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Faculty of Information Technology,

Brno University of Technology,
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Abstract— This article describes the design of the lookup

machine implemented in hardware accelerator COMBO6 for

IPv6 and IPv4 packet routing. The lookup machine is a sin-

gle instruction machine using Content Addressable and Static

Memories and the operations are performed by Field Pro-

grammable Gate Arrays.
The design of the lookup machine is difficult to be proven

correct by conventional methods, therefore model checking as a

method of formal verification was employed and this case is ex-

plained in detail. In the last part, the article sums up software

support needed to make behavior of the accelerator equivalent

to the host computer.

Index Terms— IPv6 routing, FPGA, formal verification,

Liberouter.

I. INTRODUCTION

A personal computer acting as an IP router serves to two

main basic tasks. It performs routing and packet switching.

By routing we mean maintaining routing tables, configura-

tion, and packet filter setting. Packet switching means that

the operating system scans packet headers, compares it with

the tables, and decides how to handle the packet.

The main limiting factor of a personal computer router is

the throughput of the PCI system bus and interrupt latency.

A natural solution is to overcome pushing packets through

the bus and to build an accelerator that performs packet

switching in hardware. The COMBO6 accelerator devel-

oped in the scope of the Liberouter project [1], [2] serves

just for this purpose. On the opposite, routing and filtering

table maintenance is left to the host computer. This kind of

functionality is quite difficult to implement in hardware; it
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is memory consuming compared to packet switching. Rout-

ing is not a time-critical operation and does not have to

be accelerated—running a routing protocol on a computer

causes only a negligible load.

In any case, we must keep in mind that the host com-

puter implements the whole router functionality, it can both

route and switch packets. Purely software routers are quite

popular in the academic network of the Czech Republic

for their reliability, configurability, and inexpensiveness [3].

Their throughput is comparable with middle-class commer-

cial routers. We are also convinced that todays easiest so-

lution for IPv6 routing is to use a personal computer with a

*BSD family operating system installed.

We move part of the packet switching functionality into

the hardware accelerator, step by step. This allows keeping

the complete functionality all the time, only increasing the

overall speed of the system during the whole development

process. We are free to decide even not to implement some

features at all if the operations required in hardware were

too complicated. Such packets would not be accelerated,

nevertheless it would not be a problem if their number in the

traffic was small.

This approach is known as hardware/software co-design.

The division of the functionality between hardware and soft-

ware is unusually clear in our case—from the discussion

above, packet switching is an obvious candidate to move to

hardware.

One of the key parts of COMBO6 packet switching is the

lookup operation that finds out how to handle a packet. The

input of this process is the packet header, the output is a

record denoting where to send the packet and how it must

be edited before sending out. Software support is needed to

ensure that packet switching is equivalent to the operating

system one, in other words, the accelerator must treat pack-
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Fig. 1. Architecture of COMBO6 microcode

ets in the same way as the host computer would. Hence, soft-

ware support must take operating system’s knowledge about

current routing and propagate it to the accelerator. Lookup

operations in hardware differ substantially from software

packet processing, so sophisticated conversion is needed.

This article describes proposed hardware implementation

of the lookup machine and formal verification we have used

to ensure that the design of the hardware unit is correct. In

the other part, we briefly describe the architecture of accel-

erator’s software support, routing/firewalling table concept,

and lookup program computations.

II. HARDWARE IMPLEMENTATION

COMBO6 accelerator is a PCI card mounted in a personal

computer. The card contains a Field Programmable Gate

Array (FPGA) [4], memories (static, dynamic, and content

addressable), power sources, and other necessary logic. FP-

GAs are programmable, their microcode is uploaded at boot

time and can even be partially changed at run time.

Microcode of the FPGA is designed as a sequence of

nanoprocessors, small special-purpose processors. Instruc-

tions of nanoprocessors are interpreted by FPGA’s mi-

crocode. Nanoprocessors perform dedicated operations with

the packet.

A. Inputs and Outputs

Fig. 1 shows the block structure of COMBO6 card.

Incoming packet enters a Header Field Extractor nano-

processor. It parses headers of the packet and creates a struc-

ture called called Unified-header, physically kept as a set of

registers. Unified-header is a 596 bit long structure contain-

ing relevant information extracted out of packet headers on

fixed positions. It is intended to abstract away from the real

structure of the header in order to simplify lookup opera-

tions. (Another data set denoting real structure of headers is

created for output editors.)

Main fields of a Unified-header include

• L2 and L3 status registers,

• source and destination MAC addresses,

• source and destination IP addresses,

• VLAN id,

• source and destination ports,

• . . .

Creating the Unified-header, the HFE stores the whole

packet (headers and payload) into the dynamic memory

(DRAM). When the Unified-header is finished, it is pushed

to the lookup processor LUP.

COMBO6 is equipped with four input interfaces. Each of

them has its own HFE and lookup machine.

LUP reads the Unified-header and computes pointers to

editing programs. An editing program denotes interfaces

where packet should be sent out and how packets shell be

edited there. REP block replicates the packet identification

to the set of output queues (QUE). Finally, output packet

editor (OPE) modifies the packet before sending out of the

router.

One of the output interfaces is also the operating system,

card interfaces behave as ordinary network interfaces. This

allows sending packets from the host computer, delivering

packets to the host computer, and solving exceptions.

B. Lookup Nanoprocessor

Ideally, the whole problem of header lookup would be

solved using appropriately wide Content Associative Mem-

ory (CAM)1 containing preprocessed routing and firewalling

rules. Unfortunately, no sufficiently wide CAM is available

on the market. As only around 270 bits out of 596 needed

can be matched in CAM, several routing/firewall rules may

be mapped into a single CAM entry. Such situation can

be solved by a consequent “tree lookup.” This part of the

lookup operation can be expressed with a set of “instruc-

tions.”

From hardware point of view, we use two types of mem-

ories, namely associative and static RAM. CAM Micron

MT75W16Y136HBB allows configuration for 4K words of

272 bit length. It is also capable to use “don’t care” bits.

Typical access time is about 80 ns. The other type of mem-

ory is an ordinary static RAM with typical access time 10 ns.

Instructions of the lookup machine are executed by the

microcode of the FPGA. Instructions can be categorized into

three groups:

1) CAM Step, List uses CAM memory. It takes a

subset of registers of the Unified-header and finds

them in CAM. List parameter denotes the subset to

be matched. The value returned by CAM serves as

a pointer to the next instruction in the program. The

execution time depends on the speed of CAM; in the

case of used memory is 120 ns.

2) Comparison instructions compare individual registers

of Unified-header with constants. Tests include equal-

ity, less, less-or-equal and other relations. It also sup-

ports bit comparisons. It can use a mask to select a

part of the register that should be compared. Instruc-

tion execution takes 40 ns.

For example, LTH Step, Reg, Const compares

the content of register Reg with constant Const.

1CAM takes a word of several tens or hundreds of bits as the input and
answers with the address where the word is kept.



3) EXE Queue is the terminal instruction finishing the

lookup run. It sends packet identification and its pa-

rameter to the output queue where the packet is repli-

cated, edited, and sent out. Queue parameter contains

information how to handle packet in the output queue.

Instruction execution takes 40 ns.

All the instructions except EXE are conditional relative

jumps. Length of the jump is denoted by the Step parame-

ter. If the instruction succeeds, it jumps to address increased

by Step, otherwise it goes to the instruction on the next

memory position.

The lookup program starts for each Unified-header with

CAM instruction, then it continues with a sequence of com-

parison instructions and finishes with EXE instruction. Hav-

ing CAM as the first instruction is just a practical limitation.

It is quite time consuming to collect a subset of registers

to be fed into CAM. Doing so in the very beginning of the

computation only increases latency and this operation can

be pipelined. On the opposite, in the middle of the compu-

tation, such operation would cause delay.

If we understand the lookup program as a tree structure,

CAM represents first levels and the remaining instructions

the rest. Important property is that the levels have “distinct

abilities.” For example, CAM is able to specify “don’t care”

bits but cannot do a less-or-equal comparison efficiently.

Don’t care bits in CAM allow to perform best matching pre-

fix search in this device if the entries are sorted from longer

to shorter prefix lengths. If multiple entries of CAM match,

the memory chooses the entry with lowest address.

C. Hardware Implementation

In the design, there are four lookup machines that share

SRAM and CAM memories. The machines must access

memories exclusively. Each lookup machine has its own

time slot to access SRAM. CAM instruction ends with a

SRAM access, therefore CAM instruction must start so that

it ends in particular machine’s SRAM time slot. Figure 2

shows an example of lookup machine runs. Horizontal bars

divide the graph into 10 ns slots. LUP1 to LUP3 are lookup

machines and the rectangles denote the activity of the ma-

chine. In load data phase, registers are copied into CAM.

In this moment, CAM must be exclusively used by the ma-

chine. During latency time, CAM computes the match.

Meanwhile, other data load may occur. The small SR slot

takes the results accessing the static RAM. COMP phase is

instruction decoding and computing. It ends with a SRAM

access that fetches next instruction to process.

In the lower part of the figure possible SRAM accesses

are shown. Finally, CAM slot is the time when lookup ma-

chine may access CAM if and only if CAM is not used by

another machine in the beginning of the slot. In that case,

the machine can start CAM operation load data.

D. CAM and SRAM Sharing Verification

The hardware design brings several important questions.

Is the memory access mutually exclusive? Can a lookup
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Fig. 2. Timing of CAM and SRAM sharing

machine get blocked? Is there an upper bound of waiting

to get an access to CAM? We tried to solve those questions

using conventional methods (i.e., ad-hoc), nevertheless this

approach was rejected as too difficult.

Decision on correctness of the arranged schedule is a

feasible challenge to verification section of our team. De-

manded properties were verified with the symbolic model

checker NuSMV. Model checking2 is a formal method

which allows one to automatically prove whether a model

of a finite-state system at the suitable level of abstraction

satisfies given specification.

Our model consists of five synchronous modules—four

lookup processors and a timer. The timer counts time

slots (each is 10 ns long in reality) modulo 4 in variable

time. Lookup processors lup0, lup1, lup2, and lup3

simulate four lookup processors sharing CAM and SRAM.

Each lookup processor can be in one of six states; a proces-

sor can change state only when the variable time is equal

to its rank. Meaning and behavior of each state is as follows:

The sleep state simulates behavior of a processor with

empty input buffer. Subsequent state depends on whether

2For more information about the method see [5].



any packet comes and whether CAM is not in use by another

machine. If no packet comes then the lookup processor re-

mains in sleep else lookup processor changes to wait or

load_data state. The choice of wait or load_data

depends on whether CAM is in use by another machine or

not.

The processor is in wait state if it wants to start pro-

cessing of a packet but CAM is busy. Remaining in wait

depends on availability of CAM. If CAM is free, the next

state is load_data.

The load_data state represents the critical section of

CAM sharing—loading data into CAM. The next state is

latency1.

States latency1 and latency2 represent only wait-

ing for result. In addition, latency2 includes the finishing

SRAM time slot. Latency2 is followed by a sequence of

comp states.

The comp states simulate computation using SRAM. A

comp state corresponds to performing one instruction; in

the end of the processing SRAM is accessed. The number

of instructions is not limited. It is obvious that the next states

are comp, sleep, wait, and load_data.

We abstract away from the emptiness of the input buffer

and the number of instructions in computation using SRAM.

It means that each decision based on that features is replaced

by a non-deterministic choice. There are no restrictions on

the choice. The described (and verified) model is therefore

a bit more general than reality. It allows the input buffer to

be empty forever or even to stay in comp states infinitely.

Good choice of the level of abstraction, invariant to the

property we check, is the most powerful way to simplify the

verification process. The verification gets easier, faster, or

even possible.

The code below shows the real implementation of de-

scribed CAM and SRAM sharing algorithm.

MODULE timer_type(time)

ASSIGN

next(time) := (time+1) mod 4;

MODULE lup (me, time, CAM_busy)

VAR

state : {sleep, wait, load_data,

latency1, latency2, comp};

ASSIGN

init(state) := sleep;

next(state) :=

case

!(time=me) : state;

state=sleep & ! CAM_busy :

{sleep, load_data};

state=sleep :

{sleep, wait};

state=wait & ! CAM_busy :

load_data;

state=wait : wait;

state=load_data :

latency1;

state=latency1 :

latency2;

state=latency2 : comp;

state=comp & ! CAM_busy :

{comp, sleep, load_data};

state=comp :

{comp, sleep, wait};

esac;

DEFINE

SRAM_used := time=me &

(state=latency2 | state=comp);

MODULE main

VAR

time : 0..3;

lup0 : lup(0,time,CAM_busy);

lup1 : lup(1,time,CAM_busy);

lup2 : lup(2,time,CAM_busy);

lup3 : lup(3,time,CAM_busy);

timer: timer_type(time);

ASSIGN

init(time) := 0;

DEFINE

CAM_busy := lup0.state = load_data |

lup1.state = load_data |

lup2.state = load_data |

lup3.state = load_data;

We checked all interesting properties of this model such

as mutual exclusion of access to SRAM, mutual exclusion

of access to CAM, and fairness of using CAM (no starving,

no blocking). Additionally we computed that the maximal

length of waiting for CAM access is 120 ns. The verified

formulas and results of verification are presented below.

-- Mutual exclusion of SRAM accesses:

-- Assert globally that no pair of lups

-- accesses SRAM at the same time

AG (!(lup0.SRAM_used & lup1.SRAM_used |

lup0.SRAM_used & lup2.SRAM_used |

lup0.SRAM_used & lup3.SRAM_used |

lup1.SRAM_used & lup2.SRAM_used |

lup1.SRAM_used & lup3.SRAM_used |

lup2.SRAM_used & lup3.SRAM_used))

is true

-- Mutual exclusion of accesses to CAM:

-- Assert globally that no pair of lups

-- accesses CAM at the same time

AG (!(lup0.state = load_data &

lup1.state = load_data |

lup0.state = load_data &

lup2.state = load_data |

lup0.state = load_data &

lup3.state = load_data |

lup1.state = load_data &

lup2.state = load_data |



lup1.state = load_data &

lup3.state = load_data |

lup2.state = load_data &

lup3.state = load_data))

is true

-- Fairness of using CAM

-- (no starving, no blocking):

-- Assert globally for each lup that

-- if the machine is in wait state then

-- it will reach load_data sometimes

G ((lup0.state = wait ->

F lup0.state = load_data) &

(lup1.state = wait ->

F lup1.state = load_data) &

(lup2.state = wait ->

F lup2.state = load_data) &

(lup3.state = wait ->

F lup3.state = load_data))

is true

-- The maximal length of waiting

-- for the CAM access

-- MAX(lup0.state = wait,

lup0.state = load_data) is 12

-- MAX(lup1.state = wait,

lup1.state = load_data) is 12

-- MAX(lup2.state = wait,

lup2.state = load_data) is 12

-- MAX(lup3.state = wait,

lup3.state = load_data) is 12

III. SOFTWARE SUPPORT

System software is developed in NetBSD and immedi-

ately ported to Linux to get wider user base. The goal of

the design is to make COMBO6 independent on operating

system tools used to set up and trace network traffic so as no

changes to those tools are needed. Then, COMBO6 will be

independent on routing daemon used in the host computer

and, say, ifconfig may be used to set up interfaces of

COMBO6.

System support can be divided into two main parts:

drivers and lookup table computation.

Drivers provide standard operations like FPGA booting,

accessing memories on the card (RAMs and 272 bits wide

CAM words, including DMA access), status information

reading, statistics collecting, and packet transfer. The driver

provides a usual Un*x device (/dev/combo) with an ap-

plication interface. Higher level lookup table computation

support uses the driver to access the memories.

A. Interfaces

Let us sum how an operating system kernel treats deliv-

ered packets. The kernel maintains a routing table. It is

either set up statically or maintained by a routing daemon.

Packet filtering rules are described in a packet filtering lan-

guage, e.g., ipfw or iptables, and kept in internal kernel

structures. Processing a packet, kernel scans packet head-

ers, consults them with the tables, and decides what to do

with the packet.

Simply, we have to overcome this mechanism and push

the lookup operation into the hardware lookup processor.

First, we must get the configuration, routing, and filtering

setting from the system. One possibility is to modify rout-

ing daemon and other tools to announce the configuration to

the COMBO6 support. Main disadvantage of this approach

is that we would have to modify and maintain third-party

code. Moreover, COMBO6 user would be limited to a set of

tools we support. Therefore, the information must be taken

directly from the kernel. All changes in tables of interest are

announced through so called RT-callback interface.

Firewall setting is a topic on its own. Filtering tools

have an incredible amount of possibilities and mechanisms.

There is no common standard in any supported operating

system, to say nothing about portability. This problem is

open nowadays and we study it intensively.

Traffic diagnostics is another challenge. Diagnostics tools

like tcpdumpmodify kernel tables and insert filters search-

ing for desired information there. Their settings must also be

propagated into the hardware lookup machine. We suppose

that in the first version, packets touched by tcpdump will

be completely sent to software.3 It is nevertheless desired to

feed software filters with as small superset of desired pack-

ets as possible.

To sum up, the task is to take routing and firewalling ta-

ble and compute the lookup structure we have described in

Section II-B. A daemon watches the RT-callback interface

announces and computes the hardware lookup structures. As

the software and hardware way to perform lookups is quite

distinct, we use a concept of routing/firewalling table.

B. Routing/firewalling table

An operating system kernel usually decides what to do

with the packet in several steps. On the opposite, we have

the only run of the lookup machine to handle a packet.

Therefore we have to combine routing and filtering into just

one lookup operation. We have created a concept of rout-

ing/firewalling table. Routing/firewalling table is a routing

table with a-priori applied filtering rules. In general, a rout-

ing table row can be split into several routing/firewalling

table entries. When any of the source tables change, rout-

ing/firewalling table must be recomputed.

This concept will have to be carefully analyzed and stud-

ied. Its expression power must be compared to standard

tools for packet filtering, like ipfw or iptables.

C. Lookup structure computation

The routing/firewalling table serves as a source for lookup

structure computation. The structure is computed out of

3Note using hardware/software co-design principles.



routing/firewalling table and is physically stored in CAM

and SRAM memories.

We suppose that the structure will be strongly opti-

mized [6]. The structure must also fit into the limited re-

sources, mainly CAM. The optimization must take distinct

abilities of parts of the search structure into account. For

example, testing port numbers to be less than a constant

is feasible in CAM by means of string expansion, wasting

valuable CAM space significantly. Much better solution is

to defer such a test to the comparison instructions.

As routing table may change, the changes must be prop-

agated into the lookup program. For the first version we

plan only recomputation of the whole structure from scratch,

later parts of the structure should be modifiable. Propagating

changes into hardware brings issues with timing and record

validity. Two separate memories (CAM and SRAM) must

be updated at the same time and the lookup structure must

be switched atomically.

In the ideal case, a system monitoring network traffic

would affect the optimizations according to actual condi-

tions. In general, the optimization task can be formulated

as optimization of special automaton under strong bounding

conditions.

IV. CONCLUSION

We have described the proposed architecture of a block

of a hardware design. The lookup machine is a central part

of the COMBO6 hardware routing accelerator, therefore ef-

ficiency of the device depends on it crucially. Although

the idea to move packet switching into hardware seems re-

ally straightforward, it leads to a non-trivial hardware de-

sign. Moreover, software support (currently in progress) is

needed to propagate routing and filtering table setting into

the lookup machine.

The hardware design got quite complicated and its cor-

rectness turned out to be very difficult to prove. Model

checking as a method of formal verification showed to be

extremely useful for this task.

This was the first case (after a long period of hunting for a

common language) when cooperation with the project’s for-

mal verification group brought a practical and directly appli-

cable result.
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[15] Jiřı́ Novotný, Otto Fučı́k, and David Antoš, “Liberouter—New Way
in IPv6 Routers,” in ICETA 2003 2nd International Conference Pro-
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