V. Řehák and J. Strejček, Extended process rewrite systems: Expressiveness and
reachability, in: Proceedings of CONCUR’04, LNCS 3170 (2004), pp. 355–370.

[13] Křet́ınský, M., V. Řehák and J. Strejček, On extensions of process rewrite systems: Rewrite systems
with weak finite-state unit, in: Proceedings of INFINITY’03, ENTCS 98 (2004), pp. 75–88.

[14] Křet́ınský, M., V. Řehák and J. Strejček, Reachability of Hennessy-Milner properties for weakly
extended PRS, in: Proceedings of FSTTCS 2005, LNCS 3821 (2005), pp. 213–224.

[15] Lugiez, D., Counting and equality constraints for multitree automata, in: Proceedings of FoSSaCS 2003,
LNCS 2620 (2003), pp. 328–342.

[16] Lugiez, D. and P. Schnoebelen, The regular viewpoint on PA-processes, in: Proc. of CONCUR’98, LNCS
1466 (1998), pp. 50–66.

[17] Mayr, R., Process rewrite systems, Information and Computation 156 (2000), pp. 264–286.

[18] Qadeer, S. and J. Rehof, Context-bounded model checking of concurrent software, in: Proceedings of
TACAS’2005, LNCS 3440 (2005), pp. 93–107.

[19] Seidl, H., T. Schwentick and A. Muscholl, Numerical document queries, in: Proceedings of PODS’03
(2003), pp. 155–166.

[20] Touili, T., “Analyse symbolique de systèmes infinis basée sur les automates: Application à la vérification
de systèmes paramétrés et dynamiques,” Ph.D. thesis, University of Paris 7 (2003).

[21] Touili, T., Dealing with communication for dynamic multithreaded recursive programs, in: Proceedings
of VISSAS’05, 2005.

17

	Introduction
	Preliminaries
	Process terms
	Process Rewrite Systems and weak extension
	Canonic PRS

	Automata-based symbolic representations
	Preliminaries
	Commutative Hedge Automata
	CH-automata for PRS process terms

	Computing 1-step reachability sets for canonic PRS
	The set of states
	Rewrite system over the alphabet of states
	The set of transition rules

	Computing reachability sets for PAD and wPAD
	Model checking of wPAD against EF logic
	Bounded reachability analysis of synchronized PAD
	Conclusion
	References

