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Abstract: Analysis of the dynamic behavior of large-scale biochemical reaction systems can be facili-
tated by abstraction followed by model checking. A biochemical reaction system can be approximated
by a multi-affine system or an affine system on a rectangle. Either of these systems can be abstracted to
an automaton. Model checking can then be employed to determine whether the dynamic behavior of the
automaton satisfies specific properties. A relation between the system and its abstraction is proved; it is
an over-approximation: any discrete state trajectory of the abstraction of the continuous state trajectory
is contained in the automaton, but the automaton may contain more behavior.
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1. INTRODUCTION

In systems biology, biochemical reaction systems with large
numbers of variables and complicated dynamic behaviors are
studied. These systems may be modeled by differential equa-
tions, but the large dimension of the state space of these sys-
tems, and uncertainty about the exact values of several system
parameters, makes it difficult to study properties of solution
trajectories in an analytic way. In this paper we propose the
use of existing techniques of computer science and mathemat-
ics that overcome this difficulty to some extent. The approach
consists of first approximating a biochemical reaction system
by a (piecewise-)affine or multi-affine system on rectangles.
The next step is abstraction: we construct a discrete automaton
such that the dynamic behavior of the (piecewise) multi-affine
system on rectangles is approximated by the dynamic behavior
of the automaton. Specific dynamic properties of the original
system can then be related to dynamic properties of the discrete
automaton. Examples of such properties include the existence
of a unique- or of multiple steady state(s), the existence of
periodic trajectories, or the existence of a specific route through
the state set. On an automaton, such properties may be verified
by employment of model checking. The objective is to use this
constructive technique from computer science to explore the
qualitative dynamic behavior of biochemical reaction systems,
for which the direct mathematical analysis is too complicated.

The originators of the approach are de Jong and Gouzé, see
de Jong et al. [2004b, 2003, 2004a], Ropers et al. [2008]. A
related approach for multi-affine systems with inputs defined on
rectangles was developed by Belta and co-workers, see Belta
et al. [2002], Belta and Habets [2004, 2006], Habets et al.
[2006b], Batt et al. [2007, 2008]. The approach of this paper
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is based on the control of piecewise-affine hybrid systems on
polytopes developed in Habets et al. [2006a], Habets and van
Schuppen [2004], Kloetzer and Belta [2008]. It differs from that
of de Jong in that another approximation is determined. It is
conjectured that the approach of this paper is easier to apply
than that of the references mentioned above. An alternative
approach to abstraction is provided in Azuma et al. [2008]. A
comparison of the approach of this paper with other approaches
of abstraction is provided at the end of Section 3.

The novelty of the paper is in the theorems on the relationship
between the dynamic behavior of the continuous-space system
and that of its abstracted automaton. This covers the case
of affine systems on polytopes and of multi-affine systems
on rectangles. Liveness of the abstraction is guaranteed by
verifiable conditions on the continuous dynamics; a trajectory
is guaranteed to leave a polytope in finite time, provided that
these conditions are satisfied.

The paper is organized as follows. In the next section the
concepts of discrete automata, piecewise-affine systems on
polytopes, and abstraction are introduced, and illustrated with
an example. The abstraction procedure and relations between
the original system and its abstraction are discussed in Section
3. Model checking of automata as practiced in computer science
is presented in Section 4, while a case study is presented in
Section 5. Concluding remarks are stated in Section 6.

2. DISCRETE AUTOMATA, PIECEWISE-AFFINE
SYSTEMS ON POLYTOPES, AND ABSTRACTION

In this section we provide a more formal description of the class
of systems considered in this paper.
Definition 1. An automaton is a tupleA = (Q,E, f,Q0), with
Q the finite state set, E the finite event set, Q0 ⊂ Q the set
of initial states, and f : Q × E → Q the transition function.
In case the transition function f is a partial function, i.e. f is
not defined on the whole set Q× E, but only on a strict subset



of Q × E, then one calls the automaton a generator. A non-
deterministic automaton is defined as an automaton except that
the transition function maps f : Q × E → Pwrset(Q). A non-
deterministic generator is defined analogously.
Definition 2. A finite or infinite sequence (qi)ki=0 (with k ∈ N∪
{0} or k = ∞) is a state trajectory of the automaton A if
q0 ∈ Q0, and there exists a sequence (ei)ki=1 of events such
that qi ∈ f(qi−1, ei) for all i = 1, . . . , k.

In this paper we want to study the evolution of continuous-
time systems by abstracting them to automata, in such a way
that the trajectories of these automata provide information on
qualitative properties of the continuous-time systems. Before
we can specify the class of systems we are mainly interested in,
we first introduce some additional terminology.
Definition 3. Let X ⊂ Rn be a closed full-dimensional poly-
tope. A partitioning Xpart(X) = {Xi | i = 1, . . . ,m} of X
is called admissible if (1) for all i = 1, . . . ,m: Xi is a closed
full-dimensional polytope in Rn, (2) ∪mi=1Xi = X , and (3) for
all i, j = 1, . . . ,m, i 6= j, the intersection Xi ∩ Xj is either
empty, or a lower-dimensional common face of Xi and Xj .
If both polytope X and all subpolytopes Xi, (i = 1, . . . ,m)
are n-dimensional rectangles, then an admissible partitioning
Xpart(X) is called rectangular.

A mapping g : X → Rn is called piecewise-affine on Xpart(X)
if (1a) g is continuous on X , and (2a) for all i = 1, . . . ,m
there exist Ai ∈ Rn×n and ai ∈ Rn such that for all x ∈ Xi:
g(x) = Aix+ ai, i.e. g |Xi is an affine mapping.
A mapping g : X → Rn is called multi-affine on Xpart(X) if
(1b) g is continuous on X , and (2b) for all i = 1, . . . ,m, g |Xi

is multi-affine, i.e. g |Xi is affine w.r.t. every of its variables,
while keeping all other variables constant.
Definition 4. A piecewise-affine system on a polytope is a tuple

Σ = (X,Xpart(X), x0, t0, g),
where state set X is a full-dimensional polytope in Rn,
Xpart(X) is an admissible partitioning of X , x0 ∈ X is the
initial continuous state, t0 ∈ R is the initial time, and g : X →
Rn is a piecewise-affine function on Xpart(X). A trajectory
x : [t0, t1] → X of system Σ is a solution of the differential
equation

ẋ(t) = g(x(t)), x(t0) = x0, (1)
where t1 is either the time instant that the trajectory leaves state
polytopeX , or t1 =∞, if trajectory x(t) remains inX forever.

If X is an n-dimensional rectangle, Xpart(X) is a rectangular
partitioning of X , and g : X → Rn is multi-affine on
Xpart(X), then Σ = (X,Xpart(X), x0, t0, g) is called a multi-
affine system on rectangles.

One may distinguish piecewise-affine systems with the same
affine dynamics on all polytopes in the partitioning, and sys-
tems with different affine dynamics on each subpolytope. In the
second case, the dynamics on the boundary of two polytopes
is still assumed to be continuous. It is possible to drop this
continuity condition, but then one needs a different solution
concept, the so-called Filipov solutions. This type of systems
(and solutions) is not considered in this paper.

Let Q be a finite set of the same cardinality as Xpart(X),
and let π : Xpart(X) → Q be an invertible mapping. Then
every subpolytope Xi corresponds to exactly one discrete state
q ∈ Q. Similarly, a continuous solution x : [t0, t1] → X
of (1) corresponds to a finite or infinite sequence over Q; if

x passes subsequently through the subpolytopes X1, . . . , Xk,
then (π(Xi))ki=1 is the corresponding sequence over Q. This
sequence may also be interpreted as a state trajectory of an
automaton.
Definition 5. An automaton A = (Q,E, f,Q0) is an abstrac-
tion of piecewise-affine system Σ if every solution trajectory of
(1) corresponds to a state trajectory of A.

The purpose of this paper is to present a procedure for the
construction of an automaton that is an abstraction of a given
piecewise-affine system. Before we describe this procedure in
detail, we first illustrate the idea with a simple example.
Example 6. Consider the affine system Σ on rectangle [0, 2] ×
[0, 2] given by

ẋ(t) =
(
−4 0

0 −5

)
x(t) +

(
6.8
6.5

)
, x(t0) = x0.

Obviously, (1.7, 1.3)T is the unique steady state of this system.
We partition the state set X into four squares:

X(0,0) = [0, 1]× [0, 1], X(1,0) = [1, 2]× [0, 1],
X(0,1) = [0, 1]× [1, 2], X(1,1) = [1, 2]× [1, 2].

Using the differential equation, the direction vectors of the
dynamics in all vertices of the subpolytopes are easily obtained
(see Figure 1). These direction vectors indicate whether it is
possible to go from one rectangle to another by crossing a
common facet. In particular, if in all vertices of a facet the inner
product of the direction vector with the normal vector of the
facet has the same sign, then this holds true in all points of
the facet because the dynamics in each rectangle is affine. This
implies that the facet can only be crossed in one direction.

To construct an abstraction, define the discrete state set of the
automaton by Q = {q(0,0), q(1,0), q(0,1), q(1,1)} and the event
set by E = {e(0,0,1,0), e(0,0,0,1), e(1,0,1,1), e(0,1,1,1), e(0,1,0,0)}.
Let π : Xpart(X) → Q be defined by π(X(i,j)) = q(i,j),
i, j ∈ {0, 1}. In the automaton an event e(i,j,k,l) occurs if a
continuous state trajectory x(t) of Σ crosses the joint facet of
X(i,j) and X(k,l) from X(i,j) to X(k,l), enforcing the transition
q(i,j) → q(k,l) Note that not every event e(i,j,k,l), (i, j, k, l ∈
{0, 1}) exists becauseX(i,j) andX(k,l) need to have a common
facet, and because most facets can only be crossed in one
direction. Now we define the abstraction of system Σ by the
automaton A = (Q,E, f,Q0), where the transition function is
obtained by inspection of the direction vectors of system Σ in
the vertices of the subpolytopes (see Figure 1):
f(q(0,0), e(0,0,1,0)) = q(1,0) f(q(1,0), e(1,0,1,1)) = q(1,1)
f(q(0,0), e(0,0,0,1)) = q(0,1) f(q(0,1), e(0,1,1,1)) = q(1,1)
f(q(0,1), e(0,1,0,0)) = q(0,0)

Note that any state trajectory of automatonA that reaches q(1,1)
terminates, because in q(1,1) no events can occur. This is due to
the fact that a continuous state trajectory of system Σ cannot
leave X(1,1) once it has entered X(1,1); indeed the direction
vectors at the vertices of X(1,1) indicate that it is only possible
to cross the facets of X(1,1) in the inward direction. Hence, the
fact that the affine system Σ has a fixed point in atom polytope
X(1,1) is also visible from the behavior of automaton A.

In Example 6 the differential equation is easy to analyze, so
abstraction is not really needed. The motivation for this study is
the need to analyze very large sets of differential equations, for
example the dynamic behavior of genetic, signal, and metabolic



�
�
��

�
�
���

B
B
BM

PPPq

A
A
A
A
AAU

��*

@
@R

@
@I

�
��

X(0,0) X(1,0)

X(0,1) X(1,1)

x1

x2

0 1 2

0

1

2

Fig. 1. Partitioned state set and vectors of affine system.

networks in systems biology. The differential equations of
these networks are often polynomial or rational, and may be
described or approximated by piecewise-affine or multi-affine
systems. Furthermore, the parameter values of these systems
are often not known exactly, but may range over a polytope.
An exact analysis of this type of systems seems impossible, but
still one wants to answer questions on existence and possible
locations of steady states, existence of periodic solutions, or the
solvability of specific reach-avoid problems. For this purpose,
abstraction to an automaton may be helpful. If the system
property one is interested in is also reflected in the discrete
behavior of the abstraction, one may try to verify whether the
abstraction satisfies the required condition. For this purpose
model checking may be applied: the area in computer science
that determines properties of automata by computation.

3. THE ABSTRACTION PROCEDURE

In this section the intuitive ideas on abstraction of a piecewise-
affine system Σ to an automaton A, as illustrated in Example
6, are formalized. The following questions will be discussed:
(1) How to determine the so-called exit facets, i.e. the facets of
a subpolytope that are crossed by a continuous state trajectory
of system Σ? (2) To which other subpolytope does the state
trajectory proceed after exiting? (3) Does the state trajectory
leave the subpolytope in finite time? (4) How to formulate the
relation between the dynamic behavior of the system and that
of the automaton?

3.1 Preliminaries of the procedure

How to determine exit facets? Let Σ = (X,Xpart(X), x0,
t0, g) be a piecewise-affine system on a polytope X . A facet
F of subpolytope Xi is called an exit facet if there exists a
trajectory of system Σ, starting in Xi, that attempts to leave
Xi in finite time by crossing facet F . Let nF denote the normal
vector of F , pointing out of subpolytope Xi, and let the affine
dynamics on Xi be described by ẋ = Aix + ai. Then F is an
exit facet if and only if there exists x̂ ∈ F such that

nTF (Aix̂+ ai) > 0. (2)
Since the dynamics ẋ = Aix+ ai is affine, it suffices to check
condition (2) on V(F ), i.e. on the set of all vertices of facet F .
Lemma 7. Facet F of subpolytope Xi is an exit facet w.r.t. the
dynamics ẋ = Aix+ ai on Xi if and only if

∃v ∈ V(F ) : nTF (Aiv + ai) > 0.

To which subpolytope does the state trajectory proceed after
exiting? If a state trajectory leaves subpolytope Xi through a
point in the relative interior of an exit facet, but stays in poly-
tope X , then the trajectory proceeds to an adjacent subpolytope
Xj . The situation is more complicated if the exit point is in a
lower dimensional face of Xi, because this face may belong to
more than one adjacent subpolytope. Keeping track of all pos-
sibilities makes the abstraction procedure extremely complex.
Instead we only allow transitions to adjacent subpolytopes, that
are also reachable via the relative interior of the joint facet.
Exit through a lower dimensional face is then modeled by the
subsequent execution of several transitions at the same time
instant. E.g. in Figure 1, the continuous state trajectory that
leaves subpolytope X(0,0) through the north-east vertex, and
enters X(1,1), is modeled by one of the transition sequences

X(0,0) −→ X(1,0) −→ X(1,1),
X(0,0) −→ X(0,1) −→ X(1,1).

Does the state trajectory leave a subpolytope in finite time?
In the abstraction, an event will occur if the trajectory of the
corresponding continuous-time system crosses the joint facet
of two subpolytopes. So, in order to guarantee that a new
event occurs after finite time, one has to verify whether the
continuous state leaves a subpolytope in finite time.
Theorem 8. [Habets et al., 2006a, Th. 3.1] Consider an affine
system ẋ(t) = Aix(t) + ai on a closed full-dimensional
subpolytope Xi ⊂ Rn. There exists an initial state x0 ∈ Xi

such that for all times t ∈ T = [t0,∞) the state trajectory
belongs to the subpolytope, i.e. x(t; t0, x0) ∈ Xi if and only if
there exists a fixed state in subpolytope Xi.

The existence of a fixed state can be checked by computing it
numerically. Alternatively, one may use the direction vectors at
the vertices of the polytope:
Theorem 9. Consider an affine system ẋ(t) = Aix(t) +ai on a
closed full-dimensional subpolytope Xi ⊂ Rn. There exists an
x̂ ∈ Xi such that Aix̂+ ai = 0 if and only if

0 ∈ ConvexHull({Aiv + ai | v ∈ V(Xi)}), (3)
i.e. if and only if the zero vector is a convex combination of
the direction vectors at the vertices. The latter condition can
be verified by checking the solvability of a finite set of linear
equations.

Theorem 9 is based on the observation that if the dynamics
are affine, then AiXi + ai = ConvexHull({Aiv + ai | v ∈
V(Xi)}). Condition (3) has the important advantage that it is
also applicable if the dynamics are not known exactly, because
some system parameters may range over a set of values in a
polytope.

One may now distinguish three different cases:

(1) Subpolytope Xi contains a fixed point, and at all vertices
of Xi, the direction vector of the differential equation is
pointing inward. In this case all trajectories that enter sub-
polytope Xi will remain in Xi forever. In the abstraction
no real switching event will occur.

(2) Subpolytope Xi does not contain a fixed point. Then all
trajectories that enter Xi leave Xi in finite time (negation
of Theorem 8).

(3) Subpolytope Xi contains a fixed point, and there exists a
vertex of Xi where the direction vector of the differential
equation is pointing out of Xi. In this case there exist
trajectories that start in Xi and remain in Xi forever, and



other trajectories that start in Xi but leave Xi in finite
time.

In the abstraction, case (1) corresponds to a discrete state in
which no events can occur, and case (2) to a discrete state in
which an event must occur in finite time. The direction vectors
at the vertices determine which events are possible. Case (3) is
a combination of (1) and (2): either no event occurs, because
the continuous state stays in the subpolytope forever, or an
admissible event occurs, because the continuous state leaves
the polytope in finite time. Since the behaviors in cases (2)
and (3) are conceptually different, the abstraction automaton
has to reflect the distinction between case (2) and case (3). For
this purpose, we define for every subpolytope Xi that contains
a fixed point, two corresponding discrete states: the ordinary
state qi = π(Xi) and the terminal state qi,τ . We also add an
empty event ε to the event set E. Finally, transition function f
is extended with transition f(qi, ε) = qi,τ and self-transition
f(qi,τ , ε) = qi,τ .

With this extension, the cases (1), (2), and (3) can still be
recognized from the abstraction. In case (1) the state qi =
π(Xi) allows for only the empty event ε, which transfers the
state to qi,τ . In this state only self-transitions are possible.
In case (2) there are no changes with respect to the original
situation as described in Example 6. In case (3) the state qi
allows for more than one event. One of these events is ε and
transfers the state to qi,τ , where again only self-transitions
occur. Note that it remains visible from the event whether a
transition is a real transition from one polytope to the other, or
an artificial (self)-transition (empty event ε).

3.2 Procedure of abstraction

After this modification of the abstraction, all discrete state
trajectories that correspond to continuous state trajectories that
remain inX forever, are infinite sequences. Finite discrete state
trajectories only occur if after a finite number of transitions the
continuous state leaves the global polytope X through one of
its exit facets. Since the model checking techniques that will be
described in Section 4 are only applicable if all discrete state
trajectories of the abstraction automaton are infinite, another
modification of the abstraction is needed. First, an additional
discrete state s is introduced, and transition function f is
extended with the self-transition f(s, ε) = s. Discrete state s
represents the case that the continuous state trajectory is only
defined on a finite time interval. For every subpolytope Xi with
an exit facet F that is contained in a facet of global polytope
X , we add a new event ηi to the event set, representing that a
transition to s is possible. Simultaneously, transition function f
is extended with the transition f(qi, ηi) = s. This leads to the
following algorithm for the construction of an abstraction:
Algorithm 1. Let Σ = (X,Xpart(X), x0, t0, g) be a piecewise-
affine system on Xpart(X), and denote the number of sub-
polytopes in Xpart(X) by N . Construct the generator A =
(Q,E, f,Q0) in the following way.

(1) Define Q := {q1, . . . , qN} ∪ {s} and π : Xpart(X) → Q
by π(Xi) = qi, (i = 1, . . . , N). Set E := {ε}.

(2) For all i = 1, . . . , N : Check whether there exists x̂ ∈ Xi

such that g(x̂) = 0. Use Theorem 8 or 9 for this. If Xi

contains a zero of g, then Q := Q ∪ {qi,τ}.
(3) For all i ∈ {1, . . . , N}: let F(Xi) be the set of facets of

Xi. For every F ∈ F(Xi), the normal vector of facet F
pointing out of Xi is denoted by nF .

For all F ∈ F(Xi), for which there exists a vertex
v ∈ V(F ) such that nTF g(v) > 0 do:
• if F is the common facet of subpolytopes Xi and Xj ,

then E := E ∪ {ei,j},
• if F is not the common facet of two subpolytopes,

then E := E ∪ {ηi}.
(4) For state set Q as constructed in (1) and (2), and event

set E as constructed in (1) and (3), define the transition
function f : Q× E −→ Pwrset(Q) in the following way.
For i = 1, . . . , N and e ∈ E:

f(qi, e) :=


{qk} if e = ei,k for some k 6= i,

∅ if e = ε and qi,τ 6∈ Q,
{qi,τ} if e = ε and qi,τ ∈ Q,
{s} if e = ηi,

∅ if e ∈ E\({ei,k | k 6= i} ∪ {ε, ηi})
For i = 1, . . . , N such that qi,τ ∈ Q and e ∈ E:

f(qi,τ , e) :=
{

∅ if e 6= ε,
{qi,τ} if e = ε.

Finally, for all e ∈ E:

f(s, e) :=
{

∅ if e 6= ε,
{s} if e = ε.

(5) Set Q0 = {π(Xi)} where Xi is a subpolytope such that
x0 ∈ Xi and x(t; t0, x0) ∈ Xi for all t ∈ (t0, t0 + ε),
for some ε > 0. If x0 is not fixed, Q0 consists of all
discrete states that correspond to a subpolytope, in which
a continuous trajectory starts.

(6) Output: the generator A = (Q,E, f,Q0).
Remark 10. In the definition of transition function f in (4) it is
required that e ∈ E. The definition is correct because ei,j ∈ E
if and only if there exists a continuous trajectory that moves
from subpolytope Xi to Xj by crossing their joint facet.
Remark 11. For general convex polytopes X and arbitrary par-
titions Xpart(X) the execution of Algorithm 1 will be difficult
in general, because of the geometric complexity of the partition,
that needs to be unraveled in steps (2) and (3). This problem
does not occur if X is a multi-dimensional rectangle, that is
partitioned in smaller rectangles of the same dimension. Using a
suitable encoding of the atom rectangles, the search for vertices
of facets and adjacent rectangles becomes trivial. Therefore the
results in this paper are in particular of interest for the class of
piecewise-affine systems on multi-dimensional rectangles.

As a consequence of the construction of abstraction A in Al-
gorithm 1, the definition of the discrete state trajectory, corre-
sponding to a given continuous state trajectory of a piecewise-
affine system, has to be modified.
Definition 12. Let Σ = (X,Xpart(X), x0, t0, g) be a piecewise
affine system on Xpart(X), and let x : [t0, t1] → X be a
solution of (1) with t1 either finite or t1 = ∞. Suppose that
x subsequently passes through subpolytopes X1, . . . , Xk ∈
Xpart(X), with k ∈ N ∪ {0} or k = ∞, where we use the
definition of proceeding to a new subpolytope as explained in
Subsection 3.1. Then the discrete state trajectory ρ(x) ∈ Qω

corresponding to x is the infinite sequence defined by:
If k =∞ then

ρ(x) = (π(Xj))∞j=1.
If k is finite, and qk,τ denotes the terminal state corresponding
to π(Xk) then the sequence ρ(x) is given by

(ρ(x))j =

{
π(Xj) if j ∈ {1, . . . , k},
qk,τ if j > k and t1 =∞,
s if j > k and t1 <∞.



3.3 The relation between a system and its abstraction

Definition 13. Let Σ = (X,Xpart(X), x0, t0, g) be a piecewise
affine system onXpart(X), and consider the associated automa-
ton abstraction A = (Q,E, f,Q0) as defined in Algorithm 1.

(a) Global sufficiency of the relation between the piecewise-
affine system Σ and the associated automaton A is said
to hold if for any initial state x0 ∈ X the continuous
trajectory x = x(t; t0, x0) of Σ corresponds to a discrete
state trajectory of automaton A, i.e. ρ(x), as defined in
Definition 12, is a state trajectory of A

(b) Global necessity of the relation between the piecewise-
affine system Σ and the associated automaton A is said to
hold if for every discrete state trajectory d of automaton
A there exists an initial state x0 ∈ X such that the
continuous trajectory x = x(t; t0, x0) of Σ corresponds
to discrete state trajectory d, i.e. ρ(x) = d.

Theorem 14. Let Σ = (X,Xpart(X), x0, t0, g) be a piecewise-
affine system on Xpart(X), and let A = (Q,E, f,Q0) be its
associated automaton abstraction as defined in Algorithm 1.

(a) The relation between the piecewise-affine system Σ and
the corresponding automaton A is globally sufficient.

(b) There exist piecewise-affine systems Σ for which the
relation with its associated abstracted automaton A is not
globally necessary.

The abstraction from the piecewise-affine system to the au-
tomaton is an approximation in that the automaton may have
trajectories for which there does not exist a state trajectory of
the piecewise-affine system. This is described above as that
global necessity of the abstraction does not hold.

For several analysis problems, such as reachability with uncer-
tain initial conditions, abstraction is more effective and efficient
than numerical simulation or mathematical analysis. The com-
plexity of the abstraction procedure remains to be investigated.

Novel aspects of this paper include the abstraction procedure
with terminal discrete states representing the case that a con-
tinuous trajectory does not leave a subpolytope in finite time.
Theorems 8 and 9 provide necessary and sufficient conditions
for this, which considerably reduces the over-approximation.
This is an advantage in comparison with earlier approaches.
Other contributions are the observation of the particular role of
rectangular partitions to avoid computational complexity, and
the exact mathematical formulation of the results.

3.4 Extension to multi-affine systems

The abstraction procedure described in Algorithm 1 may be ex-
tended to multi-affine systems (cp. Belta et al. [2002], Belta and
Habets [2006]). For biochemical systems this is of particular
interest, because several models of these systems, e.g. of some
genetic networks, are multi-affine systems. However, the dy-
namic behavior of the abstraction automaton is in general larger
than in the piecewise-affine case. Therefore, model checking of
these automata leads to more conservative results. The reason
for this decrease in performance is the fact that Theorems 8 and
9 do -to the knowledge of the authors- not extend to the multi-
affine case. Instead one may prove the following:
Theorem 15. Let ẋ(t) = g(x(t)) be a multi-affine system on an
n-dimensional rectangle Ri ⊂ Rn. If there exists a vector w ∈
Rn such that for all vertices v ∈ V(Ri) we have wT g(v) > 0,

then all state trajectories of this system leave rectangle Ri in
finite time.

Note that the sufficient condition in Theorem 15 can be verified
by solving a set of linear inequalities in the unknown vector w.
However, if the condition is not satisfied, it is unclear whether
all solutions leave rectangle Ri in finite time, and one has to
take the possibility of a trajectory staying in Ri forever into
account. In the abstraction, this may be the source of unrealistic
transitions to terminal states.

In the multi-affine case, Theorem 14 remains valid. The abstrac-
tion is still globally sufficient, but not globally necessary. The
larger behavior of the abstraction will lead to more discrete tra-
jectories in the automaton, that do not correspond to trajectories
of the real multi-affine system.

3.5 Comparison with the literature

The discrete abstractions computed in this paper are for
piecewise-affine systems on a given polyhedral partition or
subdivision. By using techniques based on interval analysis, the
underlying method can, in principle, be extended to nonlinear
systems. Abstractions of nonlinear systems based on interval
analysis have been computed in Stursberg et al. [1997] and
Ratschan and She [2007]. Although they are guaranteed to give
over-approximations to the discrete dynamics of the continuous
system (sufficiency), the quality of the approximation can be
(and typically is) rather poor. Even refining the partition may
not improve the quality of the approximation. Only when the
system dynamics is related to the structure of the state-space
decomposition, as in de Jong et al. [2003], good results may
be expected. In practice, in order to obtain usable abstractions,
more advanced methods must be used.

Closest to the approach presented here is that in Boczko et al.
[2007]. Rather than use a fixed polyhedral subdivision, a sim-
plicial subdivision is computed based on the system itself, and
the resulting flow induced multivalued map provides a good ab-
straction of the continuous system. The method can be used for
both nonlinear and piecewise-affine systems. However, a good
polyhedral subdivision itself is extremely difficult to compute,
and the method is likely to be useful only in low dimensions.

An alternative approach is to use a fixed polyhedral subdivision
(typically rectangular), and to integrate the continuous dynam-
ics for a fixed time step h (see e.g. Asarin et al. [2000], Grüne
[2002] and the tool Ariadne (Balluchi et al. [2006])). This
method is very good for smooth nonlinear systems, but may
have problems handling piecewise-smooth systems. A hybrid
strategy, comprised of piecing together continuous trajectories
to obtain a so-called sub-shift of finite type for the discrete
abstraction, may be more appropriate for piecewise-smooth
systems.

4. MODEL CHECKING

In the field of formal verification of SW/HW systems, model
checking refers to the problem of automatically verifying
whether a simplified model of a system meets a given specifi-
cation. A specification is stated by means of a temporal logic
formula. Models are considered as finite-state automata (or
generators) on infinite strings – the so-called Kripke structures.

For a biochemical reaction system modeled as a system of
ODEs, temporal logics provide a formalism which can suffi-



ciently express dynamic properties of reaction kinetics, such
as all kinds of stability (including non-hyperbolic equilibria
as well as multi-stability), oscillations, temporal ordering of
certain concentration levels, causality, etc. Rizk et al. [2008],
Monteiro et al. [2008]. We employ linear temporal logic (LTL)
interpreted on infinite paths in automata resulting from the ab-
straction procedure of Section 3. In this setting, model checking
can be used in two basic ways:

(1) to automatically detect presence of particular dynamics
phenomena in the system

(2) to verify correctness of the model (i.e., checking whether
some undesired property is exactly avoided)

4.1 Turning an abstraction automaton into a Kripke structure

In order to reason about temporal properties, individual states
of the abstraction automaton have to be assigned local (static)
properties in terms of propositions. As these propositions make
the atoms for temporal formulae construction, they are called
atomic propositions. Since any discrete state represents a poly-
tope or a rectangle in Rn, it is required that each atomic propo-
sition has the same validity for all points in the respective set.
The set of atomic propositions is denoted AP .
Definition 16. Let A = (Q,E, f,Q0) be a (non-deterministic)
automaton, as constructed in Alg. 1. The Kripke structure of A
is a tuple K(A) = (Q, f ′, Q0, L), with f ′ : Q→ 2Q given by

f ′(q) =
⋃
e∈E

f(q, e),

and L : Q → 2AP a labeling function, that assigns to every
q ∈ Q the set L(q) of atomic propositions valid in q.
A path πq0 of K(A) is defined as an infinite sequence πq0 =
q0q1 · · · such that q0 ∈ Q0 and qi+1 ∈ f ′(qi) for all i ∈ N.

Validity of an LTL property ϕ is traditionally defined on infinite
paths in terms of the satisfaction relation πq0 |= ϕ (formal
definition of basic LTL syntax and semantics is available e.g.
in Clarke et al. [2000]). LTL logic is interpreted universally
on automata provided that a formula ϕ is satisfied by the
automaton A, written A |= ϕ, only if for all q ∈ Q0 and all
paths πq in K(A) it holds that πq |= ϕ. The general model
checking problem is then formulated as follows:
Problem 17. For a given abstraction automaton A with Q0 the
set of initial states and a given LTL formula ϕ decide whether
A |= ϕ. In the negative case, return some path πq in K(A)
where q ∈ Q0 such that πq 6|= ϕ – a so-called counterexample.

4.2 Interpreting model checking results on original systems

LTL can be directly interpreted on trajectories of dynamic sys-
tems (see e.g. Rizk et al. [2008] for definition of the semantics).
Given a dynamic system S with a particular initial state, we can
say that S satisfies a formula ϕ, written S |= ϕ, only if the
trajectory starting at the initial state satisfies ϕ. The following
theorem characterizes the relation between validity of ϕ in the
abstraction and in the original system.
Theorem 18. Consider a dynamic system S of any class and the
associated abstraction automaton A.

(1) If global necessity holds then S |= ϕ implies A |= ϕ.
(2) If global sufficiency holds then A |= ϕ implies S |= ϕ.

If for affine systems on polytopes and multi-affine systems on
rectangles model checking of a property on the corresponding

AmtB + NH4ex
∗ k2←k1→ AmtB-NH4 k1 = 5 · 108, k2 = 5 · 103

AmtB-NH4
k3→ AmtB-NH3 + H∗ex k3 = 50

AmtB-NH3
k4→ AmtB + NH3in k4 = 50

NH4in
k5→ k5 = 80

NH3in + H∗in
k7←k6→ NH4in k6 = 1 · 1015, k7 = 5.62 · 105

NH3ex
∗ k8←k9→ NH3in k8 = k9 = 1.4 · 104

Table 1. NH3 transport biochemical model

dAmtB/dt =−k1 · AmtB · NH4ex + k2 · AmtB-NH4 + k4 · AmtB-NH3
dAmtB-NH3/dt = k3 · AmtB-NH4 − k4 · AmtB-NH3
dAmtB-NH4/dt = k1 · AmtB · NH4ex− k2 · AmtB-NH4 − k3 · AmtB-NH4

dNH3in/dt = k4 · AmtB-NH3 − k7 · NH3in + k6 · NH4in
dNH4in/dt = k5 · NH4in + k7 · NH3in · Hin − k6 · NH4in

Table 2. NH3 transport mathematical model

automaton yields true, then the original system also satisfies
this property. However, when the result is negative, the re-
turned counterexample may have no corresponding trajectory
in the original system. The main point is the characterization
of necessary and sufficient conditions for leaving a polytope in
finite time. For affine systems the results of this paper enable
sufficient model checking of any LTL property on abstracted
dynamic systems, including liveness properties which rely on
time progress of the system. However, for multi-affine systems
the framework is practically limited since conditions for finite-
time leaving of a rectangle are only necessary thus imposing
another source of over-approximation. Safety properties ex-
pressing non-reachability of a convex subset of the state space
from the given initial region can be still sufficiently checked.
Problems of liveness checking are studied in Batt et al. [2007].

By employing the results discussed in this paper, we have devel-
oped a prototype tool BioDiVinE (Barnat, Brim and Šafránek
[2010]) that implements parallel LTL model checking algo-
rithms for rectangular abstractions of dynamic systems. The
tool currently supports affine and multi-affine dynamic systems
on rectangles.

5. CASE STUDY

We have conducted model checking analysis of a biochemical
system representing a module of the E. coli metabolic network
defined in Ma et al. [2009]. In particular, we considered reac-
tions involved in ammonium transport into the cell (Table 1).
Due to reactions with two substrates, the resulting model is a
multi-affine system (Table 2).

The model represents a pathway providing two parallel chan-
nels for ammonium exchange – direct diffusion through the
membrane (reactions k8, k9) and an ion-channel mechanism
(reactions k1, ..., k7) employed under low external ammonium
conditions. Species marked by asterisk were considered con-
stant, thus the continuous state set is chosen to be in R5. We
analyzed several reachability properties by testing the maximal
achievable level of internal ammonium forms w.r.t. a given (bio-
logically correct) range of external ammonium concentrations.
Details on the model setting and individual analysis tasks are
provided in Barnat et al. [2009].

Based on expected concentration values, first a threshold is set,
bounding the domain of each variable. The internal thresholds
defining the abstraction partition are initially set to a single in-
termediate concentration level, to be chosen freely. Additional
thresholds are identified by atomic propositions for particular



reachability properties. Finally, a single iteration of nullcline-
driven partition refinement (Kloetzer and Belta [2010]) is em-
ployed, resulting into a partition with 3.9 · 104 rectangles.
We considered properties of the form G(NH4in < α) and
G(NH3in < α) to ensure that levels above α are not reachable.
By a sequence of model checking tasks we identified an upper
approximation for maximal reachable level α. However, due to
over-approximation the result was quite far from data provided
by biologists. Our main result was the proof that an increase
in NH3in is, up-to certain concentrations, not affected by the
levels of external ammonia. This confirms the advantage of
the approach presented in this paper, because such a global
property cannot be tested sufficiently by simulation.

Parallel LTL model checking algorithms employed for the anal-
ysis allowed us to obtain results in several seconds on 36 cores.
The problem is the over-conservative character of the abstrac-
tion. As discussed in Kloetzer and Belta [2010], a potential
solution is nullcline-driven refinement. However, this iterative
procedure may increase the size of the state set exponentially
with the model dimension, even in a single iteration. In our
case, a single threshold refinement iteration has been applied.

In Barnat et al. [2010], we have successfully employed the ab-
straction described in this paper for property-driven estimation
of kinetic parameters in the ammonium transport model. For
a review of other experiments the reader is referred to Barnat,
Brim and Šafránek [2010].

6. CONCLUDING REMARKS

The paper presents an abstraction procedure for affine systems
on polytopes and multi-affine systems on rectangles. Arbitrary
biochemical reaction system are often rational positive systems.
Abstraction for such systems has not yet been treated mathe-
matically. Also a more detailed analysis of the relation between
an arbitrary biochemical reaction system and its approximation
is needed. These problems remain to be investigated.
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