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Abstract

We show that the class of Petri nets is less expressive with respect to bisimulation
equivalence than the class of PA processes extended with a finite state control unit.
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1 Introduction

Process rewrite systems (PRS) [7] are widely accepted as a formalism for
finite specifications of infinite state systems. One reason for its popularity is
that a variety of infinite state systems including basic process algebras (BPA),
basic parallel processes (BPP), pushdown processes (PDA), process algebras
(PA) and Petri nets (PN) as well as the class of finite state systems (FS) can
be uniformly defined as subclasses of PRS given by syntactic restrictions on
the form of rewrite rules. Weaker syntactic restrictions give rise to another
two classes, namely PAD (a common generalization of PDA and PA) and
PAN (a common generalization of PDA and PN), while the class of general
(unrestricted) PRS is a common generalization of PDA and PN. The relevance
of PRS (and their subclasses) for modelling and analysing programs is shown,
for example, in [2].

? This result has been already mentioned in [6] with a proof just sketched.
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Fig. 1. The PRS-hierarchy

According to their expressive power, the PRS classes can be arranged into a
PRS-hierarchy [7] depicted in Figure 1. A line between two classes means that
the upper class is strictly more expressive than the lower class, in the sense
that for every labelled transitions system (LTS) generated by the lower class
there is a bisimilar system generated by the upper class, but not vice versa.
Two classes of the hierarchy are expressively incomparable if no such relation
can be derived from the picture. We recall that LTSs generated by (S, S)-PRS,
i.e. sequential/prefix rewrite systems, are exactly those generated by PDA up
to the relabelling of states, see [1].

A similar expressiveness hierarchy of classes of infinite state systems is pre-
sented in [9,4]. In contrast to the PRS framework, the hierarchy of [9] does
not cover the classes combining both sequential and parallel compositions like
PA and its superclasses. On the other hand, it contains the class of multiset
automata (MSA) [4], also known as parallel pushdowns (PPDA) [9], which
is not covered by the PRS-hierarchy. The MSA class can be defined as BPP
systems extended with a finite state control unit. A systematic state exten-
sion of all PRS classes, denoted by the prefix se-, is considered in [5]. Clearly,
the classes of FS, PDA and PN coincide with their respective state-extended
counterparts, and seBPA coincides with the PDA class. The state-extended
versions of the other classes do not coincide with any of the PRS classes.

The expressiveness hierarchy of all PRS classes and their state-extended ver-
sions is depicted in Figure 2. The dotted lines represent the relation where
the strictness is just conjectured (see [11, Section 3.2.2] for further details).
The shape of the hierarchy follows from the definition of state extension, the
shape of the PRS hierarchy, Lemma 4.13 of [7] which says that a particular
MSA is not bisimilar to any PAD, Theorem 20 of [4] showing a PN which
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Fig. 2. The state-extended PRS-hierarchy

is not bisimilar to any MSA, and finally the result presented in this paper:
every Petri net can be translated into a bisimilar sePA system. Further, the
strictness of the relations between PN and sePA follows immediately from
incomparability of the classes PDA and PN. 3 (Note that Lemma 4.13 of [7]
says that a particular PN is not bisimilar to any PAD, but it is easy to see
that the PN is actually an MSA system.)

The rest of the paper is divided into two sections: the next one recalls all the
necessary definitions, and the other presents the main result.

2 Preliminaries

Let Act = {a, b, . . .} be a set of actions. A labelled transition system (LTS) is a
triple (S,−→, s0), where S is a set of states, −→⊆ S×Act×S is a transition re-
lation, and s0 is the initial state. We write s1

a−→ s2 instead of (s1, a, s2) ∈−→.

A binary relation R on S (of an LTS) is a (strong) bisimulation [8] iff whenever
(r1, r2) ∈ R then, for any a ∈ Act ,

• if r1
a−→ r′

1 then, for some r′
2, r2

a−→ r′
2 and (r′

1, r
′
2) ∈ R, and

• if r2
a−→ r′

2 then, for some r′
1, r1

a−→ r′
1 and (r′

1, r
′
2) ∈ R.

3 Loosely speaking in terms of Figure 2, our result means that an evident line
connecting seBPP to sePA is replaced by that going from PN to sePA.
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States r1 and r2 are bisimilar, written r1 ∼ r2, iff (r1, r2) ∈ R for some
bisimulation R. Two LTSs are bisimilar if their initial states are bisimilar.

Let Const = {X, . . .} be a set of process constants. The set of process terms
(ranged over by t, . . .) is defined by the abstract syntax

t ::= ε | X | t.t | t‖t

where ε is the empty term, X ∈ Const is a process constant, and the operators
‘.’ and ‘‖’ stand for sequential and parallel composition respectively. We always
work with equivalence classes of terms modulo commutativity and associativ-
ity of ‘‖’, associativity of ‘.’, and neutrality of ε, i.e. ε.t = t.ε = t‖ε = t. We
distinguish four classes of process terms as:

1 – terms consisting of a single process constant only, in particular ε 6∈ 1,
S – sequential terms - terms without parallel composition, e.g. X.Y.Z,
P – parallel terms - terms without sequential composition, e.g. X‖Y ‖Z,
G – general terms - terms with arbitrarily nested sequential and parallel com-

positions, e.g. (X.(Y ‖Z))‖W .

Definition 1 Let α, β be classes of process terms α, β ∈ {1, S, P,G} such that
α ⊆ β. An (α, β)-PRS (process rewrite system) ∆ is a pair (R, t0), where

• R is a finite set of rewrite rules of the form t1
a
↪→ t2, where t1 ∈ α r {ε},

t2 ∈ β are process terms and a ∈ Act is an action,
• t0 ∈ β is the initial term.

Given a PRS ∆, let Const(∆) and Act(∆) be the respective (finite) sets of
all constants and all actions which occur in the rewrite rules of ∆. We often
write t1

a
↪→ t2 ∈ ∆ instead of t1

a
↪→ t2 ∈ R where ∆ = (R, t0).

An (α, β)-PRS ∆ = (R, t0) determines an LTS whose states are process terms
t ∈ β over Const(∆) and t0 is the initial state. The transition relation −→
is the least relation satisfying the following inference rules (recall that ‘‖’ is
commutative):

(t1
a
↪→ t2) ∈ ∆

t1
a−→ t2

t1
a−→ t2

t1‖t
a−→ t2‖t

t1
a−→ t2

t1.t
a−→ t2.t

The formalism of process rewrite systems can be extended to include a finite-
state control unit in the following way.

Definition 2 Let M = {m,n, . . .} be a set of control states. Let α, β be
classes of process terms α, β ∈ {1, S, P,G} such that α ⊆ β. An (α, β)-sePRS
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(state-extended process rewrite system) ∆ is a triple (R,m0, t0), where

• R is a finite set of rewrite rules of the form (m, t1)
a
↪→ (n, t2), where t1 ∈

αr {ε}, t2 ∈ β, m,n ∈M , and a ∈ Act,
• m0 ∈M is the initial control state,
• t0 ∈ β is the initial term.

M(∆) denotes the finite set of control states which occur in ∆.

An (α, β)-sePRS ∆ = (R,m0, t0) determines an LTS whose states are the
pairs of the form (m, t) such that m ∈ M(∆) and t ∈ β is a process term
over Const(∆). The initial state of the transition system is the pair (m0, t0).
The transition relation −→ is the least relation satisfying the following infer-
ence rules:

((m, t1)
a
↪→ (n, t2)) ∈ ∆

(m, t1)
a−→ (n, t2)

(m, t1)
a−→ (n, t2)

(m, t1‖t)
a−→ (n, t2‖t)

(m, t1)
a−→ (n, t2)

(m, t1.t)
a−→ (n, t2.t)

To shorten our notation we write mt in lieu of (m, t).

Figure 2 shows the correspondence between some of the (α, β)-PRS classes and
the classes of infinite state systems mentioned in the Introduction. Instead
of (α, β)-sePRS we use the prefix ‘se-’ together with the acronym for the
corresponding (α, β)-PRS class. For example, we use sePA rather than (1, G)-
sePRS.

To see that the LTSs generated by labelled (place/transition) Petri nets (see
e.g. [10]) are exactly those generated by (P, P )-PRS, we use arguments of
[7,2]. Let Xn denote a parallel composition of n copies of X (in particular,
X0 denotes ε) for the moment. Let ∆ be a (P, P )-PRS and {X1, . . . , Xk} =
Const(∆) be the set of its process constants. Each Xi corresponds to a place Pi

in the net and the number of occurrences of Xi in a process term corresponds
to the number of tokens in this place Pi. Hence, a process term Xp1

1 ‖ . . . ‖X
pk
k

corresponds to the marking (p1, . . . , pk), where pi is the number of tokens in
the place Pi. Finally, each rewrite rule in ∆

X l1
1 ‖ . . . ‖X

lk
k

a
↪→ Xr1

1 ‖ . . . ‖X
rk
k ,

where li, ri ≥ 0, i = 1, . . . , k, corresponds to an a-labelled transition having
places li, li > 0, in its preset and places ri, ri > 0, in its postset. We shall write
this PN transition as (l1, . . . , lk)

a
↪→ (r1, . . . , rk).

As we employ the place/transition description of PN, Xn stands only for
a sequential composition of n copies of X in the rest of this paper.
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3 Main Result

The basic idea of our proof is similar to the idea of Hirshfeld’s proof of the
fact that PN and MSA are language equivalent. This proof was presented in
his talk [3], but was never published.

The heart of our argument is the construction of an sePA ∆′ that is bisimilar
to a given PN ∆. The main difficulty in this construction is to mimic the
number of tokens at the places of a PN. To this end, we may use two types of
sePA memory:

• a finite control unit, which cannot represent an unbounded counter,
• a term of an unbounded length, where just one constant can be rewritten

in one step.

Intuition

Our construction of an sePA ∆′ can be reformulated on an intuitive level as
follows. Let a marking (p1, . . . , pk) mean that we have pi units of the i-th
currency, i = 1, . . . , k. An application of a PN transition

(l1, . . . , lk)
a
↪→ (r1, . . . , rk)

has an effect of a currency exchange from pi to pi − li + ri for all i.

An sePA reseller ∆′ will have k finite pockets (in its control states) and k
bank accounts (a parallel composition of k sequential terms ti). The reseller
∆′ maintains an invariant pi = pocketi +accounti for all i. He must obey sePA
rules to mimic a PN transition, i.e. he may use all his pockets, but just one of
his accounts in one exchange–transition.

A solution is to do pocketi ↔ accounti transfers cyclically, i = 1, . . . , k. Hence,
rebalancing pocketi the reseller ∆′ must be able to perform the next k − 1
exchanges without accessing accounti as he is visiting the other accounts.
Therefore, ∆′ needs sufficiently large (but finite) pockets and sufficiently high
(and still fixed) limits for pocketi ↔ accounti transfers. In what follows, we
show that these bounds exist.

Bounds

In one step, the amount of the i-th currency can be changed at most by

Li = max { li, ri | (l1, . . . , lk)
a
↪→ (r1, . . . , rk) is a transition of the PN ∆},
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thus the upper bound for the total effect of k consecutive steps can be set up
to Mi = k · Li. Any rebalancing of the i-th pocket sets its value into

{Mi, . . . , 2Mi − 1}

(or into {0, . . . , 2Mi − 1} if accounti is empty). Hence, after k transitions the
value of pocketi is in

{0, . . . , 3Mi − 1}.
Then the next rebalancing takes place and accounti is increased or decreased
(if it is not empty) by Mi to achieve the (rebalanced) value of pocketi in
{Mi, . . . , 2Mi − 1}.

Construction

Each state of sePA ∆′ consists of a control state and a term (parallel compo-
sition of k stacks, in fact just counters, representing accounts). Each control
state is a member of the following product.

{1, . . . , k} × {0, . . . , 3M1 − 1} × . . . × {0, . . . , 3Mk − 1}

update controller pocket1 pocketk

The update controller goes in round-robin fashion on its range and refers to
the account being updated (rebalanced) in the next step. The value of each
pocketi (subsequently denoted by mi) is equal to the number of tokens at Pi

counted modulo Mi.

We define 2k process constants Bi, Xi ∈ Const(∆′), where i = 1, . . . , k. The
i-th stack ti is of the form Xn

i .Bi where n ≥ 0. Bi represents the bottom of
the i-th stack, and each Xi represents Mi tokens at place Pi.

Given an initial marking α0 = (p1, . . . , pk) of ∆, we construct the initial state

β0 = (1,m1, . . . ,mk) t1‖ · · · ‖tk

of the sePA ∆′, where denoting ni = max(0, (pi div Mi) − 1) we put mi =
pi − niMi and ti = Xni

i .Bi. In other words, we have pi = mi + niMi and
moreover mi ∈ {Mi, . . . , 2Mi − 1} if pi ≥Mi (i.e. pi is big enough).

To each transition (l1, . . . , lk)
a
↪→ (r1, . . . , rk) of PN ∆ we construct the set of

sePA rules
(s,m1, . . . ,mk) t

a
↪→ (s′,m′

1, . . . ,m
′
k) t′

such that they obey the following conditions:

• Update controller conditions:
· s, s′ ∈ {1, . . . , k} and
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· s′ = (smod k) + 1.
• General conditions for pockets (1 ≤ i ≤ k):
· mi,m

′
i ∈ {0, . . . , 3Mi − 1},

· mi ≥ li (i.e. the transition “is enabled”), and
· if i 6= s then m′

i = mi − li + ri.
• The case i = s means to specify m′

s and the terms t, t′ that effect the
pockets ↔ accounts rebalancing transfer. These are given by the rules of
the following table. The first two Bottom rules are the rules for working
with the empty stack. The next three Top rules describe the rewriting of
process constant Xs. Depending on the value of ms = ms − ls + rs, there
are dec, inc, and basic variants manipulating the s-th stack.

Rule t ms ∈ m′
s t′

Bottom-basic rule Bs {0, . . . , 2Ms − 1} ms Bs

Bottom-inc rule Bs {2Ms, . . . , 3Ms − 1} ms −Ms Xs.Bs

Top-dec rule Xs {0, . . . ,Ms − 1} ms +Ms ε

Top-basic rule Xs {Ms, . . . , 2Ms − 1} ms Xs

Top-inc rule Xs {2Ms, . . . , 3Ms − 1} ms −Ms Xs.Xs

Now we are ready to formulate and prove our main result.

Theorem 3 Every PN can be translated into a strongly bisimilar sePA.

PROOF. Let ∆ be an arbitrary PN with an initial marking α0. According to
the construction given above, we build the sePA ∆′ with the initial state β0.
In the rest of the proof, we show that the binary relation

R = {(α, β) | α = (p1, . . . , pk) is a marking of ∆ ,

β = (s,m1, . . . ,mk)Xn1
1 .B1‖ . . . ‖Xnk

k .Bk is a state of ∆′ ,

s ∈ {1, . . . , k}, and,

for all i = 1, . . . , k, it holds that

pi = mi + niMi ∧

mi < 2Mi + (s− i mod k)Li ∧

if ni > 0 then Mi − (s− i mod k)Li ≤ mi }

is a strong bisimulation.
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It follows directly from the construction that the pair (α0, β0) of the initial
states of ∆ and ∆′ is in R.

We follow the definition of bisimulation to prove that the relation R is a
bisimulation. Let α = (p1, . . . , pk) be a marking of PN ∆ and

β = (s,m1, . . . ,mk)Xn1
1 .B1‖ . . . ‖Xnk

k .Bk

be a state of sePA ∆′ such that (α, β) ∈ R.

Let us assume that a transition (l1, . . . , lk)
a
↪→ (r1, . . . , rk) is fired in α and

leads to α′ = (p′
1, . . . , p

′
k), i.e. pi ≥ li and p′

i = pi − li + ri, for all i = 1, . . . , k.
According to the definition of bisimulation, we will show that there is also
a state β′ of ∆′ and a transition with a label a leading from β to β′ such
that (α′, β′) ∈ R. Looking into the construction, it is easy to see that such a
transition exists if mi ≥ li for all i = 1, . . . , k. These inequalities can be easily
proved as follows. For each i = 1, . . . , k, we discuss two cases:

• If ni = 0 then (α, β) ∈ R implies pi = mi + niMi = mi. This, together with
pi ≥ li, leads directly to the desired mi ≥ li.
• If ni > 0 then (α, β) ∈ R implies Mi − (s − i mod k)Li ≤ mi. As Mi is

defined to be equal to k ·Li , we get that mi ≥ Li. Now, the definition of Li

implies Li ≥ li that directly results in mi ≥ li.

It remains to show that (α′, β′) ∈ R. This can be obtained by a straightforward
inspection of the definitions of all the rule types.

The symmetric case, starting with a transition from β, proceeds in a similar
way. Hence, ∆ and ∆′ are bisimilar. 2

4 Conclusion

We have presented an algorithm transforming any given Petri net to a bisimilar
sePA process, i.e. a PA process extended with a finite state control unit. We
note that the sePA system constructed does not need to be isomorphic to the
original PN system; it can be exemplified by the states which differ by the
values of the update controller only. To our best knowledge, it is not known
whether the result can be refined to isomorphism rather than bisimilarity.
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[11] V. Řehák, On extensions of process rewrite systems, Ph.D. thesis, Faculty of
Informatics, Masaryk University, Brno (2007).

10


