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Abstract

Message Sequence Charts (MSC) are a useful formalism for formalization of net-

work protocols early in their design phase. In this paper, we introduce the basics

of MSC language and describe some of the possibilities for automatic location of

"problematic" parts in the design. Focus is then given to different modifications of

MSC design (FIFO behavior, bounded channels, etc. ) as well as formal checking of

more complex design properties (MSC membership, realizability). Next, an intro-

duction of Specification and Description Language (SDL) is presented. Possibilities

of automatic synthesis of system design in MSC to an SDL model and it’s correctness

verification are mentioned.

1 Introduction

Recent advances in technology make it possible to design very sophisticated and com-

plex systems (hardware systems, software systems or their combination). As experience
∗The work presented in this report has been supported by the research centre "Institute for Thoeretical

Computer Science" (ITI), project No. 1M0545, and is a result of cooperation between Faculty of Informat-

ics, Masaryk University, and ANF DATA spol. s r.o.
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shows, the main problem of such systems is the difficulty to achieve a good system de-

sign. This problem is accentuated especially in complex systems, where, as the com-

plexity of a system grows, so does the probability of flaws in its design. Each of these

design errors, if not detected early enough, can lead to a significant expense increase

during the implementation stage.

Nevertheless, software companies usually carry out most of their verification and

testing processes during the end phases of the product’s implementation stage. The

reason for this (possibly expensive) behavior is frequently the absence of a formal de-

sign specification. It is not unusual for the design process to be carried out in natural

language only. Although it is possible to have such natural language specification ap-

propriately structured as well as different levels of granularity provided, it cannot serve

as a basis for (semi)automated formal verification.

A development of design specification in a formal language is often seen as an un-

necessary work, especially if no design error is found. Even in these situations, for-

mal design specification has distinctive benefits. Precise and unambiguous semantics

of formal languages make it possible to have unambiguous specification of the sought

system – natural languages with their inherent ambiguity can’t guarantee this feature

at all. Also, machine-readable design can be used for automated verification as well as

other implementation help. These include anything from automated creation of header

files to automatic generation of the whole system (system synthesis).

The structure of this paper is as follows: First, MSC language is introduced and pos-

sibilities of basic syntax properties checking are mentioned. With this knowledge, more

complex properties as MSC membership and realizability are discussed in Section 4.

Focus is then given to the possibilities of automatic conversion (synthesis) of a sys-

tem design in MSC to other formal languages. Specification and Description Language

(SDL) is introduced in Section 7. The paper concludes with a description of possibilities

for synthesis from MSC to SDL.

2 Message Sequence Charts

Message Sequence Chart (MSC) is a graphical and textual language for the description

and specification of the interactions between system components. Message Sequence

Charts are mainly used as a specification of real-time system behavior, in particular

of telecommunication switching systems. Message Sequence Charts may be used for
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requirement, interface and test-case specification, simulation, validation and documen-

tation of real-time systems.

The main idea of MSC is to model the system by a set of individual system runs

consisting of message exchanges between processes. A run is a explicitly specified de-

terminist sequence of communication acts between processes. No knowledge of inner

workings of processes is needed or expected.

Core MSC language is called Basic Message Sequence Chart. A Basic Message Se-

quence Chart (bMSC) describes a sequence of communication exchanges between a set

of processes in the system. Advanced descriptive possibilities are provided by High-

level Message Sequence Charts (HMSC). In contrast to bMSC, High-level MSC is in-

tended as a description of relations between bMSCs in the sense of particular sequence

of execution of individual bMSC. Combining bMSC and HMSC, system designer pro-

vides set of possible runs of system.

Note again that MSC contains both textual and graphical form and their expressive-

ness is equivalent. To ease the readability of this document, we have decided to use just

the graphical form. For textual form syntax or other details please follow [15].

2.1 Basic Message Sequence Charts

Basic MSC is formed by a finite collection of process instances (or processes) surrounded

by frame with name of MSC (see Figure 1). An instance can be drawn in two ways

shown in Figure 2. The reason for this duality will be explained later.

Figure 1: Basic MSC example

Message transmissions (with a particular name) are depicted as labeled arrows.

They start at sending instance (send or outgoing event) and end at receiving instance

3



Figure 2: Two ways of drawing instances

(receive or incoming event). Local action is denoted by rectangle with action string

inside. Action string has no special semantic.

Time progress and therefore also order of events on one instance is from top to down.

It is assumed that all events (message output, message input, local action) consume no

time but delay between two succeeding events can be completely arbitrary. No global

notion of time in the system is assumed.

It is possible to describe process creation and termination by Basic MSC (shown in

Figure 3). Dashed arrow is called create-line symbol.

Figure 3: Creation of process

Timer handling is also very simple to describe, see Figure 4. The first couple in this

picture shows set event of timer-horizontal or bent line to hourglass with name of timer.

Parameters can be passed to timer in set event but have no semantic meaning. Second

picture in Figure 4 depicts reset of timer and the last one shows timeout.

It is possible in Basic MSC to define a message to be lost or spontaneously found –

see Figure 5 for syntax details.

Conditions are also supported by MSC. Generally, these conditions have no specific

semantic meaning. They can be used as a label for a specific situation that has occurred

on the instance and therefore improve bMSC’s readability. Example of condition which

holds for more than one instance is shown in Figure 6. It describes a situation, when con-

dition C holds for instances i, k but not for j (this is denoted by j’s axis drawn through).
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Figure 4: Timer handling example

Figure 5: Lost/found message

2.1.1 Ordering facilities

So far, events on an instance were totally ordered in time. Sometimes it might be useful

to be able to specify, that some events on the same instance may be completely un-

ordered. This can be defined in MSC as a coregion. An example of a possible co-region

usage is in Figure 7. In this figure incoming event of message m and outgoing event of

message n are unordered on instance i but they are executed after output of message k

and input of message l.

Because input of a message arises naturally after its output, we can use this infor-

mation to get a partial order of all events across different instances. Of course, because

Figure 6: Condition example
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Figure 7: Co-region example

not all processes are bind together by message exchange, some events may be still un-

ordered. Above this partial order, other order relations emerging for example from

unmodeled parts of system might be explicitly specified by an MSC construct called

general ordering. An example can be seen in Figure 8 where the local action a at in-

stance k occurs after output of message m (not necessarily immediately after the out-

put). Figure 9 depicts use of general ordering in a co-region. It shows that input event

of message m and output event of n and o are generally unordered except that o must

occur after m.

Figure 8: General ordering example

2.1.2 Vertical, horizontal and alternative composition

MSC specification provides several operators for composing MSCs (HMSC as well as

bMSC). These operators are vertical composition (operator seq), horizontal composition

(operator par) and alternative composition (operator alt).
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Figure 9: General ordering in co-region

Composing two MSCs using operator seq results in an MSC where all events from

an instance of the second MSC have to occur after the events from the same instance of

the first MSC.

Horizontal composition of two MSCs provides MSC which exhibits interleaving be-

havior of first MSC and the second one on common instances. Example is shown in

Figure 10.

Figure 10: Horizontal composition

Alternative composition is used to describe several possible behavior of system. For

example, if A and B are MSCs, an expression A alt B means that A xor B is executed.

2.1.3 Inline expressions

Inline expressions are a way of describing nontrivial sets of system runs while keeping

the MSC diagrams simple. To depict alternative or horizontal composition we use inline

expressions in a way shown in Figure 11. The first MSC indicates that output and input

of message m occurs on instances i, j or output and input of message n occurs on the

same ones. The second one indicates that the two parts delimited by dashed line are

interleaved when executed.

7



The MSC language gives us also the opportunity to describe a situation when a part

of MSC is executed a specified number of times (e.g., anything from 2 to infinity, 3 to

5 times, etc.). This can be also written as an inline expression, more precisely as a loop

expression which is followed by loop boundary. Loop boundary refers to the number of

possible repeated vertical composition of content of this inline expression and indicates

minimal and maximal number of repetitions. Figure 12 shows usage of loop inline

expression and its semantically equivalent MSC.

Figure 11: Inline expressions

Figure 12: Loop inline expression

2.1.4 MSC reference expressions

Real systems are often very complex and it is therefore natural requirement for a spec-

ification language to offer tools to cope this complexity. MSC reference expressions are

one of these tools.
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MSC reference expressions are used to refer to an another MSC by using it’s name.

The basic idea is that referencing an MSC is semantically equivalent to pasting the whole

MSC to the same place. It is allowed to use composition operator (alt, seq, par) inside

reference expression. Figure 13 depicts example of MSC reference expressions’ usage.

Figure 13: MSC reference expressions

2.1.5 Gates

MSC recommendation describes how to define an interface of individual bMSC. For this

purpose gates are used. There are two types of gates: message gates and order gates.

Message gates are used for message events and order gates are used for ordering of

events.

Input and output gates are depicted as message arrows (order arrows) connected to

surrounding frame of bMSC where the name of gate is presented. Example of gates’

usage is shown in Figure 14. Note that it is allowed to send message x to gate y (and

conversely) of reference expression if and only if there is an input gate y for message x

in the referred MSC.

2.2 High-level MSC

High-level MSC provides an easy and transparent way how to combine several MSC

together. Syntactically, High-level MSC is a directed graph where the nodes represent
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Figure 14: Gates’ usage

other MSCs and vertices imply an order of the nodes. Nesting of MSCs is allowed only

in its finite form (recursive nesting is forbidden). One MSC can be included by more

than one node of HMSC – this makes it possible for individual MSCs to be called simi-

larly as functions in programming languages. An HMSC provides also other elements:

• start node

• end node

• msc reference node

• condition node

• connection node

• parallel frame

Start node, mandatory in every HMSC, determines initial point of HMSC. Analog-

ically, end node indicates the terminal node of HMSC. MSC reference node refers to

other HMSC or bMSC by its name. See Figure 15 for example of HMSC notation.

Semantic of HMSC is easy to explain by operators introduced so far and recursive

substitution of graph vertices with corresponding MSCs. If nodes are connected via one

arrow (edge) they are exactly vertically composed. If a node has more than one out-

going arrow, then all following nodes are alternatives for the vertical composition with

ancestor node. Parallel frame indicates horizontal composition of its content. Condition

node has no defined semantic and connection node disambiguates crossing lines from

splitting lines.
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Figure 15: HMSC example

2.3 Overview

We have shortly introduced general facilities of MSC and informally described their

semantic. For formal semantic please see ITU-T Recommendation Z.120 (Annex B) by

which this text was inspired.

MSC provides wide spectrum of features for describe system behavior. Much less

positive is tools’ support of these features. There are only a few tools (commercial

mostly) that provide almost all features described in MSC formal specification.

Single bMSC or sequence of bMSCs (described by HMSC) should represent intended

system behavior (its runs). MSC assumes as little as possible about inner structure of

individual processes and the environment surrounding the system. It only states, that

each event at each instance should be performed by target component in the same order

as is specified by MSC.

System behavior described by MSC may introduce some inconsistency to implemen-

tation of the system (in many possible ways), eventually the proposed system needn’t to

be even realizable due to these inconsistencies. Therefore it is necessary to check MSC’s

design properties preferably through the use of automatic checking methods.
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3 Checking Basic Syntactic Features of MSC

In this section, we focus on some MSC syntax features that point out suspicious parts of

the design where a design error could have occurred. With the knowledge of the system

behavior we can analyze other MSC properties described in section Section 4.

One of the tools designed to check these syntax features is an MSC analyzer

MSCan [23]. It can analyze a textual representation of MSC given on input for vari-

ous properties. The main properties are as follows.

3.1 FIFO

FIFO property ensures that there is no overtaking in message channels. FIFO is the

most important feature for analyzing other MSC properties (such as realizability). An

example of MSC that hasn’t got FIFO feature is shown in Figure 16.

Figure 16: Non-FIFO

3.2 Acyclic

Acyclic property ensures that there is no cycle in the ordering relation on events for

every MSC (event = send or receive a message). If there is a cycle then there is a message

which is received earlier than it is sent. Cyclic behavior is not correct and such system

is not implementable. An example of cyclic behavior is shown in Figure 17.

Figure 17: Non-acyclic

12



3.3 Safety

A MSC is called safe, if every sequence of nodes describing an accepting path in graph

results in correct MSC. In other words, every sent and lost message is found and re-

ceived later. Non-safety feature leads to incorrect MSC and the system behavior is not

implementable. An example of MSC that hasn’t got safety feature is shown in Figure 18.

Figure 18: Non-safe

3.4 Local Choice

Local Choice property ensures that the communication is initiated by exactly one pro-

cess for every node after branching. The process is active in foregoing node moreover.

This feature can be verified by checking if there is exactly one minimal event in the or-

dering relation. Non-local-choice in MSC specification may lead in implementation to

deadlock (see Subsection 4.5). An example of MSC that hasn’t got local-choice feature

is shown in Figure 19.

3.5 Local Cooperativity

Intuitively, an HMSC is not Local Cooperative if it contains at least two sequentially

connected MSCs, that are describing communication on disjoint system parts. Figure 20

depicts a non-local cooperative HMSC.
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Figure 19: Non-local-choice

3.6 Boundedness (regularity)

Intuitively, if an HMSC is bounded, only finite buffers are needed in the system. Said in

another way, only finite number of messages can be send before a reply is received.

Formally, an HMSC G is bounded (or regular) iff for every cycle in G holds: De-

note H a graph with communicating processes in the cycle as nodes and oriented edges

representing communication in this cycle between the processes. Then H is strongly

connected.

Examples of HMSCs that are (un)bounded are shown in Figure 21 and Figure 22.

This property is tightly connected to possible verification of system design (see Subsec-

tion 4.3 for more details).

3.7 Race Conditions

System behavior as described by MSC can differ from implemented system behavior

that is embedded into certain environment. Target environment may influence many

factors that system behavior depends on. One of these factors is ordering of message

delivering.
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Figure 20: Non-locally cooperative HMSC

The paper [3] introduces an approach for detecting locations in bMSC (it’s restricted

form) where different ordering of events in bMSC and real system can arise. For

this purpose they introduce four semantics of environment which messages are sent

through.

• Single FIFO queue per process: Each process has single FIFO queue for all re-

ceived messages.

• One FIFO queue per source: Each process p has a single FIFO queue for each

process which p can receive message from.

• Single non-FIFO queue per process: Messages aren’t necessarily received in the

same order they were sent.

• One non-FIFO queue per source: Each process p has a single non-FIFO queue for

each process which p can receive message from.

Race condition is intuitively defined as follows: Events e and f of the same process

p are said to be in race if e precedes f in bMSC (if e and f are incoming events the corre-
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Figure 21: Unbounded HMSC Figure 22: Bounded HMSC

sponding messages must belongs to the same queue too) but semantic of environment

doesn’t imply that e precedes f.

See Figure 23 for examples (these examples are taken from [3]). In case A and C there

aren’t any events in race. Case B forces events s and r to be in race for each introduced

semantic. In case D single FIFO queue per process and single non-FIFO queue per

process force events r1 and r2 to be in race. In case E only non-FIFO queues forces

events r1 and r2 to be in race.

Figure 23: Examples of communication

UBET tool ([29], introduced in [3]) is able to recognize whether two events are in race

or not. The tool is even capable to handle coregions (see 2.1.1) in the correct way.

Figure 24 depicts example which is analogous to Example B in Figure 23 except a

coregion usage. In this new case events s and r aren’t in race in any of the above given

semantics.

Authors of the UBET tool introduced—besides race condition and algorithm for de-

tection racing events—timed MSC notion. Timed MSC is bMSC whose messages and

events’ delays at instance axis are labeled by time intervals. This time interval stands

for time which message passing can take or how much time instance spends between

two events.
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Figure 24: Coregion example

These intervals may introduce some kind of time conflicts. These conflicts may cause

that modeled run needn’t to be executable in proposed time intervals. For details about

related work please see [3].

4 Other MSC Checking

In this section, we provide several properties of MSC. Contrary to the previous section,

we focus on language (semantic) features as MSC membership, model checking and

realizability. For different MSC language properties not mentioned here, see [8, 7].

4.1 Simplified MSC Model

MSC (as it is specified in Section 2) is a very complex model with many constructs and

attributes. Because proving MSC’s theoretical properties would be much harder if the

complete model had been used, simplified model of MSC is defined. As is commonly

given by theoretical publications, sMSC (simplified bMSC) is an bMSC without core-

gions, timers, lost and found messages, creation and termination of processes, compo-

sitions and inline expressions (e.g. loops, alternations).

sMSC is not sufficient for specification of real systems, e.g. due to absence of loops.

For these reasons, MSC graphs are provided. Consequently, this section is focused on

MSC graphs. sMSC properties and algorithms are provided in [1].

4.1.1 MSC graphs

Graphs with sMSCs in their nodes are called MSC graphs. Each MSC graph has a

distinguished initial vertex and a set of terminal vertices. Paths starting at initial vertex

and ending at some of terminal vertices are denoted as accepting paths.
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To know how MSC graph specifies a set of sMSCs, concatenation of two sMSCs has

to be defined. (Asynchronous) concatenation corresponds to natural process-by-process

pasting of two sMSCs together (the same as vertical operator in Subsection 2.1). Formal

definition can be found in [4]. An MSC (a described communication sequence) of an

MSC graph G is then specified as a concatenation of sMSCs of all nodes on an accepting

path of G. For a given MSC graph G, a set of all MSCs of G is called a language L(G)

(see [2] for details).

4.1.2 Implied scenarios

MSC describes global system behavior. Local agents must be implemented separately

and all their implementations together make up distributed implementation of system.

However, distributed implementation can exhibit some behaviors not specified by MSC.

We call such behaviors implied scenarios.

We denote as L(G) a language of an MSC graph G, usually specified by developer.

Let every process of system be specified by a finite automaton with an alphabet of events

(sending and receiving messages). Further, let these automata run concurrently. We de-

note as Lw(G) language of all concurrent runs respecting following conditions: prece-

dence of message send event to corresponding receive event and FIFO assumption be-

tween each couple of processes. The set of implied scenarios is the difference between

these languages, Lw(G) r L(G). Then, we say L(G) weakly implies Lw(G) and denote

Lw(G) as weak closure of L(G).

4.2 MSC Membership

sMSC can be used to specify both desirable and undesirable behavior of a distributed

system. In these situations, it is important to know whether given sMSC M is in set

of sMSCs specified by MSC graph G. This property is called MSC membership. The

hardness of MSC membership verification depends on the semantics of the MSC graph

G.

First, let us consider L(G) to be the semantics of G. Then there is an algorithm for

checking whether M ∈ L(G) in O(|G||M|k) time, where |G| is the number of vertices of

G, |M| is the number of events in M and k is the number of processes of M. Moreover,

the problem is proven to be NP-complete with respect to |G| and |M|.
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For Lw(G) semantics of MSC-graph, the problem is much easier. An algorithm in

O(|G||M|) time is given in [2]. Because real systems usually exhibit behavior correspond-

ing to Lw(G), we consider result on Lw(G) to be more important for practical utilization

of MSC membership verification.

4.3 MSC Graph Boundedness

Boundedness is defined in Subsection 3.6. It is a determinant for decidability of other

properties that are more important in practice. If decidability of individual property

is not determined by boundedness, then complexity of corresponding deciding algo-

rithms usually is.

The following implications of MSC graph boundedness seem to be the most signifi-

cant ones:

• Number of messages in a network is bounded.

• All processes stay roughly synchronized.

In an unbounded graph, some process or processes can do infinitely many more steps

than the others. Such an execution is called process divergence.

The main formal language difference between bounded and unbounded MSC graph

is the regularity of a language. While language L(Gb) of a bounded MSC graph Gb is

known to be regular, language of unbounded graph is not generally regular.

Determination of graph boundedness (for k processes and upper bound m for events

of sMSC at every vertex) can be done inO(|G|∗m∗2k) time and is coNP-complete. See [4]

for the proof.

Process divergence can be detected using syntactic checks and has been imple-

mented in MESA tool [22]. The algorithm has been provided in [5].

4.4 MSC Model Checking

Distributed systems are required to satisfy various conditions. Let us recall that Lw(G)

denotes the weakly implied language of MSC graph G. Requirements on the system

are specified by an automaton A over the alphabet Σ of messages. This automaton

accepts undesirable executions, represented by language L(A). Model checking of a

given property is then a problem of determining emptiness of Lw(G) ∩ L(A), i.e. there

are no undesired executions in Lw(G).

19



4.4.1 Asynchronous concatenation

Generally, asynchronous concatenation (see 4.1.1) makes the model checking problem

undecidable with an exception for bounded graphs. For an automaton A and a bounded

MSC graph G of |G| vertices, k processes and at most m sMSC events at every vertex,

the problem can be solved in O(|A| ∗ 2k∗|G| ∗ (|G| ∗ m ∗ k)k) time and is in PSPACE. For

details see [4].

4.4.2 Synchronous concatenation

sMSCs in MSC graphs can be concatenated in other way then specified in 4.1.1. Syn-

chronous concatenation requires all events of the previous sMSC to be executed before

any event of the following sMSC starts. For precise definition, see [4].

Model checking problem is proven to be coNP-complete under synchronous con-

catenation [4].

4.5 Realizability

As already mentioned in 4.1.2, distributed implementation of a system specified by

sMSC or MSC graph can exhibit behaviors not specified by that MSC (graph). L(G)

and Lw(G) denote languages of specification and implementation respectively. MSC

graph G is weakly realizable iff L(G) = Lw(G).

Sometimes distributed implementation of weakly realizable set of MSCs can get to

a deadlock state. Set of sMSCs (and specifying MSC graph) is considered to be safely

realizable iff it is weakly realizable and distributed implementation can’t reach a dead-

lock state.

Notion of weak realizability seems not to have practical usability, because it is easier

to determine safe realizability than the weak one. Therefore, results on decidability of

weak realizability were not provided.

For finite set of sMSCs (specified by acyclic MSC graph), the problem of safe re-

alizability is in P-time. On bounded MSC graph, the problem is in EXPSPACE and

PSPACE-hard. Unbounded MSC graph makes it undecidable. For detailed description

and proofs see [2].

Since MSC is model for scenario-based system design, single processes have to be

modeled by another means of model-based design, e.g., transition machines, automata
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or SDL. (Safe) realizability is the crucial property for convertibility of MSC graphs to

any such model. More details on this conversion will be provided further in the text.

In some branches of MSC graph, different alternatives of communication can cor-

respond to send events of different system processes. Then, the decision among the

alternatives doesn’t depend on one local process and deadlock can occur. If the system

is safely realizable, choice in every branch of MSC graph is local. The algorithm for

non-local choice problem is given in [5] and implemented in MESA tool ([22]).

5 Synthesis

MSC is a suited form of specification at almost top most level of abstraction. During

implementation of described system, developers at each level of development process

gradually refine the system design up to the particular implementation. Synthesis from

MSC design (if feasible) into component based model is therefore natural requirement

because it gets design closer to implementation.

Synthesized model is usually a set of finite state automatons (components of system)

whose states identify states of implemented components and transitions denote possi-

ble actions that the component is able to execute with respect to MSC specification.

There are many notations (specification languages) which describe the automatons

e.g. SDL, Uppaal notation, Promela and many others. The aim of these notations, be-

sides role of modeling language, is to formally handle system description which gives

the designers certain advantages.

One of the advantages is the ability to formally check some properties which the

described system should satisfy. These are e.g. deadlock and cycle occurrence and/or

reachability of certain state.

This ability highly improves capability of system designers. They are not only de-

pendent on their own capabilities but an automatic checkers and verifiers can help them

to avoid some system defects in early stage of development process.

5.1 LTSA-MSC

LTSA-MSC ([20], an MSC plugin for Labeled Transition System Analyzer [19]) is a typi-

cal example of tool which is able to synthesize MSC graph into some kind of state-based

model. It uses Labeled Transition System (LTS) as its target specification language of

synthesis.
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Processing synthesized model the tool is able to reveal some type of gaps in MSC

graph specification–it detects implied scenarios. Since LTSA is based on blocking both

send and receive events, the only possible kind of implied scenarios detected is non-

local choice.

Tool incrementally checks model and tries to find an implied scenario. Each implied

scenario is proposed to designer. It’s up to designer to figure out whether this scenario

represents system defect or it is intended behavior.

6 Introduction to SDL

6.1 Motivation for SDL

Virtually all distributed systems have some characteristics in common:

• they are based on distinguishable entities (servers in the Internet, processes, inter-

nal components of a network, etc.)

• there is no global knowledge of the system

• information about the system can be gained only by communication with other

entities (no globally accessible variables)

• this communication is usually done by "message exchange"

SDL was created as to describe and specify such distributed systems. It is therefore

based on similar characteristics. Individual entities of the global system are denoted as

processes.

Description of a system

A communication system specified by SDL is composed of processes that are adminis-

tered concurrently.

Behavior of each process is specified by its Finite State Machine, where the tran-

sitions between individual states are sequences of actions (transmission of a message,

manipulation with the internal variables, etc.). These sequences of actions are indivisi-

ble – once started, the whole transition has to be finished (it is impossible for a process

to be stopped in between two states). See Figure 25 for a short example.

States are therefore places, where the process waits for an event and transitions are

reactions to accepted events.

22



Figure 25: Finite State Machine

6.2 Processes

Processes can have inner structures – subprocesses and variables. These are visible

inside the process and its substructure. Collisions on variables are avoided by inter-

leaving the subprocesses. That is, in each moment a maximum of one transition is done

at the same time. Figure 26 shows an example of process specification in SDL.

Example

SDL structure can be shown nicely on networking protocols – processes are individual machines

on the network (and therefore are working independently on each other). Their inner structure

(daemons, applications, etc.) is modeled by subprocesses. These subprocesses have access to

shared files and other types of data on the machine.

6.3 Communication Between Processes

Exchange of messages is the only way of communication in a system modeled by SDL.

Message sending can occur only as an action inside a transition.

It is assumed in SDL that communication is operating over a reliable layer therefore

messages cannot overtake each other, do not get lost, and their integrity is preserved. If

not stated otherwise, messages are delivered instantly. It is however possible to declare

that a specific set of messages should be delayed or prioritized.
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Figure 26: Process

Received messages handling

Each process has exactly one input port that behaves like a queue. Incoming messages

are put into this input port accordingly to their arrival time. In the simplest case, the

oldest message in the input port is processed (according to the message contents the

appropriate transition is selected) and the message is then deleted.

The simplest method of message processing shown above can be altered in these ways:

• each state can specify types of messages it wants to process (other types are ig-

nored and left in the queue for other states)
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• if a prioritized messages are inside the input port, they are checked before all of

the others

• it is possible for a process to change states even without message consumption

6.4 Conclusion

SDL can be used to effectively model distributed systems similar to communicating pro-

tocols. It is based on interaction of components of known inner structure and from these

interactions the global system behavior emerges. This approach is significantly different

to that of MSC in which the system is modeled from a global view by means of concrete

message exchanges (without any knowledge of how the individual components work).

It is therefore possible to use SDL for specification of different distributed systems

as well as verification of a modeled system behavior.

7 Deeper Exploration of SDL

7.1 Introduction

SDL will be described in this section in a way specified by ITU-T Recommendation

Z.100 [14]. We will be describing SDL in greater detail than the previous section, but the

main aim is still explanation of basic principles than a precise syntax description (for

these occasions please consult [14]).

It is important to emphasize that some of the software products do not use full

strength of SDL, or their version of SDL is not completely equivalent to the SDL speci-

fication.

Basic structure of SDL

As we’ve shown already in the previous section, SDL is a language developed for spec-

ification and behavior description of distributed real-time systems. Two different ap-

proaches can be used for modeling in SDL – graphic and text syntax. Both are of equal

expressive strength.

SDL is based on a reasonably small set of constructs called primitives that have pre-

cisely defined semantics. All of the other constructs can be unambiguously translated

into these primitives and so semantics of the whole SDL is precisely defined. Arbitrary
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expansion of SDL with unambiguous translation to the SDL language primitives is a

correct SDL extension. Unfortunately, most tool will not probably support it.

7.2 SDL Structure - Syntax

Basic concepts

A system is modeled by agents communicating with each other by asynchronous signal

exchange through channels defined beforehand. Agents are controlled by an internal

finite state automaton (transition machine) with its transitions defined as reactions to

received signals. Each agent has exactly one input port.

There are three different types of agents:

• system – contains the whole modeled system, communicates with the environ-

ment, substructure (blocs and processes) are administered concurrently.

• block – an analogy to "subsystem" and so substructure (blocs, processes) are ad-

ministered concurrently

• process – an analogy to a functional unit of a system – can contain subprocesses

that are administered in parallel (interleaving mode)

Process communication

Processes in SDL communicate by exchanging signals through explicitly defined com-

munication channels. A channel can be created between arbitrary agents, in a special

case, a process can send messages even to itself. Received signals are added to the input

port queue.

Channels can be one or bi-directional, they are reliable (messages cannot be lost in

the channel and cannot overtake one another within the same channel), channels may

or may not have delay between send and receive actions. More than one channel can be

created between two agents.

7.3 Semantics of SDL

Process behavior

Every process is controlled by its transition machine (see Figure 27) and is always in

one of these conditions:
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• process is waiting in a state for an event (that has an transition assigned to it in

this state)

• process is in the middle of a transition (possibly leading to the same state) – tran-

sition is a finite sequence of actions eventually with side-effects (e.g. changing

value of individual variables, sending of a signal, etc.). The end state of an transi-

tion may be determined during the transition depending on variables values, sent

signals, etc.

In SDL, every event is modeled as a signal instance consumption from the appropriate

input port. The one and only exception is a spontaneous transition that is explicitly

defined for individual states. This transition type can be carried out indeterminately at

any time if the process is in the appropriate state.

Signal consumption from the input port

Signals in the input port are ordered by time of arrival. When a signal is consumed, it

is deleted from the input port. In the simplest case, the input port works as a FIFO pipe

ordered by arrival time.

There can be following exceptions from the simple FIFO rule:

• signals can have a priority flag – all signals with this flag are checked before any

non-priority signals.

• each state can explicitly specify a set of signal types it cannot consume (it is called

a safe set) – these signals are skipped in the input port and left for following states.

• if no signal can be consumed, state can have a continuous signal definition that is

administered instead of a standard signal.

Remote procedures

Individual processes can make their procedures available to other processes. A remote

procedure call is a signal emission that is processed as any other signal. Remote pro-

cedure uses variables belonging to the process performing the procedure, the caller is

waiting for a reply or a timeout and cannot administer other actions.
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Figure 27: Finite State Machine of a process type
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8 MSC2SDL

There is a possibility to generate an SDL specification automatically from an MSC spec-

ification. This helps to bridge the gap between the requirement and design phase and

the implementation phase. A general approach for synthesis from MSC to SDL was

discussed in an article [16]. This approach has been implemented in the MSC2SDL tool

that seems to be currently unavailable. The intuitive description of the synthesis is given

below.

As already said in the previous section, each SDL process has a single FIFO queue

for arriving messages, regardless of the source. Messages sent to a process by different

processes are merged into the process’s single input queue in the order of their arrivals.

In a system specified be MSC their receive order is not given. Rather, the order depends

on the underlying architecture and the individual processes interleaving. If not explic-

itly specified otherwise (by the safe set for individual states), SDL instances implicitly

discard signals that are in front of their input queue and are not expected at the current

state. These discarded signals, which may be required in the next states, may lead to a

deadlock.

The approach described in [16] requires besides MSC specification an SDL archi-

tecture as input as well. SDL architecture defines set of processes and communication

channels between them and has to adhere to the following rules:

• all processes described in the MSC are present in the SDL architecture, and

• for each message m sent from an instance I to an instance J in the MSC, there is a

channel ch in the SDL architecture that can convey M from process I to process J.

In order to prevent deadlocks in the SDL specifications, the approach adds an SDL

save construct for each signal that may arrive in the input queue earlier than expected.

The save set is built on the basis of the order relation between the events of the given

MSC with reference to the instructions mentioned in [16].

For each MSC process, the tool automatically generates the corresponding SDL pro-

cess. MSC constructs are translated into SDL constructs on a one-to-one basis without

any intermediary representation. The approach inserts a new SDL state before each

MSC input event with a save construct for calculated message types.

Commercial tools for synthesizing SDL from MSC (such as KLOCwork MSC2SDL

synthesizer that is an internal subpart of Telelogic Tau SDL Suite [28]) are currently
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available. Authors of this tool avoided the problem of calculating the save sets and

added the save construct for each message type in each SDL state. This approach is

not optimal–for certain systems, a deadlock detectable in the MSC specification is not

detectable after the synthesis.
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