
} w��������
��������������� !"#$%&'()+,-./012345<yA| FI MU
Faculty of Informatics

Masaryk University

Process Rewrite Systems with Weak Finite-State
Unit

by

Mojmír Křetínský
Vojtěch Řehák

Jan Strejček

FI MU Report Series FIMU-RS-2003-05

Copyright c© 2003, FI MU September 2003

Process Rewrite Systems
with Weak Finite-State Unit∗†

Mojmı́r Křetı́nský Vojtěch Řehák Jan Strejček

Faculty of Informatics
Masaryk University

Botanická 68a, 602 00 Brno
Czech Republic

{kretinsky,rehak,strejcek }@fi.muni.cz

September 26, 2003

Abstract

Various classes of infinite-state processes are often specified by rewrite
systems. We extend Mayr’s Process Rewrite Systems (PRS) [12] by
finite-state unit whose transition function satisfies some restrictions
inspired by weak finite automata. We classify these models by their
expressiveness and show how the hierarchy of new classes (w.r.t. bisim-
ilarity) is related to both PRS hierarchy of Mayr and two other hierar-
chies of PRS extensions introduced in [9, 21].

1 Introduction

As the state-space infiniteness of concurrent systems has a various, real-
life sources (e.g. data manipulation, asynchronous communication, etc.), a
motivation is to provide adequate representations of concurrent systems
as well as to study the possibilities of their formal verification. Concur-
rent systems can be modelled in a number of ways (e.g. Process Algebras,
Petri Nets, etc.), however a unifying view is to interpret them as labelled

∗This work has been partially supported by GAČR, grant No. 201/03/1161.
†This is a full version of INFINITY’03 paper.

1

transition systems (LTS) with possibly infinite number of states. LTS fam-
ilies are often specified via a variety of rewrite systems and form hierar-
chies (w.r.t. bisimulation equivalence), see for example [5, 3, 14, 12]. Here
we employ the classes of infinite-state systems defined by Process Rewrite
Systems (PRS, introduced by Mayr in [12]) as they contain a variety of the
formalisms studied in the context of formal verification. For surveys of
formal verification techniques and results see for example [14, 4, 2, 10, 19].

It is possible to extend rewriting mechanisms by a finite-state unit [14,
9]. However this extension is very powerful as the state-extended version
of PA processes (i.e. the state-extended (1,G)-PRS) has a full Turing-power
[1], while unrestricted PRS is not Turing-powerful [12]. One of motivations
for introducing state-extended PRS classes can be seen as follows: it is re-
quired to specify some process classes which are not explicitly present in
PRS hierarchy. This can be exemplified by the class of so called Parallel
Push-Down Automata (PPDA) introduced by Moller as a state-extended
version of BPP in [14]. Please note BPP forms a proper subclass of PPDA
which is properly contained in Petri nets [15]. We also note the prob-
lem of bisimulation equivalence on BPP is decidable [6] (the recent results
[20, 8] show it is PSPACE-complete), while the same problem on their state-
extended version is undecidable [14].

In this paper we aim at weakening the strength of state-extension by
putting some restrictions on (the transition function of) finite-state unit –
we use weak finite automaton as introduced in [16], but used here as a non-
deterministic (NFA) rather than alternating one. A NFAA = (Q,Σ, δ, q0, F)
is weak if its state space is partitioned into a disjoint union Q =

⋃
Qi, and

there is a partial order≥ on the collection of the Qi. The transition function
δ : Q × Σ → P(Q) is such that if q ∈ Qi and q′ ∈ δ(q, a) then q′ ∈ Qj ,
where Qi ≥ Qj . The set F of final states will not play any role in this paper,
however recall it is required that Qi ⊆ F or Qi ∩ F = ∅ for each Qi. Due to
their connections to (modal) logics weak (nondeterministic, alternating,...)
automata have been used in several contexts and in fact their slightly mod-
ified variants have been employed. For example we refer to [11] where the
common fragment of a linear time logic LTL [17] and a branching time logic
ACTL (which is a fragment of CTL [7]) is given by exactly those LTL formu-
lae the negation of which can be represented by 1-weak Büchi automaton
(automaton is 1-weak if each partition block contains exactly one state). We
mention the 1-weak variant only and skip the others as this will serve as a
suitable abstraction used in our definition of PRS with weak unit.

In state-extended PRS a finite-state unit keeps a sort of global informa-
tion accessible to all parallel (ready to be reduced) components of a PRS

2

term. For example different (sub)sets of rewriting rules can be applied de-
pending on the current state of unit. Elsewhere [21] one of the authors
of this paper enriched (pure) PRS by ’monotonically evolving’ unit and
showed the introduced fcPRS classes (’fc’ standing for ’finitely constrained’
– see Section 3) are strictly more expressible than the respective classes of
PRS provided the respective PRS class does not subsume some notion of
’control state’ as e.g. PDA or Petri Nets do.

Some basic definitions and properties of PRS (taken from[12]) and fcPRS
([21]) are recalled in Sections 2 and 3. We introduce PRS with weak unit
(wPRS) and mention state-extended PRS in Section 4. Some relationships
between the respective new classes and the already existing ones as well
as the (combined) hierarchy of PRS and (relevant classes of) extended PRSs
are shown in Section 5.

2 Process rewrite systems (PRS)

A labelled transition system (LTS)L is a tuple (S,Act,−→, α0), where S is a set
of states or processes, Act is a set of atomic actions or labels, −→⊆ S ×Act× S
is a transition relation (written α a

−→ β instead of (α, a, β) ∈−→), α0 ∈ S is
a distinguished initial state. A state α ∈ S is terminal (or deadlocked, written
α 6−→) if there is no a ∈ Act and β ∈ S such that α a

−→ β. We also use the
natural generalization α σ

−→ β for finite sequences of actions σ ∈ Act∗. The
state α is reachable if there is σ ∈ Act∗ such that α0

σ
−→ α.

A binary relation R on set of states S is a bisimulation [13] iff for each
(α, β) ∈ R the following conditions hold:

• ∀α′ ∈ S, a ∈ Act : α
a
−→ α′ =⇒ (∃β′ ∈ S : β

a
−→ β′ ∧ (α′, β′) ∈ R)

• ∀β′ ∈ S, a ∈ Act : β
a
−→ β′ =⇒ (∃α′ ∈ S : α

a
−→ α′ ∧ (α′, β′) ∈ R)

Bisimulation equivalence on an assumed LTS is the maximal bisimulation
(i.e. union of all bisimulations).

Let Const = {X, . . .} be a countably infinite set of process constants. The
set T of process terms (ranged over by t, . . .) is defined by the abstract syntax

t = ε |X | t1.t2 | t1‖t2,

where ε is the empty term, X ∈ Const is a process constant (used as an
atomic process), ’‖’ and ’.’ mean parallel and sequential compositions re-
spectively. The set Const(t) is the set of all constants occurring in a process

3

term t. We always work with equivalence classes of terms modulo com-
mutativity and associativity of ’‖’ and modulo associativity of ’.’ We also
define ε.t = t = t.ε and t‖ε = t.

We distinguish four classes of process terms: ’1’ stands for terms consist-
ing of a single process constant only (i.e. ε 6∈ 1), ’S’ are sequential terms
– without parallel composition, ’P’ are parallel terms - without sequential
composition, ’G’ are general terms with arbitrarily nested sequential and
parallel compositions.

Definition 2.1. Let Act = {a, b, · · · } be a countably infinite set of atomic ac-
tions, α, β ∈ {1, S, P,G} such that α ⊆ β. An (α, β)-PRS (process rewrite
system) is a pair ∆ = (R, t0), where

• R is a finite set of rewrite rules of the form t1
a
−→ t2, where t1 ∈ α, t1 6= ε,

t2 ∈ β are process terms and a ∈ Act is an atomic action,

• t0 ∈ β is an initial state.

Unless stated otherwise we assume a given ∆ as in Definition 2.1. We
define Const(∆) as the set of all constants occurring in the rewrite rules
of ∆ or in its initial state, and Act(∆) as the set of all actions occurring in
the rewrite rules of ∆. We sometimes write (t1

a
−→ t2) ∈ ∆ instead of

(t1
a
−→ t2)∈R.
The semantics of ∆ is given by the LTS (S,Act(∆),−→, t0), where S =

{t ∈ β | Const(t) ⊆ Const(∆)} and −→ is the least relation satisfying the
inference rules:

(t1
a
−→ t2) ∈ ∆

t1
a
−→ t2

,
t1

a
−→ t′1

t1‖t2
a
−→ t′1‖t2

,
t1

a
−→ t′1

t1.t2
a
−→ t′1.t2

.

If no confusion can arise, we sometimes speak about “process rewrite sys-
tem” meaning “labelled transition system generated by process rewrite sys-
tem”.

The PRS-hierarchy of (α, β)-PRS is depicted as a sub-hierarchy in Fig-
ure 1. Some classes included in the hierarchy correspond to widely known
models as Finite State systems (FS), Basic Process Algebras (BPA), Basic
Parallel Processes (BPP), Process Algebras (PA), Push-Down Processes (PDA,
see [5] for justification), and Petri Nets (PN). The other three classes were
introduced (and named) by Mayr [12]. The relationship between the class
name and its (α, β)-PRS counter-part is given in Figure 1 as well.

PRS-hierarchy is not strict w.r.t. language equivalence (e.g. both BPA
and PDA define the class of ε-free context-free languages). The strictness

4

of the hierarchy w.r.t. bisimularity follows from the results presented (or
cited) in [3, 14] and from the following two examples [12].

Example 2.2. A PDA system with the initial state U.X which is not bisimilar to
any PAN system (for proof see [12]).

U.X
a
−→ U.A.X U.A

a
−→ U.A.A U.B

a
−→ U.A.B

U.X
b
−→ U.B.X U.A

b
−→ U.B.A U.B

b
−→ U.B.B

U.X
c
−→ V.X U.A

c
−→ V.A U.B

c
−→ V.B

U.X
d
−→W.X U.A

d
−→W.A U.B

d
−→ W.B

V.X
e
−→ V V.A

a
−→ V V.B

b
−→ V

W.X
f
−→W W.A

a
−→ W W.B

b
−→W

Example 2.3. A Petri net given as (P, P)-PRS with the initial state X‖A‖B
which is not bisimilar to any PAD process (for proof see [12]).

X
g
−→ X‖A‖B Y ‖A

a
−→ Y X‖A

d
−→ Z Y ‖A

d
−→ Z

X
c
−→ Y Y ‖B

b
−→ Y X‖B

d
−→ Z Y ‖B

d
−→ Z

3 PRS with finite constraint systems (fcPRS)

In this section we recall the extension of process rewrite systems with fi-
nite constraint systems. This extension has been directly motivated by
constraint systems used in concurrent constraint programming (CCP) – see
e.g. [18]. A constraint system is a bounded lattice (C,`,∧, tt, ff), where C is
the set of constraints, ` (called entailment) is an ordering on this set, ∧ is the
lub operation, and tt (true), ff (false) are the least and the greatest elements
of C respectively (ff ` tt and tt 6= ff). The constraint system describes a state
space and possible evolution of a unit called store.

Definition 3.1. Let α, β ∈ {1, S, P,G} such that α ⊆ β. An (α, β)-fcPRS (PRS
with finite constraint system) is a tuple ∆ = (C, R, t0), where

• C = (C,`,∧, tt, ff) is a finite constraint system describing the store; the
elements of C represent values of the store,

• R is a finite set of rewrite rules of the form (t1
a
−→ t2,m, n), where t1 ∈ α,

t1 6= ε, t2 ∈ β are process terms, a ∈ Act is an atomic action, andm,n ∈ C
are constraints,

• t0 ∈ β is a distinguished initial process term.

5

The semantics of an (α, β)-fcPRS system ∆ = (C, R, t0) is given by the
LTS (S,Act(∆),−→, (t0, tt)), where S = {t ∈ β | Const(t) ⊆ Const(∆)} ×
(C r {ff}) and −→ is the least relation satisfying the inference rules:

(t1
a
−→ t2,m, n) ∈ ∆

(t1, o)
a
−→ (t2, o ∧ n)

if o ` m and o ∧ n 6= ff,

(t1, o)
a
−→ (t′1, p)

(t1‖t2, o)
a
−→ (t′1‖t2, p)

,
(t1, o)

a
−→ (t′1, p)

(t1.t2, o)
a
−→ (t′1.t2, p)

.

The two side conditions in the first inference rule are very close to prin-
ciples used in CCP. The first one (o ` m) ensures the rule (t1

a
−→ t2,m, n) ∈

∆ can be used only if the current value of the store o entailsm (it is similar to
ask(m) in CCP). The second condition (o ∧ n 6= ff) guarantees that the store
stays consistent after application of the rule (analogous to the consistency
requirement when processing tell(n) in CCP).

An important observation is that the value of a store can move in a lat-
tice only upwards as o ∧ n always entails o. Intuitively, partial information
can only be added to the store, but never retracted (the store is monotonic).

Also note that an execution of a transition which starts in a state with o
on the store and which is generated by a rule (t1

a
−→ t2,m, n) ∈ ∆ implies

that for every subsequent value of the store p the conditions p ` m and
p ∧ n 6= ff are satisfied (and thus the use of the rule cannot be forbidden
by a value of the store in future). The first condition p ` m comes from
the monotonic behaviour of the store. The second condition comes from
the facts that the constraint n in the rule can change the store only in the
first application of the rule and that for each subsequent state p of the store
p ∧ n = p holds.

4 PRS with weak finite-state unit (wPRS)

Definition 4.1. Let α, β ∈ {1, S, P,G} such that α ⊆ β. An (α, β)-wPRS (PRS
with weak finite-state unit) is a tuple ∆ = (Q,≥, R,m0, t0), where

• (Q,≥) is partially ordered finite set representing states of weak finite-state
unit; the elements of Q are called w-states,

• R is a finite set of rewrite rules of the form mt1
a
−→ nt2 satisfying the

condition m ≥ n, where m,n ∈ Q, t1 ∈ α, t1 6= ε, t2 ∈ β, and a ∈ Act,

• m0 ∈ Q, t0 ∈ β, and m0t0 is the initial state of the system.

6

The semantics of an (α, β)-wPRS ∆ = (Q,≥, R,m0, t0) is given by the
LTS (S,Act(∆),−→,m0t0), where S = {mt | m ∈ Q, t ∈ β,Const(t) ⊆
Const(∆)} and −→ is defined as the least relation satisfying the inference
rules:

(mt1
a
−→ nt2) ∈ ∆

mt1
a
−→ nt2

,
mt1

a
−→ nt′1

m(t1‖t2)
a
−→ n(t′1‖t2)

,
mt1

a
−→ nt′1

m(t1.t2)
a
−→ n(t′1.t2)

.

The presented notion of weakness corresponds to 1-weakness condi-
tion in automata theory (mentioned already in Section 1; the general weak
unit without considering final states would coincide with standard state-
extension as all the states of Q could be included in one partition block).
In any transition sequence the w-state components of visited states form a
non-increasing sequence w.r.t. ≥ (i.e. can only change finitely many times).
However, in contrast to fcPRS, the weak unit can forbid the application of
any rewrite rule.

State Extended PRS If we relax from the condition m ≥ n imposed on
rewrite rules in Definition 4.1, we get the definition of state-extended (α, β)-
PRS (denoted by prefix ’se’). Instead of (1, S)-sePRS, (1, P)-sePRS, . . . we
also use more traditional abbreviations seBPA, seBPP, and we also take
up this notation for all the classes of both fcPRS and wPRS introduced ear-
lier.

We remind a motivation of introducing sePRS given in Section 1. Of course,
seBPA and seBPP coincides with PDA and PPDA respectively. Also recall
that (S,S)-PRS and PDA are equivalent w.r.t. bisimilarity as shown by Cau-
cal [5], while seBPP has no bisimulation equivalent counter-part within PRS
hierarchy (it is strictly under (P,P)-PRS as shown by Moller in [15]).

5 Relations between classes, refining hierarchy

We start with some very obvious observations. Given process classes X,Y
the notation X ⊆ Y means that every LTS definable in class X can be de-
fined (up to bisimulation equivalence) also in class Y. We say Y is at least
as expressive as X .

An immediate observation is the classes FS, PDA and PN have the same
expressiveness as the corresponding {fc, w, se} extended classes. We also
note that

(α, β)-PRS ⊆ (α, β)-fcPRS ⊆ (α, β)-wPRS ⊆ (α, β)-sePRS

7

wPRS

www
www

www
www

www
www

w

DD
DD

DD
DD

DD
DD

DD
DD

D

fcPRS

www
www

www
www

www
www

w

DD
DD

DD
DD

DD
DD

DD
DD

D

PRS
(G,G)-PRS

www
www

www
www

www
www

DD
DD

DD
DD

DD
DD

DD
DD

D

wPAD

GGG
GGG

GGG
GGG

GGG
GGG

G wPAN

zz
zz
zz
zz
zz
zz
zz
zz
z

fcPAD

FFF
FFF

FFF
FFF

FFF
FFF

F fcPAN

{{
{{
{{
{{
{{
{{
{{
{{
{{

PAD
(S,G)-PRS

FF
FF

FF
FF

FF
FF

FF
FF

FF
PAN

(P,G)-PRS

{{
{{
{{
{{
{{
{{
{{
{{
{

wPA

xxx
xxx

xxx
xxx

xxx
xxx

x

CC
CC

CC
CC

CC
CC

CC
CC

CC

wPDA=fcPDA=PDA
(S,S)-PRS fcPA

xxx
xxx

xxx
xxx

xxx
xxx

x

CC
CC

CC
CC

CC
CC

CC
CC

CC
wPN=fcPN=PN

(P,P)-PRS

PA
(1,G)-PRS

www
www

www
www

www
www

DD
DD

DD
DD

DD
DD

DD
DD

D PPDA

wBPA wBPP

fcBPA fcBPP

BPA
(1, S)-PRS

LLL
LLL

LLL
LLL

LLL
BPP

(1, P)-PRS

uuu
uuu

uuu
uuu

uu

wFS=fcFS=FS
(1, 1)-PRS

Figure 1: The hierarchy of classes defined by (extended) rewrite formalisms

hold for every (α, β)-PRS class (even up to isomorphism). For the sec-
ond inclusion take an arbitrary (α, β)-fcPRS ∆ with an initial term t0 and
a constraint system C = (C,`,∧, tt, ff). The corresponding (α, β)-wPRS is
∆′ = (C r {ff},≥, R′, tt, t0), where ≥= (`)−1 and R′ = {ot1

a
−→ (o ∧ n)t2 |

(t1
a
−→ t2,m, n) ∈ ∆ and o ` m and o ∧ n 6= ff}. The first and third inclu-

sions are obvious as well.
Relations between the classes of PRS-hierarchy, the corresponding classes

extended with finite constraint systems or weak state unit, and the PPDA
class (the only class of Moller’s hierarchy not covered by previous for-
malisms) are depicted in Figure 1. The shape of the hierarchy follows from
the definitions of included classes and from the relations between consid-

8

ered extensions. The strictness of the PRS-hierarchy (w.r.t. bisimulation
equivalence) has been proved by Mayr [12]. The strictness of the hierar-
chy covering classes from PRS-hierarchy and corresponding classes with
finite constraint systems has been proved in [21] (with one exception – the
strictness between PRS and fcPRS is just a conjecture).

In the rest of this section we show that

• there is a PDA system which is not bisimilar to any wPAN system,

• there is a PPDA system which is not bisimilar to any wPAD system,

• there is a wBPP system which is not bisimilar to any fcPAD system
(this proof formulates a property that is a sufficient condition for a
PAD to be bisimilar to some PDA),

• there is a wBPA system which is not bisimilar to any fcPAN system.

These proofs together with the fact that PPDA are strictly less expres-
sive than PN [15] will finish the proof of the strictness of our hierarchy
(with two exceptions – the strictness of the relations between PRS, fcPRS,
and wPRS remains unproved, although we conjecture the existence of the
separating gaps).

5.1 PDA non-bisimilar to wPAN

Example 5.1. Let us consider a PDA system of Example 2.2 but having U.X.Y as
the initial state and two more rewrite rules: V.Y x

−→ U.X.Y, W.Y
x
−→ U.X.Y .

This system, denoted by ∆1, behaves like that defined in Example 2.2, but whenever
the original system terminates, the enhanced ∆1 is restarted under the action x.

Lemma 5.2. There is no wPAN ∆ bisimilar to the PDA ∆1 of Example 5.1.

Proof. To derive a contradiction assume a wPAN ∆ bisimilar to the PDA
∆1. As the weak state unit of ∆ is finite then there exists a reachable state
mt of ∆ such that every state reachable from mt has also m as its w-state
component (the opposite would imply the infiniteness of the weak state
unit). There exists a word w ∈ {a, b, c, d, e, f}∗ such that mt w.x

−→ mt′, where
mt′ is bisimilar to the state U.X.Y of the PDA process ∆1. If the rules la-
belled by the action x are removed from ∆ and mt′ is taken as the initial
state, we obtain the system whose all reachable states have m as w-state
component and which is bisimilar to the pushdown process of Example 2.2.

Now let ∆′ be a PAN system with the initial state t′ and with the set of
rewrite rules consisting of the rules l v

−→ r, where (ml
v
−→ mr) ∈ ∆ and

9

v ∈ {a, b, c, d, e, f}. It is obvious that this PAN system ∆′ is bisimilar to the
PDA system defined in Example 2.2 – a contradiction.

5.2 PPDA non-bisimilar to wPAD

Example 5.3. Let ∆ be a PPDA process with the initial state xA‖B‖C and the
following rewrite rules:

xC
g
−→ xA‖B‖C xA

d
−→ zε zA

q
−→ zε

xC
c
−→ yC xB

d
−→ zε zB

q
−→ zε

yA
a
−→ yε yA

d
−→ zε zC

r
−→ xA‖B‖C

yB
b
−→ yε yB

d
−→ zε

The rules labelled by g, c, a, b, d correspond to the rules of the Petri net
given in Example 2.3. Hence the PPDA ∆ behaves as the mentioned Petri
net, but when the Petri net terminates, the PPDA ∆ can remove an arbitrary
number of A and B symbols from the parallel stack and then “restart” the
system under action r.

Lemma 5.4. There is no wPAD ∆′ bisimilar to the PPDA ∆ of Example 5.3.

The proof is similar to the proof of Lemma 5.2 using the fact the Petri
net of Example 2.3 is not bisimilar to any PAD system.

5.3 wBPP non-bisimilar to fcPAD

A rewriting system is deadlockable if for each reachable nonterminal state
s (of its underlying LTS) there is a transition from s to a terminal state,
i.e. ∃ a, t : s

a
−→ t 6−→ .

Definition 5.5. A sequential subterm t (i.e. t ∈ S) of term g ∈ G is a ready
parallel component iff t is a maximal subtree in the syntax tree of term g such
that t is not in the right-hand side subtree of any sequential node (i.e. node corre-
sponding to sequential operator). A ready parallel component t is live in a PAD
system ∆ if t is not deadlocked (i.e. there is a rule applicable to t).

Intuitively the ready parallel components are defined as the maximal
sequential parts of a PAD process g such that g can perform an action a if
and only if some of its ready parallel components can perform the same
action a.

10

Lemma 5.6. Every reachable state of an arbitrary deadlockable PAD system has
at most one live ready parallel component.

Proof. Observe that the application of a PAD rewrite rule can only modify
one ready parallel component. Hence there is no way how to deadlock
more than one live ready parallel component by one application of a PAD
rewrite rule.

Lemma 5.7. Every deadlockable PAD system is bisimilar to a PDA system.

Proof. An idea is to transform PAD rewrite rules onto corresponding PDA
rewrite rules (this is sufficient as for every PAD there is a bisimilar PAD
system with a single process constant as the initial process term).

There is only one way to revive a deadlocked parallel component, namely
to rewrite adjacent components onto ε. For example if B.C is a dead-
locked ready parallel component of (A.C‖B.C).D and (A.C‖B.C).D

w
−→

(ε‖B.C).D = B.C.D then the ready parallel component B.C.D can be live.
Let ∆ be a PAD system and X 6∈ Const(∆) be a fresh process constant.

Let us consider a rewrite rule of ∆ with the right hand side containing
a maximal subterm of the form l.(t1‖t2).r, where t1, t2 ∈ S and l, r can be ε.
In an arbitrary transition sequence the components t1, t2 generated by the
application of the considered rewrite rule become ready at the same time.
Thus at least one of them is deadlocked. Let t2 be deadlocked. We replace
the subterm l.(t1‖t2).r of the rule by l.X.t1.X.t2.r (or just t1.X.t2.r when-
ever l is ε). The process constant X eliminates any possible (unwanted)
interaction of (the tail of) the term l and (the beginning of) the term t1 (or
the tail of t1 and the beginning of t2 respectively). Repeating this procedure
eliminates all parallel operators from rewrite rules. The resulting PDA sys-
tem ∆′ enriched by rewrite rules of the form X.s

a
−→ s′ for every rule

s
a
−→ s′ ∈ ∆′ is bisimilar to a given ∆.

Example 5.8. Let ∆2 be the wBPP system with the initial state pX and the rules:

pX
c
−→ pX‖A‖B pA

a
−→ pε pB

b
−→ pε pX

d
−→ qε

Lemma 5.9. There is no PAD system bisimilar to the wBPP system ∆2 of Exam-
ple 5.8.

Proof. ∆2 is deadlockable. Due to Lemma 5.7 it suffices to prove there is
no PDA system bisimilar to ∆2. This directly follows from the fact that the
language L generated by ∆2 is not context-free (L ∩ c∗a∗b∗d = {ckalbmd |
0 ≤ l,m ≤ k} is not a context-free language).

11

Lemma 5.10. There is no fcPAD system bisimilar to the wBPP system ∆2 of
Example 5.8.

Proof. For the sake of a contradiction we assume a fcPAD ∆ bisimilar to ∆2.
The finiteness of the constraint system used in ∆ implies that there ex-

ists a reachable non-terminal state (t,m) of ∆ such that every non-terminal
state reachable from (t,m) has also m on the store (the contrary would
mean the constraint system is infinite). As (t,m) is non-terminal there ex-
ists a word w ∈ {a, b}∗ such that (t,m)

w
−→ (s,m) and (s,m) is bisimilar

to the initial state pX of ∆2. The only transitions starting at states reach-
able from (s,m) and changing the value of the store can be the transitions
leading to terminal states, i.e. the transitions labelled by d. Hence we can
directly assume that all rewrite rules of ∆ labelled with x ∈ {a, b, c} have
the form (t1

x
−→ t2, tt, tt).

Let ∆′ be a PAD system with the set of rewrite rules as

{t1
x
−→ t2 | (t1

x
−→ t2, tt, tt) ∈ ∆, x 6= d} ∪

∪ {t1
d
−→ Z | (t1

d
−→ t2, tt, n) ∈ ∆, n 6= ff},

where Z 6∈ Const(∆) is a fresh process constant. If we restrict the systems
∆ and ∆′ to actions a, b, c then ∆ and ∆′ are bisimilar. Furthermore in
every state q of ∆′ reachable underw ∈ {a, b, c}∗ there is atransition labelled
by d and starting at q. It suffices to show that this transition is leading to
a terminal state.

The state (q, tt) (corresponding to the state q) has a ready parallel com-
ponent able to perform an action c. This action cannot be disabled by any
action performed by another ready parallel component. Hence there is just
one ready parallel component able to perform both c and d. For the same
reason this component is the only one which is able to perform actions a
and b if they are enabled in the state (q, tt). The same holds for the state q
of ∆′. Moreover the ready parallel component rewritten by the action d is
deadlocked by the process constant Z . Thus the state reached under d is
terminal and we get a PAD system ∆′ bisimilar to the wBPP ∆2 of Exam-
ple 5.8 – a contradiction (see Lemma 5.9).

5.4 wBPA non-bisimilar to fcPAN

Definition 5.11. A parallel subterm t (t ∈ P r {ε}) of term g ∈ G is a ready
sequential component iff t is a maximal subtree in the syntax tree of term g such
that t does not occur in any right sequential component of g.

12

A ready sequential component t of term g is called non-trivial iff ∃t′ 6= ε such
that t.t′ is a subterm of g (i.e. t is located in subterm t.t′ of g, where t′ 6= ε).

Intuitively, ready sequential components are defined as maximal paral-
lel subterms of a fcPAN process g such that g can perform an action a if and
only if some of its ready sequential components can perform the action a.

Definition 5.12. Let L = (S,Act,−→, α0) be a labelled transition system, α ∈
S, Σ ⊆ Act, u ∈ Σ∗. The LTS L|Σ = (S,Σ,−→ ∩ (S × Σ × S), α0) is the
restriction of L to Σ. We use the notation onlyΣ(α, u) iff u is a prefix of each
maximal transition sequence in L|Σ starting in α.

Definition 5.13. A sequential composition of t (i.e. the sequential operator ’.’
within t) is said to be accessed during a rewriting sequence from (t,m) under w
iff the left subterm of this sequential composition is rewritten onto ε during the
rewriting sequence.

A sequential composition of t is called accessible from (t,m) under w iff there
is a rewriting sequence from (t,m) under w such that the sequential composition
is accessed during this rewriting sequence; otherwise it is called inaccessible.

Lemma 5.14. Given arbitrary i ∈ N, fcPAN ∆ with set of constraints C , a, b ∈
Act(∆) (a 6= b), and state (t,m) of ∆ satisfying only{a,b}((t,m), aib), it holds
that during each rewriting sequence from (t,m) under aib there are at most |C|+1
rewritten ready sequential components of t such that their sequential compositions
are not accessed during the rewriting sequence.

Proof. Let us suppose that there are more than |C| + 1 such components.
Then there are at least two of them such that any action performed by these
components during the sequence aib does not change the store. At least one
of them is not performing action b during the sequence. The actions per-
formed by these components can be omitted without any effect on the rest
of the considered rewriting sequence as the omitted actions do not change
the store and the corresponding sequential compositions are not accessed.
Hence, there is a rewriting sequence from (t,m) under ajb such that j < i.
This is a contradiction with only{a,b}((t,m), aib).

Definition 5.15. For every fcPAN ∆ and every number n ∈ N0 we defineKn(∆)
to be a set of all n-tuples (k1, k2, . . . , kn) ∈ Nn such that for every a, b ∈ Act(∆),
a 6= b, every state (t,m) of ∆ satisfying only{a,b}((t,m), ak1bak2b . . . aknb), and
every rewriting sequence from (t,m) under ak1bak2b . . . aknb, t includes at least n
sequential compositions accessed during the rewriting sequence.

13

Intuitively, Kn(∆) is a set of all n-tuples (k1, k2, . . . , kn) such that each
state (t,m) of ∆ holding the information that every run under {a, b}∗ starts
with ak1bak2b . . . aknb needs at least n sequential compositions.

Lemma 5.16. For every fcPAN ∆ and every number n ∈ N0, Kn(∆) 6= ∅.

Proof. We prove the lemma by induction on n. The base n = 0 is easy to
prove. As every state (t,m) and every actions a, b satisfy only{a,b}((t,m), ε)
and every term includes zero sequential compositions accessed during an
empty rewriting sequence, it holds that () ∈ K0(∆) for every fcPAN ∆.

Induction hypothesis: Let n ∈ N0 be such thatKn(∆) 6= ∅ for every fcPAN
∆. We assume the contrary for n + 1 and derive a contradiction.

Let ∆ be a fcPAN such that for every (k1, . . . , kn, kn+1) ∈ Nn+1 there
exist distinct actions a, b ∈ Act(∆), a state (t,m) of ∆ satisfying the con-
dition only{a,b}((t,m), ak1b . . . aknbakn+1b), and a rewriting sequence from
(t,m) under ak1bak2b . . . aknbakn+1b such that t includes at most n sequen-
tial compositions accessed during this rewriting sequence. Due to induc-
tion hypothesis, we can choose k1, . . . , kn such that (k1, . . . , kn) ∈ Kn(∆).
Hence, for every l ∈ N, there exist distinct actions al, bl ∈ Act(∆), a state
(tl,ml) of the system ∆ satisfying only{al,bl}((tl,ml), a

k1
l bl . . . a

kn
l bla

l
lbl), and

a rewriting sequence

(tl,ml)
a
k1
l bl...a

kn
l bl

−→ (t′l,m
′
l)

allbl−→ (t′′l ,m
′′
l)

such that tl includes exactly n sequential compositions accessed during the
rewriting under ak1

l bl . . . a
kn
l bl and no other sequential composition of tl is

accessed during the rewriting sequence from a state (t′l,m
′
l) under allbl.

Let α be an infinite subsequence of sequence {(t′l,m
′
l)} such that all

states in α have the same value of the store (say m′) and the same corre-
sponding pair of letters al, bl (say a, b); the existence of such a subsequence
follows from the finiteness of the constraint system and Act(∆).

Besides the non-rewritten subterms of tl (called blue subterms), in t′l of α
there are new subterms (called green subterms) created during the rewriting
sequence form (tl,m) under ak1b . . . aknb. Further, there are two types of
sequential compositions in t′l, the non-accessed sequential compositions of
tl (called blue sequential compositions) and sequential compositions created
during the rewriting sequence form (tl,m) under ak1b . . . aknb (called green
sequential compositions). The green subterms of t′l are created during at most
k1 + k2 + · · · + kn + n actions. Hence their number and syntactical lengths
are bounded independently on l.

14

Let interesting ready sequential components (irs-components) be subterms
of t′l corresponding to ready sequential component of term t′l with all green
sequential compositions replaced by parallel compositions. As the blue se-
quential compositions are not accessed during the rewriting sequence un-
der alb, the irs-components are the only subterms of t′l which can be possi-
bly rewritten under alb. As there can be only green sequential compositions
in every irs-component, we consider every irs-component with a green sub-
term as a parallel composition of one blue subterm and one green subterm.

Let α′ be an infinite subsequence of α such that between every two
states t′i, t

′
j of α′, i < j, there is a bijection of irs-components with a green

subterm such that corresponding green subterms are identical and for each
corresponding blue subterms si, sj ∈ P there is a term s ∈ P such that
si‖s = sj ; the existence of such subsequence follows from the bound of the
number and the syntactical lengths of green subterms and due to Dickson’s
lemma.

In terms tl of α′ there can be also irs-components without a green sub-
term. As we are interested in the rewriting sequence under alb only, we can
narrow down the meaning of the marking irs-components without a green
subterm; in the following irs-components without a green subterm are the
only irs-components without a green subterm rewritten during the rewrit-
ing sequence under alb. As every irs-component without a green subterm
is a ready sequential component of a blue sequential composition, from
Lemma 5.14 it follows that there are at most |C| + 1 irs-components with-
out a green subterm, where C is a set of constraints of ∆. Due to Dickson’s
lemma, there are two states (t′i,m

′), (t′j ,m
′) in α′, such that i < j and there

is a bijection of the irs-components without a green subterm such that for
each corresponding components si, sj ∈ P there is a term s ∈ P such that
si‖s = sj .

To sum up, there is a bijection between irs-components of t′i and t′j (we
do not consider irs-components without green subterm that are not rewrit-
ten under aib and ajb respectively) such that green subterms of correspond-
ing components are identical and blue subterms of irs-components of t′i are
included in blue subterms of corresponding components of t′j . Besides con-
sidered irs-components there are no other subterms of t′i rewritten during
the rewriting sequence under aib. Hence the sequence of actions aib per-
formed by (t′i,m

′) can be performed also by (t′j ,m
′). The contradiction fol-

lows from only{a,b}((ti,m), ak1b . . . aknbaib), only{a,b}((tj ,m), ak1b . . . aknbajb),
and i < j.

15

Example 5.17. Let us consider the following wBPA system with initial state pX .

pX
a
−→ pAX pX

b
−→ pBX pA

c
−→ pε pB

d
−→ pε

pA
a
−→ pAA pA

b
−→ pBA pA

e
−→ qε pB

f
−→ qε

pB
a
−→ pAB pB

b
−→ pBB qA

e
−→ qε qB

f
−→ qε

In the following, actions a, b, c, d are called I-actions and actions e, f are
called II-actions). Rules labelled by I-actions or II-actions are called I-rules or
II-rules, respectively. States reachable from the initial state through I-actions
are called I-states.

In the rest of this subsection we prove that there is no fcPAN system
bisimilar wBPA given above.

Let bis-fcPAN denote an assumed fcPAN system ∆ bisimilar to wBPA
of Example 5.17 such that I-rules of ∆ are of the form (t1

x
−→ t2, tt, tt).

Please note these rules cannot be forbidden by any value of the store.

Lemma 5.18. If there is a fcPAN ∆ bisimilar to the wBPA of Example 5.17, then
bis-fcPAN ∆′ exists.

Proof. As the constraint system of ∆ is finite it follows there exists a I-state
(t,m) of ∆ such that each I-state reachable from (t,m) has also m on the
store (the contrary implies the infiniteness of the constraint system). As
(t,m) is a I-state, there exists a word w ∈ {c, d}∗ such that (t,m)

w
−→ (s,m)

and (s,m) is bisimilar to the initial state pX of the wBPA. The system ∆′

is derived from ∆ as follows: the constraint system is restricted to the part
above m (including m renamed to tt), s is the initial term, and I-rules are of
the form (t1

x
−→ t2, tt, tt), where (t1

x
−→ t2, c,m) are I-rules of ∆ such that

m ` c.

Lemma 5.19. Each I-state of a bis-fcPAN ∆ has exactly one ready sequential
component that is not deadlocked.

Proof. As no I-state is deadlocked, each I-state contains at least one non-
deadlocked ready sequential component. We prove that there is exactly
one such a component. We assume contrary and derive a contradiction.
Let t, s be two distinct non-deadlocked ready sequential components of a
I-state. The are two cases.

At first we discuss I-states non-bisimilar to the initial state. We may
assume that I-state can perform e action. Let t be the ready sequential com-
ponent that can perform e action.

16

• s cannot perform any I-action as the e action performed by t is not
able to forbid the I-rules (i.e., to disable these actions),

• s cannot perform e. Otherwise, neither s can perform enabled I-
actions, nor other ready sequential component can perform them (ac-
cording to the previous item with exchanged t for s),

• s cannot perform f as this action is disabled in the considered state.

We have a contradiction as non-deadlocked component s cannot do any
action.

Now we focus on the states bisimilar to the initial state. Let us assume
that t can perform a action and s can perform a b action (t and s can possibly
perform the other action as well). Each possible next state has exactly one
non-deadlocked ready sequential component. Thus, a action (performed
by t) deadlocks or rewrites onto ε term t (the action cannot deadlock or re-
move s) and the same effect has action b on s. Further, these actions add the
ability to perform action e or f to the next state. Hence, a action performed
by t changes the ready sequential component s at the same time. This is
possible only if t and s are contained in the subterm of the form (t.r)‖s,
where r ∈ P r {ε} and a action rewrites t onto ε:

(t.r)‖s
a
−→ r‖s

For the same reason there is a term r′ ∈ P r {ε} such that t and s are
contained in the subterm of the form t‖(s.r′). This is a contradiction.

Definition 5.20. A ready sequential component is called dead iff it is non-trivial
and deadlocked whenever the value of the store is tt. A left subterm of a sequential
composition is called dead iff it contains (or is) dead ready sequential component.
A sequential composition is called dead iff its left subterm is dead.

We distinguish between a type and an instance of a ready sequential
component. The type is given by (syntax of) the corresponding parallel
subterm while the instance is given by the subterm together with its posi-
tion within the term. If it is clear from the context, we do not specify the
meaning explicitly.

In what follows any dead ready sequential component occuring in some
I-state of ∆ is referred to as dead ready sequential component of bis-fcPAN ∆.

Lemma 5.21. Given bis-fcPAN ∆, the set of types of dead ready sequential com-
ponents occuring in I-states of ∆ is finite.

17

Proof. As a dead ready sequential component is non-trivial, it remains ready
and unchanged during an arbitrary sequence of I-actions. In a bis-fcPAN ,
there are only two possibilities of creating a dead ready sequential compo-
nent. Either it is included in the initial term, or it is on the right-hand side of
an applied rule (it cannot be created by deadlocking some non-deadlocked
ready sequential component as each I-state has exactly one non-deadlocked
ready sequential component). Hence the lemma follows from the fact that
the length of an initial term and the set of rules are both finite.

Definition 5.22. Let ∆ be a bis-fcPAN and r be a dead ready sequential compo-
nent of ∆. Then r is called

• restricted for a I-state (t, tt) of ∆ iff there is no I-state with an added in-
stance of dead ready sequential component r reachable from (t, tt),

• multiplicative for a I-state (t, tt) of ∆ iff for each I-state (t′, tt) reachable
from (t, tt), there is a I-state (t′′, tt) reachable from (t′, tt) such that there are
more instances of r in (t′′,m) than in (t′,m) (i.e. arbitrary many instances
of r can be added).

We call a I-state (tdr, tt) of ∆ dead-restricted iff every dead ready sequential
component of ∆ is either restricted, or multiplicative for (tdr, tt).

Lemma 5.23. Let ∆ be a bis-fcPAN . There is a dead-restricted state (tdr, tt) of ∆
reachable from the initial state.

Proof. If every dead ready sequential component of ∆ is either restricted, or
multiplicative in a I-state (t, tt) then the (tdr, tt) is found. Otherwise, there
is a dead ready sequential component r such that it is neither restricted,
nor multiplicative. As r is not multiplicative for (t, tt), there is a I-state
(t′, tt) reachable from (t, tt) such that every I-state reachable from (t′, tt) has
the same number of instances of r as (t′, tt). Hence, r is restricted for the
I-state (t′, tt). Compared to (t, tt), at least one more type of dead ready
sequntial component is restricted. Due to Lemma 5.21, we can find (tdr, tt)
by applying this procedure finitely many times.

Lemma 5.24. Given i ∈ N, bis-fcPAN ∆, and dead-restricted state (tdr, tt), there
is a dead-restricted state t(i)dr of ∆ reachable from the state (tdr, tt) such that t(i)dr in-
cludes at least i instances of each multiplicative dead ready sequential component.

Proof. This lemma is a straightforward consequence of the definition of a
multiplicative dead ready sequential component.

18

In the following, by a sequential composition is behind a subterm s in term
r we mean that s is included in the left subterm of the sequential compo-
sition in term r. By a subterm t is behind a subterm s in term r we mean that
there is a sequential composition in the term r such that t is included in
the left subterm and s is included in the right subterm of this sequential
composition.

Lemma 5.25. If there are more than i instances of dead ready sequential com-
ponent r in a state (t, tt) of a bis-fcPAN , then all the sequential compositions
behind these instances are inaccessible from (t, tt) under any sequence of the form
ek1fek2f . . . eknf such that n ∈ N0 and kj ≤ i for every 1 ≤ j ≤ n.

Proof. We assume the contrary and derive a contradiction. Let (t, tt) be a
state of a bis-fcPAN with more than i instances of some dead ready sequen-
tial component such that a sequential composition behind some of these
instances is accessible under ek1fek2f . . . eknf . The definition of bis-fcPAN
implies that only{e,f}((t, tt), ek1fek2f . . . eknf) holds. From the definition of
fcPAN, it follows that a rule which has been already used cannot be forbid-
den in future. Thus the rewrite rule generating the first action performed
by one of the instances can be immediately applied on the other instances.
Hence, coherent sequence of more that i actions with the same label can be
performed. This is a contradiction with only{e,f}((t, tt), ek1fek2f . . . eknf).

Lemma 5.26. There is no fcPAN system bisimilar to the wBPA of Example 5.17.

Proof. Lemma 5.18 implies that it is sufficient to show that there is no bis-
fcPAN . For the sake of contradiction, let us assume that there is a bis-fcPAN
system ∆ with the initial term t0 and set of constraints C . Let us consider
the following transition sequence:

(t0, tt) −→∗ (tdr, tt) −→∗ (t
(k)
dr , tt)

wn−→ (r, tt)

The state (tdr, tt) is a dead-restricted state (its reachability follows from
Lemma 5.23). Let l be the number of sequential compositions in tdr and n =
l+|C|+1. Lemma 5.16 implies thatKn(∆) is non-empty. Let (k1, k2, . . . , kn) ∈

Kn(∆) and k be the maximum of k2, k2, . . . , kn. Then (t
(k)
dr , tt) denotes the

dead-restricted state with more than k instances of each multiplicative dead
ready sequential component (reachable is due to Lemma 5.24). Further,
wn = bakn . . . bak2bak1 .

The term r is a non-deadlocked term hence it can be written in the form

(· · · ((((((· · · ((((t.t1)‖s1).t2)‖s2) · · · .tn)‖sn).γ)‖δ).γ′)‖δ′) · · · .γ(m))‖δ(m),

19

where t, t1, . . . , tn−1 ∈ P , t 6= ε is the only one non-deadlocked ready se-
quential component, and tn, s1, . . . , sn, γ, . . . , γ

(m), δ, . . . , δ(m) ∈ G.
As (k1, . . . , kn) ∈ Kn(∆) and only{c,d}((r, tt), ck1d . . . cknd) then r in-

cludes at least n sequential compositions accessed (see Definition 5.13) dur-
ing the rewriting sequence from (r, tt) under ck1d . . . cknd.

If si includes a sequential composition then si includes a non-trivial
ready sequential component. According to Lemma 5.19, this non-trivial
ready sequential component is deadlocked. Hence si includes a dead ready
sequential component and all sequential compositions behind this compo-
nent are dead. This means that the compositions are inaccessible under
ck1d . . . cknd. Thus at most i−1 sequential compositions are accessed under
I-actions. This is the contradiction with the property given in the previous
paragraph. Hence s1, . . . , sn−1 ∈ P , t, t1, . . . , tn−1 ∈ P r {ε}, and all dead
ready sequential components of r are included in subterms δ, . . . , δ(m). Fur-
ther, similarly to the sequential compositions of si discussed above, all the
sequential compositions of δ, . . . , δ(m) are dead.

From Lemma 5.19 it follows that ti‖si (where 1 ≤ i ≤ n) is a new ready
sequential component appeared by accessing the i-th sequential composi-
tions. (Precisely, in case of tn 6∈ P , the new ready sequential component
appeared by accessing the n-th sequential composition is a proper subterm
of tn‖sn.)

As (k1, . . . , kn) ∈ Kn(∆) and only{e,f}((r, tt), ek1f . . . eknf), r includes
at least n sequential compositions accessed during the rewriting sequence
from (r, tt) under ek1f . . . eknf .

We recall that all dead sequential compositions are in δ, . . . , δ(m). From
Lemma 5.25 it follows that all the sequential compositions behind a mul-
tiplicative dead ready sequential components are inaccessible. Hence, the
only accessible sequencial compositions of δ, . . . , δ(m) are behind restricted
dead ready sequencial components. According to the definitions, all re-
stricted dead ready sequencial components and the terms behind them
have already been created in tdr . Hence, there are at most l such accessible
compositions in r.

Thus at least |C| + 1 (= n − l) sequential compositions of the subterm
((· · · ((t.t1)‖s1) · · · .tn)‖sn) are accessed during a rewriting sequence from
(r, tt) under ek1f . . . eknf . In other words, all the sequential compositions
of ((· · · ((t.t1)‖s1) · · · .t|C|+1)‖s|C|+1) are accessed during the sequence.

For every 1 ≤ i ≤ |C| + 1, accessing the i-th composition have to be
preceded by changing si; otherwise we get the same ready sequential com-
ponent ti‖si as in the rewriting sequence under ck1d . . . cknd and I-actions

20

can be performed. The only possibility of forcing the preceding is to change
the store during at least one action performed by si. Otherwise all the ac-
tions performed by si can be omitted without any effect on the rewriting
sequence accessing the i-th composition. Hence we have to change a con-
straint at least |C| + 1 times. It is the contradiction and Lemma 5.26 is
proved.

6 Conclusion and future work

We have extended Process Rewrite Systems (PRS) [12] by ’weak’ finite-
state unit and have classified new classes by their expressiveness. We have
shown the refined hierarchy (w.r.t. bisimilarity) containing new classes as
well as those generated by both PRS and of two other PRS extensions in-
troduced in [9, 21].

We emphasize the results showing that BPP class and its three exten-
sions form a strict (sub)hierarchy w.r.t. bisimulation,

BPP (fcBPP (wBPP (seBPP (PN

which is decidable (even PSPACE-complete) on the BPP class and undecid-
able on the class of state-extended BPP (i.e. PPDA). It remains open for
other two classes (i.e. fcBPP and wBPP) and is a subject of our further
research. We are motivated by the fact the strictness of two left-most in-
clusions can be proved (but is not shown here) even for language equiva-
lence. The strictness of inclusion between wBPP and seBPP on the language
equivalence level is just our conjecture.

References

[1] A. Bouajjani, R. Echahed, and P. Habermehl. On the verification prob-
lem of nonregular properties for nonregular processes. In Proc. of
LICS’95. IEEE, 1995.

[2] O. Burkart, D. Caucal, F. Moller, and B. Steffen. Verification on infi-
nite structures. In Handbook of Process Algebra, pages 545–623. Elsevier,
2001.

[3] O. Burkart, D. Caucal, and B. Steffen. Bisimulation collapse and the
process taxonomy. In Proc. of CONCUR’96, volume 1119 of LNCS,
pages 247–262. Springer, 1996.

21

[4] O. Burkart and J. Esparza. More infinite results. Electronic Notes in
Theoretical Computer Science, 5, 1997.

[5] D. Caucal. On the regular structure of prefix rewriting. Theoretical
Computer Science, 106:61–86, 1992.

[6] S. Christensen, Y. Hirshfeld, and F. Moller. Bisimulation is decidable
for all basic parallel processes. In Proceedings of CONCUR’93, volume
715 of LNCS, pages 143–157. Springer, 1993.

[7] E. M. Clarke and E. A. Emerson. Design and synthesis of synconiza-
tion skeletons using branching time temporal logic. In Proc. IBM Work-
shop on Logic of Programs, volume 131 of LNCS, pages 52–71. Springer,
1981.

[8] P. Jančar. Strong bisimilarity on basic parallel processes is PSPACE-
complete. In Proc. of 18th IEEE Symposium on Logic in Computer Science
(LICS’03), pages 218–227. IEEE Computer Society, 2003.

[9] P. Jančar, A. Kučera, and R. Mayr. Deciding bisimulation-like
equivalences with finite-state processes. Theoretical Computer Science,
258:409–433, 2001.

[10] A. Kučera and P. Jančar. Equivalence-checking with infinite-state sys-
tems: Techniques and results. In Proc. SOFSEM’2002, volume 2540 of
LNCS. Springer, 2002.

[11] M. Maidl. The common fragment of CTL and LTL. In Proc. 41th Annual
Symposium on Foundations of Computer Science, pages 643–652, 2000.

[12] R. Mayr. Process rewrite systems. Information and Computation,
156(1):264–286, 2000.

[13] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[14] F. Moller. Infinite results. In Proc. of CONCUR’96, volume 1119 of
LNCS, pages 195–216. Springer, 1996.

[15] F. Moller. Pushdown Automata, Multiset Automata and Petri Nets,
MFCS Workshop on concurrency. Electronic Notes in Theoretical Com-
puter Science, 18, 1998.

[16] D. Muller, A. Saoudi, and P. Schupp. Alternating automata, the weak
monadic theory of trees and its complexity. Theoret. Computer Science,
97(1–2):233–244, 1992.

22

[17] A. Pnueli. The temporal logic of programs. In Proc. 18th IEEE Sympo-
sium on the Foundations of Computer Science, pages 46–57, 1977.

[18] V. A. Saraswat and M. Rinard. Concurrent constraint programming.
In Proc. of 17th POPL, pages 232–245. ACM Press, 1990.

[19] J. Srba. Roadmap of infinite results. EATCS Bulletin, (78):163–175, 2002.

[20] J. Srba. Strong bisimilarity and regularity of basic parallel processes
is PSPACE-hard. In Proc. STACS 2002, volume 2285 of LNCS, pages
535–546. Springer, 2002.

[21] J. Strejček. Rewrite systems with constraints, EXPRESS’01. Electronic
Notes in Theoretical Computer Science, 52, 2002.

23

Copyright c© 2003, Faculty of Informatics, Masaryk University.
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

Publications in the FI MU Report Series are in general accessible
via WWW and anonymous FTP:

http://www.fi.muni.cz/informatics/reports/
ftp ftp.fi.muni.cz (cd pub/reports)

Copies may be also obtained by contacting:

Faculty of Informatics
Masaryk University
Botanická 68a
602 00 Brno
Czech Republic

