
Optimizing Performance of Continuous-Time Stochastic
Systems using Timeout Synthesis?
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Abstract. We consider parametric version of fixed-delay continuous-time Markov
chains (or equivalently deterministic and stochastic Petri nets, DSPN) where fixed-
delay transitions are specified by parameters, rather than concrete values. Our goal
is to synthesize values of these parameters that, for a given cost function, minimise
expected total cost incurred before reaching a given set of target states. We show
that under mild assumptions, optimal values of parameters can be effectively ap-
proximated using translation to a Markov decision process (MDP) whose actions
correspond to discretized values of these parameters. To this end we identify and
overcome several interesting phenomena arising in systems with fixed delays.

1 Introduction

Continuous-time Markov chains (CTMC) are a fundamental model of stochastic systems
with discrete state-spaces that evolve in continuous-time. Several higher level modelling
formalisms, such as stochastic Petri nets and stochastic process algebras, use CTMC as
their semantics. As such, CTMC have been applied in performance and dependability
analysis in various contexts ranging from aircraft communication protocols (see, e.g. [35])
to models of biochemical systems (see, e.g. [22]).

There are several equivalent definitions of CTMC (see, e.g. [15, 31]). We may define
a (uniformized, finite-state) CTMC to consist of a finite set of states S coupled with a
common rate λ and a stochastic matrix P ∈ RS×S

≥0 specifying probabilities of transitions
between states. An execution starts in a given initial state. In every step, the CTMC waits
for a duration that is selected randomly according to the exponential distribution with the
rate λ, and then moves to a state s′ randomly chosen with probability P(s, s′).

The practical interpretation of the above semantics is that in every state the system waits
for an event to occur and then reacts by changing its state. A typical example is a model of
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a simple queue to which new customers come in random intervals and are also served in
random intervals. However, in practice, events are usually not exponentially distributed,
and, in fact, their distributions may be quite far from being exponential. To deal with
such events, phase-type approximation technique [30] is usually applied. Unfortunately,
as already noted in [30], some distributions cannot be efficiently fit with phase-type
approximation. In particular, degenerate distributions of events with fixed delays, i.e.,
events that occur after a fixed amount of time with probability 1, form a distinguished
example of this phenomenon (for more details see [25]). However, as events with fixed
delays play a crucial role in many systems, especially in communication protocols [32],
time-driven real-time scheduling [34], etc., they should be handled faithfully in modelling
and analysis.

Inspired by deterministic and stochastic Petri nets [28] and delayed CTMC [16] with
at most one non-exponential transition enabled in any time, we study fixed-delay CTMC
(fdCTMC), the CTMC extended with fixed-delay transitions. More concretely, we specify
a set of states Sfd ⊆ S where fixed-delay transitions are enabled and add a stochastic matrix
F ∈ RSfd×S

≥0 specifying probabilities of fixed-delay transitions between states. In addition,
we consider a delay function d : Sfd → R>0. The semantics can be intuitively described as
follows. Imagine a CTMC extended with an alarm clock. At the beginning of an execution,
the alarm clock is turned off and the process behaves as the original CTMC. Whenever a
state s of Sfd is visited and the alarm clock is off at the time, it is turned on and set to ring
after d(s) time units. Subsequently, the process keeps behaving as the original CTMC until
either a state of S r Sfd is visited (in which case the alarm clock is turned off), or the alarm
clock rings in a state s′ of Sfd. In the latter case, a fixed-delay transition takes place, which
means that the process changes the state randomly according to the distribution F(s′, ·), and
the alarm clock is either turned off or newly set (when entering a state of Sfd).

In most practical applications mentioned above, fixed-delay transitions are determined
by the design of the system and often strongly influence performance of the system. Indeed,
both timeouts in network protocols as well as scheduling intervals in real-time systems
directly influence performance of the respective systems and their manual setting usually
requires considerable effort and expertise. This motivates us to consider the fixed-time
delays d(s) as free parameters of the model, and develop techniques for their optimization
with respect to a given performance measure.

Example 1. We demonstrate the concept on two different models of sending one segment
of data in the alternating bit protocol. In the protocol, each segment of data is retransmitted
until an acknowledgement is received. The delay between retransmissions has impact on
throughput of the protocol as well as on network congestion. In the simpler model below on
the left, the data is sent in state init. The exp-delay transitions, drawn as solid arrows, model
message loss (with probability 0.2) and delivery (with probability 0.8). For simplicity we
use rate 1 and omit self loops of exponential transitions in all examples. The fixed-delay
transitions, drawn as dashed arrows, cause the data to be retransmitted. Note that whenever
the data is retransmitted, the previous message with the data is canceled in this model.
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The more faithful model on the right models up to two messages with the data segment
being delivered concurrently. For choosing an optimal delay between retransmissions, we
need to formalize how to express performance of the protocol.

To express performance properties, we use standard cost (or reward) structures
(see, e.g. [33]) that assign numerical rewards to states and transitions. More precisely,
we consider the following three cost functions: R : S → R≥0, which assigns a cost rate R(s)
to every state s so that the cost R(s) is paid for every unit of time spent in the state s, and
functions IP,IF : S × S → R≥0 that assign to each exp-delay and fixed-delay transition,
respectively, the cost that is immediately paid when the transition is taken. Note that R is
usually used to express time spent in individual states, while the other two cost functions
are used to quantify the difficulty of dealing with events corresponding to transitions. The
performance measure itself is the expected total cost incurred before reaching a given set
of states G starting in a given initial state sin. For this moment, let us denote this measure
by Ed, stressing the fact that it depends on the delay function d which is the only variable
quantity in our optimization task:

Problem 1 (Cost optimization). For a subspace of delay functions D ⊆ (R>0)Sfd and a given
approximation error ε > 0, compute a delay function d ∈ D that is ε-optimal within D, i.e.∣∣∣∣∣ inf

d′∈D
Ed′ − Ed

∣∣∣∣∣ < ε.

Example 1 (cont.) We can model the expected cost of sending one data segment in our
examples as follows. To take into account the expected time of data delivery, we set the cost
rate of each state to, e.g., 1. To take into account the expected number of retransmissions,
we set the cost of each fixed-delay transition, e.g., to 3. The cost of each exp-delay transition
is set to 0. Now the goal for the left model is to find a delay d(init) optimizing the expected
total cost incurred before reaching the state OK. Note that d is never set in the state lost.
The goal is the same for the model on the right where d is set also in the state two. Note
that it makes no sense to synthesize different delays d(init) and d(two) as the states init
and two are indistinguishable in the implementation of the protocol. Therefore, we need to
require that the synthesised delay function satisfies d(init) = d(two).

Our contribution: We consider fixed-delay CTMC as a natural extension of CTMC suitable
for algorithmic synthesis of fixed timeouts. Upon this model, we investigate algorithmic
complexity of the cost optimization problem. This is, to the best of our knowledge, the
most general attempt at fully automatic synthesis of timeouts in continuous-time stochastic
systems. We provide algorithms for solving the following two special cases of the cost
optimization problem under the assumption that the reward rate R(s) is positive in every
state s:

1. Unconstrained optimization where we demand D = (R>0)Sfd , i.e. the set of all delay
functions. We solve this problem by reduction to a finite Markov decision process
(MDP) whose actions correspond to discretized (i.e. rounded onto a finite mesh) values
of delays in the individual states, and then apply standard polynomial time algorithms
for synthesis of the delays (note that a brute force search through a "discretized"
subset of D would be exponentially worse). The most non-trivial part is to prove



that the delays may be discretized. We show that a naïve rounding of a near-optimal
delay function may cause arbitrarily high absolute error. Our solution, based on rather
non-trivial insights into the structure of fdCTMCs, avoids this obstacle by identifying
"safe" delay functions that may be rounded with an error bounded (exponentially) in
the size of the system. This leads to an exponential time algorithm for solving the cost
optimization problem.

2. Bounded optimization under partial observation where we introduce bounds d, d >
0 together with an equivalence relation ≡ on Sfd and demand D to be the set of all
delay functions d satisfying the following conditions:

– d ≤ d(s) ≤ d for all s ∈ Sfd,
– d(s) = d(s′) whenever s ≡ s′.

Like in the Example 1, the equivalence ≡ can be used to hide information about detailed
internal structure of states which is often needed in practical applications. In this paper,
we show that the bounded optimization under partial observation can be solved in time
doubly exponential in d and exponential in all other parameters.
We also consider the corresponding approximate threshold variant: For a given x decide
whether infd′∈D Ed′ > x + ε, or infd′∈D Ed′ < x − ε (for infd′∈D Ed′ ∈ [x − ε, x + ε] an
arbitrary answer may be given). We show that this bounded optimization problem is
NP-hard, thus a polynomial time solution of the bounded optimization under partial
observation is unlikely.
The assumption that all delays are between fixed thresholds d and d is crucial in our
approach. As we discuss in Section 4, without this assumption the optimization under
partial observation becomes much trickier and we leave its solution for future work.

Related work. Various forms of continuous-time stochastic processes with fixed-delay
transitions have already been studied, see e.g. [28, 13, 1, 9, 4]. In particular, as noted above,
our definition of fdCTMC is closely related to the original definition of deterministic and
stochastic Petri nets [28]. Papers on verification of continuous-time systems with timed
automata (TA) specifications [12, 4, 5] are also related to our work as the constraints in
timed automata resemble fixed-delay transitions. None of these works, however, considers
synthesis of fixed-delays (or other parameters).

Parameter synthesis techniques have been developed for several models, such as para-
metric timed automata [2], parametric one-counter automata [17], parametric Markov
models [18], etc. In continuous-time stochastic systems, [19, 22] study synthesis of rates
in CTMC which is a problem orthogonal to timeouts. Furthermore, optimal control of
continuous-time (Semi)-Markov decision processes [29, 10, 8, 6] can be viewed as synthesis
of discrete parameters in continuous-time systems.

The problem of synthesizing timeouts as continuous parameters has been studied in
variety of engineering contexts such as vehicle communication systems [24] and avionic
subsystems [3, 35]. To the best of our knowledge, no generic framework for synthesis of
timeouts in stochastic continuous-time systems has been developed so far. In theoretical
literature, only simpler cases have been addressed. For instance [11, 36] consider a finite
test case, a sequence of input and output actions, and synthesize times for input actions that
maximise the probability of executing this acyclic sequence. Allowing cycles in fdCTMC
makes the timeout synthesis problem much more demanding, e.g., due to potentially
unbounded number of stochastic events between timeouts. Instead of static timeouts, [26,
21] consider synthesis of “dynamic” timeouts where the delay is chosen based on the



history of the execution so far. Consequently, the delay can be changed while it is elapsing
whenever stochastic events occur. This makes it much simpler to solve and also adequate
for a different application domain.

Section 2 introduces fixed-delay CTMC and cost structures. Section 3 and Section 4 are
devoted to unconstrained optimization and bounded optimization under partial observation,
respectively. Due to space constraints, full proofs are in [7].

2 Preliminaries

We use N0, R≥0, and R>0 to denote the set of all non-negative integers, non-negative
real numbers, and positive real numbers, respectively. Furthermore, for a countable set
A, we denote by D(A) the set of discrete probability distributions over A, i.e. functions
µ : A→ R≥0 such that

∑
a∈A µ(a) = 1. Encoding size of an object O is denoted by ||O||.

Definition 1. A fixed-delay CTMC structure (fdCTMC structure) C is a tuple
(S , λ,P, Sfd,F, sin) where

– S is a finite set of states,
– λ ∈ R>0 is a (common) rate of exp-delay transitions,
– P : S ×S → R≥0 is a stochastic matrix specifying probabilities of exp-delay transitions,
– Sfd ⊆ S is a set of states where fixed-delay transitions are enabled,
– F : Sfd × S → R≥0 is a stochastic matrix specifying probabilities of fixed-delay

transitions, and
– sin ∈ S is an initial state.

A fixed-delay CTMC (fdCTMC) is a pair C(d) = (C,d) where C is a fdCTMC structure
and d : Sfd → R>0 is a delay function which to every state where fixed-delay transitions
are enabled assigns a positive delay.

A configuration of a fdCTMC is a pair (s, d) where s ∈ S is the current state and
d ∈ R>0 ∪ {∞} is the remaining time before a fixed-delay transition takes place. We assume
that d = ∞ iff s < Sfd. To simplify notation, we similarly extend any delay function d to all
states S by assuming d(s) = ∞ iff s < Sfd.

An execution of C(d) starts in the configuration (s0, d0) with s0 = sin and d0 = d(sin).
In every step, assuming that the current configuration is (si, di), the fdCTMC waits for
some time ti and then moves to a next cofiguration (si+1, di+1) determined as follows:

– First, a waiting time texp for exp-delay transitions from si is chosen randomly according
to the exponential distribution with the rate λ.

– Then
• If texp < di, then an exp-delay transition occurs, which means that ti = texp, si+1 is

chosen randomly with probability P(si, si+1), and di+1 is determined by

di+1 =

di − texp if si+1 ∈ Sfd and si ∈ Sfd (previous delay remains),

d(si+1) if si+1 < Sfd or si < Sfd (delay is newly set or disabled).

• If texp ≥ di, then a fixed-delay transition occurs, which means that ti = di, si+1 is
chosen randomly with probability F(si, si+1), and di+1 = d(si+1).

This way, the execution of a fdCTMC forms a run, an alternating sequence of configu-
rations and times (s0, d0)t0(s1, d1)t1 · · · . The probability measure PrC(d) over runs of C(d)
is formally defined in [7].



Total cost before reaching a goal To allow formalization of performance properties,
we enrich the model in a standard way (see, e.g. [33]) with costs (or rewards). A cost
structure over a fdCTMC structure C with state space S is a tuple Cost = (G,R,IP,IF)
where G ⊆ S is a set of goal states, R : S → R≥0 assigns a cost rate to every state, and
IP,IF : S × S → R≥0 assign an impulse cost to every exp-delay and fixed-delay transition,
respectively. Slightly abusing the notation, we denote by Cost also the random variable
assigning to each run ω = (s0, d0)t0 · · · the total cost before reaching G (in at least one
transition), given by

Cost(ω) =


∑n−1

i=0 (ti · R(si) + Ii(ω)) for minimal n > 0 such that sn ∈ G,
∞ if there is no such n,

where Ii(ω) equals IP(si, si+1) for an exp-delay transition, i.e. when ti < di, and equals
IF(si, si+1) for a fixed-delay transition, i.e. when ti = di.

We denote the expectation of Cost with respect to PrC(d) simply by EC(d), or by ECost
C(d)

when Cost is not clear from context. Our aim is to (approximatively) minimize the expected
cost, i.e. to find a delay function d such that EC(d) ≤ Val [C] + ε where Val [C] denotes the
optimal cost infd′ EC(d′).

Non-parametric analysis Due to [27], we can easily analyze a fdCTMC where the delay
function is fixed. Hence, both the expected total cost before reaching G and the reaching
probabilities of states in G can be efficiently approximated.

Proposition 1. There is a polynomial-time algorithm that for a given fdCTMC C(d), cost
structure Cost with goal states G, and an approximation error ε > 0 computes x ∈ R>0∪{∞}

and ps ∈ R>0, for each s ∈ G, such that∣∣∣ EC(d) − x
∣∣∣ < ε and

∣∣∣PrC(d)(^s
G) − ps

∣∣∣ < ε
where ^s

G is the set of runs that reach s as the first state of G (after at least one transition).

Markov decision processes. In Section 3 we use a reduction of fdCTMC to discrete-time
Markov decision processes (DTMDP, see e.g. [33]) with uncountable space of actions.

Definition 2. A DTMDP is a tuple M = (V,Act,T, vin,V ′), where V is a finite set of
vertices, Act is a (possibly uncountable) set of actions, T : V × Act → D(V) ∪ {⊥} is a
transition function, vin ∈ V is an initial vertex, and V ′ ⊆ V is a set of goal vertices.

An action a is enabled in a vertex v if T (v, a) , ⊥. A strategy is a function σ : V → Act
which assigns to every vertex v an action enabled in v. The behaviour ofM with a fixed
strategy σ can be intuitively described as follows: A run starts in the vertex vin. In every step,
assuming that the current vertex is v, the process moves to a new vertex v′ with probability
T (v, σ(v))(v′). Every strategyσ uniquely determines a probability measure PrM(σ) on the set
of runs, i.e. infinite alternating sequences of vertices and actions v0a1v1a2v2 · · · ∈ (V ·Act)ω;
see [7] for details.

Analogously to fdCTMC, we can endow a DTMDP with a cost function A : V × Act →
R≥0. We then define for each run v0a1v1a2 . . . , the total cost incurred before reaching V ′

as
∑n−1

i=0 A(vi, ai+1) if there is a minimal n > 0 such that vn ∈ V ′, and as∞ otherwise. The



expectation of this cost w.r.t. PrM(σ) is similarly denoted by EM(σ) or by EA
M(σ) if the cost

function is not clear from context.
Given ε ≥ 0, we say that a strategy σ is ε-optimal inM if EM(σ) ≤ Val [M] + ε where

Val [M] = infσ′ EM(σ′); we call it optimal if it is 0-optimal. For any s ∈ S , let us denote by
M[s] the DTMDP obtained fromM by replacing the initial state by s. We call a strategy
globally (ε-)optimal if it is (ε-)optimal inM[s] for every s ∈ S . Sometimes, we restrict to
a subset D of all strategies and denote by Val [M,D] the restricted infimum infσ′∈D EM(σ′).

3 Unconstrained Optimization

Theorem 1. There is an algorithm that given a fdCTMC structure C, a cost structure Cost
with R(s) > 0 for all s ∈ S , and ε > 0 computes in exponential time a delay function d with∣∣∣∣∣EC(d) − inf

d′
EC(d′)

∣∣∣∣∣ < ε.

The rest of this section is devoted to a proof of Theorem 1, which consists of two parts.
First, we reduce the optimization problem in the fdCTMC to an optimization problem in a
discrete time Markov decision process (DTMDP) with uncountably many actions. Second,
we present the actual approximation algorithm based on a straightforward discretization
of the space of actions of the DTMDP. However, the proof of its error bound is actually
quite intricate. The time complexity is exponential because the discretized DTMDP needs
exponential size in the worst case. We provide more detailed complexity analysis with
respect to various parameters in [7].

For the rest of this section we fix a fdCTMC structure C = (S , λ,P, Sfd,F, sin), a cost
structure Cost = (G,R,IP,IF), and ε > 0. We assume that Val [C] < ∞. The opposite
case can be easily detected by fixing an arbitrary delay function d and finding out whether
EC(d) = ∞ by Proposition 1. This is equivalent to Val [C] = ∞ by the following observation.

Lemma 1. For any delay functions d,d′ we have EC(d) = ∞ if and only if EC(d′) = ∞.

To further simplify our presentation, we assume that each state s of Sfd directly encodes
whether the delay needs to be reset upon entering s. Formally, we assume Sfd = S reset]S keep

where s′ ∈ S reset if P(s, s′) > 0 for some s ∈ S \ Sfd or if F(s, s′) > 0 for some s ∈ Sfd;
and s′ ∈ S keep if P(s, s′) > 0 for some s ∈ Sfd. We furthermore assume that sin ∈ S reset

if sin ∈ Sfd. Note that each fdCTMC structure can be easily transformed to satisfy this
assumption in polynomial time by duplication of states Sfd, see, e.g., Example 2.

3.1 Reduction to DTMDPM with Uncountable Space of Actions.

We reduce the problem into a discrete-time problem by capturing the evolution of the
fdCTMC only at discrete moments when a transition is taken after which the fixed-delay is
(a) newly set, or (b) switched off, or (c) irrelevant as the goal set is reached. This happens
exactly when one of the states of S ′ = S reset ∪ (S r Sfd) ∪ G is reached. We define a
DTMDPM = (S ′,Act,T, sin,G) with a cost function e:

– Act := R>0 ∪ {∞}; where actions R>0 are enabled in s ∈ S reset and action∞ is enabled
in s ∈ S \ Sfd.



– Let s ∈ S ′ and d be an action of M. Intuitively, we define T (s, d) and e(s, d) to
summarize the behaviour of the fdCTMC starting in the configuration (s, d) until the
first moment when S ′ is reached again.
Formally, let C[s](d) denote a fdCTMC obtained from C by changing initial state
to s and fixing a delay function that assigns d to s (and arbitrary values elsewhere).
We define e(s, d) as the cost accumulated before reaching another state of S ′ and
T (s, d)(s′) as the probability that s′ is the first such a reached state of S ′. That is,

e(s, d) = ECost[S ′]
C[s](d) and T (s, d)(s′) = PrC[s](d)(^s′

S ′ )

where Cost[S ′] is obtained from Cost by changing the set of goal states to S ′. Note
that the definition is correct as it does not depend on the delay function apart from its
value d in the initial state s.

Example 2. Let us illustrate the construction on the fdCTMC from Section 1. The model,
depicted on the left is modified to satisfy the assumption Sfd = S reset ] S keep: we duplicate
the state init into another state one ∈ S keep; the states from S reset are then depicted in the
top row. As in Section 1, we assign cost rate 1 to all states and impulse cost 3 to every
fixed-delay transition (and zero to exp-delay transitions).

init

one lost

two

OK

0.2
0.8

0.2

0.8
0.2

0.8

init

two OK≈ 0.080.1
≈ 2.9 e

≈ 0.26
0.4
≈ 2.7 e

≈ 0.07

≈ 0.67

≈ 0.92

≈ 0

······

······

On the right, there is an excerpt of the DTMDPM and of the cost function e. For each
non-goal state, we depict only one action out of uncountably many: for state two it is action
0.1 with cost ≈ 2.9, for state init it is action 0.4 with cost ≈ 2.7. The costs are computed in
PRISM. ut

Note that there is a one-to-one correspondence between the delay functions in C and
strategies in M. Thus we use d,d′, . . . to denote strategies in M. Finally, let us state
correctness of the reduction.

Proposition 2. For any delay function d it holds EC(d) = EM(d). Hence,

Val [C] = Val [M] .

In particular, in order to solve the optimization problem for C it suffices to find an ε-optimal
strategy (i.e., a delay function) d inM.

3.2 Discretization of the Uncountable MDPM

Since the MDPM has uncountably many actions, it is not directly suitable for algorithmic
solutions. We proceed in two steps. In the first and technically demanding step, we show that
we can restrict to actions on a finite mesh. Second, we argue that we can also approximate
all transition probabilities and costs by rational numbers of small bit length.



Restricting to a Finite Mesh. For positive reals δ > 0 and d > 0, we define a subset of
delay functions D(δ, d) = {d | ∀s ∈ S ′ ∃k ∈ N : d(s) = kδ ≤ d}. Here, all delays are
multiples of δ bounded by d.

We need to argue that for the fixed ε > 0 there are some appropriate values δ and d
such that D(δ, d) contains an ε-optimal delay function. A naïve approach would be to take
any, say ε/2-optimal delay function d, round it to closest delay function d? ∈ D(δ, d) on
the mesh, and show that the expected costs of these two functions do not differ by more
than ε/2. However, this approach does not work as shown by the following example.

Example 3. Let us fix the fdCTMC structure C on the left (with cost rates in small boxes
and zero impulse costs). An excerpt ofM and e is shown on the right (where only a few
actions are depicted).

a t b
2 1

a t b
0.01 ≈ 0.02e 1 − p3

0.001 ≈ 0.002e 1 − p2

0.0001 ≈ 0.0002e 1 − p1
p1 ≈ 0.0001

p2 ≈ 0.001

p3 ≈ 0.01. . .
. . .. . .

. . .

. . .
. . . . . .

0.01≈ 0.01e1 − p3

0.001≈ 0.001e1 − p2 p2

p3

First, we point out that Val [C] = 1 as one can make sure that nearly all time before reaching
t is spent in the state b that has a lower cost rate 1. Indeed, this is achieved by setting a very
short delay in a and a long delay in b.

We claim that for any δ > 0 there is a near-optimal delay function d such that rounding
its components to the nearest integer multiples of δ yields a large error independent of
δ. Indeed, it suffices to take a function d with d(b) = δ and d(a) an arbitrary number
significantly smaller than d(b), say d(a) = 0.01 · d(b). The error produced by the rounding
can then be close to 0.5. For instance, given δ = 0.01 we take a function with d(a) = 0.0001
and d(b) = 0.01, whose rounding to the closest delay function on the finite mesh yields a
constant function d? = (0.01, 0.01). Then EC(d) ≈ 1.01 and EC(d?) ≈ 1.5, even though the
rounding does not change any transition probability or cost by more than 0.02!

The reason why the delay function d is so sensitive to small perturbations is that it
makes a very large number of steps before reaching t (around 200 on average) and thus the
small one-step errors caused by a perturbation accumulate into a large global error. The
number of steps of an ε-optimal delay functions is not bounded, in general. By multiplying
both d(a) and d(b) by the same infinitesimally small factors we obtain an ε-optimal delay
functions that make an arbitrarily high expected number of steps before reaching t. ut

A crucial observation is that we do not have to show that the “naïve” rounding works
for every near-optimal delay function. To prove that D(δ, d) contains an ε-optimal function,
it suffices to show that there is some ε/2-optimal function whose rounding yields error at
most ε/2. Proving the existence of such well-behaved functions forms the technical core of
our discretization process which is formalized below.

We start by formalizing the concept of “small perturbations”. We say that a delay
function d? is α-bounded by a delay function d if for all states s, t ∈ S ′ we have:

1. |T (s,d?(s))(t) − T (s,d(s))(t)| ≤ α and
2. e(s,d?(s)) − e(s,d(s)) ≤ α;



and furthermore, T (s,d(s))(t) = 0 iff T (s,d?(s))(t) = 0, i.e. the qualitative transition
structure is preserved. (Note that d? may incur much smaller one-step costs than d, but not
significantly higher).

Using standard techniques of numerical analysis, we express the increase in accumu-
lated cost caused by a bounded perturbation as a function of the worst-case (among all
possible initial states) expected cost and expected number of steps before reaching the tar-
get. The number of steps is essential as discussed in Example 3 and can be easily expressed
by a cost function # that assigns 1 to every action in every state. To express the worst-case
expectation of some cost function $, we denote Bound

[
$,d

]
:= maxs∈S ′ E$

M[s](d).

Lemma 2. Let α ∈ [0, 1] and let, d′ be a delay function that is α-bounded by another
delay function d. If α ≤ 1

2·Bound[e,d]·|S ′ | , then

EM(d′) ≤ EM(d) + 2 · α · Bound [#,d] · (1 + Bound [e,d] · |S ′|).

The next lemma shows how to set the parameters δ and d to make the finite mesh
D(δ, d) “dense” enough, i.e. to ensure that for any d, D(δ, d) contains a delay function that
is α-bounded by d.

Lemma 3. There are positive numbers D1,D2 ∈ exp(||C||O(1)) computable in time polyno-
mial in ||C|| such that the following holds for any α ∈ [0, 1] and any delay function d: If we
put

δ := α/D1 and d := | log(α)| · D2 · Bound [e,d] ,

then D(δ, d) contains a delay function which is α-bounded by d.

Proof (Sketch). Computing the value of δ is easy as the derivatives of the probabilities and
costs are bounded from above by the rate λ and the maximal cost rate, respectively. For d
we need additional technical observations, see [7] for further details.

Unfortunately, as shown in Example 3, the value Bound [#,d] can be arbitrarily high,
even for near-optimal functions d. Hence, we cannot use Lemma 2 right away to show that
a delay function in D(δ, d) that is α-bounded by some near-optimal d is also near-optimal.
The crucial insight is that for any ε′ > 0 there are (globally) ε′-optimal delay functions that
use number of steps that is proportional to their expected cost.

Lemma 4. There is a positive number N ∈ exp(||C||O(1)) computable in time polynomial in
||C|| such that the following holds: for any ε′ > 0, there is a globally ε′/2-optimal delay
function d′ with

Bound
[
#,d′

]
≤

Bound [e,d′]
ε′

· N. (1)

Proof (Sketch). After proving the existence of globally near-optimal strategies, we suitably
define the number N and take an arbitrary globally ε′′-optimal delay function d′′, where
ε′′ << ε′. If this function does not satisfy (1), we conclude that it must induce the following
pathological behaviour in C: the system stays for a long time in a component of its state
space such that a) fixed-delay transitions are active in each state of the component, each
such transition within the component having zero impulse cost; and b) function d′′ assigns
very small (in a well-defined sense) delays to all states of the component. We call such
a component a bad sink. Intuitively, inside a bad sink the system rapidly performs one



fixed-delay transition after another, incurring only a tiny cost between two successive
transitions. This allows the delay function to perform many steps while staying ε′′-optimal.
(In Example 3, {a, b} would be a bad sink for d, as with high probability the cycle on these
two states is completed every 0.0101 units of time, with cost 0.0102 incurred per cycle.)

To obtain a globally ε′-optimal delay function satisfying (1), we carefully modify d′′
so as to remove all bad sinks. This is done by selecting a suitable state in each bad sink and
“inflating” its delay to a sufficiently high threshold. Choosing the right state and threshold is
a rather delicate process, since an improper choice might significantly increase the incurred
cost. Also note that Lemma 2 cannot be used to bound the increase in cost caused by the
modification, as we do not know the value of Bound [#,d′′]. Instead, we utilize non-trivial
insights into the structure of C andM. ut

By using these proportional delay functions, we reduce the perturbation error of
Lemma 2 only to a function of Bound [e,d]. Combining this with Lemma 3, we ob-
tain that the delay functions in D(δ, d) approximate all the proportional delay functions d
of Lemma 4, and thus Val

[
M,D(δ, d)

]
approximates Val [M]. The parameters δ, d depend

on ε and Bound [e,d] of any such d from Lemma 4. As these delay functions are globally
ε-optimal, all such Bound [e,d] can be ε-approximated by Val [M] := maxs∈S ′ Val [M[s]].

Proposition 3. For N from Lemma 4, D1 and D2 from Lemma 3, it holds that∣∣∣∣ Val [M] − Val
[
M,D(δ, d)

] ∣∣∣∣ ≤ ε

2

where δ :=
α

D1
, d := | log(α)| ·D2 · (Val [M] + ε), α :=

ε2

64N · |S ′| · (1 + Val [M])2
.

Bounding Val [M] In Proposition 3, the allowed perturbation α and hence the fineness of
the mesh δ needed to obtain the required precision depend on the bound Val [M]. We first
provide the following theoretical worst-case bound.

Lemma 5. There is a number M ∈ exp(||C||O(1)) computable in time polynomial in ||C||
such that Val [M] ≤ M.

In practice, one can obtain better bounds by computing maxs∈S EC[s](d) for an arbitrary d as
maxs∈S EC[s](d) ≥ maxs∈S infd′ EC[s](d′) = Val [M]. One can set d by some heuristics (e.g.
to the constant function 1/λ) or randomly. One can even use the minimum from a series of
such computations. We believe that in most cases, this yields a significant improvement.
For instance, for the 3-state model from Section 1, we get a bound maxs∈S EC[s](1/λ) ≈ 4.3
instead of the theoretical bound Val [M] ≈ 55000.

Representing the Finite Mesh Since one-step costs and probabilities produced by delay
functions in D(δ, d) may be irrational, we need to approximate them by rational numbers.
So let us fix δ and d from Proposition 3. For any κ > 0 we define DTMDP Mκ =

(S ′,Actκ,Tκ, sin,G) with a cost function eκ where

– the strategies are exactly delay functions from D(δ, d), i.e. Actκ = {kδ | k ∈ N, δ ≤ kδ ≤
d} ∪ {∞} where again∞ is enabled in s ∈ S ′ \ Sfd and the rest is enabled in s ∈ Sfd; and



– for all (s,d) ∈ S ′ × Actκ the transition probabilities in Tκ(s,d) and costs in eκ(s,d) are
obtained by rounding the corresponding numbers in T (s,d) and e(s,d) up (using the
algorithm of Proposition 1) to the closest multiple of κ.4

Proposition 4. Let ε > 0 and fix κ = (ε · δ · minR)/(2 · |S ′| · (1 + Val [M])2), where minR
is a minimal cost rate in C. Then it holds∣∣∣∣ Val

[
M,D(δ, d)

]
− Val [Mκ]

∣∣∣∣ ≤ ε

2
.

Proof (Sketch). We use similar technique as in Lemma 2, taking advantage of the fact that
probabilities and costs of each action are changed by at most κ by the rounding. ut

The Algorithm for Theorem 1 First the discretization step δ, maximal delay d, and
rounding error κ are computed. Then the discretized DTMDPMκ is constructed according
to the above-mentioned finite mesh representation. Finally the globally optimal delay
function fromMκ is chosen using standard polynomial algorithms for finite MDPs [33,
14]. From Propositions 3 and 4 it follows that this delay function is ε-optimal inM, and
thus also in C (Proposition 2).

The size ofMκ (and its construction time) can be stated in terms of a polynomial in ||C||,
Val [M], 1/δ, d, and 1/κ. Examining the definitions of these parameters in Propositions 3
and 4, as well as the bound on Val [M] from Lemma 5, we conclude that the size ofMκ

and the overall running time of our algorithm are exponential in ||C|| and polynomial in
1/ε. The pseudo-code of the whole algorithm is given in [7].

4 Bounded Optimization Under Partial Observation

In this section, we address the cost optimization problem for delay functions chosen under
partial observation. For an equivalence relation ≡ on Sfd specifying observations, and
d, d > 0, we define D(d, d,≡) = {d | ∀s, s′ : d ≤ d(s) ≤ d, s ≡ s′ ⇒ d(s) = d(s′)}.

Theorem 2. There is an algorithm that for a fdCTMC structure C, a cost structure Cost
with R(s) > 0 for all s ∈ S , an equivalence relation ≡ on Sfd, d, d > 0, and ε > 0 computes
in time exponential in ||C||, ||d||, and d a delay function d such that∣∣∣∣∣∣∣ inf

d′∈D(d,d,≡)
EC(d′) − EC(d)

∣∣∣∣∣∣∣ < ε.

Also, one cannot hope for polynomial complexity as the corresponding threshold problem
is NP-hard, even if we restrict to instances where d is of magnitude polynomial in ||C||.

Theorem 3. For a fdCTMC structure C, a cost structure Cost with R(s) > 0 for all s ∈ S ,
an equivalence relation ≡ on Sfd, d, d > 0, ε > 0, and x ∈ R≥0, it is NP-hard to decide

whether inf
d∈D(d,d,≡)

EC(d) > x + ε or inf
d∈D(d,d,≡)

EC(d) < x − ε

(if the optimal cost lies in the interval [x − ε, x + ε], an arbitrary answer may be given).
The problem remains NP-hard even if d is given in unary encoding.

4 More precisely, all but the largest probability in T (s,d) are rounded up, the largest probability is
suitably rounded down so that the resulting vector adds up to 1.



For d given in unary we get a matching upper bound.

Theorem 4. The approximate threshold problem of Theorem 3 is in NP, provided that d is
given in unary.

We leave the task of settling the exact complexity of the general problem (where d is
given in binary) to future work.

For the rest of this section we fix a fdCTMC structure C = (S , λ,P, Sfd,F, sin), a cost
structure Cost = (G,R,IP,IF), ε > 0, and an equivalence relation ≡ on Sfd, d, d > 0. We
simply write D instead of D(d, d,≡) and again assume that Val [C,D] < ∞.

4.1 Approximation Algorithm

In this Section, we address Theorem 2. First observe, that the MDP M introduced in
Section 3 can be due to Proposition 2 also applied in the bounded partial-observation
setting. Indeed, EC(d) = EM(d) for each d ∈ D and thus, Val [C,D] = Val [M,D] (where
analogously Val [C,D] denotes infd∈D EC(d)). Furthermore, by fixing a mesh δ and a round-
off error κ, we define a finite DTMDPM?

D where

– actions are restricted to a finite mesh of multiples of δ within the bounds d and d; and
– probabilities and costs are rounded to multiples of κ as in Section 3.

To show that M?
D suitably approximates M we use similar techniques as in Section 3.

However, thanks to the constraints d and d we can show that for every delay function d ∈ D
the values Bound [#,d] and Bound [e,d], which feature in Lemma 2, are bounded by a
function of ||C||, d and d (in particular, the bound is independent of d). This substantially
simplifies the analysis. We state just the final result.

Proposition 5. There is a number B ∈ exp((||C|| · ||d|| · d)O(1)) such that for δ = ε/B and
κ = (ε · δ)/B it holds

∣∣∣∣Val [M,D] − Val
[
M?

D

]∣∣∣∣ < ε.
The proof of Theorem 2 is finished by the following algorithm.

– For δ and κ from Proposition 5, the algorithm first constructs (in the same fashion as in
Section 3) in 2-exponential time the MDPM?

D.
– Then it finds an optimal strategy d (which also satisfies |EC(d) − infd′ EC(d′)| < ε) by

computing EM′ε(d) for every (MD) strategy d ofM′ε in the set D.

The algorithm runs in 2-EXPTIME because there are ≤ |Actε||S | strategies which is ex-
ponential in ||C||, ||d||, and d as |Actε| is exponential in these parameters. The correctness
follows from Propositions 2, 5, proving Theorem 2.

Challenges of Unbounded Optimization The proof of Proposition 5 is simpler than the
techniques from Section 3 because we work with the compact space bounded by d and d.
This restriction is not easy to lift; the techniques from Section 3 cannot be easily adapted
to unbounded optimization under partial observation.
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The reason is that local adaptation of the delay function (heav-
ily applied in the proof of Lemma 4) is not possible as the delays
are not independent. Consider on the right a variant of Example 3
with components a and b being switched by fixed-delay transi-
tions. All states have cost rate 1 and all transitions have cost 0;
furthermore, all states are in one class of equivalence of ≡. If in
state a or b more than one exp-delay transition is taken before a
fixed-delay transition, a long detour via state 1 is taken. In order
to avoid it and to optimize the cost, one needs to set the one common delay as close as
possible to 0. Contrarily, in order to decrease the expected number of visits from a to b
from a before reaching t which is crucial for the error bound, one needs to increase the
delay.

4.2 Complexity of the Threshold Problem

We now turn our attention to Theorem 3. We show the hardness by reduction from SAT.
Let ϕ = ϕ1 ∧ · · · ∧ ϕn be a propositional formula in conjunctive normal form (CNF) with
ϕi = (li,1 ∨ · · · ∨ li,ki ) for each 1 ≤ i ≤ n and with the total number of literals k =

∑n
i=1 ki. As

depicted in the following figure, the fdCTMC structure Cϕ is composed of n components
(one per clause), depicted by rectangles. The component of each clause is formed by a
cycle of sub-components (one per literal) connected by fixed-delay transitions. Positive
literals are modelled differently from negative literals.

fdCTMC
struct. for ϕ :

sin

ϕ1 · · · ϕn

1
n

1
n

component for ϕi :

li,1 · · · li,ki

component for li, j
of the form x :

s0
i, j · · · s8k-1

i, j s≥8k
i, j

gi, j

· · ·

component for li, j
of the form ¬x :

s0
i, j

s≥1
i, j

gi, j

The cost structure Costϕ assigns rate cost 1 to every state, and impulse cost 0 to every
transition; the goal states are depicted by double circles and exp-delay transitions are
depicted with heavier heads to distinguish from the dashed fixed-delay transitions. We
require s0

i, j ≡ s0
i′, j′ iff the literals li, j and li′, j′ have the same variable. Furthermore, let D

denote D(0.01, 16k,≡). Note that d = 16k is linear in ||ϕ|| and thus it can be encoded in
unary. We obtain the following:

Proposition 6. For a formula ϕ in CNF with k literals, Cϕ and Costϕ are constructed in
time polynomial in k and, furthermore,

Val
[
Cϕ,D

]
< 17k2 if ϕ is satisfiable and Val

[
Cϕ,D

]
> 17k2 + 1, otherwise.

Proof (Sketch). The proof is based on the facts that the probability to take no exponential
transition within time 0.01 is > 0.99 and the probability to take at least 8k exponential
transitions within time 16k is > 0.99 and that (16k · k)/0.99 < 17k2. ut

The reduction proves NP-hardness as it remains to set x := 2k2 + 1
2 and ε := 1

2 .



NP Membership for Unary d To prove Theorem 4 we give an algorithm which, for a
given approximate threshold x > 0, consists of

– first guessing the delay function d ofM?
D that is in the set D such that EM?

D(d) < x,
– then constructing just the fragmentMd ofM?

D used by the guessed function d. Here
Md = (S ′, {∞},Td,G,ed) where the transition probabilities and costs coincide with
M for states in S ′ \ Sfd and in any state s ∈ Sfd are defined by Td(s,∞) = T?(s,d(s))
and ed(s,∞) = e?(s,d(s)) (here T?(s,d(s)) and e?(s,d(s)) are as inM?

D).
– Last, for σ : s 7→ ∞, the algorithm computes y = EMd(σ) by standard methods and

accepts iff y < x.

Note that when d is encoded in unary, both d andMd are of bit size that is polynomial in
the size of the input. Hence, d andMd can be constructed in non-deterministic polynomial
time (although the wholeM?

D is of exponential size in this unary case). The expected total
cost x inMd(σ) that has polynomial size can be also computed in polynomial time. The
correctness of the algorithm easily follows from Proposition 5; for an explicit proof see [7].

5 Conclusions
In this paper, we introduced the problem of synthesising timeouts for fixed-delay CTMC.
We study two variants of this problem, show that they are effectively solvable, and obtain
provable worst-case complexity bounds. First, for unconstrained optimization, we present
an approximation algorithm based on a reduction to a discrete-time Markov decision
process and a standard optimization algorithm for this model. Second, we approximate
the case of bounded optimization under partial observation also by a MDP. However,
a restriction of the class of strategies twists it basically into a partial-observation MDP
(where only memoryless deterministic strategies are considered). We give a 2-exponential
approximation algorithm (which becomes exponential if one of the constraints is given in
unary) and show that the corresponding decision problem is NP-hard.

The correctness of our algorithms stems from non-trivial insights into the behaviour
of fdCTMC that we deem to be interesting in their own right. Hence, we believe that
techniques presented in this paper lay the ground for further development of performance
optimization via timeout synthesis.
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25. L’. Korenčiak, J. Krčál, and V. Řehák. Dealing with zero density using piecewise phase-type

approximation. In EPEW, volume 8721 of LNCS, pages 119–134. Springer, 2014.
26. M. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Verifying quantitative properties of

continuous probabilistic timed automata. In CONCUR, pages 123–137. Springer, 2000.
27. Ch. Lindemann. An improved numerical algorithm for calculating steady-state solutions of

deterministic and stochastic petri net models. Perform. Eval., 18(1):79–95, 1993.
28. M. A. Marsan and G. Chiola. On Petri nets with deterministic and exponentially distributed

firing times. In Advances in Petri Nets, pages 132–145. Springer, 1987.
29. M.R. Neuhäusser and L. Zhang. Time-bounded reachability probabilities in continuous-time

Markov decision processes. In QEST, pages 209–218. IEEE, 2010.
30. M.F. Neuts. Matrix-geometric Solutions in Stochastic Models: An Algorithmic Approach. Courier

Dover Publications, 1981.
31. J.R. Norris. Markov Chains. Cambridge University Press, 1998.
32. R. Obermaisser. Time-Triggered Communication. CRC Press, 1st edition, 2011.
33. M.L. Puterman. Markov Decision Processes. Wiley, 1994.
34. K. Ramamritham and J.A Stankovic. Scheduling algorithms and operating systems support for

real-time systems. Proceedings of the IEEE, 82(1):55–67, 1994.
35. K.B. Tiassou. Aircraft operational reliability – A Model-based approach and case studies. PhD

thesis, Universié de Toulouse, 2013.
36. N. Wolovick, P. R. D’Argenio, and H. Qu. Optimizing probabilities of real-time test case

execution. In ICST, pages 446–455. IEEE, 2009.


