
Tighter Loop Bound Analysis

Pavel Čadek1, Jan Strejček2, and Marek Trt́ık3

1 Faculty of Informatics, Vienna University of Technology, Austria
2 Faculty of Informatics, Masaryk University, Brno, Czech Republic

3 LaBRI, University of Bordeaux, France

Abstract. We present a new algorithm for computing upper bounds
on the number of executions of each program instruction during any
single program run. The upper bounds are expressed as functions of
program input values. The algorithm is primarily designed to produce
bounds that are relatively tight, i.e. not unnecessarily blown up. The
upper bounds for instructions allow us to infer loop bounds, i.e. upper
bounds on the number of loop iterations. Experimental results show that
the algorithm implemented in a prototype tool Looperman often pro-
duces tighter bounds than current tools for loop bound analysis.

1 Introduction

The goal of loop bound analysis is to derive for each loop in a given program
an upper bound on the number of its iterations during any execution of the
program. These bounds can be parametrized by the program input. The loop
bound analysis is an active research area with two prominent applications: pro-
gram complexity analysis and worst case execution time (WCET) analysis.

The aim of program complexity analysis is to derive an asymptotic complex-
ity of a given program. The complexity is commonly considered by programmers
in their everyday work and it is also used in specifications of programming lan-
guages, e.g. every implementation of the standard template library of C++ has
to have the prescribed complexities. Loop bound analysis clearly plays a cru-
cial role in program complexity analysis. In this context, emphasis is put on
large coverage of the loop bound analysis (i.e. it should find some bounds for as
many program loops as possible), while there are only limited requirements on
tightness of the bounds as asymptotic complexity is studied.

A typical application scenario for WCET analysis is to check whether a
given part of some critical system finishes its execution within an allocated time
budget. One step of the decision process is to compute loop bounds. Tightness of
the bounds is very important here as an untight bound can lead to a spuriously
negative answer of the analysis (i.e. ‘the allocated time budged can be exceeded’),
which may imply unnecessary additional costs, e.g. for system redesign or for
hardware components with higher performance. The WCET analysis can also
be used by schedulers to estimate the run-time of individual tasks.

The problem to infer loop bounds has recently been refined into the reachability-
bound problem [8], where the goal is to find an upper bound on the number of

executions of a given program instruction during any single run of a given pro-
gram. One typically asks for a reachability bound on some resource demanding
instruction like memory allocation. Reachability bound analysis is more chal-
lenging than loop bound analysis as, in order to get a reasonably precise bound,
branching inside loops must be taken into account.

This paper presents a new algorithm that infers reachability bounds. More
precisely, for each instruction of a given program, the algorithm tries to find an
upper bound on the number of executions of the instruction in any single run of
the program. The bounds are parametrized by the program input. The reacha-
bility bounds can be directly used to infer loop bounds and asymptotic program
complexity. Our algorithm builds on symbolic execution [10] and loop summari-
sation adopted from [14]. In comparison with other techniques for reachability
bound or loop bound analysis, our algorithm brings the following features:

– It utilizes a loop summarisation technique that computes precise values of
program variables as functions of loop iteration counts.

– It distinguishes different branches inside loops and computes bounds for each
of them separately.

– If more different bounds arise, it handles all of them while other techniques
usually choose nondeterministically one of them.

– It can detect logarithmic bounds.

– Upper bounds for nested loops are computed more precisely: while other
techniques typically multiply a bound for the outer loop by a maximal bound
on iterations of the inner loop during one iteration of the outer loop, we sum
the bounds for the inner loop over all iterations of the outer loop.

All these features have a positive effect on tightness of produced bounds.

a b
i:=5

c

i<x i:=i+2

d
i>=x

We can explain the basic idea of our algorithm
on the flowgraph on the right. The node a is the
entry location, d is the exit location, and locations
b, c form a loop. An initial value of x represents pro-
gram input. We symbolically execute each path in
the loop and assign an iteration counter to it. Then
we try to express the effect of arbitrarily many iterations of the loop using the
iteration counters as parameters. The loop in our example has just one path
bcb that increments i by 2. Hence, the value of i after κ iterations is i′ + 2κ,
where i′ denotes the value of i before the loop execution starts. We combine
this loop summary with the program state just before entering the loop, which
is obtained by symbolic execution of the corresponding part of the program. In
our example, we get that the value of i after κ iterations of the loop is 5+2κ. To
enter another iteration, the condition i<x must hold. If we replace the variables
i and x by their current values, we get the condition 5 + 2κ < x, where x refers
to the initial value of x. This condition is satisfied only if κ < x−5

2 . As κ is an
iteration counter, it has to be a non-negative integer. Hence, we get the bound
on the number of loop iterations max{0, dx−52 e}, which is assigned to all edges
in the loop. Edges outside the loop are visited at most once. The situation is

more complicated if we have loops with more loop paths, nested loops, or loops
where a run can cycle forever. The algorithm is described in Section 3.

We have implemented our algorithm in an experimental tool Looperman.
Comparison with several leading loop bound analysis tools shows that our ap-
proach often provides tighter loop bounds. For example, our tool is currently the
only one that detects that the inner cycle of the BubbleSort algorithm makes
n·(n−1)

2 iterations in total (i.e. during all iterations of the outer loop) when
sorting an array of n elements, while other tools provide only the bound n2 or
O(n2). Section 4 presents the comparison with the best performing tool Loo-
pus [12]. Experimental comparison with more tools, a detailed description of the
algorithm, and discussion of the BubbleSort example can be found in [15].

2 Preliminaries

For simplicity, this paper focuses on programs without function calls, manipulat-
ing only integer scalar variables a, b, . . . and read-only multidimensional integer
array variables A, B, As usual in the context of loop bound analysis, integers
are interpreted in the mathematical (i.e. unbounded) sense.

Flowgraph, backbone, loop, induced flowgraph An analysed program is
represented as a flowgraph P = (V,E, lbeg , lend , ι), where (V,E) is a finite ori-
ented graph, lbeg , lend ∈ V are different begin and end nodes respectively, and
ι : E → I labels each edge e by an instruction ι(e). The out-degree of lend is 0
and out-degrees of all other nodes are positive. We use two kinds of instructions:
an assignment a:=expr for some scalar variable a and some program expression
expr over program variables, and an assumption assume(γ) for some quantifier-
free formula γ over program variables. For example, a statement if γ then . . .
corresponds to a node with two outgoing edges labelled with assume(γ) and
assume(¬γ). We often omit the keyword assume in flowgraphs.

A path in a flowgraph is a (finite or infinite) sequence π = v1v2 · · · of nodes
such that (vi, vi+1) ∈ E for all vi, vi+1 in the sequence. Paths are denoted by
Greek letters. A backbone in a flowgraph is an acyclic path leading from the
begin node to the end node.

Let π be a backbone with a prefix αv. There is a loop C with a loop entry
v along π, if there exists a path vβv such that no node of β appears in α. The
loop C is then the smallest set containing all nodes of all such paths vβv.

Each run of the program corresponds to a path in the flowgraph starting at
lbeg and such that it is either infinite, or it is finite and ends in lend .4 Every run
follows some backbone: it can escape from the backbone in order to perform one
or more iterations in a loop along the backbone, but once the last iteration in
the loop is finished (which need not happen if the run is infinite), the execution
continues along the backbone again. We thus talk about a run along a backbone.

4 We assume that crashes or other undefined behaviour of program expressions are
prevented by safety guards, e.g. an expression a/b is guarded by assume(b 6= 0).

a b
k:=0

c
i:=0

d

i<n ∧ k<3

f

A(i)=0

i:=i+1
e

k:=k+1

A(i)!=0

g
i>=n ∨ k>=3

a c
k

d

i<n ∧ k<3

f

A(i)=0

e
k:=k+1

A(i)!=0

c′

i:=i+1

(a) (b)

Fig. 1. (a) A flowgraph representing a program that gets an array A of size n and counts
up to three non-zero elements in the array. (b) Its induced flowgraph P ({c, d, e, f}, c).

For a loop C with a loop entry v along a backbone π, a flowgraph induced by
the loop, denoted as P (C, v), is the subgraph of the original flowgraph induced
by C, where v is marked as the begin node, a fresh end node v′ is added, and
every transition (u, v) ∈ E leading to v is redirected to v′ (we identify the edge
(u, v′) with (u, v) in the context of the original program). Each single iteration
of the loop corresponds to a run of the induced flowgraph. Figure 1(b) shows
the flowgraph induced by the loop {c, d, e, f} of the program in Figure 1(a).

The program representation by flowgraphs and our definition of loops easily
handle many features of programming languages like break, continue, or goto.

Symbolic execution Symbolic execution [10] replaces input data of a program
by symbols representing arbitrary data. Executed instructions then manipulate
symbolic expressions over the symbols instead of exact values. Symbolic expres-
sions are terms of the theory of integers extended with functions max and min,
rounding functions d·e and b·c applied to constant expressions over reals, and

– for each scalar variable a, an uninterpreted constant a, which is a symbol
representing any initial (input) value of the variable a,

– for each array variable A, an uninterpreted function A of the same arity as
A, which is a symbol representing any initial (input) content of the array A,

– a countable set {κ1, κ2, . . .} of artificial variables (not appearing in analysed
programs), called path counters and ranging over non-negative integers,

– a special symbol ? called unknown, and
– for each formula ψ build over symbolic expressions and two symbolic ex-

pressions φ1, φ2, a construct ite(ψ, φ1, φ2) of meaning “if-then-else”, that
evaluates to φ1 if ψ holds, and to φ2 otherwise.

For symbolic expressions ψ, φ and a symbol or a path counter x, let ψ[x/φ]
denote the expression ψ where all occurrences of x are simultaneously replaced
by φ. Further, ψ[xi/φi | i ∈ I] denotes multiple simultaneous replacements.
We sometimes write ψκ to emphasize that ψ can contain path counters κ =
(κ1, . . . , κn). An expression is κ-free if it contains no path counter.

Symbolic execution stores variable values in symbolic memory and all exe-
cutable program paths are uniquely identified by corresponding path conditions.
Here we provide brief descriptions of these terms. For more information see [10].

A symbolic memory is a function θ assigning to each scalar variable a a sym-
bolic expression and to each array variable A the symbol A (array variables keep
their initial values as we consider programs with read-only arrays). We overload
the notation θ(·) to program expressions as follows. Let expr be a program ex-
pression over program variables a1, . . . , an. Then θ(expr) denotes the symbolic
expression obtained from expr by replacement of all occurrences of the variables
a1, . . . , an by symbolic expressions θ(a1), . . . , θ(an) respectively.

Symbolic execution of a path in a flowgraph starts with the initial sym-
bolic memory θ, where θ(a) = a for each variable a. The memory is updated
on assignments. For example, if the first executed assignment is a:=2*a+b,
the initial symbolic memory θ is updated to the symbolic memory θ′ where
θ′(a) = θ(2*a+b) = 2a+ b. If we later update θ′ on a:=1-a, we get the memory
θ′′ such that θ′′(a) = θ′(1-a) = 1− 2a− b.

If ψ is a symbolic expression over symbols { ai | i ∈ I} corresponding to
program variables { ai | i ∈ I} respectively, then θ〈ψ〉 denotes the symbolic
expression ψ[ai/θ(ai) | i ∈ I]. For example, if θ(a) = κ1 and θ(b) = a− κ2, then
θ〈2a + b〉 = 2θ(a) + θ(b) = 2κ1 + a − κ2. Note that θ1〈θ2(a)〉 returns the value
of a after a code with effect θ1 followed by a code with effect θ2. For example, if
θ1(a) = 2a+1 represents the effect of assignment a:=2*a+1 and θ2(a) = a−2 the
effect of a:=a-2, then θ1〈θ2(a)〉 = θ1〈a− 2〉 = (2a+ 1)− 2 represents the effect
of the two assignments in the sequence. We apply the notation θ〈ϕ〉 and ϕ[x/ψ]
with analogous meanings also to formulae ϕ built over symbolic expressions.

Given a path in a flowgraph leading from its begin node, the path condition
is a formula over symbols satisfied exactly by all program inputs for which the
program execution follows the path. A path condition is constructed during
symbolic execution of the path. Initially, the path condition is set to true and it
can only be updated when an assume(γ) is executed. For example, if a symbolic
execution reaches assume(a>5) with a path condition ϕ and a symbolic memory
θ(a) = 2a− 1, then it updates the path condition to ϕ ∧ (2a− 1 > 5).

Upper bound An upper bound for an edge e in a flowgraph P is a κ-free sym-
bolic expression ρ such that whenever P is executed on any input, the instruction
on edge e is executed at most ρ′ times, where ρ′ is the expression that we get by
replacing each variable symbol by the input value of the corresponding variable.

3 The Algorithm

Recall that every program run follows some backbone and the run can diverge
from the backbone only to loops along the backbone. The algorithm first detects
all backbones. For each backbone πi and each edge e, it computes a set of
upper bounds βi(e) on the number of visits of the edge by any run following
the considered backbone. As all these bounds are valid, the set βi(e) can be

interpreted as a single bound minβi(e) on visits of edge e by any run along πi. At
the end, the overall upper bound for an edge e can be computed as the maximum
of these bounds over all backbones, i.e. max{minβi(e) | πi is a backbone}.

The algorithm consists of the following four procedures:

executeProgram is the starting procedure of the whole algorithm. It gets a
flowgraph and computes all its backbones. Then it symbolically executes
each backbone and computes for each edge a set of upper bounds on the
number of visits of the edge by a run following the backbone. Whenever the
symbolic execution enters a loop entry node, the procedure processLoop is
called to get upper bounds on visits during loop execution.

processLoop gets a loop represented by the program induced by the loop. Note
that each run of the induced program corresponds to one iteration of the
loop and it follows some backbone of the induced program (the backbones
are called loop paths in this context). The procedure then symbolically ex-
ecutes each loop path by recursive call of executeProgram (the nesting
of recursive calls thus directly corresponds to the nesting of loops in the
program). The recursive call of executeProgram produces, for each loop
path, a symbolic memory and a path condition capturing the effect of a
single iteration along the loop path. The procedure processLoop then calls
computeSummary, which takes the symbolic memories after single loop iter-
ations, assigns to each loop path a unique path counter κi, and computes
a parametrized symbolic memory θκ describing the effect of an arbitrary
number of loop iterations. This symbolic memory is parametrized by path
counters κ = (κ1, . . . , κk) representing the numbers of iterations along the
corresponding loop paths. From the parametrized symbolic memory and
from the path conditions corresponding to single loop iterations (received
from the recursive call of executeProgram), we derive a parametrized nec-
essary condition for each loop path, which is a formula over symbols and
path counters κ that has to be satisfied when another loop iteration along
the corresponding loop path can be performed after κ loop iterations. Fi-
nally, processLoop infers upper bounds from these parametrized necessary
conditions with the help of the procedure computeBounds.

computeSummary is a subroutine of processLoop that gets symbolic memories
corresponding to single loop iterations along each loop path and it produces
the parametrized symbolic memory θκ after an arbitrary number of loop
iterations (as mentioned above).

computeBounds is another subroutine of processLoop. It gets a set I of loop
paths and the corresponding parametrized necessary conditions, and derives
upper bounds on the number of loop iterations along loop paths from I.

We describe the four procedures in the following four subsections. The pro-
cedure processLoop is described as the last one as it calls the other three pro-
cedures. We demonstrate the procedures and finally the whole algorithm on the
programs of Figure 1. Descriptions of symbolic memories related to these pro-
grams omit the variables n and A: these variables are never changed and hence
the value of n and A is always n and A, respectively.

Algorithm 1: executeProgram

Input:
P // a flowgraph

Output:
{(π1, θ1, ϕ1), . . . , (πk, θk, ϕk)} // backbones πi (with symbolic memory θi and

// path condition ϕi after execution along πi)
β // for each edge e of P , β(e) is a set of upper bounds for e

1 states←− ∅
2 Compute the set of backbones {π1, . . . , πk} of P .
3 foreach i = 1, . . . , k do
4 Initialize θi to return a for each (scalar or array) variable a.
5 ϕi ←− true
6 Initialize βi to return {0} for each edge.
7 Let πi = v1 . . . vn.
8 foreach j = 1, . . . , n− 1 do
9 if vj is a loop entry then

10 Let C be the loop with the loop entry vj along πi.
11 (βloop , θi)←− processLoop(P (C, vj), θi, ϕi)
12 foreach edge e of P (C, vj) do
13 βi(e)←− {ρ1 + ρ2 | ρ1 ∈ βi(e), ρ2 ∈ βloop(e)}
14 if ι((vj , vj+1)) has the form assume(ψ) and θi(ψ) contains no ? then
15 ϕi ←− ϕi ∧ θi(ψ)

16 if ι((vj , vj+1)) has the form a := expr then
17 θi(a)←− θi(expr)
18 βi((vj , vj+1))←− {ρ+ 1 | ρ ∈ βi((vj , vj+1))}
19 Insert (πi, θi, ϕi) into states.

20 foreach edge e of P do
21 β(e)←− {max{ρ1, . . . , ρk} | ρ1 ∈ β1(e), . . . , ρk ∈ βk(e)}
22 return (states, β)

3.1 Algorithm executeProgram

The procedure executeProgram of Algorithm 1 takes a flowgraph as input, de-
termines its backbones, and symbolically executes each backbone separately. For
a backbone πi, symbolic execution computes symbolic memory θi, path condition
ϕi, and bound function βi assigning to each edge e a set of symbolic expressions
that are valid upper bounds on the number of visits of edge e during any single
run along the backbone. Each such a set βi(e) of bounds could be replaced by a
single bound min βi(e), but we prefer to keep it as a set of simpler expressions to
increase the success rate of expression matching in the procedure processLoop

(we point out the reason in Section 3.4).
The symbolic execution proceeds in the standard way until we enter a loop

entry (line 9). Then we call procedure processLoop on the loop, current sym-
bolic memory and path condition. The procedure returns function βloop of upper
bounds on visits of loop edges during execution of the loop, and a symbolic mem-
ory after execution of the loop. We add these bounds and the former bounds in

the foreach loop at line 12 and continue the execution along the backbone. If
the processLoop procedure cannot determine the value of some variable after
the loop, it simply uses the symbol ? (unknown).

Another difference from the standard symbolic execution is at line 14 where
we suppress insertion of predicates containing ? to the path condition. As a
consequence, a path condition of our approach is no longer a necessary and
sufficient condition on input values to lead the program execution along the
corresponding path (which is the case in the standard symbolic execution), but
it is only a necessary condition on input values of a run to follow the backbone.

After processing an edge of the backbone, we increase the corresponding
bounds by one (line 18). At the end of the procedure, the resulting bounds for
each edge are computed as the maximum of previously computed bounds for the
edge over all backbones (see the foreach loop at line 20). Besides these bounds,
the procedure also returns each backbone with the symbolic memory and path
condition after its execution.

Example 1. When executeProgram is called on the flowgraph of Figure 1(b), it
finds two backbones π1 = cdefc′ and π2 = cdfc′. Since there are no loops along
these backbones, their symbolic execution easily ends up with the corresponding
symbolic memories and path conditions

π1 : θ1(i) = i+ 1 θ1(k) = k + 1 ϕ1 = i < n ∧ k < 3 ∧ A(i) 6= 0
π2 : θ2(i) = i+ 1 θ2(k) = k ϕ2 = i < n ∧ k < 3 ∧ A(i) = 0

and a bound function β assigning {1} to each edge of the flowgraph.

3.2 Algorithm computeSummary

The procedure computeSummary gets loop paths π1, . . . , πl together with sym-
bolic memories θ1, . . . , θl, where each θi represents the effect of a single iteration
along πi. Then it assigns fresh path counters κ = (κ1, . . . , κl) to the loop paths
and computes the parametrized symbolic memory θκ after κ iterations of the
loop, i.e. after

∑
1≤i≤l κi iterations where exactly κi iterations follow πi for each

i and there is no assumption on the order of iterations along different loop paths.
If we do not find the precise value of some variable after κ iterations (for example
because the value depends on the order of iterations along different loop paths),
then θκ assigns ? (unknown) to this variable.

Due to the limited space, we do not provide any pseudocode or intuitive
description of the procedure computeSummary here. Both can be found in [15].
It follows the ideas of the procedure of the same name introduced in [14].

Example 2. Assume that computeSummary gets symbolic memories θ1, θ2 corre-
sponding to loop paths π1, π2 as computed in Example 1. It assigns path counters
κ1, κ2 to π1, π2 respectively, and computes the parametrized symbolic memory
θκ describing the values of program variables after κ = (κ1, κ2) iterations of the
loop that induces the flowgraph of Figure 1(b). Note that i, k here represent the
values of i, k just before the loop is executed.

θκ(i) = i+ κ1 + κ2 θκ(k) = k + κ1

Algorithm 2: computeBounds

Input:
I // indices of backbones
ϕ // a necessary condition to perform an iteration along a backbone

// with an index in I after κ iterations
Output:

B // upper bounds on the number of iterations
// along backbones with indices in I

1 if ϕ[κi/0 | i ∈ I] is not satisfiable then return {0}
2 B ←− ∅
3 foreach inequality

∑
j∈J⊇I ajκj < b implied by ϕ, where each aj is a positive

integer and b is κ-free do
4 B ←− B ∪ {max{0, db/min{ai | i ∈ I}e}}
5 return B

3.3 Algorithm computeBounds

The procedure computeBounds of Algorithm 2 gets a set I of selected loop path
indices, and a necessary condition ϕ to perform an iteration along some loop
path with an index in I (we talk about an iteration along I for short) after
κ previous loop iterations. From this information, the procedure infers upper
bounds on the number of loop iterations along I.

We would like to find a tight upper bound, i.e. a κ-free symbolic expression
B such that there exist some values of symbols (given by a valuation function
v) for which the necessary condition ϕ[a/v(a) | a is a symbol] to make another
iteration along I is satisfiable whenever the number of finished iterations along
I is less than B[a/v(a) | a is a symbol] and the same does not hold for the
expression B + 1. An effective algorithm computing these tight bounds is an
interesting research topic itself.

The presented procedure infers some bounds only for two special cases. Line 1
covers the case when even the first iteration along any loop path in I is not
possible: the procedure then returns the bound 0.

The other special case is the situation when the necessary condition implies
an inequality of the form

∑
j∈J⊇I ajκj < b, where each aj is a positive integer

and b is κ-free. To detect these cases, we transform the necessary condition to
the conjunctive normal form, look for clauses that contain just one predicate
and try to transfer the predicate into this form. Each such inequality implies the
following:∑

j∈J⊇I

ajκj < b =⇒
∑
i∈I

aiκi < b =⇒ min{ai | i ∈ I} ·
∑
i∈I

κi < b.

Hence,
∑
i∈I κi < db/min{ai | i ∈ I}e has to be satisfied to perform an-

other iteration along I after κ previous iterations including
∑
i∈I κi iterations

along I. As all path counters are non-negative integers, we derive the bound
max{0, db/min{ai | i ∈ I}e} on iterations along I.

Example 3. We call computeBounds({1}, ϕ) to get bounds on κ1 from the con-
dition ϕ = κ1 + κ2 < n ∧ κ1 < 3 ∧ A(κ1 + κ2) 6= 0. Since ϕ[κ1/0] is
satisfiable, the procedure uses inequalities κ1 + κ2 < n and κ1 < 3 implied by ϕ
to produce bounds B = {max{0, n},max{0, 3}} = {max{0, n}, 3}.

3.4 Algorithm processLoop

The procedure processLoop of Algorithm 3 gets a flowgraph Q representing the
body of a loop, i.e. each run of Q corresponds to one iteration of the original
loop. We symbolically execute Q using the recursive call of executeProgram

at line 2. We obtain all loop paths π1, . . . , πk of Q and bounds βinner on visits
of each edge in the loop during any single iteration of the loop. For each πi,
we also get the symbolic memory θi after one iteration along πi and a necessary
condition ϕi to perform this iteration. The procedure computeSummary produces
the parametrized symbolic memory θκ after κ iterations. Symbols a appearing in
θκ refer to variable values before the loop is entered. If we combine θκ with the
symbolic memory before entering the loop θin , we get the symbolic memory after
execution of the code preceding the loop and κ iterations of the loop. We use
this combination to derive necessary conditions ϕκ

i to perform another iteration
along πi and upper bounds βκ on visits of loop edges in the next iteration of
the loop.

The foreach loop at line 6 computes upper bounds for all edges of the
processed loop on visits during all its complete iterations (incomplete iterations
when a run cycles in some nested loop forever are handled later). We already
have the bounds βκ on visits in a single iteration after κ preceding iterations.
For each edge e, we compute the set I of all loop path indices such that iterations
along these loop paths can visit e. The computeBounds procedure at line 8 takes
I and a necessary condition to perform an iteration along I after κ iterations
and computes bounds Bouter on the number of iterations along I. If there is
0 among these bounds, e cannot be visited by any complete iteration and the
computation for e is over. Otherwise we try to compute some overall bounds
for each bound ρinner on the visits of e during one iteration (after κ iterations)
separately. If ρinner is a κ-free expression (line 13), then it is constant in each
iteration and we simply multiply it with every bound on the number of iterations
along I. The situation is more difficult if ρinner contains some path counters.

We can handle the frequent case when it has the form max{c, b +
∑k
i=1 aiκi},

where a1, . . . , ak, b, c are κ-free (see line 15 and note that this is the reason
for keeping the bounds simple). First we get rid of path counters κj that have
some influence on this bound (i.e. aj 6= 0), but e cannot be visited by any
iteration along loop path πj . Let J be the set of indices of such path counters
(line 16). We try to compute bounds BJ on the number of iterations along J
(line 17), which are also the bounds on

∑
j∈J κj . Note that if J = ∅, we call

computeBounds(∅, false), which immediately returns {0}. If we get some bounds

in BJ , we can overapproximate
∑k
i=1 aiκi as follows:

k∑
i=1

aiκi =
∑
j∈J

ajκj +
∑
i∈I

aiκi ≤ max{0, aj | j ∈ J} ·minBJ +max{ai | i ∈ I} ·
∑
i∈I

κi

Algorithm 3: processLoop

Input:
Q // a flowgraph induced by a loop
θin // a symbolic memory when entering the loop
ϕin // a path condition when entering the loop

Output:
βloop // upper bounds for all edges in the loop
θout // symbolic memory after the loop

1 Initialize βloop to return ∅ for each edge e of Q.
2 ({(π1, θ1, ϕ1), . . . , (πk, θk, ϕk)}, βinner)←− executeProgram(Q)
3 θκ ←− computeSummary({(π1, θ1), . . . , (πk, θk)})
4 ϕκ

i ←− ϕin ∧ θin〈θκ〈ϕi〉〉 for each i ∈ {1, . . . , k}
5 βκ(e)←− {θin〈θκ〈ρ〉〉 | ρ ∈ βinner (e)} for each edge e of Q
6 foreach edge e of Q do
7 I ←− {i | e is on πi or on a loop along πi}
8 Bouter ←− computeBounds(I,

∨
i∈I ϕ

κ
i)

9 if 0 ∈ Bouter then
10 βloop(e)←− {0}
11 else
12 foreach ρinner ∈ βκ(e) do
13 if ρinner ≡ c where c is κ-free then
14 βloop(e)←− βloop(e) ∪ {c · ρouter | ρouter ∈ Bouter}
15 else if ρinner ≡max{c, b+

∑k
i=1 aiκi} where c, b and all ai are

κ-free then
16 J ←− {j | j /∈ I ∧ aj 6= 0}
17 BJ ←− computeBounds(J,

∨
j∈J ϕ

κ
j)

18 if BJ 6= ∅ then
19 b′ ←− b+ max{0, aj | j ∈ J} ·minBJ
20 a←−max{ai | i ∈ I}
21 foreach ρouter ∈ Bouter do

22 βloop(e)←− βloop(e) ∪ {
∑ρouter−1
K=0 max{c, b′ + a ·K}}

23 foreach edge e of Q do
24 if an edge e′ of Q such that βκ(e′) = ∅ is reachable from e in Q then
25 βloop(e)←− {ρ1 + ρ2 | ρ1 ∈ βloop(e), ρ2 ∈ βκ(e), and ρ2 is κ-free}
26 θout(a)←− θin〈θκ(a)〉 for each variable a

27 Eliminate κ from θout .
28 return (βloop , θout)

Using the definitions of b′ and a at lines 19–20, we overapproximate the bound
ρinner on visits of e during one iteration along I after κ loop iterations by

ρinner = max{c, b+

k∑
i=1

aiκi} ≤ max{c, b′ + a ·
∑
i∈I

κi}.

As K-th iteration along I is preceded by K−1 iterations along I, the edge e can
be visited at most max{c, b′+a · (K−1)} times during K-th iteration. For each

bound ρouter on the iterations along I, we can now compute the total bound on
visits of e as

∑ρouter−1
K=0 max{c, b′ + a ·K}.

Until now we have considered visits of loop edges during complete iterations.
However, it may also happen that an iteration is started, but never finished
because the execution keeps looping forever in some nested loop. For example, in
the program while(x>0){x:=x-1;while(true){}}, we easily compute bound 0
on the number of complete iterations of the outer loop and thus we assign bound
0 to all loop edges at line 10. However, some edges of the loop are visited. These
incomplete iterations are treated by the foreach loop at line 23. Whenever an
edge e can be visited by an incomplete iteration (which is detected by existence
of some subsequent edge e′ without any bound and thus potentially lying on
an infinite nested loop), we add the (κ-free) bounds on visits of e during one
iteration to the total bounds for e. If there is no such κ-free bound, we leave e
unbounded to be on the safe side.

Finally, the lines 26 and 27 combine the symbolic memory before the loop
with the effect of the loop and eliminate loop counters from the resulting sym-
bolic memory θout . Roughly speaking, the elimination replaces every expression
that is not κ-free by ?. In fact, the elimination can be done in a smarter way. For
example, after the loop in the program i:=0;while(i<n){i:=i+1}, the elimi-
nation can replace κ by max{0, θout(n)}.

Example 4. We demonstrate the whole algorithm on the program of Figure 1(a).
We follow calls to individual procedures and we present the current state of the
computation in terms of variables of the procedure at the top of the call stack.

The execution starts by calling executeProgram with the flowgraph at Fig-
ure 1(a). The flowgraph has only one backbone π1 = abcg . The node c is the
loop entry to the loop {c, d, e, f} along the backbone. Symbolic execution of π1
up to c is straightforward and leads to the symbolic memory θ1(k) = θ1(i) = 0,
the path condition ϕ1 = true, and the bound function β1 maps each edge
to {0} except β1((a, b)) = β1((b, c)) = {1}. At the entry node c we build
an induced flowgraph P ({c, d, e, f}, c) depicted in Figure 1(b). Then we call
processLoop(P ({c, d, e, f}, c), θ1, ϕ1).

processLoop calls executeProgram with the flowgraph at Figure 1(b), as we
did in Example 1. Recall that processLoop receives the following

π1 = cdefc′ θ1(i) = i+ 1 θ1(k) = k + 1 ϕ1 = i < n ∧ k < 3 ∧ A(i) 6= 0
π2 = cdfc′ θ2(i) = i+ 1 θ2(k) = k ϕ2 = i < n ∧ k < 3 ∧ A(i) = 0

and a bound function βinner assigning {1} to each edge of the flowgraph. Now
we call computeSummary for the symbolic memories θ1 and θ2 and we get the
parametrized symbolic memory θκ described in Example 2:

θκ(i) = i+ κ1 + κ2 θκ(k) = k + κ1

Next, at line 4 of processLoop we compute necessary conditions to perform
another iteration along backbones π1 and π2 respectively:

ϕκ
1 = κ1 + κ2 < n ∧ κ1 < 3 ∧ A(κ1 + κ2) 6= 0

ϕκ
2 = κ1 + κ2 < n ∧ κ1 < 3 ∧ A(κ1 + κ2) = 0

The next line produces bound function βκ which is the same as βinner , in this
case. Now we have all data we need to start the computation of resulting bounds
for all five edges of the passed flowgraph.

The main part of this computation is performed in the loop at line 6. We show
the computation for the edge (e, f). First we call computeBounds({1}, ϕκ

1). As
shown in Example 3, we obtain the set Bouter = {max{0, n}, 3}. Since 0 6∈ Bouter

and βκ((e, f)) = {1}, we get to the line 14 in processLoop, where we receive
βloop((e, f)) = {max{0, n}, 3}. The computation proceeds similarly for other
edges, but for (c, d), (d, f), (f, c) it produces only one bound {max{0, n}}. The
difference originates in the calls of computeBounds. For (c, d) and (f, c), we call
computeBounds({1, 2}, ϕκ

1 ∨ϕκ
2) and get only the bound Bouter = {max{0, n}}.

For (d, f), we call computeBounds({2}, ϕκ
2) and get the same single bound.

Since, the condition at line 24 is false for all edges, the resulting βloop returns
{max{0, n}, 3} for (d, e) and (e, f), and {max{0, n}} for the others. The result-
ing symbolic memory θout assigns ? to i and k.

The control-flow then returns back to executeProgram where we update β1
according to received βloop . Then we symbolically execute the remaining edge
(c, g). The computation in the loop at line 20 computes maximum over all bounds
for a considered edge. The algorithm then terminates with the bound function
β assigning {1} to edges (a, b), (b, c), (c, g), the set {max{0, n}} to edges (c, d),
(d, f), (f, c), and the set {max{0, n}, 3} to (d, e) and (e, f).

We can conclude for the flowgraph at Figure 1(a) that the loop can be
executed only if the program is called with some positive integer n for the
parameter n. In that case the loop is executed at most max{0, n} times (ac-
cording to β((c, d))), but the path following the if branch can be executed at
most min{max{0, n}, 3} times. So the asymptotic complexity for the program
is O(n), but O(1) for the if branch inside the loop.

4 Experimental Evaluation

We implemented our algorithm in an experimental program analysis tool called
Looperman. It is built on top of the symbolic execution package Bugst [17]
and it intensively uses the SMT solver Z3 [21].

We compared Looperman with state-of-the-art loop bound analysis tools
Loopus [12], KoAT [5], PUBS [1], and Rank [3] on 199 simple C programs used
in previous comparisons of loop bound analysis tools [19,20]. We focused on two
kinds of bounds: asymptotic complexity bounds for whole programs and exact
(meaning non-asymptotic) bounds for individual program loops. The compari-
son of asymptotic complexity bounds and other details about our experimental
evaluation can be found in [15]. Here we present only the comparison of exact
bounds, which was restricted to Looperman and Loopus as the other tools
use input in a different format and (as far as we know) they do not provide any
mapping of their bounds to the original C code. Note that Loopus is a strong
competitor as it achieved the best results in the asymptotic complexity bounds.

Table 1. Comparison of loop bounds inferred by Looperman and Loopus.

Looperman Loopus

correctly bounded loops 227 267
incorrectly bounded loops 0 3

loops with no bound found 86 43

bounded loops, not bounded by the other 11 51
asymptotically tighter bounds 16 11

tighter bounds, but not asymptotically 44 2

The presented experiments run on a machine with 8GB of RAM and Intel
i5 CPU clocked at 2.5GHz. We apply the 60 seconds time limit to the analysis
of one program by one tool. The Looperman tool (both sources and Windows
binaries), the 199 benchmarks, and all measured data are available here [18].

The 199 benchmarks contain 313 loops. Table 1 provides for both tools the
numbers of correctly and incorrectly bounded loops, and the number of loops for
which no bound is inferred. The second part of the table compares the inferred
loop bounds. It presents the number of loops where one tool produces a correct
loop bound while the other does not, the number of loops where one tool provides
an asymptotically tighter loop bound than the other, and the number of loops
where one tool infers a tighter bound than the other tool, but the difference is
not asymptotic (e.g. n versus 2n). To complete the presented data, let us note
that both tools inferred exactly the same bound for 143 loops.

The results show that Loopus can infer bounds for slightly more loops than
Looperman. However, there are also loops bounded by Looperman and not
by Loopus. The biggest advantage of Looperman is definitely the tightness of
its bounds: Looperman found a tighter bound for 28% of 216 loops bounded
by both tools, while Loopus found a tighter bound only for 6% of these loops.

5 Related Work

Techniques based on recurrence equations attempt to infer a system of recur-
rence equations from a loop (or a whole program) and to solve it. PUBS [1]
focuses primarily on solving of the system generated by another tool, e.g. [2]. r-
TuBound [11] builds a system of recurrence equations by rewriting multi-path
loops into single-path ones using SMT reasoning. The system is then solved by
a pattern-based algorithm. In ABC [4], inner loops are instrumented by iter-
ation counters (one counter for a whole loop). Recurrence equations are then
constructed over program variables and counters. SPEED [7] instruments coun-
ters into the program (one counter for each back-edge) as artificial variables.
Then it computes their upper bounds by a linear invariant generation tool. In
our approach, we use recurrence equations and counters to summarise loops. We
compute upper bounds from necessary conditions for executing backbones. In
contrast to [4,7], we introduce a counter for each loop path and counters are not
instrumented.

Rank [3] applies an approach based on ranking functions. It reuses results
from the termination analysis of a given program (i.e. a ranking function) to get
an asymptotic upper bound on the length of all program executions. KoAT [5]
uses ranking functions of already processed loops to compute bounds on val-
ues of program variables, which are then used to improve ranking functions of
subsequent loops. Loopus [16] uses several heuristics to transform a program
in particular locations so that variables appearing there represent ranking func-
tions. Program loops are then summarised per individual paths through them.
The approach was further improved by merging nested loops [12] and by com-
putation of maximal values of variables [13]. Our algorithm does not use ranking
functions. However, the passing of information from a preceding to a subsequent
loop we see in [5] or [13] happens also in our approach, through symbolic ex-
ecution. The loop summarisation per individual loop paths presented in [16] is
similar to ours. However, while [16] computes summary as a transitive hull ex-
pressed in the domain of a size-change abstraction, we compute precise symbolic
values of variables after loops. In contrast to [12], we do not merge nested loops.

There are other important techniques computing upper bounds, which are,
however, less related to our work. For instance, SWEET [9] uses abstract inter-
pretation to derive bounds on values of program variables and a pattern matching
of loops of predefined structure. In [8], a program is transformed with respect to
a given location: preserving reachability from the location back to itself. Loops
are summarised into disjunctive invariants from which upper bounds are com-
puted using a technique based on proof-rules. WISE [6] symbolically executes all
paths up to a given length in order to infer a branching policy for longer paths.
Then it symbolically executes all paths satisfying the policy. The longest path
represents the worst-case execution time of the program.

6 Conclusion

We presented an algorithm computing upper bounds for execution counts of
individual instructions of an analysed program during any program run. The
algorithm is based on symbolic execution and the concept of path counters.
The upper bounds are parametrized by input values of the analysed program.
Evaluation of our experimental tool Looperman shows that our approach often
infers loop bounds that are tighter than these found by leading loop bound
analysis tools. This may be a crucial advantage in some applications including
the worst case execution time (WCET) analysis.

Acknowledgement P. Čadek has been supported by the Austrian National Re-
search Network S11403-N23 (RiSE) of the Austrian Science Fund (FWF) and
by the Vienna Science and Technology Fund (WWTF) through grant ICT12-
059, J. Strejček by the Czech Science Foundation grant GBP202/12/G061, and
M. Trt́ık by the QBOBF project funded by DGCIS/DGA.

References

1. E. Albert, P. Arenas, S. Genaim, and G. Puebla. Automatic inference of upper
bounds for recurrence relations in cost analysis. In SAS, volume 5079 of LNCS,
pages 221–237. Springer, 2008.

2. E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost analysis of
java bytecode. In ESOP, volume 4421 of LNCS, pages 157–172. Springer, 2007.

3. C. Alias, A. Darte, P. Feautrier, and L. Gonnord. Multi-dimensional rankings, pro-
gram termination, and complexity bounds of flowchart programs. In SAS, volume
6337 of LNCS, pages 117–133. Springer, 2010.

4. R. Blanc, T. A. Henzinger, T. Hottelier, and L. Kovács. ABC: Algebraic bound
computation for loops. In LPAR, volume 6355 of LNCS, pages 103–118. Springer,
2010.

5. M. Brockschmidt, F. Emmes, S. Falke, C. Fuhs, and J. Giesl. Alternating runtime
and size complexity analysis of integer programs. In TACAS, volume 8413 of
LNCS, pages 140–155. Springer, 2014.

6. J. Burnim, S. Juvekar, and K. Sen. WISE: Automated test generation for worst-
case complexity. In ICSE, pages 463–473. IEEE, 2009.

7. S. Gulwani, K. K. Mehra, and T. Chilimbi. SPEED: Precise and efficient static
estimation of program computational complexity. In POPL, pages 127–139. ACM,
2009.

8. S. Gulwani and F. Zuleger. The reachability-bound problem. In PLDI, pages
292–304. ACM, 2010.

9. J. Gustafsson, A. Ermedahl, C. Sandberg, and B. Lisper. Automatic derivation of
loop bounds and infeasible paths for WCET analysis using abstract execution. In
RTSS, pages 57–66. IEEE, 2006.

10. J. C. King. Symbolic execution and program testing. Communications of the ACM,
19(7):385–394, 1976.

11. J. Knoop, L. Kovács, and J. Zwirchmayr. Symbolic loop bound computation for
WCET analysis. In PSI, volume 7162 of LNCS, pages 227–242. Springer, 2012.

12. M. Sinn, F. Zuleger, and H. Veith. A simple and scalable static analysis for bound
analysis and amortized complexity analysis. In CAV, volume 8559 of LNCS, pages
745–761. Springer, 2014.

13. M. Sinn, F. Zuleger, and H. Veith. Difference constraints: An adequate abstraction
for complexity analysis of imperative programs. In FMCAD, pages 144–151. IEEE,
2015.

14. J. Strejček and M. Trt́ık. Abstracting path conditions. In ISSTA, pages 155–165.
ACM, 2012.

15. P. Čadek, J. Strejček, and M. Trt́ık. Tighter loop bound analysis (technical report).
CoRR, abs/1605.03636, 2016.

16. F. Zuleger, S. Gulwani, M. Sinn, and H. Veith. Bound analysis of imperative
programs with the size-change abstraction. In SAS, volume 6887 of LNCS, pages
280–297. Springer, 2011.

17. Bugst. http://sourceforge.net/projects/bugst/.
18. Looperman, benchmarks, and evaluation. https://sourceforge.net/

projects/bugst/files/Looperman/1.0.0/.
19. http://aprove.informatik.rwth-aachen.de/eval/IntegerComplexity.
20. http://forsyte.at/static/people/sinn/loopus/CAV14/index.html.
21. Z3. https://github.com/Z3Prover/z3.

http://sourceforge.net/projects/bugst/
https://sourceforge.net/projects/bugst/files/Looperman/1.0.0/
https://sourceforge.net/projects/bugst/files/Looperman/1.0.0/
http://aprove.informatik.rwth-aachen.de/eval/IntegerComplexity
http://forsyte.at/static/people/sinn/loopus/CAV14/index.html
https://github.com/Z3Prover/z3

	Tighter Loop Bound Analysis

