
Routing and Level 2 Addressing in a Hardware
Accelerator for Network Applications

David Antoš∗†
†CESNET, z. s. p. o.,

Zikova 4, Praha 160 00, Czech Republic
Email: {antos,rehak}@fi.muni.cz

Vojtěch Řehák∗
∗Faculty of Informatics,

Masaryk University Brno,
Botanická 68a, Brno 602 00, Czech Republic

Abstract— Personal computers are known to be highly usable
as internet routers. To overcome their throughput limitations,
a hardware accelerator can be employed. For the purposes of
packet classification in the accelerator, we investigate a way to
combine routing, level 2 addressing, and packet filtering into a
single lookup structure.

This paper describes the first part of the process: a method
to combine routing and level 2 addressing to a single lookup. A
formal model of routing and level 2 addressing is presented and
used to prove correctness of the method and its equivalence to
operating system behaviour.

I. INTRODUCTION

Personal computers have shown that they are suitable as
mid-sized routing platform [1]. Their throughput is comparable
even with middle-class commercial routers. However, main
limitation of their performance is the throughput of system bus.
This bottleneck can be mitigated if packet switching is (at least
partially) offloaded to an acceleration card, so that significant
part of the network traffic handled by the accelerator only,
avoiding buses inside the PC.

Operating systems perform packet classification in several
stages: routing table lookup, packet filtering (usually spread
into several stages at various places of the IP stack), and
level 3 to level 2 address translation (neighbour cache or
ARP table). The tables are usually maintained separately. Even
open-source BSD clones that kept routing and ARP tables in
a single structure tend to separate them [2].

Packet classification, i.e., deciding how to handle a packet,
is the central part of the hardware routing accelerator. Because
hardware resources limitations, we have designed a classifica-
tion engine performing the classification in a single lookup
operation. We have to combine routing tables, ARP tables,
and packet filtering into a single structure. The first step to that
goal is to combine routing and ARP tables. In this paper, we
present a formalism to denote routing and ARP (Section III),
a method to combine routing and ARP to a single lookup
structure suitable for the accelerator and a method to obtain
concise representation of the structure (Section IV).

Due to space limitations, full proofs of theorems presented
in this paper can be found in [3].

II. RELATED WORK

Basic principles of sending packets over a subnetted net-
work have been stated in [4]. Many methods to store routing

tables have been investigated, we refer to the overview [5] for
a detailed survey.

Information on processing routing and ARP in hardware
boxes has been published in academic products only. Wash-
ington University Gigabit Switch [6] maintains the tables
separately, similarly to majority of operating systems.

The formalism we developed is inspired by Frantzen’s work
on packet filters [7].

III. ROUTING AND ARP
This section describes how routing and ARP resolution are

employed in the operating system and how they cooperate.

A. Routing table

Definition 1 (IP , routing table): Let IP be the set of IP
addresses. Let Interfaces be a finite set of network interfaces.
Routing table is a function of IP addresses returning the
interface and next hop IP address where to send the packet

R: IP → Interfaces × IP .
The way of address allocation reduces the number of

prefixes. Network interfaces are connected to a network.
The network shares the most significant bits of the address,
the common part is called a network prefix and its length
is a network mask. Prefixes may have arbitrary lengths as
standardised by Classless Inter-Domain Routing (CIDR) [8].

To handle a packet, a router checks its destination address
and finds the longest matching prefix in its routing table [4].
Routing table records are of two kinds, direct and indirect.

Definition 2: Direct route is a route leading to the network
the router is directly connected to (a local network shares the
same network prefix). Its next hop address is equal to its final
destination. Indirect route is a route to the network that is
accessed via an intermediate router, a gateway.

Although we have described routing tables as longest match-
ing prefix structures, we define it formally as first match lists.

Definition 3 (Routing table syntax): A routing table R is a
sorted list of Size(R) rules. Route Ri is the i-th rule for 1 ≤
i ≤ Size(R) and Len(Ri) is the length of the prefix in that
rule.

Let [Ri] (which is a subset of IP ) stand for the packets that
match the i-th rule. If the routing table is represented with
a trie structure, [Ri] corresponds to the subtrie addressed by
the prefix of Ri. Len(Ri) is then the length of the prefix. The



prefix is said to have full length if it contains a complete IP
address (i.e., Len(Ri) = 32 for IPv4 and 128 for IPv6).

Route Ri is called default if Len(Ri) = 0 (then [Ri] = IP ).
On the “output side,” NHIP(Ri) is the IP address of the next
hop and NHInt(Ri) is the output interface of the i-th rule.

If a destination address is not found in the routing table, the
router drops the packet and informs the sender of the packet
with “no route to host” error message.

We require, without loss of generality, that the routing table
satisfies several conditions.

1) (First match) The rules are sorted in non-increasing
prefix lengths. Formally, for 1 ≤ i < j ≤ Size(R),
condition Len(Ri) ≥ Len(Rj) holds. Note that this
ordering can be obtained dumping the trie and sorting
its records.

2) (Uniqueness) Prefixes of the same lengths are disjoint,
i.e., for all i, j such that 1 ≤ i < j ≤ Size(R)
and Len(Ri) = Len(Rj) we have [Ri] ∩ [Rj ] = ∅.

The ordering allows us to define the semantics meaningfully.
Definition 4 (Result of routing): To obtain the result of

routing for a destination address p ∈ IP , we find R(p) = Ri

where i is the smallest index satisfying p ∈ [Ri]. Due to the
ordering, it corresponds to finding the longest matching prefix
of the destination address p.

The next hop address NHIP(R(p)) is the address of the
gateway for indirect routes. For direct routes, next hop equals
to the final destination: NHIP(R(p)) = p.

We will show that first match and trie representations can be
converted. A first-match list equivalent to a given trie structure
can be obtained by means of traversing the trie and sorting the
rules depending on prefix lengths. The routing table contains
at most one outcome for a particular prefix, therefore the first
match and uniqueness properties are satisfied. In the opposite
way, we just insert prefixes in the list into a trie. This is
possible as prefixes of equal lengths are disjoint and the best
matching prefix in the trie for an address is the first matching
rule from the list.

We will need an extra property to be satisfied by the routing
table. This property is purely technical. It will be necessary to
allow us to re-arrange the order of records when routing and
ARP tables are combined in Section IV.

3) (Relationship of direct and indirect networks) Direct net-
works do not contain indirect networks as their subnets
with the exception of full length entries. Formally, for
each j such that 1 ≤ j ≤ Size(R) and Rj is direct we
require that if Ri exists for an i such that 1 ≤ i < j and
[Ri] ∩ [Rj ] 6= ∅ then Ri is also direct or full-length.

This requirement does not have to be satisfied by real-world
routing tables. The table can be easily converted to comply
with it by expanding the direct prefix, adding at most a number
of prefixes determined by the difference of lengths of the
conflicting prefix pair. Moreover, a single Depth First Search
over the trie representation is sufficient to check and convert
the table [3].

B. Link Layer Addressing

In order to reach the destination host, a packet must be
moved over each link on the path. In order to do so, the IP
address of the next hop must be translated to its link address
to build the link layer frame. Addresses on the link layer
(also called MAC, hardware, or physical addresses) have flat
structure (as opposed to the hierarchy of IP addresses).

Definition 5 (ARP table): ARP table is a function

A: IP → MAC

where MAC is the set of physical addresses.
ARP table A is a list of records. We denote ARP records as

Ai for 1 ≤ i ≤ Size(A). The ordering of rules is not important
here as we require each set [Ai] to contain just a single IP
address. We require the records to be unique, i.e., for 1 ≤ i <
j ≤ Size(A) the condition [Ai] ∩ [Aj ] = ∅ holds. The result
of the ARP lookup is the MAC address NHMAC(Ai).

The result of ARP lookup for an address p ∈ IP is the
record A(p) = Ai such that p ∈ [Ai].

The ARP table does not have to cover the complete IP
address space. If the corresponding MAC address is not found
for the next hop, ARP protocol [9] is used to learn it.

IV. ROUTING AND ARP COMBINATION

In this section, we describe a method to combine routing
and level 2 addressing into a single lookup operation.

A. Software Cooperation

An essential principle is used in the design: If the hardware
lookup cannot resolve a packet itself it can send it to software
in the same way as an ordinary network adapter would.

The accelerator behaves as an ordinary network adapter card
from the operating system’s point of view, only switching
some traffic by itself. The task is to make behaviour of the
accelerator equivalent to the behaviour of the operating system.

In the algorithms, this sending the packet to the operating
system will be denoted by a “SW” action. Of course, packets
passing through software are processed more slowly than
packets switched by the hardware engine. It does not have to
indicate a serious problem if the portion of the traffic processed
by the operating system related to the total traffic is small
enough.

B. RA Table Definition

The structure combining routing and ARP is called a
routing-ARP (RA) table:

RA: IP → (Interfaces ×MAC) ∪ {SW }

The RA table returns either the interface and MAC address of
the next hop where the packet should be sent or it indicates
that the packet must be processed by software.

Definition 6 (RA table): Routing-ARP table RA is an or-
dered list of rules. We will use RAi for routing-ARP rules
(for 1 ≤ i ≤ Size(RA)) and [RAi] for IP addresses affected
by the rule. Analogically with routing syntax, NHInt(RAi)



and NHMAC(RAi) are the interface to reach the next hop and
the hardware address of the next hop, respectively.

We define Len(RAi), default and full-length records simi-
larly as for the routing table.

To obtain a result for a destination address p ∈ IP ,
denoted RA(p), we find RAi for the smallest i such that p ∈
[RAi].

C. Computing First-Match RA Tables

To create the routing-ARP table, we “inject” ARP entries
inside the routing table. In case of locally connected network,
we add all resolved ARP entries and finally we send the rest of
the network to the operating system (in order to resolve ARP
and/or emit an error). For indirect routes we insert the MAC
address of the next hop into the table directly instead of its IP
address if the MAC address is known. Otherwise the route
must be processed by the operating system. The operating
system runs the ARP protocol to learn the appropriate record.
Changes in the ARP table and/or the routing table cause the
RA table to recompute.

Algorithm in Fig. 1 is a pseudocode for combining routing
table represented as a list (which is equivalent to traversing
a trie in non-increasing prefix lengths) and ARP table (rep-
resented in an arbitrary manner, say a list) into the RA table
represented as a list.

We have to show that the RA result is the same as ordi-
nary software processing where lookups in routing table and
resolving ARP are performed separately. Sending the packet
to software is also a correct result—in that case the packet
is processed by the original routing and ARP tables. We start
with an observation that Fig. 1 performs “useful work,” i.e., at
least some traffic is accelerated. For each direct route, routing-
ARP records are created for all destinations if the appropriate
ARP record is known. If the ARP record of a gateway is known
it is used to create a routing-ARP record for the indirect route.

Lemma 1: RA table produced by algorithm in Fig. 1 is total
(i.e., it is defined for each destination address p ∈ IP ).

Proof: The algorithm inserts the default RA rule. We
recall that full versions of all proofs can be found in [3].

We have shown that the result of RA lookup is defined. In
the following theorem, we show that the result is correct.

Theorem 1 (Correctness of RA compilation): For each des-
tination address p ∈ IP , routing-ARP table contains a
result that is either SW or it is the same as apply-
ing routing and then ARP on the destination address, i.e.,
NHInt(RA(p)) = NHInt(R(p)) and NHMAC(RA(p)) =
NHMAC(A(NHIP(R(p)))).

Proof: By discussing origins of all RA rules.
We have obtained a routing-ARP table that is behaviourally

equivalent to the original routing and ARP tables. The RA
table is first match but it can contain redundancies. It can be
advantageous to have a trie representation of the table (i.e., an
equivalent longest matching prefix representation) in order to
obtain a concise representation.

If we are able to sort RA entries in a non-increasing way
and ensure that prefixes of equal lengths are disjoint we would

RA = ∅
l = 1

for i = 1 to Size(R) do

if Ri is direct
then

/* go through ARP records in this local subnet: */
for each j such that 1 ≤ j ≤ Size(A)

and [Aj ] ⊆ [Ri] do

[RAl] = [Aj ]

RAl = (NHInt(Ri), NHMAC(Aj))

l = l + 1

done

/* the rest must get resolved in software */
[RAl] = [Ri]

RAl = SW

l = l + 1

else /* Ri is indirect */
if exists k such that NHIP(Ri) = [Ak]

then

[RAl] = [Ri]

RAl = (NHInt(Ri), NHMAC(Ak))

l = l + 1

else

[RAl] = [Ri]

RAl = SW

l = l + 1

fi

fi

done

if l = 1 ∨ [RAl−1] 6= IP /* ∨ requires lazy evaluation */
[RAl] = IP /* ensure that RA contains a default route */
RAl = SW

fi

Fig. 1. Combining routing and ARP into RA table

obtain a table that can be converted into a trie form. To reach
this goal, let us study the ordering and relations of rules
produced by the algorithm and potential redundancies in the
table that have to be discarded.

Theorem 2 (RA compilation sort order): Algorithm in
Fig. 1 sorts the resulting RA table in non-increasing prefix
lengths with exception of prefixes of full lengths, i.e.,
for 1 ≤ k < l ≤ Size(RA) the following condition holds:
Len(RAk) ≥ Len(RAl) or RAl has full length. Moreover,
prefixes with equal lengths with exception of full-length
prefixes are disjoint.

Proof: The algorithm preserves lengths of prefixes and/or
expands them to full lengths.

The full-length prefix for a particular destination address
may be repeated across the table several times. In that case
the first occurrence is of interest as all the following ones are
unreachable and may be omitted. For formal description, see
Lemma 6 of [3].

Full-length prefixes are mixed into prefixes of other lengths.



This algorithm is the same as the algorithm in Fig. 1 with the
following modifications.

• The resulting RA table is kept in a trie structure. (Hence it
is sorted on-the-fly in non-increasing way and all records are
unique.)

• Let us understand assignments that create rules RAl in the
following way:

– Assignment to [RAl] is creating a path in the trie denoting
the prefix of the RAl rule.

– Assigning the output to the rule (e.g., RAl =
(NHInt(Ri), NHMAC(Aj))) means assign the output only
if it was empty previously.

Fig. 2. Combining routing and ARP into RA table expressed as trie

In order to prepare the table to be converted into longest prefix
semantics it would be more suitable to move the prefixes to
the beginning of the table. To ensure that this does not change
the meaning of the table, it is enough that the address space
affected by the prefix is disjoint with all the preceding rules
(i.e., rules of arbitrary lengths). We have to be interested in the
first occurrence of the full-length prefix for an address only.

The following result ensures that the first occurrence of
a full length entry in the RA table is disjoint with all its
predecessors. From the operational point of view, the first
occurrence of a full length entry for an address is reachable
in the routing-ARP table.

Theorem 3 (Sorting full-length RA records): Let RAl be
the first occurrence of full-length RA record for a given
destination address, precisely, let RAl be a full-length RA
record satisfying that for each full-length record RAm such
that [RAl] = [RAm] we have l ≤ m. Then for each k such
that 1 ≤ k < l condition [RAk] ∩ [RAl] = ∅ holds.

Proof: By discussing all relationships between pairs of
prefixes. This proof is very technical and we urge a curious
reader to study it in [3]. The property “Relationship of direct
and indirect networks” is necessary to prove the theorem and
we refer to the technical report for an example how this
property can be violated in real world tables.

D. Longest Matching Prefix Representation of the RA Table

We have observed following properties of the routing-ARP
table produced by the algorithm in Fig. 1:

1) Only the first occurrence of an address space is of
interest, precisely if the algorithm creates an entry RAl

and an entry RAk such that [RAk] = [RAl] and k < l
has been created before, we do not have to store RAl

into the RA table.
2) Full-length entries may be pushed to the beginning of

the table thanks to Theorem 3, obtaining a table sorted
in non-increasing prefix lengths.

Instead of post-processing the table, we may change the
order of the rules immediately during the run of the algorithm
with a small change of semantics of assignments. The final ver-
sion of the algorithm is shown in Fig. 2. With those changes,
the algorithm constructs an equivalent trie representation of
the RA table.

V. CONCLUSION

The paper brings two main contributions: stating a formal
model of routing and ARP from the packet switching point
of view and giving a method to combine routing and level 2
addressing into a single lookup operation. Special interest has
been given to showing correctness of the approach with respect
to rule reordering to obtain a concise representation of the
RA structure that is suitable for further processing. Although
various combinations of routing and ARP tables are used in
practice (mainly in BSD operating systems), their behaviour
has not been studied formally before.

The property on relationship of direct and indirect routes is
a point of possible improvements. Although we have a simple
method to convert a routing table to the required form, it would
be interesting to incorporate the condition directly into the
algorithm and to compare it to processing “in two stages.”

Results described in this paper have been used as a base for
a method to combine routing, ARP, and packet filtering into
a single lookup operation. The idea behind adding the packet
filter is based on Interval Decision Diagram (IDD) represen-
tation of the filter [10]. We combine the IDD representation
with the RA table, distributing the filters into relevant portions
of the address space. The resulting structure is employed in
the hardware accelerator COMBO6 [1].

ACKNOWLEDGEMENT

This project has been supported by a research intent “Opti-
cal Network of National Research and Its New Applications”
(MŠM 6383917201). The work of Vojtěch Řehák has been
partially supported by the Academy of Sciences of the Czech
Republic grant No. 1ET408050503.

REFERENCES

[1] J. Novotný, O. Fučı́k, and D. Antoš, “Project of IPv6 Router with FPGA
Hardware Accelerator,” in Field-Programmable Logic and Applications,
13th International Conference FPL 2003, P. Y. Cheung, G. A. Constan-
tinides, and J. T. de Sousa, Eds., vol. 2778. Springer Verlag, September
2003, pp. 964–967.

[2] L. Rizzo, “New arp code snapshot for review,” Apr 2004,
Mailing list FreeBSD-current, http://lists.freebsd.org/pipermail/freebsd-
current/2004-April/026380.html.

[3] D. Antoš, “Combining Routing and ARP to a Single Lookup Operation,”
CESNET, z. s. p. o., Tech. Rep. 4/2005, August 2005.

[4] J. C. Mogul and J. Postel, “RFC 950: Internet Standard Subnetting
Procedure,” Aug. 1985, updates RFC0792.

[5] D. Antoš, “Overview of Data Structures in IP Lookups,” CESNET, Tech.
Rep. 9/2002, September 2002.

[6] F. Kuhns, J. DeHart, A. Kantawala, R. Keller, J. Lockwood, P. Pappu,
D. Richard, D. Taylor, J. Parwatikar, E. Spitznagel, J. Turner, and
K. Wong, “Design of a high performance dynamically extensible router,”
in Proceedings of DARPA Active Networks Conference and Exhibition,
San Francisco, CA, USA, May 2002.

[7] L. Frantzen, “Approaches for Analysing and Comparing Packet Filtering
in Firewalls,” Master’s thesis, Technical University of Berlin, May 2003.

[8] V. Fuller, T. Li, J. Yu, and K. Varadhan, “RFC 1519: Classless Inter-
Domain Routing (CIDR): an Address Assignment and Aggregation
Strategy,” Sept. 1993, obsoletes RFC1338.

[9] D. C. Plummer, “RFC 826: Ethernet Address Resolution Protocol: Or
converting network protocol addresses to 48.bit Ethernet address for
transmission on Ethernet hardware,” Nov. 1982.

[10] M. Christiansen and E. Fleury, “An Interval Decision Diagram Based
Firewall,” in Proceedings of 3rd IEEE International Conference on Net-
working (ICN ’04). Gosier, Guadeloupe, French Caribbean: University
of Haute Alsace, Colmar, France, 2004, ISBN 0-86341-325-0.


	Home
	Welcome
	Venue/Travel
	Comittee
	Programme
	Sessions
	Tuesday, May 09
	Wednesday, May 10
	Thursday, May 11
	Friday, May 12

	Guest Speakers
	Reviewers
	Papers
	Authors
	All
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Help
	About

